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Quantum annealing is emerging as a promising near-term quantum computing approach to solv-
ing combinatorial optimization problems. A solver for the job-shop scheduling problem that makes
use of a quantum annealer is presented in detail. Inspired by methods used for constraint satisfac-
tion problem (CSP) formulations, we first define the makespan-minimization problem as a series of
decision instances before casting each instance into a time-indexed quadratic unconstrained binary
optimization. Several pre-processing and graph-embedding strategies are employed to compile opti-
mally parametrized families of problems for scheduling instances on the D-Wave Systems’ Vesuvius
quantum annealer (D-Wave Two). Problem simplifications and partitioning algorithms, including
variable pruning, are discussed and the results from the processor are compared against classical
global-optimum solvers.

I. I. INTRODUCTION

The commercialization and independent benchmark-
ing [1–4] of quantum annealers based on superconduct-
ing qubits has sparked a surge of interest for near-term
practical applications of quantum analog computation in
the optimization research community. Many of the early
proposals for running useful problems arising in space
science [5] have been adapted and have seen small-scale
testing on the D-Wave Two processor [6]. The best proce-
dure for comparison of quantum analog performance with
traditional digital methods is still under debate [3, 7, 8]
and remains mostly speculative due to the limited num-
ber of qubits on the currently available hardware. While
waiting for the technology to scale up to more significant
sizes, there is an increasing interest in the identification
of small problems which are nevertheless computation-
ally challenging and useful. One approach in this direc-
tion has been pursued in [9], and consisted in identifying
parametrized ensembles of random instances of opera-
tional planning problems of increasing sizes that can be
shown to be on the verge of a solvable-unsolvable phase
transition. This condition should be sufficient to observe
an asymptotic exponential scaling of runtimes, even for
instances of relatively small size, potentially testable on
current- or next-generation D-Wave hardware. An em-
pirical takeaway from [6] (validated also by experimen-
tal results in [10, 11]) was that the established program-
ming and program running techniques for quantum an-
nealers seem to be particularly amenable to scheduling
problems, allowing for an efficient mapping and good
performance compared to other applied problem classes
like automated navigation and Bayesian-network struc-
ture learning [12].

Motivated by these first results, and with the inten-
tion to challenge current technologies on hard problems
of practical value, we herein formulate a quantum an-
nealing version of the job-shop scheduling problem (JSP).
The JSP is essentially a general paradigmatic constraint
satisfaction problem (CSP) framework for the problem

of optimizing the allocation of resources required for the
execution of sequences of operations with constraints on
location and time. We provide compilation and running
strategies for this problem using original and traditional
techniques for parametrizing ensembles of instances. Re-
sults from the D-Wave Two are compared with classical
exact solvers. The JSP has earned a reputation for be-
ing especially intractable, a claim supported by the fact
that the best general-purpose solvers (CPLEX, Gurobi
Optimizer, SCIP) struggle with instances as small as 10
machines and 10 jobs (10 x 10) [13]. Indeed, some known
20 x 15 instances often used for benchmarking still have
not been solved to optimality even by the best special-
purpose solvers [14], and 20 x 20 instances are typically
completely intractable. We note that this early work con-
stitutes a wide-ranging survey of possible techniques and
research directions and leave a more in-depth exploration
of these topics for future work.

A. Problem definition and conventions

Typically the JSP consists of a set of jobs J =
{j1, . . . , jN} that must be scheduled on a set of machines
M = {m1, . . . ,mM}. Each job consists of a sequence of
operations that must be performed in a predefined order

jn = {On1 → On2 → · · · → OnLn
}.

Job jn is assumed to have Ln operations. Each opera-
tion Onj has an integer execution time pnj (a value of
zero is allowed) and has to be executed by an assigned
machine mqnj

∈ M, where qnj is the index of the as-
signed machine. There can only be one operation run-
ning on any given machine at any given point in time and
each operation of a job needs to complete before the fol-
lowing one can start. The usual objective is to schedule
all operations in a valid sequence while minimizing the
makespan (i.e., the completion time of the last running
job), although other objective functions can be used. In
what follows, we will denote with T the minimum possi-
ble makespan associated with a given JSP instance.
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As defined above, the JSP variant we consider is de-
noted JM

∣

∣pnj ∈ [pmin, . . . , pmax]
∣

∣Cmax in the well-known
α|β|γ notation, where pmin and pmax are the smallest and
largest execution times allowed, respectively. In this no-
tation, JM stands for job-shop type on M machines, and
Cmax means we are optimizing the makespan.

For notational convenience, we enumerate the opera-
tions in a lexicographical order in such a way that

j1 = {O1 → · · · → Ok1},
j2 = {Ok1+1 → · · · → Ok2},

. . .

jN = {OkN−1+1 → · · · → OkN
}. (1)

Given the running index over all operations i ∈
{1, . . . , kN}, we let qi be the index of the machine mqi re-
sponsible for executing operation Oi. We define Im to be
the set of indices of all of the operations that have to be
executed on machine mm, i.e., Im = {i : qi = m}. The
execution time of operation Oi is now simply denoted pi.

A priori, a job can use the same machine more than
once, or use only a fraction of the M available machines.
For benchmarking purposes, it is customary to restrict a
study to the problems of a specific family. In this work,
we define a ratio θ that specifies the fraction of the total
number of machines that is used by each job, assuming
no repetition when θ ≤ 1. For example, a ratio of 0.5
means that each job uses only 0.5M distinct machines.

B. Quantum annealing formulation

In this work, we seek a suitable formulation of the JSP
for a quantum annealing optimizer (such as the D-Wave
Two). The optimizer is best described as an oracle that
solves an Ising problem with a given probability [15].
This Ising problem is equivalent to a quadratic uncon-
strained binary optimization (QUBO) problem [10]. The
binary polynomial associated with a QUBO problem can
be depicted as a graph, with nodes representing variables
and values attached to nodes and edges representing lin-
ear and quadratic terms, respectively. The QUBO solver
can similarly be represented as a graph where nodes rep-
resents qubits and edges represent the allowed connec-
tivity. The optimizer is expected to find the global min-
imum with some probability which itself depends on the
problem and the device’s parameters. The device is not
an ideal oracle: its limitations, with regard to precision,
connectivity, and number of variables, must be consid-
ered to achieve the best possible results. As is customary,
we rely on the classical procedure known as embedding
to adapt the connectivity of the solver to the problem
at hand. This procedure is described in a number of
quantum annealing papers [6, 11]. During this proce-
dure, two or more variables can be forced to take on
the same value by including additional constraints in the
model. In the underlying Ising model, this is achieved
by introducing a large ferromagnetic (negative) coupling

JF between two spins. The embedding process modifies
the QUBO problem accordingly and one should not con-
fuse the logical QUBO problem value, which depends on
the QUBO problem and the state considered, with the
Ising problem energy seen by the optimizer (which addi-
tionally depends on the extra constraints and the solver’s
parameters, such as JF).

We distinguish between the optimization version of the
JSP, in which we seek a valid schedule with a mini-
mal makespan, and the decision version, which is lim-
ited to validating whether or not a solution exists with a
makespan smaller than or equal to a user-specified time-
span T . We focus exclusively on the decision version
and later describe how to implement a full optimization
version based on a binary search. We note that the deci-
sion formulation where jobs are constrained to fixed time
windows is sometimes referred in the literature as the
job-shop CSP formulation [16, 17], and our study will
refer to those instances where the jobs share a common
deadline T .

II. II. QUBO PROBLEM FORMULATION

While there are several ways the JSP can be formu-
lated, such as the rank-based formulation [18] or the dis-
junctive formulation [19], our formulation is based on a
straightforward time-indexed representation particularly
amenable to quantum annealers (a comparative study of
mappings for planning and scheduling problems can be
found in [10]). We assign a set of binary variables for each
operation, corresponding to the various possible discrete
starting times the operation can have:

xi,t =

{

1 : operation Oi starts at time t,
0 : otherwise.

(2)

Here t is bounded from above by the timespan T , which
represents the maximum time we allow for the jobs to
complete. The timespan itself is bounded from above by
the total work of the problem, that is, the sum of the
execution times of all operations.

A. Constraints

We account for the various constraints by adding
penalty terms to the QUBO problem. For example, an
operation must start once and only once, leading to the
constraint and associated penalty function
(

∑

t

xi,t = 1 for each i

)

→
∑

i

(

∑

t

xi,t − 1

)2

. (3)

There can only be one job running on each machine at
any given point in time, which expressed as quadratic
constraints yields

∑

(i,t,k,t′)∈Rm

xi,txk,t′ = 0 for each m, (4)
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a)
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d)

Machine 1

Machine 1 Machine 2 Machine 3

c)

m3,  p = 1operation 1 operation 2 operation 3

j2 m2,  p = 2m3,  p = 2

t1
t2
t3
t4
t5
t6
t7

t1
t2
t3
t4
t5
t6
t7

m2,  p = 1m1,  p = 1m1,  p = 1
m1,  p = 2m3,  p = 2m2,  p = 1j3

j1

j1 j3j2

j1 j3j2

j1 j3j2

FIG. 1: a) Table representation of an example 3 x 3 instance
whose execution times have been randomly selected to be ei-
ther 1 or 2 time units. b) Pictorial view of the QUBO map-
ping of the above example for HT=6. Green, purple, and
cyan edges refer respectively to h1, h2, and h3 quadratic cou-
pling terms (Eqs. 7–9). Each circle represents a bit with its
i, t index as in Eq. 2. c) The same QUBO problem as in
(b) after the variable pruning procedure detailed in the sec-
tion on QUBO formulation refinements. Isolated qubits are
bits with fixed assignments that can be eliminated from the
final QUBO problem. d) The same QUBO problem as in
(b) for HT=7. Previously displayed edges in the above figure
are omitted. Red edges/circles represent the variations with
respect to HT=6. Yellow stars indicate the bits which are
penalized with local fields for timespan discrimination.

where Rm = Am ∪Bm and

Am = {(i, t, k, t′) : (i, k) ∈ Im × Im,

i 6= k, 0 ≤ t, t′ ≤ T, 0 < t′ − t < pi},
Bm = {(i, t, k, t′) : (i, k) ∈ Im × Im,

i < k, t′ = t, pi > 0, pj > 0}.

The set Am is defined so that the constraint forbids oper-
ation Oj from starting at t′ if there is another operation
Oi still running, which happens if Oi started at time t
and t′ − t is less than pi. The set Bm is defined so that
two jobs cannot start at the same time, unless at least
one of them has an execution time equal to zero. Finally,
the order of the operations within a job are enforced with

∑

kn−1<i<kn

t+pi>t′

xi,txi+1,t′ for each n, (5)

which counts the number of precedence violations be-
tween consecutive operations only.

The resulting classical objective function (Hamilto-
nian) is given by

HT (x̄) = ηh1(x̄) + αh2(x̄) + βh3(x̄), (6)

where

h1(x̄) =
∑

n









∑

kn−1<i<kn

t+pi>t′

xi,txi+1,t′









, (7)

h2(x̄) =
∑

m





∑

(i,t,k,t′)∈Rm

xi,txk,t′



 , (8)

h3(x̄) =
∑

i

(

∑

t

xi,t − 1

)2

, (9)

and the penalty constants η, α, and β are required to
be larger than 0 to ensure that unfeasible solutions do
not have a lower energy than the ground state(s). As ex-
pected for a decision problem, we note that the minimum
of HT is 0 and it is only reached if a schedule satisfies all
of the constraints. The index of HT explicitly shows the
dependence of the Hamiltonian on the timespan T , which
affects the number of variables involved. Figure 1-b il-
lustrates the QUBO problem mapping for HT=6 for a
particular 3 x 3 example (Figure 1-a).

B. Simple variable pruning

Figure 1-b also reveals that a significant number of the
NMT binary variables required for the mapping can be
pruned by applying simple restrictions on the time index
t (whose computation is polynomial as the system size in-
creases and therefore trivial here). Namely, we can define
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an effective release time for each operation correspond-
ing to the sum of the execution times of the preceding
operations in the same job. A similar upper bound cor-
responding to the timespan minus all of the execution
times of the subsequent operations of the same job can
be set. The bits corresponding to these invalid starting
times can be eliminated from the QUBO problem alto-
gether since any valid solution would require them to be
strictly zero. This simplification eliminates an estimated
number of variables equal to NM (M 〈p〉 − 1), where 〈p〉
represents the average execution time of the operations.
This result can be generalized to consider the previously
defined ratio θ, such that the total number of variables
required after this simple QUBO problem pre-processing
is θNM [T − θM〈p〉+ 1].

III. III. QUBO FORMULATION REFINEMENTS

Although the above formulation proves sufficient for
running JSPs on the D-Wave machine, we explore a few
potential refinements. The first pushes the limit of simple
variable pruning by considering more advanced criteria
for reducing the possible execution window of each task.
The second refinement proposes a compromise between
the decision version of the JSP and a full optimization
version.

A. Window shaving

In the time-index formalism, reducing the execution
windows of operations (i.e., shaving) [20], or in the dis-
junctive approach, adjusting the heads and tails of opera-
tions [21, 22], or more generally, by applying constraints
propagation techniques (e.g. [23]), together constitute
the basis for a number of classical approaches to solving
the JSP. Shaving is sometimes used as a pre-processing
step or as a way to obtain a lower bound on the makespan
before applying other methods. The interest from our
perspective is to showcase how such classical techniques
remain relevant, without straying from our quantum an-
nealing approach, when applied to the problem of prun-
ing as many variables as possible. This enables larger
problems to be considered and improves the success rate
of embeddability in general (see Figure 3), without sig-
nificantly affecting the order of magnitude of the overall
time to solution in the asymptotic regime. Further im-
mediate advantages of reducing the required number of
qubits become apparent during the compilation of JSP
instances for the D-Wave device due to the associated
embedding overhead that depends directly on the num-
ber of variables. The shaving process is typically handled
by a classical algorithm whose worst-case complexity re-
mains polynomial. While this does not negatively impact
the fundamental complexity of solving JSP instances, for
pragmatic benchmarking the execution time needs to be
taken into account and added to the quantum annealing

runtime to properly report the time to solution of the
whole algorithm.

Different elimination rules can be applied. We focus
herein on the iterated Carlier and Pinson (ICP) proce-
dure [21] reviewed in the appendix with worst-case com-
plexity given by O(N2M2T log(N)). Instead of looking
at the one-job sub-problems and their constraints to elim-
inate variables, as we did for the simple pruning, we look
at the one-machine sub-problems and their associated
constraints to further prune variables. An example of
the resulting QUBO problem is presented in Figure 1-c.

B. Timespan discrimination

We explore a method of extracting more information
regarding the actual optimal makespan of a problem
within a single call to the solver by breaking the de-
generacy of the ground states and spreading them over
some finite energy scale, distinguishing the energy of valid
schedules on the basis of their makespan. Taken to the
extreme, this approach would amount to solving the full
optimization problem. We find that the resulting QUBO
problem is poorly suited to a solver with limited preci-
sion, so a balance must be struck between extra informa-
tion and the precision requirement. A systematic study
of how best to balance the amount of information ob-
tained versus the extra cost will be the subject of future
work.

We propose to add a number of linear terms, or local
fields, to the QUBO problem to slightly penalize valid
solutions with larger makespans. We do this by adding
a cost to the last operation of each job, that is, the set
{Ok1

, . . . , OkN
}. At the same time, we require that the

new range of energy over which the feasible solutions are
spread stays within the minimum logical QUBO prob-
lem’s gap given by ∆E = min{η, α, β}. If the solver’s
precision can accomodate K distinguishable energy bins,
then makespans within [T − K, T ] can be immediately
identified from their energy values. The procedure is il-
lustrated in Figure 1-d and some implications are dis-
cussed in the appendix.

IV. IV. ENSEMBLE

PRE-CHARACTERIZATION AND

COMPILATION

We now turn to a few important elements of our com-
putational strategy for solving JSP instances. We first
show how a careful pre-characterization of classes of ran-
dom JSP instances, representative of the problems to be
run on the quantum optimizer, provides very useful in-
formation regarding the shape of the search space for T .
We then describe how instances are compiled to run on
the actual hardware.
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A. Makespan Estimation

In Figure 2, we show the distributions of the opti-
mal makespans T for different ensembles of instances
parametrized by their size N = M , by the possible val-
ues of task durations Pp = {pmin, . . . , pmax}, and by the
ratio θ ≤ 1 of the number of machines used by each
job. Instances are generated randomly by selecting θM
distinct machines for each job and assigning an execution
time to each operation randomly. For each set of parame-
ters, we can compute solutions with a classical exhaustive
solver in order to identify the median of the distribution
〈T 〉(N,Pp, θ) as well as the other quantiles. These could
also be inferred from previously solved instances with
the proposed annealing solver. The resulting informa-
tion can be used to guide the binary search required to
solve the optimization problem. Figure 2 indicates that
a normal distribution is an adequate approximation, so
we need only to estimate its average 〈T 〉 and variance
σ2. Interestingly, from the characterization of the fam-
ilies of instances up to N = 10 we find that, at least
in the region explored, the average minimum makespan
〈T 〉 is proportional to the average execution time of a
job 〈p〉θN , where 〈p〉 is the mean of Pp. This linear
ansatz allows for the extrapolation of approximate re-
source requirements for classes of problems which have
not yet been pre-characterized, and it constitutes an ed-
ucated guess for classes of problems which cannot be pre-
characterized due to their difficulty or size. The accu-
racy of these functional forms was verified by computing
the relative error of the prediction versus the fit of the
makespan distribution of each parametrized family up to
N = M = 9 and pmax = 20 using 200 instances to com-
pute the makespan histogram. The prediction for 〈T 〉
results are consistently at least 95% accurate, while the
one for σ has at worst a 30% error margin, a very ap-
proximate but sufficient model for the current purpose of
guiding the binary search.

B. Compilation

The graph-minor embedding technique (abbreviated
simply “embedding”) represents the de facto method of
recasting the Ising problems to a form compatible with
the layout of the annealer’s architecture [24, 25], which
for the D-Wave Two is a Chimera graph [1]. Formally,
we seek an isomorphism between the problem’s QUBO
graph and a graph minor of the solver. This procedure
has become a standard in solving applied problems using
quantum annealing [6, 11] and can be thought of as the
analogue of compilation in a digital computer program-
ming framework during which variables are assigned to
hardware registers and memory locations. This process
is covered in more details in the appendix. An example of
embedding for a 5 x 5 JSP instance with θ = 1 and T = 7
is shown in Figure 3-a, where the 72 logical variables of
the QUBO problem are embedded using 257 qubits of the

Number of machines M, number of jobs N
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N = M = 4 
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N = M = 4 
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N = M = 4 
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N = M = 4 
p = [0, 3]
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p  = [0, 1]

N = M = 6 

p = [1]

N = M = 6 

p = [0, 2]

N = M = 6 

p = [1, 2]

N = M = 6 

p = [0, 3]

a)
N = M = 3 

FIG. 2: a) Normalized histograms of optimal makespans T
for parametrized families of JSP instances with N = M ,
Pp on the y-axis, θ = 1 (yellow), and θ = 0.5 (purple).
The distributions are histograms of occurrences for 1000 ran-
dom instances, fitted with a Gaussian function of mean 〈T 〉.
We note that the width of the distributions increases as the
range of the execution times Pp increases, for fixed 〈p〉. The
mean and the variance are well fitted respectively by 〈T 〉 =
AT Npmin+BT Npmax and σ = σ0+Cσ〈T 〉+Aσpmin+Bσpmax,
with AT = 0.67, BT = 0.82, σ0 = 0.7, Aσ = −0.03,
Bσ = 0.43, and Cσ = 0.003.

Chimera graph. Finding the optimal tiling that uses the
fewest qubits is NP-hard [26], and the standard approach
is to employ heuristic algorithms [27]. In general, for the
embedding of time-indexed mixed-integer programming
QUBO problems of size N into a graph of degree k, one
should expect a quadratic overhead in the number of bi-
nary variables on the order of aN2, with a ≤ (k − 2)−1

depending on the embedding algorithm and the hardware
connectivity [11]. This quadratic scaling is apparent in
Figure 3-b where we report on the compilation attempts
using the algorithm in [27]. Results are presented for the
D-Wave chip installed at NASA Ames at the time of this
study, for a larger chip with the same size of Chimera
block and connectivity pattern (like the latest chip cur-
rently being manufactured by D-Wave Systems), and for
a speculative yet-larger chip where the Chimera block
is twice as large. We deem a JSP instance embeddable
when the respective HT=T is embeddable, so the decrease
in probability of embedding with increasing system size is
closely related to the shift and spreading of the optimal
makespan distributions for ensembles of increasing size
(see Figure 2). What we observe is that, with the avail-
able algorithms, the current architecture admits embed-
ded JSP instances whose total execution time NMθ〈p〉
is around 20 time units, while near-future (we estimate 2
years) D-Wave chip architectures could potentially dou-
ble that. As noted in similar studies (e.g., [6]), graph
connectivity has a much more dramatic impact on em-
beddability than qubit count.
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θ = 0.5

FIG. 3: a) Example of an embedded JSP instance on NASA’s
D-Wave Two chip. Each chain of qubits is colored to represent
a logical binary variable determined by the embedding. For
clarity, active connections between the qubits are not shown.
b) Embedding probability as a function of N = M for θ = 1
(similar results are observed for θ = 0.5). Solid lines refer to
Pp = [1, 1] and dashed lines refer to Pp = [0, 2]. 1000 random
instances have been generated for each point, and a cutoff
of 2 minutes has been set for the heuristic algorithm to find
a valid topological embedding. Results for different sizes of
Chimera are shown. c) Optimal parameter-setting analysis
for the ensembles of JSP instances we studied. Each point
corresponds to the number of qubits and the optimal JF (see
main text) of a random instance, and each color represents a
parametrized ensemble (green: 3 x 3, purple: 4 x 4, yellow:
5 x 5, blue: 6 x 6; darker colors represent ensembles with Pp =
[1, 1] as opposed to lighter colors which indicate Pp = [0, 2]).
Distributions on the right of scatter plots represent Gaussian
fits of the histogram of the optimal JF for each ensemble.
Runtime results are averaged over an ungauged run and 4
additional runs with random gauges [28].

Once the topological aspect of embedding has been
solved, we set the ferromagnetic interactions needed to
adapt the connectivity of the solver to the problem at
hand. For the purpose of this work, this should be re-

garded as a technicality necessary to tune the perfor-
mance of the experimental analog device and we include
the results for completeness. Introductory details about
the procedure can be found in [6, 11]. In Figure 3-c
we show a characterization of the ensemble of JSP in-
stances (parametrized by N , M , θ, and Pp, as described
at the beginning of this section). We present the best
ferromagnetic couplings found by runs on the D-Wave
machine under the simplification of a uniform ferromag-
netic coupling by solving the embedded problems with
values of JF from 0.4 to 1.8 in relative energy units of the
largest coupling of the original Ising problem. The run
parameters used to determine the best JF are the same
as we report in the following sections, and the problem
sets tested correspond to Hamiltonians whose timespan
is equal to the sought makespan HT=T . This parameter-
setting approach is similar to the one followed in [6] for
operational planning problems, where the instance en-
sembles were classified by problem size before compila-
tion. What emerges from this preliminary analysis is
that each parametrized ensemble can be associated to a
distribution of optimal JF that can be quite wide, espe-
cially for the ensembles with pmin = 0 and large pmax.
This spread might discourage the use of the mean value
of such a distribution as a predictor of the best JF to
use for the embedding of new untested instances. How-
ever, the results from this predictor appear to be better
than the more intuitive prediction obtained by correlat-
ing the number of qubits after compilation with the op-
timal JF . This means that for the D-Wave machine to
achieve optimal performance on structured problems, it
seems to be beneficial to use the information contained in
the structure of the logical problem to determine the best
parameters. We note that this “offline” parameter-setting
could be used in combination with “online” performance
estimation methods such as the ones described in [28] in
order to reach the best possible instance-specific JF with
a series of quick experimental runs. The application of
these techniques, together with the testing of alternative
offline predictors, will be the subject of future work.

V. V. RESULTS OF TEST RUNS AND

DISCUSSION

A complete quantum annealing JSP solver designed to
solve an instance to optimality using our proposed for-
mulation will require the independent solution of several
embedded instances {HT }, each corresponding to a dif-
ferent timespan T . Assuming that the embedding time,
the machine setup time, and the latency between subse-
quent operations can all be neglected, due to their being
non-fundamental, the running time T of the approach
for a specific JSP instance reduces to the expected total

annealing time necessary to find the optimal solution of
each embedded instance with a specified minimum target
probability ≃ 1. The probability of ending the anneal-
ing cycle in a desired ground state depends, in an essen-



7

tially unknown way, on the embedded Ising Hamiltonian
spectrum, the relaxation properties of the environment,
the effect of noise, and the annealing profile. Under-
standing through an ab initio approach what is the best
computational strategy appears to be a formidable un-
dertaking that would require theoretical breakthroughs
in the understanding of open-system quantum anneal-
ing [29, 30], as well as a tailored algorithmic analysis
that could take advantage of the problem structure that
the annealer needs to solve. For the time being, and for
the purposes of this work, it seems much more practical
to limit these early investigations to the most relevant
instances, and to lay out empirical procedures that work
under some general assumptions. More specifically, we
focus on solving the CSP version of JSP, not the full
optimization problem, and we therefore only benchmark
the Hamiltonians with T = T with the D-Wave machine.
We note however that a full optimization solver can be
realized by leveraging data analysis of past results on
parametrized ensembles and by implementing an adap-
tive binary search. Full details can be found in a longer
version of this work [31].

On the quantum annealer installed at NASA Ames (it
has 509 working qubits; details are presented in [32]),
we run hundreds of instances, sampling the ensembles
N = M ∈ {3, 4, 5, 6}, θ ∈ {0.5, 1}, and Pp ∈ {[1, 1], [0, 2]}.
For each instance, we report results, such as runtimes,
at the most optimal JF among those tested, assuming
the application of an optimized parameter-setting pro-
cedure along the lines of that described in the previous
section. Figure 4-a displays the total annealing repeti-
tions required to achieve a 99% probability of success
on the ground state of HT , with each repetition lasting
tA = 20 µs, as a function of the number of qubits in the
embedded (and pruned) Hamiltonian. We observe an ex-
ponential increase in complexity with increasing Hamil-
tonian size, for both classes of problems studied. This
likely means that while the problems tested are small, the
analog optimization procedure intrinsic to the D-Wave
device’s operation is already subject to the fundamental
complexity bottlenecks of the JSP. It is, however, pre-
mature to draw conclusions about performance scaling
of the technology given the current constraints on cali-
bration procedures, annealing time, etc. Many of these
problems are expected to be either overcome or nearly so
with the next generation of D-Wave chip, at which point
more extensive experimentation will be warranted.

In Figure 4-b, we compare the performance of the
D-Wave device to two exhaustive classical algorithms in
order to gain insight on how current quantum anneal-
ing technology compares with paradigmatic classical op-
timization methods. Leaving the performance of approx-
imate solutions for future work, we chose not to explore
the plethora of possible heuristic methods as we operate
the D-Wave machine, seeking the global optimum.

The first algorithm, B, detailed in [35], exploits the dis-
junctive graph representation and a branch-and-bound
strategy that very effectively combines a branching
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FIG. 4: a) Number of repetitions required to solve HT with
the D-Wave Two with a 99% probability of success (see the
appendix). The blue points indicate instances with θ = 1
and yellow points correspond to θ = 0.5 (they are the same
instances and runtimes used for Figure 3-c). The number of
qubits on the x-axis represents the qubits used after embed-
ding. b) Correlation plot between classical solvers and the
D-Wave optimizer. Gray and violet points represent runtimes
compared with algorithm B, and cyan and red are compared
to the MS algorithm, respectively, with θ = 1 and θ = 0.5.
All results presented correspond to the best out of 5 gauges
selected randomly for every instance. In case the machine
returns embedding components whose values are discordant,
we apply a majority voting rule to recover a solution within
the logical subspace [6, 11, 28, 33, 34]. We observe a devi-
ation of about an order of magnitude on the annealing time
if we average over 5 gauges instead of picking the best one,
indicating that there is considerable room for improvement if
we were to apply more-advanced calibration techniques [32].

scheme based on selecting the direction of a single dis-
junctive edge (according to some single-machine con-
straints), and a technique introduced in [36] for fixing
additional disjunctions (based on a preemptive relax-
ation). It has publicly available code and is considered
a well-performing complete solver for the small instances
currently accessible to us, while remaining competitive
for larger ones even if other classical approaches become
more favorable [37]. B has been used in [38] to discuss
the possibility of a phase transition in the JSP, demon-
strating that the random instances with N = M are par-
ticularly hard families of problems, not unlike what is
observed for the quantum annealing implementation of
planning problems based on graph vertex coloring [9].

The second algorithm, MS, introduced in [20], proposes
a time-based branching scheme where a decision is made
at each node to either schedule or delay one of the avail-
able operations at the current time. The authors then
rely on a series of shaving procedures such as those pro-
posed by [21] to determine the new bound and whether
the choice leads to valid schedules. This algorithm is a
natural comparison with the present quantum annealing
approach as it solves the decision version of the JSP in a
very similar fashion to the time-indexed formulation we
have implemented on the D-Wave machine, and it makes
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use of the same shaving technique that we adapted as
a pre-processing step for variable pruning. However, we
should mention that the variable pruning that we im-
plemented to simplify HT is employed at each node of
the classical branch and bound algorithm, so the overall
computational time of MS is usually much more important
than our one-pass pre-processing step, and in general its
runtime does not scale polynomially with the problem
size.

What is apparent from the correlation plot in
Figure 4-b is that the D-Wave machine is easily outper-
formed by a classical algorithm run on a modern single-
core processor, and that the problem sizes tested in this
study are still too small for the asymptotic behavior
of the classical algorithms to be clearly demonstrated
and measured. The comparison between the D-Wave
machine’s solution time for HT and the full optimiza-
tion provided by B is confronting two very different algo-
rithms, and shows that B solves all of the full optimiza-
tion problems that have been tested within milliseconds,
whereas D-Wave’s machine can sometimes take tenths of
a second (before applying the multiplier factor ≃ 2, due
to the binary search; see the appendix). When larger
chips become available, however, it will be interesting to
compare B to a quantum annealing solver for sizes con-
sidered B-intractable due to increasing memory and time
requirements.

The comparison with the MS method has a promising
signature even now, with roughly half of the instances
being solved by D-Wave’s hardware faster than the MS al-
gorithm (with the caveat that our straightforward imple-
mentation is not fully optimized). Interestingly, the dif-
ferent parametrized ensembles of problems have distinc-
tively different computational complexity characterized
by well-recognizable average computational time to solu-
tion for MS (i.e., the points are “stacked around horizon-
tal lines” in Figure 4-b), whereas the D-Wave machine’s
complexity seems to be sensitive mostly to the total qubit
count (see Figure 4-a) irrespective of the problem class.
We emphasize again that conclusions on speedup and
asymptotic advantage still cannot be confirmed until im-
proved hardware with more qubits and less noise becomes
available for empirical testing.

VI. VI. CONCLUSIONS

Although it is probable that the quantum annealing-
based JSP solver proposed herein will not prove compet-
itive until the arrival of an annealer a few generations
away, the implementation of a provably tough applica-
tion from top to bottom was missing in the literature,
and our work has led to noteworthy outcomes we ex-
pect will pave the way for more advanced applications
of quantum annealing. Whereas part of the attraction
of quantum annealing is the possibility of applying the
method irrespective of the structure of the QUBO prob-
lem, we have shown how to design a quantum annealing

I. Problem / instance parametrization

II. Ensemble pre-characterization

(software) 

V. Ensemble pre-characterization

(hardware) 

III. Choice of mapping

IV. Pre-processing 

VI. Embedding strategy

VII. Running strategy

VIII. Decoding and analysis

FIG. 5: I–II) Appropriate choice of benchmarking and clas-
sical simulations is discussed in Section IV. III–IV) Mapping
to QUBO problems is discussed in Sections II and III. V–
VI) Pre-characterization for parameter setting is described in
Section VI. VII) Structured run strategies adapted to spe-
cific problems have not to our knowledge been discussed be-
fore. We discuss a prescription in the appendix. VIII) The
only decoding required in our work is majority voting within
embedding components to recover error-free logical solutions.
The time-indexed formulation then provides QUBO problem
solutions that can straightforwardly be represented as Gantt
charts of the schedules.

solver, mindful of many of the peculiarities of the an-
nealing hardware and the problem at hand, for improved
performance. Figure 5 shows a schematic view of the
streamlined solving process describing a full JSP opti-
mization solver. The pictured scheme is not intended to
be complete, for example, the solving framework can ben-
efit from other concepts such as performance tuning tech-
niques [28] and error-correction repetition lattices [39].
The use of the decision version of the problem can be
combined with a properly designed search strategy (the
simplest being a binary search) in order to be able to seek
the minimum value of the common deadline of feasible
schedules. The proposed timespan discrimination fur-
ther provides an adjustable compromise between the full
optimization and decision formulations of the problems,
allowing for instant benefits from future improvements
in precision without the need for a new formulation or
additional binary variables to implement the makespan
minimization as a term in the objective function. As
will be explored further in future work, we found that
instance pre-characterization performed to fine tune the
solver parameters can also be used to improve the search
strategy, and that it constitutes a tool whose use we ex-
pect to become common practice in problems amenable
to CSP formulations as the ones proposed for the JSP.
Additionally, we have shown that there is great potential
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in adapting classical algorithms with favorable polyno-
mial scaling as pre-processing techniques to either prune
variables or reduce the search space. Hybrid approaches
and metaheuristics are already fruitful areas of research
and ones that are likely to see promising developments
with the advent of these new quantum heuristics algo-
rithms.
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Appendix A: JSP and QUBO formulation

In this appendix we expand on the penalty form used
for the constraints and the alternative reward-base for-
mulation as well as the timespan discrimination scheme.

1. Penalties versus rewards formulation

The encoding of constraints as terms in a QUBO prob-
lem can either reward the respecting of these constraints
or penalize their violation. Although the distinction may
at first seem artificial, the actual QUBO problem gener-
ated differs and can lead to different performance on an
imperfect annealer. We present one such alternative for-
mulation where the precedence constraint (7) is instead
encoded as a reward for correct ordering by replacing
+ηh1(x̄) with −η′h′

1(x̄), where

h′
1(x̄) =

∑

n









∑

kn−1<i<kn

t+pi≤t′

xi,txi+1,t′









. (A1)

The new Hamiltonian is

H ′
T (x̄) = −η′h′

1(x̄) + αh2(x̄) + βh3(x̄). (A2)

The reward attributed to a solution is equal to η′ times
the number of satisfied precedence constraints. A feasi-
ble solution, where all constraints are satisfied, will have
energy equal to −η′(kN −N).

The functions h1 and h′
1 differ only by the range of t′:

in the rewards version we have

t′ − t ≥ pi,

and in the penalties version we have

t′ − t < pi.

The fact that we are allowing equality in the rewards
version means that h′

1 will always have more quadratic
terms than h1 regardless of variable pruning, leading to
a more connected QUBO graph and therefore a harder
problem to embed.

Another important disadvantage is revealed when
choosing the coefficients η′, α, and β in H ′

T to guar-
antee that no unfeasible solution has energy less than
−η′(kN − N). This can happen if the penalty that we
gain from breaking constraints h2 or h3 is less than the
potential reward we get from h′

1. The penalty-based for-
mulation simply requires that η, α, and β be larger than
0. The following lemma summarizes the equivalent con-
dition for the reward-based case.

Lemma 1. If β/η′ ≥ 3 and α > 0, then

H ′
T (x̄) ≥ −(kN −N), (A3)

for all x̄, with equality if and only if x̄ represents a feasible
schedule.

We also found examples that show that these bounds
on the coefficients are tight.

The fact that β/η′ must be greater than or equal to 3 is
a clear disadvantage because of the issues with precision
of the current hardware. In HT we can set all of the
penalty coefficients (and hence all non-zero couplers) to
be equal, which is the best possible case from the point
of view of precision.

2. Timespan discrimination

The timespan discrimination that we propose is a spec-
ification to strike a compromise between the information
obtained from each solver call, and the required preci-
sion for this information to be accurate and obtained
efficiently. Specifically, we want this extra information
to help identify the optimal makespan by looking at the
energy of the solutions. This means breaking the degen-
eracy of the ground states (i.e., the valid solutions) and
assigning different energy sectors to different makespans.
To prevent collisions with invalid solutions, these energy
sectors have to fit within the logical QUBO problem’s
gap given by ∆E = min{η, α, β}. We note that this will
affect the actual gap (as seen by the hardware) of the
embedded Ising model.

Since the binary variables we have defined in the pro-
posed formulation are not sufficient to write a simple ex-
pression for the makespan of a given solution, additional
auxiliary variables and associated constraints would need
to be introduced. Instead, a simple way to implement
this feature in our QUBO formulation is to add a num-
ber of local fields to the binary variables corresponding
to the last operation of each job, {Ok1

, . . . , OkN
}. Since
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the makespan depends on the completion time of the last
operation, the precedence constraint guaranties that the
makespan of a valid solution will be equal to the com-
pletion time of one of those operations. We can then
select the local field appropriately as a function of the
time index t to penalize a fixed number K of the larger
makespans ranging from T −K+1 to T . Within a sector
assigned to the time step T , we need to further divide
∆ET by the maximum number of operations that can
complete at T to obtain the largest value we can use as
the local field hT , i.e., the number of distinct machines
used by at least one operation in the set of operations
{Ok1 , . . . , OkN

}, denoted by Mfinal. If K is larger than
1, we also need to ensure that contributions from various
sectors can be differentiated. The objective is to assign a
distinct T -dependent energy range to all valid schedules
with makespans within [T−K, T ]. More precisely, we re-
late the local fields for various sectors with the recursive
relation

hT −1 =
hT

Mfinal

+ ǫ, (A4)

where ǫ is the minimum logical energy resolvable by the
annealer. Considering that ǫ is also the minimum local
field we can use for hT −K+1 and that the maximum total
penalty we can assign through this time-discrimination
procedure is ∆E − ǫ, it is easy to see that the energy
resolution should scale as ∆E/(MK

final
). An example of

the use of local fields for timespan discrimination is shown
in Figure 1-d of the main text for the case K = 1.

Appendix B: Computational strategy

This appendix elaborates on the compilation methods
and the quantum annealing implementation of a full op-
timization solver based on the decision version and a bi-
nary search as outlined in the main text.

1. Compilation

The process of compiling, or embedding, an instance
for a specific target architecture is a crucial step given
the locality of the programmable interactions on current
quantum annealer architectures. During the graph-minor
topological embedding, each vertex of the problem graph
is mapped to a subset of connected vertices, or subgraph,
of the hardware graph. These assignments must be such
that the the edges in the problem graph have at least one
corresponding edge between the associated subgraphs in
the hardware graph. Formally, the classical Hamiltonian
Eq. (6) is mapped to a quantum annealing Ising Hamil-
tonian on the hardware graph using the set of equa-
tions that follows. The spin operators s~σi are defined
by setting s = 1 and using the Pauli matrices to write
~σi = (σx

i , σ
y
i , σ

z
i ). The resulting spin variables σz

i = ±1,

our qubits, are easily converted to the usual binary vari-
ables xi = 0, 1 with σz

i = 2xi− 1. The Ising Hamiltonian
is given by

H = A(t) [HQ +HE ] +B(t)HD, (B1)

HQ =
∑

ij

Jijσ
z
αi
σz
βj

∣

∣

(αi,βj)∈E(i,j)
+
∑

i

k∈V (i)

hi

NV (i)
σz
k,(B2)

HE = −
∑

i

(k,k′)∈E(i,i)

JF
i,k,k′σz

kσ
z
k′ , (B3)

HD =
∑

i

k∈V (i)

σx
k , (B4)

where for each logical variable index i we have a cor-
responding ensemble of qubits given by the set of ver-
tices V (i) in the hardware graph with |V (i)| = NV (i).
Edges between logical variables are denoted E(i, j) and
edges within the subgraph of V (i) are denoted E(i, i).
The couplings Jij and local fields hi represent the logi-
cal terms obtained after applying the linear QUBO-Ising
transformation to Eq. (6). JF

i,k,k′ are embedding param-

eters for vertex V (i) and (k, k′) ∈ E(i, i) (see discus-
sion below on the ferromagnetic coupling). The equation
above assumes that a local field hi is distributed uni-
formly between the vertices V (i) and the coupling Ji,j
is attributed to a single randomly selected edge (αi, βj)
among the available couplers E(i, j), but other distribu-
tions can be chosen. In the actual hardware implementa-
tion we rescale the Hamiltonian by dividing by JF , which
is the value assigned to all JF

i,k,k′ , as explained below.
This is due to the limited range of Jij and hi allowed by
the machine [11].

Once a valid embedding is chosen, the ferromagnetic
interactions JF

i,k,k′ in Eq. (B3) need to be set appropri-
ately. While the purpose of these couplings is to penalize
states for which 〈σz

k〉 6= 〈σz
k′〉 for k, k′ ∈ V (i), setting

them to a large value negatively affects the performance
of the annealer due to the finite energy resolution of the
machine (given that all parameters must later be rescaled
to the actual limited parameter range of the solver) and
the slowing down of the dynamics of the quantum system
associated with the introduction of small energy gaps.
There is guidance from research in physics [11, 40] and
mathematics [41] on which values could represent the op-
timal JF

i,k,k′ settings, but for application problems it is
customary to employ empirical prescriptions based on
pre-characterization [6] or estimation techniques of per-
formance [28].

Despite embedding being a time-consuming classical
computational procedure, it is usually not considered
part of the computation and its runtime is not measured
in determining algorithmic complexity. This is because
we can assume that for parametrized families of problems
one could create and make available a portfolio of embed-
dings that are compatible with all instances belonging to
a given family. The existence of a such a library would re-
duce the computational cost to a simple query in a lookup
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table, but this could come at the price of the available
embedding not being fully optimized for the particular
problem instance.

2. Quantum annealing optimization solver

We now detail our approach to solving individual JSP
instances. We shall assume the instance at hand can
be identified as belonging to a pre-characterized family
of instances for minimal computational cost. This can
involve identifying N , M , and θ, as well as the approxi-
mate distribution of execution times for the operations.
The pre-characterization is assumed to include a statisti-
cal distribution of optimal makespans as well as the ap-
propriate solver parameters (JF, optimal annealing time,
etc.). Using this information, we need to build an ensem-
ble of queries Q = {q} to be submitted to the D-Wave
quantum annealer to solve a problem H. Each element of
Q is a triple (tA, R, T ) indicating that the query consid-
ers R identical annealings of the embedded Hamiltonian
HT for a single annealing time tA. To determine the el-
ements in Q we first make some assumptions, namely,
i) sufficient statistics: for each query, R is sufficiently
large to sample appropriately the ensembles defined in
Eqs. (B7)–(B9); ii) generalized adiabaticity: tA is opti-
mized (over the window of available annealing times) for
the best annealing performance in finding a ground state
of HT (i.e., the annealing procedure is such that the to-
tal expected annealing time tAR

⋆ required to evolve to a
ground state is as small as possible compared to the time
required to evolve to an excited state, with the same
probability). Both of these conditions can be achieved in
principle by measuring the appropriate optimal param-
eters R⋆(q) and t⋆A(q) through extensive test runs over
random ensembles of instances. However, we note that
verifying these assumptions experimentally is currently
beyond the operational limits of the D-Wave Two device
since the optimal tA for generalized adiabaticity is ex-
pected to be smaller than the minimum programmable
value [3]. Furthermore, we deemed the considerable ma-
chine time required for such a large-scale study too oner-
ous in the context of this initial foray. Fortunately, the
first limitation is expected to be lifted with the next gen-
eration of chip, at which point nothing would prevent
the proper determination of a family-specific choice of
R⋆ and t⋆A. Given a specified annealing time, the num-
ber of anneals is determined by specifying r0, the target
probability of success for queries or confidence level, and
measuring rq, the rate of occurrence of the ground state
per repetition for the following query:

R⋆ =
log[1− r0]

log[1− rq]
. (B5)

The rate rq depends on the family, T , and the
other parameters. The minimum observed during pre-
characterization should be used to guarantee the ground
state is found with at least the specified r0. Formally,

the estimated time to solution of a problem is then given
by

T =
∑

q∈Q

tA

(

log[1− r0]

log[1− rq]

)

. (B6)

The total probability of success of solving the problem
in time T will consequently be

∏

q
rq. For the results

presented in this paper, we used R⋆ = 500 000 and t⋆A =
min(tA) = 20 µs.

We can define three different sets of qubit configura-
tions that can be returned when the annealer is queried
with q. E is the set of configurations whose energy is
larger than ∆E as defined in Section III of the paper.
These configurations represent invalid schedules. V is the
set of solutions with zero energy, i.e., the solutions whose
makespan T is small enough (T ≤ T − K) that they
have not been discriminated by the procedure described
in the subsection on timespan discrimination. Finally,
S is the set of valid solutions that can be discriminated
(T ∈ (T −K,T ]). Depending on what the timespan T of
the problem Hamiltonian HT and the optimal makespan
T are, the quantum annealer samples the following con-
figuration space (reporting R samples per query):

T < T −→ V,S = ∅ → E0 > ∆E, (B7)

T ∈ (T −K,T ] −→ V = ∅ → E0 ∈ (0,∆E],
(B8)

T ≤ T −K −→ E ,V,S 6= ∅ → E0 = 0. (B9)

Condition (B8) is the desired case where the ground
state of HT with energy E0 corresponds to a valid sched-
ule with the optimal makespan we seek. The ground
states corresponding to conditions (B7) and (B9) are
instead, respectively, invalid schedules and valid sched-
ules whose makespan could correspond to a global mini-
mum (to be determined by subsequent calls). The above-
described assumption ii) is essential to justify aborting
the search when case (B8) is encountered. If R and tA
are appropriately chosen, the ground state will be prefer-
entially found instead of all other solutions such that one
can stop annealing reasonably soon (i.e., after a number
of reads on the order of R⋆) in the absence of the appear-
ance of a zero-energy solution. We can then declare this
minimum-energy configuration, found within (0,∆E], to
be the ground state and the associated makespan and
schedule to be the optimal solution of the optimization
problem. On the other hand, we note that if K = 0,
a minimum of two calls are required to solve the prob-
lem to optimality, one to show that no valid solution is
found for T = T − 1 and one to show that a zero-energy
configuration is found for T = T . While for cases (B8)
and (B9) the appearance of an energy less than or equal
to ∆E heuristically determines the trigger that stops the
annealing of HT , for case (B7), we need to have a pre-
scription, based on pre-characterization, on how long to
anneal in order to be confident that T < T . While op-
timizing these times is a research program on its own
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that requires extensive testing, we expect that the char-
acteristic time for achieving condition (B8) when T = T
will be on the same order of magnitude for this unknown
runtime.

3. Search strategy

The final important component of the computational
strategy consists in determining the sequence of times-
pans of the calls (i.e., the ensemble Q). Here we pro-
pose to select the queries based on an optimized binary
search that makes informed dichotomic decisions based
on the pre-characterization of the distribution of optimal
makespans of the parametrized ensembles as described
in the previous sections. More specifically, the search is
designed based on the assumption that the JSP instance
at hand belongs to a family whose makespan distribution
has a normal form with average makespan 〈T 〉 and vari-
ance σ2. This fitted distribution is the same Pp described
in Figure 2-a of the main text whose tails have been cut
off at locations corresponding to an instance-dependent
upper bound Tmax and strict lower bound Tmin (see the
following section on bounds).

Once the initial Tmin and Tmax are set, the binary
search proceeds as follows. To ensure a logarithmic scal-
ing for the search, we need to take into account the nor-
mal distribution of makespans by attempting to bisect
the range (Tmin, Tmax] such that the probability of find-
ing the optimal makespan on either side is roughly equal.
In other words, T should be selected by solving the fol-
lowing equation and rounding to the nearest integer:

erf

(

Tmax + 1
2 − 〈T 〉

σ
√
2

)

+ erf

(

Tmin + 1
2 − 〈T 〉

σ
√
2

)

=

(B10)

erf

(

T + 1
2 − 〈T 〉
σ
√
2

)

+ erf

(

T −max(1, K) + 1
2 − 〈T 〉

σ
√
2

)

,

where erf(x) is the error function. For our current pur-
pose, an inexpensive approximation of the error function
is sufficient. In most cases this condition means initial-
izing the search at T = 〈T 〉. We produce a query q0
for the annealing of HT . If no schedule is found (con-
dition (B7)) we simply let Tmin = T . If condition (B9)
is verified, on the other hand, we update Tmax to be the
makespan T of the valid found solution (which is equal to
T −max(1, K) + 1 in the worst case) for the determina-
tion of the next query q1. The third condition (B8), only
reachable if K > 0, indicates both that the search can
stop and the problem has been solved to optimality. The
search proceeds in this manner by updating the bounds
and bisecting the new range at each step and stops either
with condition (B8) or when T = Tmax = Tmin+1. Figure
6-a shows an example of such a binary search in practice.
The reason for using this guided search is that the average
number of calls to find the optimal makespan is dramati-
cally reduced with respect to a linear search on the range

(Tmin, Tmax]. For a small variance this optimized search
is equivalent to a linear search that starts near T = 〈T 〉.
A more spread-out distribution, on the other hand, will
see a clear advantage due to the logarithmic, instead of
linear, scaling of the search. In Figure 6-b, we compute
this average number of calls as a function of N , θ, and K
for N = M instances generated such that an operation’s
average execution time also scales with N . This last con-
dition ensures that the variance of the makespan grows
linearly with N as well, ensuring that the logarithmic
behavior becomes evident for larger instances. For this
calculation we use the worst case when updating Tmax

due to condition (B9) being met. We find that for the
experimentally testable instances with the D-Wave Two
device (see Figure 3-b of the main text), the expected
number of calls to solve the problem is less than three
(in the absence of pre-characterization it would be twice
that), while for larger instances the size of Q scales log-
arithmically, as expected.
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FIG. 6: a) View of a guided binary search required to iden-
tify the minimum makespan over a distribution. The fitted
example distribution corresponds to N = M = 8, fitted to a
Gaussian distribution as described in the main text. We as-
sume K = 1. The first attempt queries H26, the second H29,
and the third H30 (the final call), following Eq. (B10). b) Av-
erage number of calls to the quantum annealer required by the
binary search assuming Eq. (B10) (left panel) or assuming a
uniform distribution of minimum makespans between trivial
upper and lower bounds. Thick and dashed lines correspond
to θ = 1 and θ = 0.5, respectively, and the numeric values as-
sociated with each color in the figure correspond to different
values of K. The operations’ execution times are distributed
uniformly with Pp = {0, . . . , N/2}.



13

4. JSP bounds

The described binary search assumes that a lower
bound Tmin and an upper bound Tmax are readily avail-
able. We cover their calculation for the sake of complete-
ness. The simplest lower bounds are the job bound and
the machine bound. The job bound is calculated by find-
ing the total execution time of each job and keeping the
largest one of them, put simply

max
n∈{1, ..., N}

kn
∑

i=kn−1

pi, (B11)

where we use the lexicographic index i for operations
and where k0 = 1. Similarly, we can define the machine
bound as

max
m∈{1, ...,M}

∑

i∈Im

pi, (B12)

where Im is the set of indices of all operations that need
to run on machine mm. Since these bounds are inex-
pensive to calculate, we can take the larger of the two.
An even better lower bound can be obtained using the
iterated Carlier and Pinson (ICP) procedure described in
the window shaving subsection of Section III of the main
text. We mentioned that the shaving procedure can show
that a timespan does not admit a solution if a window
closes completely. Using shaving for different timespans
and performing a binary search, we can obtain the ICP
lower bound in O

(

N2 log(N)M2Tmax log2(Tmax−Tmin)
)

,
where Tmin and Tmax are some trivial lower and upper
bound, respectively, such as the ones described in this
section. Given that the search assumes a strict bound,
we need to decrease whichever bound we chose here by
one.

As for the upper bound, an excellent choice is provided
by another classical algorithm developed by Applegate
and Cook [42] for some finite computational effort. The
straightforward alternative is given by the total work of
the problem

∑

i∈{1, ..., kN}

pi. (B13)

The solver’s limitations can also serve to establish prac-
tical bounds for the search. For a given family of prob-
lems, if instances of a specific size can only be embedded
with some acceptable probability for timespans smaller
than T embed

max , the search can be set with this limit, and
failure to find a solution will result in T embed

max , at which
point the solver will need to report a failure or switch to
another classical approach.

Appendix C: Classical algorithms

When designing a quantum annealing solver, a sur-
vey of classical methods provides much more than a

benchmark for comparison and performance. Classi-
cal algorithms can sometimes be repurposed as useful
pre-processing techniques as demonstrated with variable
pruning. We provide a quick review of the classical meth-
ods we use for this work as well as some details on the
classical solvers to which we compare.

1. Variable pruning

Eliminating superfluous variables can greatly help mit-
igate the constraints on the number of qubits available.
Several elimination rules are available and we explain be-
low in more detail the procedure we used for our tests.

The first step in reducing the processing windows is to
eliminate unneeded variables by considering the prece-
dence constraints between the operations in a job, some-
thing we refer to as simple variable pruning. We define
ri as the sum of the execution times of all operations pre-
ceding operation Oi. Similarly, we define qi as the sum of
the execution times of all operations following Oi. The
numbers ri and qi are referred to as the head and tail

of operation Oi, respectively. An operation cannot start
before its head and must leave enough time after finish-
ing to fit its tail, so the window of possible start times,
the processing window, for operation Oi is [ri, T−pi−qi].

If we consider the one-machine subproblems induced
on each machine separately, we can update the heads
and tails of each operation and reduce the processing
windows further. For example, recalling that Ij is the
set of indices of operations that have to run on machine
Mj , we suppose that a, b ∈ Ij are such that

ra + pa + pb + qb > T.

Then Oa must be run after Ob. This means that we can
update ra with

ra = max{ra, rb + pb}.

We can apply similar updates to the tails because of the
symmetry between heads and tails. These updates are
known in the literature as immediate selections.

Better updates can be performed by using ascendant

sets, introduced by Carlier and Pinson in [36]. A subset
X ⊂ Ij is an ascendant set of c ∈ Ij if c 6∈ Ij and

min
a∈X∪{c}

ra +
∑

a∈X∪{c}

pa +min
a∈X

qa > T.

If X is an ascendant set of c, then we can update rc with

rc = max

{

rc, max
X′⊂X

[

min
a∈X′

ra +
∑

a∈X′

pj

]}

.

Once again, the symmetry implies that similar updates
can be applied to the tails.

Carlier and Pinson in [21] provide an algorithm to
perform all of the ascendant-set updates on Mj in
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O(N log(N)), where N = |Ij |. After these updates have
been carried out on a per-machine basis, we propagate
the new heads and tails using the precedence of the op-
eration by setting

ri+1 = max {ri+1, ri + pi} , (C1)

qi = max {qi, qi+1 + pi+1} , (C2)

for every pair of operations Oi and Oi+1 that belong to
the same job.

After propagating the updates, we check again if any
ascendant-set updates can be made, and repeat the cycle
until no more updates are found. In our tests, we use an
implementation similar to the one described in [21] to do
the ascendant-set updates.

Algorithm 1 is pseudocode that describes the shav-
ing procedure. Here, the procedure UpdateMachine(i)
updates heads and tails for machine i in O(N log(N)),
as described by Carlier and Pinson in [21]. It returns
True if any updates were made, and False otherwise.
PropagateWindows() is a procedure that iterates over the
tasks and checks that Eqs. (C1) and (C2) are satisfied,
in O(NM).

Algorithm 1 Shaving algorithm

1: procedure icp_shave

2: updated← True
3: while updated do

4: updated← False
5: for i ∈ machines do

6: updated← UpdateMachine(i) ∨ updated

7: if updated then PropagateWindows()

For each repetition of the outermost loop of Algorithm
1, we know that there is an update on the windows, which
means that we have removed at least one variable. Since
there are at most NMT variables, the loop will run at
most this many times. The internal for loop runs ex-
actly M times and does work in O(N log(N)). Putting
all of this together, the final complexity of the shaving
procedure is O(N2M2T log(N)).

2. Classical algorithm implementation

Brucker et al.’s branch and bound method [35] remains
widely used due to its state-of-the-art status on smaller
JSP instances and its competitive performance on larger
ones [43]. Furthermore, the original code is freely avail-
able through ORSEP [44]. No attempt was made at opti-
mizing this code and changes were only made to properly
interface with our own code and time the results.

Martin and Shmoys’ time-based approach [20] is less
clearly defined in the sense that no publicly available
standard code could be found and because a number
of variants for both the shaving and the branch and
bound strategy are described in the paper. As covered in
the section on shaving, we have chosen the O(n log(n))
variants of heads and tails adjustments, the most effi-
cient choice available. On the other hand, we have re-
stricted our branch and bound implementation to the
simplest strategy proposed, where each node branches
between scheduling the next available operation (an op-
eration that was not yet assigned a starting time) imme-
diately or delaying it. Although technically correct, the
same schedule can sometimes appear in both branches
because the search is not restricted to active schedules,
and unwarranted idle times are sometimes considered.
According to Martin and Shmoys, the search strategy
can be modified to prevent such occurrences, but these
changes are only summarily described and we did not
attempt to implement them. Other branching schemes
are also proposed which we did not consider for this
work. One should be careful when surveying the liter-
ature for runtimes of a full-optimization version based
on this decision-version solver. What is usually reported
assumes the use of a good upper bound such as the one
provided by Applegate and Cook [42]. The runtime to
obtain such bounds must be taken into account as well.
It would be interesting to benchmark this decision solver
in combination with our proposed optimized search, but
this benchmarking we also leave for future work.

Benchmarking of classical methods was performed on
an off-the-shelf Intel Core i7-930 processor clocked at
2.8 GHz.
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