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We present a detailed theoretical study of the electronic transport properties of monolayer graphene. The
quantum and transport conductivities are calculated on the basis of the usual momentum-balance equation
derived from a semiclassical Boltzmann equation. We investigate carrier-impurity scattering in a massless
Dirac quasiparticle system. The carrier interactions with remote and background impurities are considered, and
the carrier–carrier screening is included within the random phase approximation. The dependence of the
conductivities on temperature is also examined. Moreover, a very simple analytical formula is proposed such
that only one fitting parameter is needed in order to make a quantitative comparison with the experimental
results.
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I. INTRODUCTION

The realization of electronic devices based on a single
sheet of graphite �or graphene� is an important scientific
breakthrough.1–3 From a fundamental physics point of view,
graphene provides us with an opportunity to study massless
and gapless Dirac quasiparticles that differ essentially from
the conventional Schrödinger particles.4 On the other hand,
owing to its unique electronic band structure and correspond-
ing quasirelativistic features, graphene has been proposed as
a new electronic system for advanced devices such as
graphene p-n junctions,5 p-n-p junctions,6 transistors,7 etc.
As a result, the study of electronic transport of Dirac quasi-
particles in graphene has become an important research topic
in condensed matter physics and nanoelectronics.4

At present, the often used graphene device is based on a
graphene sheet that is placed on top of an oxidized silicon
wafer.1–3 One of the major advantages of such a device is
that the density of conducting carriers in the graphene layer
can be controlled very effectively through a gate voltage ap-
plied perpendicular to the graphene sheet. It is found experi-
mentally that in typical graphene on a SiO2 wafer, the carrier
density increases almost linearly with the gate voltage, with
over a wide range of gate voltage away from the charge
neutrality �Dirac� point.1,7 In this linear density–voltage re-
gime, the conductivity in a single layer graphene increases
almost linearly with the gate voltage.8 Consequently, the car-
rier mobility is constant and independent of the carrier
density.9

In conjunction with intensive experimental activities in
the study of the electronic transport properties in graphene
devices, a number of theoretical studies have been carried
out to calculate the transport conductivity induced by
impurity4,9,10 and phonon11,12 scattering in graphene. Similar
to the investigation of conventional electron gas systems, the
theoretical approach based on the Boltzmann equation10,11

has been popularly used to calculate the conductivity or re-
sistivity in graphene. It should be noted that the relaxation

time ��� obtained by Hwang et al.10 and �1 /�� by Vasko and
Ryzhii11 are determined simply by the energy average over
the scattering rate from Fermi’s golden rule. Similar ap-
proach has also been used by Nomura and MacDonald9 to
calculate the relaxation time as it is limited by impurity scat-
tering at zero magnetic field. In particular, in Refs. 9, ���
��dEE��E��−df�E� /dE�, and 11, �1 /����dEE�1 /��E��
��−df�E� /dE�, were used to evaluate the average relaxation
time. We know that these are correct formulas for an electron
gas system with a parabolic dispersion relation E�k2. For
the case of graphene that has a linear dispersion E�k, one
needs to check if these formulas still hold. As pointed out by
Hwang et al.,10 the carrier–carrier screening plays an impor-
tant role in affecting the effective carrier-impurity scattering
and the low-temperature conductivity in graphene. In Ref. 9,
the inverse screening length Ks at long-wavelength regime
�i.e., q�1� was used to calculate the conductivity. When q
�1, Ks is proportional to the Fermi wave vector so that the
conductivity is definitely linear in the electron density. A
question one would like to ask is that if we do not take the
small q approximation for the screening length, which, in
general, is a functional form of the electron density, how
would the transport conductivity be modified?

Motivated by the experimental and theoretical works
mentioned above, in this paper we would like to contribute a
more detailed study to improve the theoretical investigation
of the transport properties in graphene. We intend to develop
a simple and transparent theory to calculate the quantum and
transport conductivities in graphene. Our model is based on
the balance-equation approach using the semiclassical Bolt-
zmann equation. Thus, the momentum relaxation time can be
obtained more straightforwardly and more accurately. We
consider the presence of both remote and background impu-
rities, and evaluate the strength of these scattering mecha-
nisms. In the study, we also examine the effect of carrier-
impurity scattering on the quantum conductivity in graphene.
In contrast to conventional transport conductivity that is ob-
tained simply from I-V measurement, the quantum conduc-
tivity is measured from the amplitudes of the Shubnikov–de
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Haas �SdH� oscillations via the famous Dingle plot.13 Thus,
the quantum conductivity can reflect the consequences of
small-angle scattering in an electronic device. Because the
SdH oscillations have been well observed in graphene even
at relatively high temperatures1,2 the quantum conductivity in
graphene can be obtained easily from the experimental data.
In our calculations, we do not take the small q approximation
for the screening length. Therefore, the effect of carrier–
carrier screening is more correctly included in this study as
compared to previous research. Furthermore, we would like
to find out a simple theoretical way to study the dependence
of the conductivity induced by the impurity scattering on
temperature in graphene devices. From a practical point of
view, we would also like to reach a simple analytical expres-
sion in order to compare with the experimental data more
easily.

The paper is organized as follows. The single-particle as-
pects and the carrier–carrier screening length induced by
many-body interaction in graphene are briefly examined in
Secs. II and III. In Secs. IV and V, we study the carrier-
impurity scattering and the quantum and transport conduc-
tivities in graphene analytically. The numerical results are
presented and discussed in Sec. VI, and the concluding re-
marks are summarized in Sec. VII.

II. SINGLE-PARTICLE ASPECTS

In our model we consider a graphene sheet in the xy plane
placed on top of a SiO2 wafer. Using the effective-mass ap-
proximation, a carrier �electron or hole� in a monolayer
graphene can be described by Weyl’s equation for a massless
neutrino.14 The single-particle Hamiltonian, describing a car-
rier in the � bands near a K point in graphene, can be ob-
tained from, e.g., the k ·p approach,14 which reads

H0 = �	 0 kx − iky

kx + iky 0

 , �1�

where �=�vF is the band parameter with vF�108 cm /s be-
ing the Fermi velocity of a Dirac particle and kx=−i� /�x is
the wave vector operator along the x direction. The corre-
sponding eigenvalue and eigenfunction are, respectively

E��k� = ���k� = ��k �2�

and

��k�r� = �r�k,�� = 2−1/2�1,�ei	�eik·r �3�

in the form of a row matrix. Here, k= �kx ,ky� is the wave
vector for a carrier. k=
kx

2+ky
2, r= �x ,y�, and �= +1 is for an

electron, and �=−1 is for a hole. 	 is the angle between k

and the x direction.
The free-particle Green’s function for a carrier is

G�k�E� = �E − E��k� + i
�−1, �4�

with E being the carrier energy. Thus, the density of states
�DOS� for the system is determined by the imaginary part of
the Green’s function, which reads

D��E� = gsgv�
k


�E − E��k�� =
gsgv

�E�
2��2 ���E� , �5�

where gs=2 and g
v
=2 count, respectively, for the spin and

valley degeneracies. With the carrier DOS, the Fermi energy
EF �or chemical potential ��� of the system can be deter-
mined by the condition of carrier number conservation. Us-
ing the Fermi–Dirac function as statistic energy distribution
for a carrier, we have

n� =
2

�
� kBT

�
�2�

0



dxx

��ex + 1
, �6�

where n+ �n−� is the electron �hole� density and �=e−��
/kBT.

In particular, for a high carrier-density sample at low tem-
perature, so that EF�kBT, we have

�� � EF − ��kBT�2
/�6EF� �7�

with

EF = ��
�n� �8�

being the Fermi energy at T→0, and the corresponding
Fermi wave vector is

kF = 
�n�. �9�

III. SCREENING LENGTH IN THE RANDOM PHASE

APPROXIMATION

With the single-particle carrier wave function, we can cal-
culate the electrostatic energy induced by the bare carrier–
carrier �c–c� interaction

V�1��1�2��2
= S�1��1�2��2� d2r1d2r2�

�1�k1�

� �r1���1k1
�r1�

�V�r1 − r2��
�2�k2�

� �r2���2k2
�r2� , �10�

where V�r�=e2
/��r� is the Coulomb potential with � being

the static dielectric constant of the electronic system, and
S�1�2�3�4

=−i��1+�2+�3+�4�/2= �1 or �i is a sign function re-
lated to the charge sign of the carriers involved in the scat-
tering process. Due to momentum conservation for a c–c

scattering event,15 we arrive at the bare c–c interaction ma-
trix element

V�� = S��VqG���k,q� , �11�

where we have defined �= ����� for intra- �i.e., ��=�� and
interband �i.e., ����� transition, q= �qx ,qy� is the change of
the carrier wave vector during the c–c scattering event, Vq

=2�e2
/�q, and

G���k,q� =
1 + �Akq

2

�,� + i

�Bkq

2
�1 − 
�,�� ,

with Akq= �k+q cos �� / �k+q�, Bkq= �q sin �� / �k+q�, and �
being the angle between k and q.

Within the random phase approximation �RPA�, the effec-
tive c–c interaction can be calculated through
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V��
eff = ���

−1
V��, �12�

where

���,q� = �
1 + a1 0 0 − a4

0 1 − a2 − a3 0

0 − a2 1 − a3 0

− a1 0 0 1 + a4

� �13�

is the dynamical dielectric function matrix with � being the
excitation frequency. Here the indexes �= �����= �++�=1,
�+−�=2, �−+�=3, and �−−�=4 are defined according to the
different transition channels. Furthermore, a j =−Vq� j�� ,q�
where

������,q� =
gsgv

2 �
k

�1 + ���Akq�

�
f�E��

�k + q�� − f�E��k��

�� + E��
�k + q� − E��k� + i


�14�

is the pair bubble or density–density correlation function in
the absence of c–c screening. Here we utilize a matrix to
present the dielectric function, which differs slightly from
previous presentations.10 The inverse dielectric function ma-
trix is

�−1��,q� = �
1 − a1

� 0 0 a4
�

0 1 + a2
� a3

� 0

0 a2
� 1 + a3

� 0

a1
� 0 0 1 − a4

�

� �15�

with a1
�=a1 / �1+a1+a4�, a2

�=a2 / �1−a2−a3�, a3
�=a3 / �1−a2

−a3�, and a4
�=a4 / �1+a1+a4�. The inverse dielectric function

matrix can be used to calculate the effective interaction ma-
trix element for carrier coupling with scattering centers.

In particular, for the case where only the electron states
are occupied and only the e–e interaction �i.e., �=1� is
present, we have

Re �1�q� =
− 1

�2�
�

0




dkf��k��� + I�k,q� − II�k,q�� , �16�

with

I�k,q� =
2b�q + 4k��q − k��

aq
K�
4kq

a
�

and

II�k,q� =
8b�a + k�
q�a + b�

���

2
,
a − b

a + b
·

k + b

k − b
,
a − b

a + b
� ,

where a=k+q, b= �k−q�, and K�x�, and ��	 ,n ,x� are, re-
spectively, the complete elliptic integrals of the first and third
kind. Thus, the real part of the static RPA dielectric function
induced by electron–electron interaction takes the form
Re �1�q�=Re �1�0,q�=1+Ks /q, with

Ks =
2e2

���
�

0




dkf��k��� + I�k,q� − II�k,q�� �17�

being the inverse RPA screening length. For low temperature
�i.e., T→0�,

Ks =
qs

2
+

qs

2�kF

�
0

kF

dk�I�k,q� − II�k,q�� , �18�

with qs=4e2kF /�� being the Thomas–Fermi wave vector for
graphene. In the long-wavelength limit �i.e., q→0�,

Ks � qs�1 − �q/8kF� , �19�

a result obtained previously in Ref. 9.

IV. CARRIER-IMPURITY SCATTERING

At relatively low-temperatures, the carrier-impurity �c-i�
scattering is the principle channel for relaxation of excited
carriers in electronic systems. For the case where the c-i
scattering is achieved through the Coulomb potential induced
by charged impurities that are three-dimensional-like, the in-
teraction Hamiltonian is

Hc−i =
Ze2

�I

1

�R − Ra�
, �20�

where R= �r ,0� is the coordinates of a carrier in the
graphene layer, the impurity with a charge number Z is lo-
cated at Ra= �ra ,za�, and �I is the static dielectric constant of
the medium that contains the impurities. After assuming that
the system can be separated into the carriers of interest �k ,��
and the rest of impurities �I�, namely �k ,� ; I�= �k ,���I�, the
matrix element for c-i interaction is obtained, in the absence
of carrier–carrier �c–c� screening, as

U����q,Ra� = �k�,��;I��Hc−i�k,�;I�

=
�Ze2

�Iq
e−q�za�
ni�za��1 + ���ei��e−iq·ra
k,k+q,

�21�

where �I� � I�=
ni�za� with ni�z� being the impurity distribu-
tion along the z direction, � is the angle between k� and k,
and q= �qx ,qy� is the change of the carrier wave vector dur-
ing a scattering event. Here we have assumed that the impu-
rities are distributed uniformly along the xy plane. Using
Fermi’s golden rule, the electronic transition rate for scatter-
ing of a carrier from a state �k ,�� to a state �k� ,��� due to c-i
interaction is obtained as

W����k�,k� =
2�

�
�U����q,���2
k�,k+q
�E��

�k�� − E��k�� ,

�22�

where �U����q ,���2= �2�Ze2
/�Iq�2�1+��� cos �� /2�dzni�z�

�e−2q�z�, in which we have integrated over the contributions
from all impurities along the z direction.

In the presence of c–c screening, the effective c-i scatter-
ing matrix element can be obtained through

QUANTUM AND TRANSPORT CONDUCTIVITIES IN… PHYSICAL REVIEW B 77, 235402 �2008�

235402-3



U j
eff�q,�� = �

j�

�
j j�

−1
U j�

�q,�� , �23�

which gives, after using Eq. �15�,

U1
eff�q,�� =

�1 + b4�U1�q,�� + b4U4�q,��
1 + b1 + b4

,

U2
eff�q,�� =

�1 − b3�U2�q,�� + b3U3�q,��
1 − b2 − b3

,

U3
eff�q,�� =

b2U2�q,�� + �1 + b2�U3�q,��
1 − b2 − b3

,

and

U4
eff�q,�� =

b1U1�q,�� + �1 + b1�U4�q,��
1 + b1 + b4

,

where again �����=1= �++�, =2= �+−�, =3= �−+�, =4= �−−�,
and b j =lim�→0 a j is the static dielectric matrix element with
a j given in Eq. �13�. In particular, for the case where only the
electron states are occupied, we have b4=0 and U1

eff�q ,��
=U1�q ,�� / �1+b1�.

V. QUANTUM AND TRANSPORT CONDUCTIVITIES

In this work, we employ the Boltzmann equation as the
governing transport equation to study the response of the
carriers in graphene to the applied dc driving field. The semi-
classical Boltzmann equation in the presence of an external
electrical field Fx applied along the x direction is

−
eFx

�

� f��k�
�kx

= gsgv �
k�,��

�f��
�k��W���

�k,k��

− f��k�W����k�,k�� , �24�

where f��k� is the momentum-distribution function for a car-
rier in a state �k ,��. It is known that there is no simple and
analytical solution to Eq. �24� with the electronic transition
rate given by Eq. �22�. In this study we utilize the usual
balance-equation approach to solve the problem. The
balance-equation approach is a powerful tool in investigating
transport properties of the electron gas systems. We demon-
strated previously that the results obtained from the
momentum- and energy-balance equations derived on the ba-
sis of the Boltzmann equation agree very well with those
obtained from the Monte Carlo simulations for conventional
two-dimensional electron gases �2DEGs�.16 The results ob-
tained from this approach also agree well with experimental
data for GaAs-based 2DEGs driven by intense terahertz laser
fields17 and for InGaAs-based Rashba spintronic systems.18

In this paper, we generalize this well developed theoretical
approach to the case for the Dirac quasiparticle in graphene.
For the first moment, the momentum-balance �or force-
balance� equation18 can be derived by multiplying gsgv

�k,�kx

on both sides of the Boltzmann equation. Using the follow-
ing properties:

gsgv�
k,�

f��k� = N0 = ne + nh,

which is the total conducting-carrier density in the system,
and

gsgv�
k,�

kx

� f��k�
�kx

= − N0,

we obtain

eFx

�
N0 = 16�

k�,k

�
��,�

�kx� − kx�f��k�W����k�,k� . �25�

In this study, we consider the case of linear response for the
carriers in graphene to the applied dc driving field. For linear
response, we do not need to solve the energy-balance equa-
tion, which is the second moment of the balance-equation
approach. One of the advantages of the balance-equation ap-
proach is that we can circumvent the difficulties of solving
the Boltzmann equation directly by using a specific form of
the distribution function to calculate the interested physical
properties. In this study, we assume that the momentum dis-
tribution of a carrier can be described by a statistical energy
distribution function through f��k�� f�E��k−�v��, in which
the momentum is shifted due to the presence of the driving
field Fx; where v= �vx ,0 ,0� is the average drift velocity of
the carriers and � is a coefficient that we have to determine
such that �vx is the carrier momentum in graphene. We are
intended in a situation where the applied dc electric field is
so weak that �vx�kx and, consequently, we have

f��k� � f�E��k�� − �vx

���kx

k
f��X��

X=E��k�
,

with f��x�=df�x� /dx. Thus, the momentum-balance equation
results in a linear response and

1

�t

=
16���

eN0
�

k�,��,k,�

��kx� − kx�
kx

k
W����k�,k��f��X��X=E��k�,

�26�

where �t=−vx /Fx is the transport mobility of the carriers.
Noting that the transport mobility in graphene can also be
defined as �=e�t /��, the transport lifetime �or momentum
relaxation time� can then be calculated through

1

�t

=
16�

N0
�

k�,��,k,�

��kx� − kx�
kx

k
W����k�,k��f��X��X=E��k�,

�27�

which reads, for c-i scattering,

1

�t

=
− 2

��2N0
�
�

��
0

2�

d��1 − cos ��

� �
0




dkk3�U��
eff�q,���2�f��X��X=E��k�, �28�

where q=k
2�1−cos ��. By considering the fact that the
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quantum lifetime �q is induced by small-angle scattering
events, we have

1

�q

=
− 2

��2N0
�
�

��
0

2�

d��
0




dkk3�U��
eff�q,���2�f��X��X=E��k�.

�29�

These results suggest that for the case of carrier-impurity
scattering, which is elastic, the momentum and energy con-
servation laws require that the interband scattering channel
�i.e., ����� is not allowed in graphene. Therefore, from now
on we consider the conducting carriers in graphene to be
electrons so that the Fermi energy of the system EF�0. As a
result, f−��x�=0 for holes because all of the hole states are
occupied by electrons, and �f+��x��x=�k= f���k�
= �df�x� /dx�x=�k for electrons. Thus, we obtain

	 1

�t

,
1

�q


 =
− 2

�2�ne

�
0




dkk3f���k��
0

�

d��Uq�2

��1 − cos2 �,1 + cos �� , �30�

where ne is the electron density, q=k
2�1−cos ��, and
�Uq�2= �2�Ze2

/��q+Ks��2�dzni�z�e−2q�z� with Ks being the in-
verse screening length given by Eq. �18�.

Using the definition for the conductivity of graphene �
= �e2

/h��2EF� /��, which comes from the massless chiral
Dirac spectrum,9,10 we obtain for the finite-temperature in-
verse transport and quantum conductivities,

1

�l�T�
= −

1

EF
3�

0




dE
E3

�l�E,0�
df�E�

dE
, �31�

where E=�k, and

	 �0

�t�E,0�
,

�0

�q�E,0�
 =
1

��2�
0

�

d��Uq�2�A�
t ,A�

q�

with �0=e2
/h, A�

t =1−cos2 �, A�
q=1+cos �, and q

= �E /��
2�1−cos ��. Eqs. �30� and �31� indicate that under
the Boltzmann equation approach, the average of the finite-
temperature inverse relaxation time for graphene �which has
a linear dispersion E�k� should be carried out via �1 /��
��dEE3�−df�E� /dE��1 /��E��. This finding is in sharp con-
trast to the case of a conventional electron gas �which has a
parabolic dispersion relation E�k2� where the average can
be done via �1 /����dEE�−df�E� /dE��1 /��E��. We note that
at present, most of the published theoretical work10,11 has
used the latter average for the evaluation of the scattering
time or rate in graphene.

In this study, we consider a gate-controlled graphene
placed on a dielectric SiO2 wafer. The gate itself is an insu-
lator deposited on top of the graphene sheet. The positive
�negative� voltage across the gate, the graphene sheet, and
the wafer layer can pull the electrons �holes� out from the
SiO2 wafer and inject them into the graphene layer, while
leaving behind the holes �electrons� in the substrate wafer
closed to the contact. Therefore, there are always two layers
of charges in the entire graphene device system: the active
carriers in the graphene layer and the opposite charges in the

substrate. The latter case is the main source of remote-
impurity scattering for undoped graphene samples. More-
over, in case there are molecules adsorbed on graphene, the
charge transfer takes place from the molecules to the
graphene sheet and the molecules can also become charged.
This can result in background impurities inside the graphene
layer. Hence, there are two types of impurity scattering
present in the graphene system: remote impurities in the
SiO2 wafer layer and background impurities in the graphene
layer. When the charged impurities are located in the SiO2
substrate with a distance d to the interface of the graphene
layer, we can model the impurity distribution as ni�z�
=nr
�z+d� with nr being the areal impurity density inside the
SiO2 layer and, as a result,

	 �0

�t
r�E,0�

,
�0

�q
r�E,0�


 = R1nr�
0

�
d�e−2dq

�q + Ks�
2 �A�

t ,A�
q� , �32�

where R1= �2�Ze2
/��1�2

/� with �1 being the dielectric con-
stant for a system where the impurities are located in a SiO2.
For background impurities located inside the graphene layer,
we can model the impurity distribution as ni�z�=nb
�z� with
nb being the background-impurity density. Thus, we have

	 �0

�t
b�E,0�

,
�0

�q
b�E,0�


 = R2nb�
0

�
d�

�q + Ks�
2 �A�

t ,A�
q� , �33�

where R2= �2�Ze2
/ �̇�2�2

/� with �2 being the dielectric con-
stant for a system where the impurities are located in the
graphene layer. In particular, for T→0, we have df�E� /dE

→−
�EF−E� and

	 �0

�t
r�0�

,
�0

�q
r�0�


 = 	 �0

�t
r�EF,0�

,
�0

�q
r�EF,0�



= R1nr�

0

�
d�e−2dq

�q + Ks�
2 �1 − cos2 �,1 + cos ��

�34�

and

	 �0

�t
b�0�

,
�0

�q
b�0�


 = 	 �0

�t
b�EF,0�

,
�0

�q
b�EF,0�



= R2nb�

0

�
d�

�q + Ks�
2 �1 − cos2 �,1 + cos �� ,

�35�

with q=kF

2�1−cos ��. Consequently, the total inverse

transport and quantum conductivities are, respectively,

1/�t�T� = 1/�t
r�T� + 1/�t

b�T� , �36�

and

1/�q�T� = 1/�q
r�T� + 1/�q

b�T� . �37�

We note that when Ks→0, the transport conductivity con-
verges over all scattering angles 0����, whereas the
quantum conductivity diverges at �→0. Hence, when calcu-
lating the quantum conductivity induced by impurity scatter-
ing, the effect of c–c screening has to be included. When
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Ks=0 and T→0 for background-impurity scattering, we have

�t
b�0� = �0���2/Ze2�2

/�2���ne/nb�

that depends linearly on ne /nb, which is similar to those ob-
tained by taking the short-range impurity scattering.9–11,19

For the case of remote-impurity scattering at Ks=0 and T

→0, if the spacer distance d is so small that 
ned�1, we
have

�t
r�0� � �0���1/Ze2�2

/�2���ne/nr� ,

which depends also linearly on ne /nr.
The results obtained from this work suggest that under the

Boltzmann equation approach, if 1 /��E ,0� is the inverse
conductivity at T→0, the finite-temperature conductivity can
be evaluated generally through using Eq. �31�. This is in
contrast to a conventional electron gas with a parabolic dis-
persion where

1

��T�
= �

0




dE
E

��E,0�
df�E�

dE ��
0




dEE
df�E�

dE
.

We find that only for background-impurity scattering in the
absence of electron–electron screening �i.e., Ks=0�, the
transport conductivity can be calculated through

1

�t
b�T�

= −
1

EF

�
0




dE
E

�t
b�E�

df�E�
dE

because ��E ,0��q2 and q�E. For the case of Ks�0 or for
remote-impurity scattering, we have to use Eq. �31� to obtain
the finite-temperature conductivity from the zero-
temperature one. For the case of a high density graphene
sample at relatively low-temperatures so that EF�kBT and
�l�E ,0�→�l�EF ,0�=�l�0�, Eq. �31� takes the asymptotic ex-
pression

1

�l�T�
�

1

�l�0�
�1 + ��kBT/EF�2

/2� . �38�

VI. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical calculations, we take the band parameter
for graphene �=�vF with vF=108 cm /s. We take the dielec-
tric constants for bare graphene layer and bare SiO2 wafer to
be �graphene=4.5 and �SiO2

=4.0, respectively. Because the
graphene device is an air-graphene-substrate system with dif-
ferent dielectric constants in different layers, there is a mis-
match of the dielectric constants at the interfaces. For the
case where the charged impurities are located in the SiO2
substrate �i.e., for remote impurities�, we note that normally
nr�ne�nb. As a result, the graphene sheet is polarized and
there are polarized mirror image charges in graphene. Taking
this effect into consideration, the effective dielectric constant
for the remote impurities and polarized mirror image charges
can be evaluated using image charge method. For a two-
dimensional plane surface, the effective dielectric constant
for remote impurities in SiO2 substrate is given simply as
�1= ��sio2

+�graphene� /2=4.25. For charged impurities �i.e.,

background impurities� and electrons located within the
graphene sheet, it is not so easy to evaluate the correspond-
ing effective dielectric constant because the graphene layer is
placed between the SiO2 substrate and air. However, we note
that the graphene layer is atomic layer thin, which is much
smaller than the substrate thickness and air medium. To-
gether with the fact that normally the background-impurity
concentration is nb�nr�ne, the effective dielectric constant
for the background impurities and conducting electrons is
then determined by the SiO2 substrate and air, which relates
to rs, the effective fine structure constant �or coupling con-
stant�. For high carrier-density samples, rs�1 and the effec-
tive dielectric constant for background impurities and elec-
trons in graphene is given as �2= ��0+�sio2

��1+�rs /2� /2
�2.5 with �0=1 being the dielectric constant of the air. �2
can be used to calculate the quantum and transport conduc-
tivities induced by background-impurity scattering, and to
evaluate the screening length induced by the electron–
electron interaction. Moreover, in the calculations, the typi-
cal electron density is taken to be ne�1012 cm−2 and the
charge number of an impurity to be Z=1. When ne

=1012 cm−2, EF=�
�ne�1354 K is much larger than room
temperature T=300 K. Thus, we can use Eq. �38� to evalu-
ate the dependence of the conductivity on temperature up to
room temperature.

In Fig. 1, we plot the inverse RPA screening length Ks

given by Eq. �18� as a function of the scattering angle � for
different electron densities ne. Noting that the change of the

electron wave vector is q=
2�ne�1−cos ��, we find that Ks

increases with ne for a fixed � and decreases with increasing
� at a fixed ne. The strongest effect of electron–electron
screening is achieved at �→0 or q→0. When �= �0,��, q

= �0,2kF� with kF=
�ne being the Fermi wave vector and Ks

is reduced by a factor of about 2. In Fig. 2, we show the
temperature dependence of the RPA screening length given
by Eq. �17�. We find that at a fixed ne, Ks decreases with
increasing temperature and the strongest effect of electron–
electron screening is achieved at T→0. At finite temperature,
Ks has a similar dependence on � as that at T→0. The results

FIG. 1. The inverse screening length as a function of scattering
angle � for T→0 at different electron densities ne, as indicated.
Here the change of the electron wave vector is q

=
2�ne�1−cos �� and q= �0,2kF� when �= �0,�� with kF=
�ne

being the Fermi wave vector.
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obtained from our numerical calculations show that for a
typical graphene device with an electron density ne

�1012 cm−2, the RPA inverse screening length is Ks

�106 cm−1 over a wide temperature range up to room tem-
perature.

In Fig. 3, we plot the quantum and transport conductivi-
ties at T→0 �i.e., �t�0� and �q�0�� as a function of electron
density �ne� for the fixed background-impurity density �nb�
and spacer distance �d� for different remote-impurity concen-
trations �nr�. We compare the theoretical results with those
obtained experimentally �symbols�.10 As can be seen, when
taking nb=1.5�1011 cm−2, 2.5�1011 cm−2, 3.5
�1011 cm−2, and d=2 Å, the present theoretical results
agree well with the experimental data and with those ob-
tained theoretically in Ref. 9 for nr=1012, 2�10−2, and 3
�1012 cm−2. It should be noted that in Ref. 9, the small q

approximation was used to calculate the inverse screening

length Ks�qs�kF�
ne �see Eq. �19��. As a result, �t�0�
�ne was observed in Ref. 9. In contrast, the results shown in
Fig. 3 are obtained by using a more general expression for Ks

�Eq. �17�� without the usage of the small q approximation.
The linear dependence of �t�0� on ne can still be observed.
The reason behind this is that the strongest effect of
electron–electron screening is achieved at small scattering
angles or q→0, as shown in Fig. 1. With increasing q, Ks

decreases �see Fig. 1� and, therefore, the screening effect
becomes weaker for electron-impurity scattering. Our results
demonstrate that for effective carrier-impurity scattering in
graphene, the small q approximation for the RPA screening
length can result in a fairly good approximation to the cal-
culation of the transport and quantum conductivities. We find
that in graphene, not only does the transport conductivity
depend linearly on electron density but so does the quantum
conductivity ��q�0��. This needs to be verified experimen-
tally. In the inset of Fig. 3, we show the ratio �t�0� /�q�0�
between the transport and quantum conductivities. Because
the transport conductivity is induced by electronic scattering
at all angles whereas the quantum conductivity resulted from
only small-angle scattering events, �t�0� is normally larger
than �q�0�. Similar to a conventional two-dimensional elec-
tron gas, �t�0� /�q�0� is about a factor of 2 and increases with
increasing electron density.13

In Fig. 4, we show the contributions from remote- and
background-impurity scattering to the transport �upper panel�
and quantum �lower panel� conductivities. The results are
obtained in conjunction with those shown in Fig. 3. We find
that for high quality graphene samples in which the
background-impurity concentrations are low, the quantum
and transport conductivities are mainly determined by elec-
tronic scattering with remote impurities. Another reason for a
relatively weaker background-impurity scattering is that for a
graphene sheet on SiO2 wafer: the effective dielectric con-
stant for background impurities �2�2.5 is smaller than that
for remote impurities in the SiO2 wafer �1�4.25, owing to
the effect of the dielectric constant mismatch in the device
system. From a practical point of view, it is inconvenient and

FIG. 2. The inverse screening length as a function of scattering
angle � for a fixed electron density ne at different temperatures T, as
indicated.

FIG. 3. Transport �t and quantum �q conductivities as a func-
tion of electron density ne at a fixed spacer distance d=2 Å for
different remote- and background-impurity concentrations �nr

=1012 and nb=1.5�1011 cm−2 �solid curves�, nr=2�1012 and nb

=2.5�1011 cm−2 �dashed curves�, and nr=3�1012 and nb=3.5
�1011 cm−2 �dashed and dotted curves��. The results are obtained
for T→0. The symbols are the experimental results from Ref. 10
and the inset shows the ratio between the transport and quantum
conductivities, �t�0� /�q�0�.

Å

FIG. 4. Contributions from remote- and background-impurity
scatterings to the total transport �upper panel� and quantum �lower
panel� conductivities as a function of electron density for T→0.
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unnecessary to use three sample parameters �namely nr, nb,
and d used in Fig. 1 in Ref. 9� to fit the experimental data,
which shows a linear dependence. On the basis that: �i� the
background impurities contribute weakly to the quantum and
transport conductivities �see Fig. 4�, �ii� for remote impuri-
ties in a typical graphene sample with ne�1012 cm−2,
d
ne�1 when d�2 Å, and �iii� the strongest effect of
electron–electron screening on electron-impurity scattering
occurs at q→0 �see Fig. 1�, we may assume that the effec-
tive impurities with an effective concentration nI are located
in the SiO2 substrate but are very close to the interface be-
tween the graphene sheet and the substrate �i.e., d�0�, and
we can use q→0 approximation for the inverse screening
length Ks. Thus, the quantum and transport conductivities
can be evaluated simply through

��t�0�,�q�0�� = ���1

2e2 �2�0ne

nI
��

0

1

dx

1 − x2�2x2,1�
�x + 2e2

/��2�2

�
e2�1

2

h

ne

nI

�0.768,0.301� . �39�

Using Eq. �39�, we can use only one fitting parameter nI or
even ne /nI to compare with the experimental results of both
the quantum and transport conductivities. By taking nI

�2.04�1012, 1.82�1012, and 1.70�1012 cm−2, we can
also reach a good agreement with the experimental results
for the transport conductivity �see Fig. 5�.

In Fig. 6, we show the dependence of the transport and
quantum conductivities on temperature. Here we use Eq.
�39� to evaluate the conductivities at T→0 and use Eq. �38�
to count for the temperature effect. For a typical graphene
device with an electron density ne�1012 cm−2, EF

�1354 K is about four times larger than room temperature.
Therefore, Eq. �38� is a good approximation for the tempera-
ture dependence of the electron-impurity scattering in
graphene. We find that the quantum and transport conductivi-
ties induced by impurity scattering depend weakly on tem-
perature up to room temperature, and �t�T� and �q�T� de-
crease slightly with increasing T. From Eq. �38�, we see that

the larger the electron density is, the weaker the temperature
dependence is for graphene. This is in line with very recent
experimental findings.20

VII. CONCLUSIONS

In this paper, we developed a simple and transparent
theory to study the electronic transport properties of mono-
layer graphene. The proposed theoretical approach is based
on the momentum-balance equation derived from the semi-
classical Boltzmann equation. Including the electron-
impurity scattering in typical graphene devices where the
electron–electron screening is counted by the usual RPA ap-
proach, we have studied the dependence of the quantum and
transport conductivities on electron density, remote- and
background-impurity concentrations, temperature, etc. Fur-
thermore, we have applied the published experimental results
to examine the validity of the proposed model calculations.
The main conclusions obtained from this study are summa-
rized as follows.

Under the Boltzmann equation approach, the average of
the finite-temperature relaxation time or scattering rate for
Dirac particles in graphene should be carried out in general
through �1 /����dEE3�−df�E� /dE��1 /��E��, in contrast to
�1 /����dEE�−df�E� /dE��1 /��E�� used previously in Refs.
9 and 11. The latter average holds only for an electron gas
system with a parabolic dispersion E�k2. For graphene, due
to its linear dispersion relation E�k, the former one is more
correct in counting the energy average. Although different
energy averages on electronic scattering rate are used in the
present study, we still observe a linear dependence of the
quantum and transport conductivities on the electron density.

We have used a RPA screening length without the small q

approximation to calculate the quantum and transport con-
ductivities. We find that the inclusion of a more general ex-
pression for the inverse RPA screening length does not
change the linear dependence of the conductivities on elec-
tron density in graphene. The main reason behind this feature
is that the strongest electron–electron screening effect on
electron impurity is achieved for q→0.

FIG. 5. Transport and quantum conductivities as a function of
electron density ne /nI for different effective impurity concentrations
nI, as indicated. The results are obtained from Eq. �39� for T→0
and the experimental results �Ref. 10� are shown for comparison.

FIG. 6. Temperature dependence of the quantum and transport
conductivities at a fixed impurity concentration nI=1012 cm−2 for
different electron densities ne=1012 �dotted-dashed curves�, 2
�1012 �dashed curves�, and 5�1012 cm−2 �solid curves�. The re-
sults are obtained using Eqs. �38� and �39�.
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On the basis of the results obtained from this study, we
have proposed a very simple analytical formula �given by
Eq. �39�� to calculate the quantum and transport conductivi-
ties in graphene. Using this formula, we can compare our
theoretical results with the experimental results using only
one fitting parameter �i.e., the effective impurity concentra-
tion nI or the ratio ne /nI�.

We have examined the temperature dependence of the
quantum and transport conductivities in typical graphene
samples. We find that when the electron density is about
1012 cm−2, the Fermi energy �or Fermi temperature� of
graphene is about four times larger than room temperature.
Thus, the conductivities induced by impurity scattering de-
pend rather weakly on temperature up to room temperature.

We studied the dependence of quantum conductivity on
electron density, different impurity scattering channels, and
temperature. We find that similar to a conventional two-
dimensional electron gas, the quantum conductivity induced
by small angle scattering is about twice smaller than the
transport conductivity. The quantum conductivity has a simi-

lar dependence on the electron density and temperature as
the transport one.

The transport conductivity in monolayer graphene has
been well studied both experimentally and theoretically. The
quantum conductivity �or quantum lifetime� for a Dirac qua-
siparticle in graphene has been overlooked up to now. From
the fact that the SdH oscillations along with the quantum
Hall effect can be observed at relatively high temperatures in
graphene, we believe that the quantum conductivity can be
easily determined experimentally. Hence, we hope the theo-
retical findings and predictions in this paper, especially those
regarding quantum conductivity, can be verified experimen-
tally.
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