Quantum and classical vibrational chaos in floppy molecules
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Classical and quantum mechanical calculations on the vibrational motions of LiCN
using a realistic potential are presented. These, together with recent results for KCN,
are analyzed using indicators that have been proposed for identifying quantum
chaos. These are nodal structure, dominant coefficient, overlapping avoided
crossings, second differences, and spectral distribution. We find an early onset of
chaos in LiCN and KCN with good agreement between the indicators. Localized
quasiperiodic trajectories and regular states are found well into the chaotic region for
both isomers of LiCN. LiCN is a weakly coupled system in contrast to strongly
coupled KCN. The utility of the indicators is discussed in the light of these results.
The link between floppy molecules and chaos suggests that floppy systems are
suitable for the experimental investigation of vibrational chaos.

I. INTRODUCTION

Many systems when studied using classical mechanics
show transitions from a low energy regime with regular
(quasiperiodic) trajectories to a higher energy regime
which has an increasing proportion of irregular (chaotic)
trajectories. The properties of such systems have been
well studied and a good understanding of classical chaos
has been achieved.! In particular the power spectrum of
a trajectory, its Poincaré surfaces of section and plots of
the trajectory itself, as well as the maximal Lyapunov
number,”* give criteria which enable chaotic regions to
be identified.

Quantum mechanically the situation is less clear.
Much work has been done on model problems,>?° such
as the Hénon-Heiles Hamiltonian, trying to identify a
quantum analog to classical chaos. Although several
indicators have been proposed, at this time the exact
nature of quantum chaos is still a subject of controversy.
No true signature of chaos has yet emerged.

The occurrence of classical chaos is often used as an
indicator for quantum chaos, indeed it would be unwise
to search for quantum chaos without first testing the
classical properties of a system. Although it is now widely
accepted that there is no one-to-one correspondence
between classical and quantum chaos,??! we know of no
case where quantum chaos has been postulated for a
classically quasiperiodic regime.? Indeed, the explanation
that the “sluggish” onset of quantum chaos relative to
classical chaos is due to the finite value of A5%?* would
appear to imply that classical chaos is a necessary but
not sufficient condition for quantum chaos. Contrary to
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this Reinhardt has stated that “quantum chaos and clas-
sical chaos do not imply each other.””*!

Among the means that have been suggested for
identifying quantum chaos, five are sufficiently general to
be applied to quantum mechanical calculations on real
systems. These are the criteria of nodal structure,” domi-
nant coefficients,® second differences,® overlapping avoided
crossings,'®?* and spectral distribution.''?*

For regular states the nodes of a multidimensional
wave function form a grid which allows quantum numbers
for each coordinate to be assigned by inspection. This
regular structure can be associated with an approximate
separability of coordinates and hence integrability. As was
first observed semiclassically,” some high energy states
lose this nodal regularity so that quantization along
qualitatively separable coordinates can no longer be
achieved. It has been suggested that these irregular states
are quantum chaotic, although recent work by De Leon
et al.'* has shown that regular states in resonance can
also have nodal structures which appear irregular.

A related quantitative method of assigning regular
or quasiperiodic states has been proposed by Hose and
Taylor.® They show that any state which has a coefficient
greater than (0.5)"2 in a basis function expansion can be
assigned as regular with the quantum numbers of the
dominant basis function. Furthermore, they use this
feature as the basis of a quantum KAM theory. However,
this indicator is of limited usefulness as it depends on a
fortunate choice of basis and says nothing about states
which fail to satisfy it.

Two related measures of quantum chaos have been
suggested, based on Percival’s conjecture?® that irregular
states will be highly sensitive to perturbations. Pomphrey®
analyzed energy levels of the Hénon-Heiles Hamiltonian
and classified states as regular or chaotic according to the
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magnitude of energy second difference with respect to
small changes in the coupling potential. This measure
has since been questioned’*!* but supported by Edmonds
et al.b

Another manifestation of this instability, a dense
web of overlapping avoided crossings, has been noted by
Marcus and co-workers.!®?® This criterion for quantum
chaos has since been applied to several systems.!"!3!5

Analysis of the nearest neighbor spacings of energy
levels has led to the identification of different distributions
for quasiperiodic and chaotic regions of the spectrum.
Berry and Tabor'® have shown semiclassically that regular
levels should follow a Poisson distribution. Numerical
experiments with random matrices have led to the sug-
gestion that chaotic spectra should obey a Dyson-Wigner
distribution.?*?® This criterion has special appeal as it can
be applied to experimental data (see, e.g., Refs. 26
and 27).

A limiting form for the chaotic distribution for the
case where the energy level spacing tends to zero has
been suggested by Berry,?® which agrees with the Dyson—
Wigner distribution.

The indicators discussed above are not the only ones
that have been suggested. Time-dependent problems have
been analyzed using wave packets,>!*!? correlation func-
tions,>'%!° overlaps® and Wigner phase-space distribu-
tions.'” We are interested in time-independent solutions
of real systems and will not consider any of these further.

The ultimate aim of studying quantum chaos must
be the understanding of its experimental manifestation.
However, as work on HCN has shown,® this cannot
easily be achieved by the direct comparison of classical
calculation with experiment. This is because the vibrational
motion of a system, despite being completely determined
by the potential energy surface of that system, is unstable
in chaotic regions to small changes to this potential.
Therefore we believe that the correct approach is through
the study of real systems which display classical chaos,
quantum mechanically. In this way we hope to gain
understanding of when and how quantum chaos might
manifest itself and perhaps suggest how such chaos might
be observed. Furthermore, the scarcity of nonlinear me-
chanical analysis of real potentials underlines the need
for systematic studies of realistic potentials.?>°

Floppy molecules have excited much recent interest
among experimentalists®>'~3> and quantum theorists.3*-3
The large amplitude vibrations of these molecules sample
large regions of the potential and can thus be expected to
be significantly anharmonic. Classical calculations have
shown that the onset of chaos in a system is closely
related to the anharmonicity of that system. Floppy
molecules would thus appear excellent candidates for the
early onset of chaos. Indeed, if one was to apply the
criterion of nodal structure to some published results, 3>’
this chaos has already been found, but passed unnoticed.

In a recent paper,’ henceforth referred to as I, we
gave preliminary results for the floppy KCN system.
Classically, vibrational chaos was found at very low
energies, even below the quantum ground state of the

system. Use of the indicators discussed above enabled us
to establish the early onset of quantum chaos although
some quantum siuggishness was observed.

In this paper we present results on the vibrations of
LiCN, computed using both quantum and classical me-
chanics. Although both KCN and LiCN are floppy, they
can be expected to show very different behavior. KCN
has a triangular minimum energy structure and a low-
lying barrier at the linear KNC geometry.*® Conversely,
the LiCN potential we use has an absolute minimum for
linear LINC and a local minimum for linear LiCN. This
potential, calculated ab initio by Essers et al.,*' predicts
an equilibrium structure in good agreement with recent
microwave results.>3 Calculations using this potential®
gave fundamental vibrations near those observed in matrix
isolation studies,** they also predicted that both minima
support localized vibrational states and that many of the
higher states are delocalized.

In this work, as in previous theoretical studies on
LiCN and KCN35-*2 gnly the two-dimensional vibrational
problem given by freezing the CN bond, will be considered.
This approximation is physically motivated because of
the weak coupling between M* and CN~ coordinates*
and the high frequency of the CN~ fundamental vibration.
We thus consider only a two-dimensional vibrational
problem and leave the full problem for future study.

By analyzing the vibrational motion of LICN and
KCN, we hope to assess the performance of the five
indicators for quantum chaos on real systems and their
usefulness in the search for chaos in multidimensional
systems with real potentials. We also seek to establish the
link between floppy molecules and low lying vibrational
chaos.

1Il. CLASSICAL CALCULATIONS ON LiCN

Like that used for KCN, the LiCN potential of Esser
et al*! is expressed analytically as a Legendre expansion
in scattering coordinates

9
V(R, 8) = 2 Py(cos )V(R), (1)

A=0

where R is the distance from Li* to the CN™ center-of-
mass and @ is the angle between R and the CN™ bond,
which has length r. 8 is measured from the linear LiCN
structure and r frozen at 2.186a4,.

The Hamiltonian for this rotationless two dimen-
sional vibrational problem is
P3 1 1
H= 5;‘31 + ( et W)P% + V(R, 0), )

where
ur' = mg + (mc + my),
p2' = me' + myl. 3

my;, mc, and my denote atomic masses.

The four first order Hamilton’s equations were in-
tegrated by an Adams-Moulton fifth order predictor
sixth order corrector method initialized with a fourth
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order Runge~-Kutta procedure. The trajectories were in-
tegrated for about 1 ps and the energy was conserved to
seven figures.

In classical mechanics there are four methods of
deciding whether a trajectory is quasiperiodic or chaotic.'
These are (a) the study of power spectrum of a dynamical
variable, (b) the Poincaré surfaces of section, (c) inspection
of the projection of the trajectory onto a coordinate plane
and (d) the calculation of the rate of exponential divergence
of two neighboring trajectories.

To have a view of the global structure of phase space
in quasiperiodic-chaotic regions at different energies, we
first examined trajectories the initial conditions of which
were chosen randomly over phase space. We used an
orthant sampling method*® to generate random unit four
vectors in phase space and then scaled them appropriately
to conserve energy. LICN shows a typical KAM behavior.*
At energies below 1600 cm™' the phase space is occupied
mostly by quasiperiodic trajectories. At higher energies
chaotic trajectories coexist with quasiperiodic ones and
their measure increases with energy. By using batches of
50 pairs of trajectories we have calculated average values
of the maximal Lyapunov number for the chaotic trajec-
tories (Fig. 1). These values were obtained by evaluating
the rate of exponential divergence of 2'! time steps. It
has been shown* that this stochastic parameter is pro-
portional to what is called the Kolmogorov entropy. It
has been conjectured*® that the inverse of the Kolmogorov
entropy gives the time scale for energy randomization in
the system. This conjecture has been supported by tests
on model*’ and real systems.>* From Fig. 1 we can see
that, as for KCN, chaos starts early if we compare the
critical energy to transition with the dissociation energy
(53 684.688 cm™! = 6.656 eV).

Next we examined individual trajectories started at
the equilibrium geometry of both LiNC and LiCN. The
energy was initially distributed as kinetic energy in the
bending and stretching modes. Figure 2 shows typical
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FIG. 1. Average values for the rate of divergence of two neighboring
trajectories for LINC.
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FIG. 2. Typical quasiperiodic and chaotic trajectories for LINC below
the isomerization barrier. E = 2456 cm™' (upper) and 2341 cm™' (lower).
(a) The power spectrum in eV (1 eV = 8065 cm™!), (b) Poincaré surface
of section, and (c) projection of the trajectory on the coordinate plane.
Q, is 8 in degrees and Q; is R in .

LiNC quasiperiodic and chaotic trajectories. Both trajec-
tories lie below the barrier to isomerization (3377 cm™).
Similarly Fig. 3 shows a trajectory for LiCN, for which
the energy is given relative to the LICN minimum, which
is 2281 cm™! above the LiNC absolute minimum.

We found quasiperiodic trajectories above the barrier
to isomerization for both LINC and LiCN. Figure 4
shows two such trajectories. However, chaotic trajectories
above the barrier are no longer localized around LiNC or
LiCN, but jump from one minimum to the other. As can
be seen in Fig. 5 the angle 6 increases beyond 360°
demonstrating the rotation of Li* around CN~.

In the next sections we show that the types of
trajectories distinguished above have analogous quantum
states.

il. QUANTUM CALCULATIONS ON LiCN

Only the vibrational levels of LICN with zero total
angular momentum, J = 0, will be considered. Following
Tennyson and Sutcliffe,® the Hamiltonian can be written

2 ()R (L)
2u,R? R dR 2 \wR?  wr?
1 a/. ]
——sin 330 (sm (/] 3 0) + V(R, 6) “)

which is the quantum analog of Eq. (2). A convenient
method of solving Eq. (4) is via a basis set expansion.
Use of Legendre functions for the angular coordinates
allows integrals in this coordinate to be performed ana-
lytically.

In this work we make two changes from calculations
on LiCN by Brocks and Tennyson.?” Firstly, for consis-
tency with the results obtained for KCN, we use a CN
bondlength of r = 2.186a,. Secondly, for the radial
coordinate basis we choose the Morse oscillator-like func-
tions of Tennyson and Sutcliffe,® rather than the numer-
ical functions which Brocks and Tennyson*’ found rather
unsatisfactory for this problem.
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Calculations were performed using program ATOM-
DIAT.*® Optimized parameters for the Morse oscillator-
like functions were found to be: R, = 4.18a,, D, = 14 000
cm™), w, = 417 cm™!. Table I demonstrates the conver-
gence of the lowest 80 vibrational states with basis set
size. All further LiCN calculations presented here used
the 855 dimensional problem basis given by n = 19, [
= 44, This basis converges the lowest 70 states to within
1 cm™!, and mostly to within 0.1 cm™".

Analysis of the lowest 80 vibrational states of LICN
reveals a complicated picture. States corresponding to five
different types can be observed.

A. Regular states localized about LINC

The lowest 18 excited states are localized about the
LiNC minimum and can easily be assigned according to
their nodal structure (see Fig. 6). Above these are several
states for which only approximate assignments are possible
because of deformities in the nodal structure. Below the
80th excited state there are also a further eight regular
states for which exact assignments can be made.

B. Irregular states localized about LiNC

Above the 18th excited state there are an increasing
number of localized states which cannot easily be assigned
(see Fig. 7). These range from states where distortion of
the nodal structure makes an approximate assignment
possible, to states for which no assignment can be made.
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00, | .: 0.0 o L 44
_32l 134 Y
3243 45 53 8 180 715 4439 150 3]
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FIG. 4. Quasiperiodic trajectories above the isomerization barrier. Upper:
LiNC at E = 4460 cm™' lower: LiCN at E = 2219 cm™. (a), (b), and
(c) as in Fig, 3.

FIG. 3. A typical quasiperiodic trajec-
tory for LiCN with energy 510 cm™
which is below the isomerization bar-
rier. (a) Poincaré surface of section for
the stretching mode, (b) Poincaré sur-
face of section for bending, and (c) the
projection of the trajectory on the co-
ordinate plane; labels as in Fig. 2.

C. Regular states localized about LiCN

The 30th excited state can be assigned as the LiCN
ground state. Above this a further six states are localized
about the LiCN local minimum. All these states can at
least be approximately assigned according to their nodal
structure (see Fig. 8). Some of these states are above the
barrier to isomerization.

D. irregular delocalized states

The 60th excited state and an increasing proportion
of the higher states have significant amplitude on both
sides of the potential barrier. Most of these states, including
that shown in Fig. 9, have highly irregular nodal structures.
When the radial zero point energy is allowed for, the
60th excited state and several other delocalized states lie
below the barrier of 3377 cm™! (from LiNC) between the
two minima and thus display tunneling.

E. Free rotor or ‘“‘polytopic’’ states

In 1973 Clementi et al.*® predicted that LiCN should
become polytopic (free rotor-like) above the barrier to
isomerization. However, Brocks and Tennyson failed to
observe any regular delocalized states.’” Figure 10 shows

3s )
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0.0 |
38 a2 379
Y

FIG. 5. A typical chaotic trajectory
above the barrier to isomerization.
Energy = 4217 ¢cm™' (a) Poincaré

54 1 surface of section for the bending
Q coordinate and (b) the projection of
L the trajectory on the coordinate plane.
41
1
21817 -186 445
Q
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TABLE 1. Convergence of the vibrational states of LiCN with basis set. All energies are given relative to the ground state at —53 172.256 cm™'
in all calculations.

Excited state

n r 10 20 30 40 50 60 70 79

15 44 1245.30 1874.83 2286.81 2669.81 2957.84 3223.49 3474.83 3662.91
17 44 1245.30 1874.83 2286.80 2669.52 2955.98 3223.42 3474.81 3660.03
17 48 1245.30 1874.83 2286.80 2669.52 2955.98 3223.42 3474.80 3659.99
19 44 1245.30 1874.83 2286.79 2669.48 2954.94 322341 3474.81 3655.34

* Number of Morse oscillator-like functions in the R basis.
® Maximum / in the Legendre function basis for 6.

two states which could be designated regular free rotor
states on the basis of their nodal structure. The states
have 24 and 26 nodes in the @ coordinate. We found no
other delocalized states which were not some complex
mix of bending and stretching coordinates (see Fig. 9).
Next we analyze the effect on the vibrational energy
levels of small perturbations of the potential. For this the
same perturbation is used as was used for KCN in I’%

V(R, 0) = V(R, 6) + dPx(cos B)Vo(R). )

Figure 11 shows the effect on the levels below 3000 cm™'
of small changes in 3. At lower energies [Fig. 11(a)] this
perturbation causes only isolated avoided crossings, at
higher energies [Fig. 11(b)] these crossings occur with
increasing frequency. Above 2000 cm™' (and perhaps
lower) these avoided crossings can no longer be considered
isolated.

We note that in many cases the levels approach
closely before being repelled, suggesting that there is only

weak coupling between the levels. This is in contrast to
KCN (see I) where the levels are strongly repelled.

Figure 12 plots second differences calculated using
Pomphrey’s formula®

A; = [[E(+0.01) — E(0)] — [E(0) — E(-00D),  (6)

where E;(d) is the energy of the ith state calculated with
a perturbation é.

Comparison of Fig. 12 with Fig. 11 shows that the
four pairs of states with large A; (at about 1395, 1547,
2246, and 2918 cm™') all correspond to avoided crossings
whose point of closest approach is for 6 =~ 0.0. Figure
13 gives second differences calculated according to Eq.
(6) for KCN. Again, the largest values of A; correspond
to states in resonance (at about 300, 724, and 890 cm™!).

Figure 14 shows two nearest neighbor level spacing
distributions for LiCN. These spectral distributions have
been plotted for the lowest 29 states and the next 51
states, respectively. This partitioning is rather arbitrary.
Figure 14(a) corresponds to a region which is composed
of states which can be assigned (at least approximately)

6 by their nodal distribution. A Poisson distribution is also
. 6
44th Excited state
54 45th Excited state
— 5—
Q
[
hd
-5
4 =
o
4
3 T
0 90 180
;]
FIG. 6. Nodal structure of a typical regular LiNC state, (Upesct» 3 T
ypical reg i (Varechs Ubena) 5 o0 180

= (3, 6). The contours link points where the wave function has 4%, 8%,
16%, 32%, and 64% of its maximum amplitude and dashed curves
negative amplitude.

FIG. 7. A typical irregular LiNC state. Contours as in Fig. 6.
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FIG. 8. A typical LiCN regular state (Vsretch, Vbena) = (0, 4). Contours as
in Fig. 6.

shown for comparison. For the higher levels, which cover
a region where most of the states cannot readily be
assigned, a Dyson-Wigner distribution is given [Fig.
14(b)]. Figure 15 shows the spacing of the KCN levels
which also appear to approximately follow a Dyson-
Wigner distribution.

IV. COMPARISON OF QUANTUM AND
CLASSICAL RESULTS

The classical trajectory results presented in Sec. II
show several interesting features. In the LiNC region of
the potential chaos is found early, below the LiCN
minimum, but localized quasiperiodic trajectories persist
even above the LiNC/LiCN barrier. Starting from the

805

6

60th Excited state

180

FIG. 9. An irregular delocalized state. Contours as in Fig. 6.

LiCN minimum, quasiperiodic trajectories are again found
above the barrier. All the delocalized trajectories we
observed are chaotic.

LiNC and LiCN show a gradual reduction in the
proportion of quasiperiodic trajectories above the critical
energy. This is in accordance with KAM theory.** Con-
versely, KCN which has an even earlier onset of classical
chaos, shows a sudden conversion to stochasticity.

How do these classical results compare with our
quantum calculations? Analysis of nodal structures shows
several of the features mentioned above. Above 1800
cm™' localized LiNC vibrational states which cannot
easily be assigned occur increasingly often. Some of these,
including the lowest ones, are distorted regular states and
can be labeled in an approximate fashion from their

[}

64 th Excited state

70 th Excited state

FIG. 10. Free rotor-like states. Contours
as in Fig. 6.

n
4 T |
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nodal structure; this was in fact done by Brocks and *

Tennyson.?” Regular localized LiNC states persist through %
the energy range studied. Similarly regular LiCN states .

were found above the barrier. Most (all?) the delocalized
quantum states have irregular nodal structures. 600 o

This gradual onset of irregularity in both LiCN and *

LiNC is again in contrast with the KCN results obtained
in I. For KCN, no states above those which could be
proved to be regular by the dominant coefficient criterion
of Hose and Taylor,® could even approximately be as- 4004
signed.

Analysis of the other criteria for quantum chaos .
gives further information. Perturbing the LiCN levels
yields many overlapping avoided crossings in the region
2000+ cm™! above the ground state. As in KCN, the - 200+
exact transition point from isolated to overlapping avoided
crossing is unclear.

In principle the second differences give a more
quantitative measure of chaos. However, as was observed N
by Noid et al'® in their study of the Hénon-Heiles GO )
Hamiltonian, the largest second differences are due to
near-resonant states undergoing avoided crossings. As Alem—1)
avoided crossings are a feature of both regular and  FIG. 13. KCN second differences.

vicm=—1)

N —
o
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FIG. 14. Nearest neighbor level spacing histograms for LiCN. (a) the 29
lowest levels and (b) levels from 30 to 80.

irregular regions of the spectra these large second differ-
ences must be interpreted with caution.

Ignoring the large A; due to the resonances, one can
observe an increase in A; with energy, especially in the
LiCN results (see Fig. 12). This was again observed by
Noid et al.'® but appears contrary to the results of
Pomphrey.® His analysis of the Hénon-Heiles problem
showed a sharp increase in A; in the chaotic region.

At best the spectral distributions, given here for
LiCN (Fig. 14) and for KCN (Fig. 15), are only suggestive
of the idealized distributions which we give for comparison.
The comparatively small number of levels available in
each case means that any statistical analysis is necessarily
approximate.

The indicators of quantum chaos discussed above
point to an early onset of chaos in LiCN. Although it is
difficult to pinpoint where chaos first occurs there is good
general agreement between the nodal structure, avoided
crossings, and spectral distributions about which regions
are regular and which chaotic. These regions of quantum
regularity and chaos are in good agreement with those
predicted classically. Indeed this qualitative correspon-
dence also extends to nature of the chaotic regions, in
particular to the strong and weak coupling displayed by
KCN and LiCN, respectively.

Despite some sluggishness, chaos is found at low
energies in both LICN and KCN. This is in direct contrast
to previous classical calculations on more conventional
(less floppy) chemically bound systems such as O3,2 SO,,?
and HCN*, In none of these systems was chaos predicted
at less than a third of the dissociation energy.

V. CRITERIA FOR QUANTUM CHAOS

In the light of our results on LiCN and KCN, it is
interesting to consider the advantages and drawbacks of
the five suggested indicators of quantum chaos.

Use of the nodal structure is potentially the most
powerful of the suggested indicators. For example, it
enabled us to establish good qualitative agreement between
many features of our classical and quantum results in the
last section. This is because nodal structure can be used
to designate individual states (as opposed to regions)
regular or chaotic. However this criterion must be used
with caution because, as observed by De Leon et al.,'?
the occurrence of isolated Fermi resonances can cause
regular states to appear irregular. This meant that the
critical energy could not be precisely pinpointed in KCN.
Conversely in a weakly coupled system such as LiCN,
the loss of nodal regularity occurs only slowly again
making the assignment of critical energy difficult.

The criterion of nodal structure is most easily used
for two dimensional systems, such as those considered
here. Making a similar analysis will clearly be much
harder for polyatomic systems where the search for nodal
hypersurfaces cannot easily be performed by graphical
inspection.

Hose and Taylor’s method of dominant coefficients®
can in principle solve some of these problems as it is a
numerical rather than topological measure. However, our
experience has shown that basis functions which are
suitable for representing the chaotic states of a system do
not give dominant coefficients for the low-lying (quasi-
periodic) levels. Although this problem might be overcome
by transforming the one dimensional representations of
the basis, we did not consider this worthwhile as this
indicator yields no positive information about chaotic
states.

The use of small perturbations of the potential gives

two criteria for chaos which can be applied with equal
ease to larger systems. Moreover, the use of avoided
crossings is analogous to the explanation of classical chaos
as overlapping nonlinear resonances. The occurrence of
isolated avoided crossings can also be used to pinpoint
states with irregular nodal structures due to Fermi reso-
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FIG. 15. Nearest neighbor level spacing histogram for KCN.
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nance. This was done in I for KCN. However, we found
it difficult to determine when crossings ceased to become
isolated.

Another way of viewing this problem is: what con-
stitutes a small or even a suitable perturbation? For model
systems with one coupling parameter, such as the Hénon-
Heiles problem, the choice of perturbation is unambigu-
ous. For real systems, which have complicated potential
functions there are many possible perturbations that can
be applied; in our experience all perturbations do not
have equal effect.

For example, Matsushita and Terasaka'' recently
analyzed the avoided crossings in a system of kinetically
coupled Morse oscillators by varying the mass ratio of
the component atoms. With this perturbation they suc-
cessfully identified chaotic states in their system. Figure
16 shows the effect of changing the mass of K* on the
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FIG. 16. Variation of KCN vibrational frequencies with the mass of
potassium. All frequencies are plotted relative to the ground state. There

are no avoided crossings below 500 cm™'.

vibrational levels of KCN. Although there are some
avoided crossings, even in the region (400+ cm™! above
the ground state) where a considerably smaller perturbation
of the potential [see Eq. (5)] caused many overlapping
avoided crossings (see I), there is little evidence of any
chaotic behavior with this perturbation of the kinetic
energy operator. Similarly, even comparatively large per-
turbations of the whole potential:

VIR, 0) = (1 + 8)V(R, 0) )

caused few crossings in this system.

This sensitivity to perturbation emphasizes the need
to perturb the coupling term in the Hamiltonian which
is responsible for the onset of chaos. In our case this is
the anisotropic part of the potential; in Matsushita and
Terasaka’s calculation it is the kinetic energy operator.
For a complex real calculation, however, the nature of
the coupling may not be immediately apparent.

The use of second differences rather than avoided
crossings is attractive because it is a numerical rather
than graphical indicator. However, in agreement with
Noid et al.,'® we found that this test highlighted resonant
rather than necessarily chaotic states.

The use of spectral distributions did not prove
particularly useful for either LICN or KCN. This is
because the low density of states in these small molecules
means that insufficient levels are available for accurate
statistical analysis. However, in polyatomic molecules this
should no longer be the case and the experimental
applicability of this indicator’®?’ gives it an advantage
over all the others we consider.

VI. CONCLUSION

The vibrational motions of the floppy LiCN and
KCN molecules have been studied both classically and
quantum mechanically. All the criteria analyzed point to’
an early onset of quantum chaos in both these systems.
Two criteria nodal structure and overlapping avoided
crossings gave useful information about these systems; a
third, spectral distributions, can be expected to be of
greater use for polyatomic systems. Our experience suggests
that it is necessary to study more than one criterion to
obtain maximal information about the system. Conversely,
we found neither second differences nor Hose and Taylor’s
“Quantum KAM:-like theory’® helpful in interpreting our
results.

Good qualitative agreement between quantum and
classical mechanics is obtained for both LiCN and KCN.
Although there is some quantum sluggishness, the early
onset (very early in KCN) is predicted in both mechanics.
Furthermore, in both the markedly different behavior
between strongly coupled KCN and weakly coupled LiCN
is apparent. Indeed both our quantum and classical
calculations find that regular motion, localized about
LiNC and LiCN persists well into the chaotic region and
above the barrier between the two LiCN structures. The
systematics behind this regular motion and its conse-
quences for the spectroscopy of small molecules will be
the subject of a forthcoming article.>

J. Chem. Phys., Vol. 82, No. 2, 15 January 1985

Downloaded 08 Dec 2008 to 194.177.215.121. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



S. C. Farantos and J. Tennyson: Vibrational chaos in fioppy molecules 809

Our results demonstrate the association between the
early onset of chaos and floppiness. The nature of chaos
is such that our calculations can have little directly
predictive worth in the chaotic region as any improvement
to the potential can be expected to alter dramatically the
chaotic vibrational levels. However, we can suggest that
experimentalists interested in investigating vibrational
chaos should look at floppy systems such as LiCN
and KCN.
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