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The quantum approximate optimization algo-
rithm (QAOA) is a prospective near-term quan-
tum algorithm due to its modest circuit depth
and promising benchmarks. However, an ex-
ternal parameter optimization required in the
QAOA could become a performance bottleneck.
This motivates studies of the optimization land-
scape and search for heuristic ways of parame-
ter initialization. In this work we visualize the
optimization landscape of the QAOA applied to
the MaxCut problem on random graphs, demon-
strating that random initialization of the QAOA
is prone to converging to local minima with sub-
optimal performance. We introduce the initial-
ization of QAOA parameters based on the Trot-
terized quantum annealing (TQA) protocol, pa-
rameterized by the Trotter time step. We find
that the TQA initialization allows to circumvent
the issue of false minima for a broad range of
time steps, yielding the same performance as
the best result out of an exponentially scaling
number of random initializations. Moreover, we
demonstrate that the optimal value of the time
step coincides with the point of proliferation of
Trotter errors in quantum annealing. Our re-
sults suggest practical ways of initializing QAOA
protocols on near-term quantum devices and re-
veal new connections between QAOA and quan-
tum annealing.

1 Introduction

Recent technological advances have led to a large
number of implementations [1–4] of so-called Noisy
Intermediate-Scale Quantum (NISQ) devices [5]. These
machines, which allow to manipulate a small number of
imperfect qubits with limited coherence time, inspired
the search for practical quantum algorithms. The quan-
tum approximate optimization algorithm (QAOA) [6]
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has emerged as a promising candidate for such NISQ
devices [7–9].
The QAOA is a variational hybrid quantum algo-

rithm where the classical computer operates a NISQ de-
vice. The computer is responsible for the optimization
of the cost function over a set of variational parameters.
The cost function is calculated using a NISQ device
that prepares a quantum state corresponding to cho-
sen parameters and performs quantum measurements.
In QAOA of depth p the wave function is prepared by
a unitary circuit parametrized by 2p parameters, see
Fig. 1(a). Each of the p layers consist of two unitaries:
the first is generated by a classical Hamiltonian HC that
encodes the cost function of a combinatorial optimiza-
tion problem, and the second is generated by the mixing
quantum Hamiltonian, HB .
While the p = 1 limit of QAOA allows for analytic

considerations and derivation of performance guaran-
tees [6], subsequent work suggested that higher depth
p may be required in order to achieve a quantum ad-
vantage [8, 10]. However, increasing p leads to a pro-
gressively more complex optimization landscape, that
is characterized by a large number of local suboptimal
minima [7, 9, 11, 12], see Fig. 1(c). The convergence of
classical optimization algorithms into such sub-optimal
solutions was demonstrated to be a potential bottleneck
of QAOA performance as finding a nearly optimal min-
imum usually requires exponential in p number of ini-
tializations of the classical optimization algorithm [6, 7].
Note, that the problem of sub-optimal local minima
is different from that of barren plateaus [13, 14], i.e.
large regions in parameter space with vanishing gradi-
ents, since barren plateaus are associated with circuit
depths p polynomial in system size N [15], beyond what
is typically considered in the QAOA.
The complexity of the energy landscape of large-p

QAOA has motivated the search for heuristic ways of
improving the convergence to a (nearly) optimal mini-
mum values of the variational parameters. Recent work
has demonstrated a concentration of the QAOA land-
scape for typical problem instances [16], which implies
the existence of a typical landscape and hints at the
fact that the same variational parameter choice may
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work between different problem instances or sizes. A
particular example of such a heuristic was proposed in
Ref. [7] which constructs a good initialization for the
QAOA at level p + 1 using the solution at level p, thus
requiring a polynomial in p number of optimization
runs. Other approaches, such as reusing parameters
from similar graphs [12], using an initial state that en-
codes the solution of a relaxed problem [17], or utilizing
machine learning techniques to predict QAOA parame-
ters [18, 19] were also proposed.

In this work we propose a different approach to the
QAOA initialization, based on the relation between
QAOA and the quantum annealing algorithm. Quan-
tum annealing uses adiabatic time evolution to find the
lowest energy state of HC , but often requires unfeasible
evolution time T [20]. We explore the observation that
Trotterization of unitary evolution in quantum anneal-
ing provides a particular choice of parameters for the
QAOA [6]. This leads us to introduce a one-parameter
family of Trotterized quantum annealing (TQA) ini-
tializations for QAOA, controlled by the time step or,
equivalently, total time used in adiabatic evolution.

The central result of our work is the demonstration
that TQA initialization for QAOA gives comparable
performance to the search over an exponentially scal-
ing number of random initializations. To this end, we
establish that TQA initialization leads to convergence
of the QAOA to a nearly optimal minimum for a cer-
tain range of time steps, see Fig. 1(c) for visualization.
Furthermore, we identify the optimal time step of the
TQA initialization and suggest a purely experimental
way of fixing this parameter.

Our work reveals a connection between intermediate-
p QAOA and short-time quantum annealing. Previ-
ous studies [6–8] established a correspondence between
quantum annealing with long annealing times and the
QAOA protocol with large p (potentially increasing
exponentially with the problem size). More recent
work proposed quantum annealing inspired initializa-
tion strategies for the so-called ‘bang-bang’ modifica-
tion of the QAOA [21] that however also corresponds
to large circuit depths. Our work is different from this
context, since we establish that the best performance is
achieved for a very coarse discretization of quantum an-
nealing, resulting in a realistic circuit depth. We show
the existence of an optimal step for TQA discretization
that does not depend on problem size and QAOA depth.
This suggests an intimate relation between QAOA and
TQA, since the optimal value of the time step is in close
correspondence to the point where proliferation of Trot-
ter error occurs in TQA [22].

The remainder of the paper is organized as follows:
in Section 2 we introduce the QAOA, visualize its opti-
mization landscape and show that most random initial-
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Figure 1: (a) The circuit that prepares a quantum state in the
QAOA is parametrized by a set of 2p angles γi, βi. For the
MaxCut problem, that is considered in the main text, the uni-
taries can be expressed using single and two qubit gates that are
readily available on current NISQ devices. (b) The optimization
of 〈HC〉 is launched from a certain guess of parameters, state
preparation and measurements are iterated until the algorithm
converges to a set of optimized angles γ∗

i , β∗

i . (c) The cartoon
of the cost function 〈HC〉 landscape as a function of varia-
tional parameters shows that random initializations are prone
to converge to sub-optimal local minima. In contrast, the fam-
ily of TQA initializations proposed in this work converges to
the (nearly) optimal minimum.

izations concentrate around sub-optimal local minima.
Next, in Section 3 we discuss TQA and the correspond-
ing initialization and show that it avoids converging at
sub-optimal local optima. Finally, in Section 4 we sum-
marize the results, discuss its implications and potential
future work.

2 Optimization landscape of QAOA

2.1 QAOA for MaxCut problems

As we discussed in the Introduction, the QAOA is of-
ten applied to hard combinatorial optimization prob-
lems. In what follows we concentrate on the problem
of finding a maximal cut (MaxCut) in a given graph
which has become one of standard tasks used to bench-
mark the QAOA [7, 9]. Finding the maximum cut is an
NP -hard combinatorial optimization problem, though
efficient classical algorithms exist that yield good ap-
proximate solutions. Notably, the Goemans-Williamson
algorithm yields a cut that is at least 88% of the size of
the maximum cut in polynomial time [23].
Given a graph G = (V, E) with vertices V =

1, 2, ..., N and edges E = {〈i, j〉}, the maximal cut is
defined as the partition that splits the vertices into two
groups, maximizing the number of edges that connect
vertices from different groups. Mathematically, such
partition amounts to finding the global minimum of a
cost function, C(~z) =

∑

〈i,j〉ǫE zizj , where the binary
variables zi correspond to the vertices of the graph, and
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their value zi = ±1 encodes which partition the given
vertex i belongs to. The cost function C(~z) can be
mapped into a classical spin Hamiltonian by promoting
the binary variable zi to the quantum spin-1/2 operator
σz

i . The resulting Hamiltonian,

HC =
∑

〈i,j〉ǫE

σz
i σz

j , (1)

operates on N spins that reside on the vertices V of the
corresponding graph and interact with each other when
connected by an edge.
The QAOA uses a NISQ device to prepare the follow-

ing quantum state [see Fig. 1(a)]:

|~γ, ~β〉 =

p
∏

i=1

e−iβiHB e−iγiHC |0〉B , (2)

where HC is classical Hamiltonian introduced above,
and HB = −

∑N
i σx

i the mixing Hamiltonian, as pro-
posed by Farhi et al. [6]. Both operators operate on the
Hilbert space corresponding to N spins or, equivalently,
qubits, and the initial state |0〉B = |+〉

⊗N
corresponds

to all qubits pointing along x-direction, thus yielding
the ground state of HB . The variational parameters are
obtained by minimizing the expectation value 〈HC〉~γ,~β
as:

( ~γ∗, ~β∗) = arg min
(~γ,~β)
〈~γ, ~β|HC |~γ, ~β〉, (3)

which is typically carried out with numerical optimiza-
tion routines. To benchmark the QAOA it is useful to
define the approximation ratio,

r~γ,~β =
〈~γ, ~β|HC |~γ, ~β〉

Cmin
, (4)

which quantifies how close the expectation value of the
classical Hamiltonian over the QAOA wave function is
to the ground state energy of HC , denoted as Cmin. For
QAOA at depth p = 1 the algorithm is guaranteed to
find a cut that is at least 69% the size of the optimal
cut [6], while for p > 1 analytic results are limited [24].
The performance of the QAOA is typically investi-

gated over an ensemble of graphs rather than an individ-
ual realization. Below we focus on the ensemble of ran-
dom 3-regular graphs, where each vertex is connected to
three other vertices chosen at random. However, in the
Appendix we also consider weighted 3-regular graphs
and Erdős-Rényi graph ensembles in order to illustrate
the general applicability of our results.

2.2 Visualizing optimization landscape

The performance of the classical optimization in Eq. (3)
strongly depends on the properties of the optimization

landscape. While this landscape can be readily visual-
ized for p = 1, the dependence of approximation ratio
r~γ,~β on 2p angles parametrizing QAOA was suggested
to become progressively more complex for larger values
of p. In order to visualize the properties of this high-
dimensional landscape, we focus below on points where
1− r~γ,~β achieves (local) minima.
We quantify properties of minima using two differ-

ent characteristics. First, we measure the difference be-
tween the approximation ratio of the given minimum
characterized by angles ~γ, ~β and the global minimum
characterized by angles ~γ∗, ~β∗, ∆r~γ,~β = r~γ∗,~β∗

− r~γ,~β .
This definition implies that the smallest possible value
of ∆r~γ,~β is 0, and larger values of ∆r~γ,~β corresponds to

local minima with poor performance (i.e. much larger
value of cost function) compared to the global mini-
mum. The second characteristic measures the distance
between minima in parameter space,

d~γ,~β =

p
∑

i=1

(

|βi − β∗
i |π2 + |γi − γ∗

i |π
)

, (5)

where | . . . |α denotes the absolute value modulo α which
takes into account symmetries, see Appendix A.
We calculate values of ∆r~γ,~β and d~γ,~β numerically.

For a given graph realization we use 2p different ran-
dom initializations of variational parameters ~γ, ~β and
optimize them using the iterative BFGS algorithm [25–
28]. The algorithm is accessed via the scipy.optimize

Python module with default parameters [29]. Conver-
gence is achieved when the norm of the gradient is less
than 10−5, maximum number of iterations is set to 400p,
where p is the QAOA depth. In our simulations the rou-
tine typically converged before using up the maximum
number of allowed iterations. We use the converged an-
gles with the lowest value of 1− r~γ,~β as an estimate for
the global minimum γ∗

i , β∗
i .

Figure 2 visualizes the structure of local minima via
the joint probability distribution of ∆r~γ,~β and d~γ,~β for

50 different graphs using Kernel Density Estimation [30,
31]. We observe that for QAOA with p = 5 the most
typical local minima reached from random initialization
are far away from the best minimum (corresponding to
∆r~γ∗,~β∗

= 0 and d~γ∗,~β∗
= 0) both in terms of quality of

approximation ratio and parameter values. While this
figure illustrates a particular choice of system size and
QAOA depth, a similar trend is observed for different
N , p, and other graph ensembles, see Appendix A.
The tendency of random initialization to converge to

suboptimal solutions highlights the importance of bet-
ter initialization methods. In the next section we inves-
tigate a family of initializations inspired by quantum
annealing and demonstrate that it achieves a good ap-
proximation ratio with a suitable choice of parameters.
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Figure 2: Joint probability distribution of distance to the global
minimum in parameter space d~γ,~β and in terms of approxima-
tion ratio ∆r~γ,~β reveals that the most probable outcome of ran-
dom initialization is a convergence to sub-optimal local minima
(yellow region). The orange dot corresponds to average val-
ues of d

~γ,~β
, ∆r

~γ,~β
for random initialization. In contrast, TQA

initialization leads to a local minimum with a better approx-
imation ratio that occasionally outperforms the best random
initialization (red square, shifted from slightly negative values
to ∆r~γ,~β = 0 for improved visibility). The data is averaged over
50 random unweighted 3-regular graphs with N = 12 vertices
and QAOA at level p = 5.

3 Trotterized quantum annealing as ini-

tialization

3.1 Optimal time for TQA

Quantum annealing [32, 33] was among the first algo-
rithms proposed for quantum computing [34, 35], and
was demonstrated to be universal for T →∞ and equiv-
alent to digital quantum computing [36]. The general
idea of quantum annealing is to prepare the ground
state |0〉C of a classical Hamiltonian HC starting from
the ground state |0〉B of the mixing Hamiltonian HB

using adiabatic time evolution under the Hamiltonian
H(t) = (1 − t/T )HB + (t/T )HC . Practical execution
of quantum annealing on NISQ devices requires dis-
cretization to represent such unitary evolution via a se-
quence of gates, resulting in the TQA algorithm. The
first order Suzuki-Trotter decomposition allows to ap-
proximate the time evolution with H(t) over time in-
terval ∆t as e−i∆tH(t) ≈ e−iβHB e−iγHC + O(∆t2) with
β = (1− t/T )∆t and γ = (t/T )∆t.

Applying such decomposition to the quantum anneal-
ing protocol that is uniformly discretized on a grid of
evolution times ti = i∆t with i = 1, ..., p and time step
∆t = T/p, we obtain the unitary circuit equivalent to
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T
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0.8

δ
t
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0.5

r ~γ
,~ β

p = 10

p = 5

T ∗

TQA = δt p

Numerics

Figure 3: Optimal time of TQA evolution T ∗ increases linearly
with number of discretization steps p. Top inset illustrates
that optimal performance of TQA at time T ∗ is followed by
the rapid decrease in approximation ratio at longer times T ∗.
Data is shown for N = 12. Bottom inset shows finite size
scaling of the time step δt, determined by the slope of the T ∗

vs p dependence, that assumes approximately constant value
with the graph size. All averaging is performed over 50 random
instances of unweighted 3-regular graphs.

the depth-p QAOA ansatz (2) with angles being

γi =
i

p
∆t, βi =

(

1−
i

p

)

∆t. (6)

In what follows we refer to such choice of angles as TQA
initialization, controlled by the time step ∆t at a fixed
depth p.
The mapping between TQA and QAOA along with

the universality of quantum annealing for T → ∞ was
previously used as an argument for the existence of good
QAOA protocols at depths p→∞ [6]. Typically the re-
quired evolution time of quantum annealing is inversely
proportional to the square of the minimal energy gap
T ∝ ∆−2 encountered in the Hamiltonian H(t) over
the time evolution. Numerous studies established that
the time required for a good performance often blows
up exponentially due to the encounter of exponentially
small gaps in N [20].
In contrast to previous studies, we investigate TQA

performance in a different setting that is motivated by
its subsequent usage as a QAOA initialization. The
QAOA is characterized by a fixed circuit depth, p.
Therefore, we fix p and study the performance of TQA
as a function of total time T or, equivalently, time step
∆t, related as T = p ∆t. Generally the performance of
quantum annealing tends to increase with the total an-
nealing time. However in case of fixed p, longer anneal-
ing time corresponds to a coarser discretization, which
leads to larger Trotter errors that scale proportionally
to O(∆t2) at small values of ∆t. It is the interplay be-
tween increased efficiency and Trotter errors that leads
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to the existence of an optimal annealing time in the
present setting. This is illustrated in Fig. 3 (top inset),
where the approximation ratio for the TQA protocol
increases with T for small times, reaching a maximum
at time T ∗ followed by a sharp downturn. The sharp
decrease of QA performance after T ∗ was reported by
Heyl et al. [22], who attributed it to a phase transition
caused by a proliferation of Trotter errors.

Main panel of Fig. 3 reveals a linear scaling of the
optimal time T ∗ with the number of time steps p. This
is equivalent to the existence of an optimal time step δt,
that determines T ∗ as

T ∗
TQA = δt p. (7)

The bottom inset in Fig. 3 shows that the time step δt
defined as a slope of a linear fit of T ∗ with p converges
with the problem size N . This gives a strong evidence
that δt is a well-defined quantity in the thermodynamic
limit N → ∞. For the family of the 3-regular graphs
considered here we observe that the optimal time step
tends to value δt ≈ 0.75. The existence of an optimal
time step that is of order one holds for three other graph
ensembles, considered in Appendix B, although the nu-
merical value of this time step depends on the specific
graph ensemble.

We use the TQA initialization in Eq. (6) with time
step ∆t = 0.75 for the QAOA and observe in Fig. 2 that
it allows to avoid the local minima and helps the QAOA
to converge to a minimum that is very close to the global
minimum in terms of approximation ratio. This result
motivates the systematic analysis of the performance of
the TQA initialization.

3.2 TQA initialization of QAOA

We continue with a detailed study of the TQA initial-
ization defined in Eq. (6) as a function of time T at
fixed p. The green line in Fig. 4(a) reveals that the
approximation ratio remains constant for a range of
times, denoted as [T ∗

min, T ∗
max]. This figure shows re-

sults for p = 5 QAOA applied to graphs with N = 12
vertices, but a similar trend holds for other values of
depth, problem sizes, and graph ensembles. The con-
stant approximation ratio in a range of T is naturally
explained by the convergence of parameter optimization
routine to the same minimum for T ∈ [T ∗

min, T ∗
max], see

cartoon in Fig. 1(c). In order to discriminate between
different times in the above range, we study the dis-
tance between initialization parameters and optimized
values of ~γ, ~β. The red line Fig. 4(a) shows that this
distance has a well-pronounced minimum at a time de-
noted as T ∗

d that is contained within the same interval
[T ∗

min, T ∗
max]. The TQA initialization with time T ∗

d is
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d
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TQA= δtp

Figure 4: (a) Approximation ratio of the p = 5 QAOA as a
function of TQA initialization time T reveals that a range of
initialization times [T ∗

min, T ∗

max] (green triangle and star) yield
the performance within 1% of the minimal 1 − r

~γ,~β
. On the

other hand, the study of the distance between the TQA ini-
tialization and the converged value of the angles reveals the
existence of a time T ∗

d where the QAOA performs the smallest
parameter updates. (b) All three times T ∗

min, T ∗

max, and T ∗

d de-
fined in panel (a) increase linearly with QAOA circuit depth p.
Moreover, T ∗

d is very close to the time where the TQA protocol
itself achieves optimal performance, T ∗

TQA, see Fig. 2. Data was
obtained for N = 12 and averaged over 50 random graphs.

closest to the local minimum achieved from it in a sense
of distance defined in Eq. (5).

All three times T ∗
min, T ∗

max, and T ∗
d were defined above

using the QAOA with fixed depth p. Figure 4(b) reveals
that all three times scale approximately linearly with p.
This allows to define a range of time steps for the TQA
initialization that yield the same performance of opti-
mized QAOA, ∆t ∈ [0.16, 0.92] for the present graph
ensemble. Moreover, the time T ∗

d nearly coincides with
the optimal TQA time T ∗

TQA = δt p obtained in the
previous section, implying that ∆t = δt = 0.75 is the
optimal value of time step. This result also holds for
the MaxCut problem on other graph families, see Ap-
pendix.

The similarity between the optimal time of the TQA
protocol to the time where the angular distance d~γ,~β
between the initial and final protocol is minimized, sug-
gests that the performance of the QAOA is bounded
by the same phase transition that occurs in TQA [22].
However, the QAOA is able to provide a significant im-
provement over TQA by doing additional optimizations
of variational parameters. Recent work [7] suggested
that such performance improvement may be due to uti-
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Figure 5: A single optimization run of the QAOA with TQA
initialization with time T = δt p yields equivalent performance
to the best out of 2p random initializations. System size is N =
12. Inset reveals that the comparable performance persists over
the entire range of considered system sizes, circuit depth is
p = 10. Averaging was performed over 50 random graphs.

lization of “diabatic pumps” that allow to return the
population from excited states back to the ground state.
This could potentially explain the systematic deviation
of the QA protocol from TQA initialization as seen in
Fig. 8 in Appendix C.
Finally, we compare the performance of QAOA that

used 2p random initializations to the QAOA launched
from TQA initialization with optimal time step δt. Sur-
prisingly, Fig. 5 shows that TQA initialization yields the
same performance as the best result for random initial-
ization even for QAOA protocols with depth compara-
ble to the problem size, N . Moreover, the inset of Fig. 5
illustrates that the excellent performance of TQA ini-
tialization holds true for a broad range of system sizes
N , while Appendix D presents equally encouraging re-
sults for other graph ensembles. Note that the QAOA
performance for fixed p decreases with system size N ,
which was attributed to the fact that the QAOA with
fixed p cannot “probe” the whole graph. In order for
the QAOA to achieve constant performance for increas-
ing problem size N , the depth of QAOA should increase
at least as log N [7].

4 Summary and discussion

Our central result is the establishment of a family of
TQA initializations for the QAOA parametrized by a
time step ∆t. We find that TQA initialization allows
the QAOA to find a solution close to the global optima
for a broad range of parameter ∆t. In this range our
initialization scheme achieves results similar to the best
outcome of 2p random initializations, with a single opti-
mization run. Moreover we establish a heuristic way to

identify the optimal ∆t for the TQA initialization from
the performance of the TQA protocol.
Our results open the door to more time-efficient prac-

tical implementations of the QAOA on NISQ devices.
To this end, we propose a two-step practical NISQ al-
gorithm that capitalizes on the success of TQA initial-
ization and uses the heuristic results to establish an
optimal value of the time step. The first two steps of
Algorithm 1 implement the TQA protocol on a NISQ
device, thus obtaining an estimate for the optimal time
in the TQA initialization. This can be readily carried
out on today’s NISQ devices [37]. The second part of
the algorithm consists of running the QAOA optimiza-
tion loop using values of variational parameters accord-
ing to Eq. (6).

Algorithm 1 QAOA with TQA initialization

1: Implement QAOA ansatz with circuit depth p.
2: Estimate time step δt using TQA:

find optimal time T ∗ ← arg minT

〈

HC

〉

p

and set δt← T ∗

p , see Fig. 3.

3: Use TQA initialization γi ←
i
p δt and βi ← (1− i

p )δt.
4: Run the QAOA parameter optimization, see Fig. 1.

Numerical simulations presented above suggest good
performance of the above algorithm in the idealized case
when presence of noise, gate errors, and other imperfec-
tions are neglected. Moreover, the fact that TQA ini-
tialization converges to a good minimum for the range
of times (equivalently, time steps) T ∈ [T ∗

min, T ∗
max], see

Fig. 4, suggests that this algorithm has a high toler-
ance towards imperfections in determining the value of
δt. Determining the performance of this algorithm on
a real NISQ device or incorporating some of the im-
perfections into the numerical simulation remains an
interesting open problem.
In our studies we restricted our attention to the Max-

Cut problem and demonstrated success of our approach
for three different random graph ensembles. We expect
that these results also hold for other graph ensembles,
provided that the concentration of the QAOA landscape
is true [16]. It is also interesting to check if our find-
ings hold true beyond the MaxCut problem. Further-
more, it will be interesting to study the finite size scal-
ing for problem sizes N > 12 considered here using
matrix product states [38] or neural-network quantum
states [39, 40].
In addition to practical NISQ algorithms, our finding

suggest a previously unknown connection between the
QAOA at relatively small circuit depth and quantum
annealing. The fact that quantum annealing inspired
initializations belong to a basin of attraction of a high-
quality minimum in the QAOA landscape, see Fig. 1(c),
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invites a more comprehensive study of the QAOA land-
scape from this perspective. How many good quality
minima typically exist in such landscape? How differ-
ent are they from each other and what are their basins
of attraction? Can one use other information mea-
sures such as entanglement or Fisher information [41]
to characterize the QAOA landscape? Finding answers
to such questions may lead to other prospective families
of QAOA initializations.
While TQA provides a good initialization, the sub-

sequent QAOA optimization is able to significantly
improve the performance. Understanding the under-
lying mechanisms of such performance improvement
is an outstanding challenge. In particular, there re-
mains an intriguing possibility that the QAOA opti-
mization routine implements some of the techniques,
developed to improve the annealing fidelity, such as di-
abatic pumps [7], shortcuts to adiabaticity [42], and
counterdiabatic driving [43, 44]. The fact that the op-
timal time step coincides with the point of proliferation
of Trotter errors [22], thus effectively taking maximal
possible value suggests interesting parallels to the Pon-
tryagin’s minimum principle considered in context of
variational quantum algorithms [45].

To conclude, we hope that TQA initialization of the
QAOA established in this work will help to achieve prac-
tical quantum advantage by executing the QAOA on
available devices and inspire future research that could
lead to better understanding of what happens under the
hood of QAOA optimization.

Data and code availability

Data is available upon reasonable request, a brief tuto-
rial for the TQA initialization can be found in Ref. [46]
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A Optimization landscape for different

graph ensembles

We start by reviewing all graph ensembles used in the
main text and Appendices. In particular, we focus on
symmetries that allow to reduce the space of QAOA
parameters.

3-regular unweighted graphs represent the graph en-
semble considered in the main text. Each vertex is con-
nected exactly to three other vertices chosen at random.
In order to sample graphs from this ensemble we use
the networkx Python package [47]. For 3-regular un-
weighted graphs the space of variational parameters can
be restricted using the fact that the classical Hamilto-
nian has integer eigenvalues (thus γi are defined modulo
π) and that shifting any of angles βi by π/2 is equiv-
alent to a spin flip of HC that has no effect [7]. This
allows to restrict βi ∈ [−π

4 , π
4 ) and γi ∈ [−π

2 , π
2 ), and is

reflected in the definition of distance in Eq. (5) in the
main text.

3-regular weighted graphs are characterized by pres-
ence of random weights wij assigned to each edge
〈i, j〉. These weights are chosen to be wij ∈ [0, 1).
Presence of random weights does not allow to restrict
the domain of γi angles as before, though restriction
βi ∈ [−π

4 , π
4 ) still works. Therefore the analogue of

Eq. (5) for this and other weighted ensembles reads

d
(w)

~γ,~β
=

∑p
i=1(|βi − β∗

i |π2 + |γi − γ∗
i |).

Erdős-Rényi graphs represent a random graph ensem-
ble where two edges are connected on random with a
fixed probability, chosen to be q = 0.5. In contrast to
above examples, the fixed value of q implies that edge
connectivity increases with number of vertices as qN .
Erdős-Rényi graphs exhibit the same symmetries as 3-
regular unweighted graphs.

The presence of an unbounded region of parameters
γi in the weighted graph ensemble represents an ad-
ditional challenge in visualizing the QAOA optimiza-
tion landscape and choice of initialization parameter.
In order to explore the importance of large values of
|γi|, we consider the sequence of enlarged intervals
γi ∈ [−k π

2 , k π
2 ) with k = 1, 2. Figure 6 shows the joint

probability distributions similar to Fig. 2. We see that
for 3-regular weighted graphs the enlarged initialization
interval k = 2 leads to a concentration of local optima
further away from the global solution compared to the
k = 1 interval. When we repeat the same analysis for
Erdős-Rényi graphs, we observe that ∆r~γ,~β is unaffected
by the enlarged k = 2 interval. This numerically con-
firms the symmetry considerations from above and al-
lows us to restrict ~γ to the k = 1 interval in all further
analysis. For unweighted graphs such restriction relies
on symmetry, and for weighted graphs this is motivated
by the fact that an extended region of γi worsens the
performance of random initialization in the QAOA.

B Optimal time for TQA

Below we discuss the dependence of the optimal time
step δt of the TQA algorithm on the graph ensemble.
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Figure 6: Comparing the joint probability distribution of the
distance to the global minimum in parameter space d~γ,~β and
in terms of approximation ratio ∆r~γ,~β for weighted 3-regular
(top) and Erdős-Rényi graphs with edge probability 0.5 (bot-
tom) reveals that the distribution is dependent on the initial-
ization interval for weighted 3-regular graphs. We initialize the
parameters for k = 1 (left) and k = 2 (right) and observe
that for weighted 3-regular graphs the enlarged interval leads
to an increased spread of the local optimas in ∆r

~γ,~β
(yellow

region). The spread in ∆r
~γ,~β

for Erdős-Rényi graphs remains
largely unaffected, as expected from the symmetry considera-
tions. Similarly to Fig. 2, red squares correspond to the QAOA
minimum achieved from TQA initialization (shifted from small
negative values of ∆r~γ,~β to zero for improved visibility), or-
ange dots correspond to the average performance of random
initialization. Data is for 50 random graphs with N = 10 and
p = 5.

An analytical upper bound on the number of Trotter
steps p needed to approximate the time evolution with
precision ǫ in terms of operator trace distance was ob-
tained in Ref. [48]. Translating this bound into the scal-
ing of δt we obtain δt ∝ 1/(||HC ||F N), where ||HC ||F is
the Frobenius norm of the classical Hamiltonian. This
norm exponentially diverges with N , suggesting very
small values of δt at large system sizes. This is not
surprising, since the bound of Ref. [48] operates on the
distance between two many-body unitary operators. In
contrast, the performance of the TQA algorithm is stud-
ied using the approximation ratio that quantifies how
close the expectation value of the local observable HC ,
is to the ground state energy.

The effect of Trotterization on local observables was
considered in Ref. [22]. This work conjectured the ex-
istence of a finite value of the time step of order one,
at which the discretization of time evolution fails to
approximate the local observables. This value of the
time step may be related to the convergence radius of
the Baker-Campbell-Hausdorff series expansion, which

0.75
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1.25

δ
t

4 5 6 7 8 9 10
N

2

3

4

s
N

weighted

unweighted

iynéR–sődrE

Figure 7: (Top) Optimal time time step of TQA evolution δt

is largely independent of system size and scales qualitatively
similar to Eq. (8) shown in the bottom panel.

is governed by the norm of the classical Hamiltonian
and its commutator with HB . Phenomenologically, the
Frobenius norm divided by the square root of Hilbert
space dimension and problem size N ,

sN =
N2N/2

||HC ||F
, (8)

is expected to be N -independent in the thermodynamic
limit.
Figure 7 compares the dependence of δt on the sys-

tem size with the phenomenological scaling sN defined
in Eq. (8). We observe that the expression sN qualita-
tively matches the numerical scaling that we observe for
δt between different graph ensembles. In particular, the
value of the time step is largest for weighted 3-regular
graphs that are expected to have the smallest norm of
the classical Hamiltonian. However, sN fails to cap-
ture δt quantitatively, highlighting the need to develop
a better analytical understanding of the point that gov-
erns the phase transition from localization to quantum
chaos for local observables according to Ref. [22].

C Patterns in optimized parameters

The QAOA is inspired by TQA and is thus universal
for p→∞. However, for finite p the converged QAOA
parameters also display stark similarity to a QA pro-
tocol which was noticed in some earlier works [7, 8].
In Fig. 8 we compare the TQA initialization and fi-
nal QAOA parameters. The QAOA parameters show
only slight alterations at the beginning of the protocol
and remain close to their original values throughout the
rest of the protocol. This holds true for the three graph
types that we considered in our analysis. In addition,
the small variation between optimal parameters for dif-
ferent graph instances is in line with the concentration
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the green and blue lines respectively. The QAOA optimization
modifies parameters at small i, while they remain TQA-like in
the rest of the protocol. The results were averaged over 50
random unweighted 3-regular graphs (a), weighted 3-regular
graphs (b) and Erdős-Rényi graphs (c), all data is for p = 10
and N = 10.

of the QAOA landscape demonstrated analytically at
low p in Ref. [16].

D Random vs TQA initialization for

other graph ensembles

In addition to the unweighted 3-regular graphs, dis-
cussed in the main text, we also test TQA initialization
on weighted 3-regular graphs and Erdős-Rényi graphs.
We find that TQA initialization yields the same perfor-
mance as the best of random initializations for weighted
3-regular graphs, see Fig. 9. For Erdős-Rényi, TQA
initialization even outperforms the best of 2p random
initializations.
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[42] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Tor-
rontegui, S. Mart́ınez-Garaot, and J. G. Muga,
Shortcuts to adiabaticity: Concepts, methods, and
applications, Rev. Mod. Phys. 91, 045001 (2019).

[43] D. Sels and A. Polkovnikov, Minimizing irreversible
losses in quantum systems by local counterdiabatic
driving, Proceedings of the National Academy of
Sciences 114, E3909 (2017).

[44] P. W. Claeys, M. Pandey, D. Sels, and
A. Polkovnikov, Floquet-engineering counterdia-
batic protocols in quantum many-body systems,
Phys. Rev. Lett. 123, 090602 (2019).

[45] Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven,
and C. Chamon, Optimizing variational quantum
algorithms using Pontryagin’s minimum principle,
Phys. Rev. X 7, 021027 (2017).

[46] S. H. Sack, Trotterized quantum annealing ini-
tialization of the QAOA, https://github.com/

shsack/TQA-init.-for-QAOA (2021).

[47] A. Hagberg, P. Swart, and D. S Chult, Explor-
ing network structure, dynamics, and function us-
ing NetworkX , Tech. Rep. (Los Alamos National
Lab.(LANL), Los Alamos, NM (United States),
2008).

[48] D. W. Berry, G. Ahokas, R. Cleve, and
B. C. Sanders, Efficient Quantum Algorithms
for Simulating Sparse Hamiltonians, Communica-
tions in Mathematical Physics 270, 359 (2007),
arXiv:quant-ph/0508139 [quant-ph] .

Accepted in Quantum 2021-06-15, click title to verify. Published under CC-BY 4.0. 11

https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1137/080734479
https://doi.org/10.1038/s41534-019-0217-0
https://doi.org/10.1038/s41534-019-0217-0
https://arxiv.org/abs/1906.06343
https://arxiv.org/abs/1906.06343
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://arxiv.org/abs/1008.3477
https://arxiv.org/abs/1008.3477
https://doi.org/10.1126/science.aag2302
https://arxiv.org/abs/1606.02318
https://arxiv.org/abs/1606.02318
https://arxiv.org/abs/2009.01760
https://arxiv.org/abs/2009.01760
https://arxiv.org/abs/2011.00027
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1073/pnas.1619826114
https://doi.org/10.1073/pnas.1619826114
https://doi.org/10.1103/PhysRevLett.123.090602
https://doi.org/10.1103/PhysRevX.7.021027
https://github.com/shsack/TQA-init.-for-QAOA
https://github.com/shsack/TQA-init.-for-QAOA
https://networkx.org/
https://networkx.org/
https://networkx.org/
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1007/s00220-006-0150-x
https://arxiv.org/abs/quant-ph/0508139

	1 Introduction
	2 Optimization landscape of QAOA
	2.1 QAOA for MaxCut problems
	2.2 Visualizing optimization landscape

	3 Trotterized quantum annealing as initialization
	3.1 Optimal time for TQA
	3.2 TQA initialization of QAOA

	4 Summary and discussion
	 Data and code availability
	 Acknowledgments
	A Optimization landscape for different graph ensembles
	B Optimal time for TQA
	C Patterns in optimized parameters
	D Random vs TQA initialization for other graph ensembles
	 References

