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The presence of a bias field, encoding some information about the target state, can enhance the
performance of quantum optimization methods. Here we investigate the effect of such a bias field
on the outcome of quantum annealing sampling, at the example of the exact cover problem. The
sampling is carried out on a D-Wave machine, and different bias configurations are benchmarked
against the unbiased sampling procedure. It is found that the biased annealing algorithm works
particularly well for larger problem sizes, where the Hamming distance between bias and target
configuration becomes less important. This work motivates future research efforts for finding good
bias configurations, either on the quantum machine itself, or in a hybrid fashion via classical algo-
rithms.

I. INTRODUCTION

Quantum annealing is a computational strategy
for solving complex optimization problems on a pro-
grammable quantum device [1, 2]. To this end, the
optimization problem is formulated as a ground state
search problem, by expressing its cost function as a
Hamiltonian HP, typically an Ising model. Then,
ground state search is carried out by producing quan-
tum fluctuations via a driver Hamiltonian Hdrive,
which does not commute with HP, and by reducing
these fluctuations during the annealing procedure [3].
Two different shapes of quantum annealing can be dis-
tinguished: (i) Adiabatic quantum annealing (AQA),
proposed in Ref. [4], demands that initially the system
is prepared in the ground state of, typically, the pure
driver Hamiltonian. By slowly ramping Hdrive down
and HP up, the state is adiabatically transformed into
the ground state of HP. The adiabatic theorem is able
to guarantee the success of this procedure, but to this
end, it demands that the ramp speed is sufficiently
slow (depending on the gap above the actual ground
state). (ii) The other approach, quantum annealing
sampling (QAS), typically performs the same actions
as AQA, but at a ramp speed which invalidates the
adiabatic theorem. Therefore, the annealer is not at
all guaranteed to reach the ground state of HP, but
instead, it is expected to end up in a superposition
of low-energy states. Then, a projective measurement
at the end of the annealing process randomly selects
one state out of this manifold, and repeated anneal-
ing runs sample over this manifold. The success of
this strategy is heuristically based on the expectation
that the ground state is still prominently represented
in the final superposition.

Adiabatic state preparation, the key element of the
AQA algorithm, is routinely performed in the context
of quantum simulation, see for instance Ref. [5] for an
early realization of a small-scale quantum annealer,
or Ref. [6] reporting the early implementation of the
Ising model in a trapped ion quantum simulator. For
the more complicated case of glassy Ising couplings,
which are relevant in the context of NP-hard opti-
mization problems [7], the feasibility of adiabatic state
preparation in trapped ion systems has been demon-

strated theoretically [8–10]. However, several stud-
ies have argued that the scaling of the annealing gap
with system size might be a prohibitive bottleneck
to the AQA method [11–15]. Various strategies to
overcome this bottleneck have been considered in the
literature: inhomogeneous driver fields [16–19], non-
stoquastic driver Hamiltonians [20–24], tailored ramp
protocols [25, 26], reverse or biased annealing [27–33],
as well as combinations thereof [34].

From the point of view of practical implementation,
QAS has been more relevant than AQA. In particular,
there exists a programmable quantum device which al-
lows to carry out QAS operations with thousands of
qubits, produced and commercialized by the D-Wave
company [35]. Unfortunately, also QAS suffers from
exponentially small annealing gaps, as they suppress
the weight of the ground state in the final state. Ac-
cordingly, also QAS requires strategies which are de-
signed to suppress the population of higher levels. In
contrast to AQA, the QAS method may tolerate a cer-
tain level of noise in the system. In fact, in an early
experiment with the D-Wave device [36], it has been
demonstrated that thermal fluctuations at the start of
the annealing can enhance the QAS success rate. An-
other strategy for performance enhancement of QAS
is the non-adiabatic version of reverse annealing [37],
which has recently been implemented experimentally
[38]. Although this experiment demonstrates the suc-
cess of the method, it also shows that the success rates
are reduced by noise. Theoretically is was shown that
noise can be so harmful to reverse annealing that stan-
dard QAS produces better results [39].

In the present manuscript, we consider biased an-
nealing as another QAS strategy. In the context of
AQS, this strategy has been proposed in Ref. [32]. It
consists of adding a longitudinal bias field to the driver
Hamiltonian, such that an infinitely slow switching
of the Hamiltonian is still guaranteed to reach the
ground state of the problem Hamiltonian. Theoreti-
cal simulations have shown, that for finite annealing
times, the presence of the bias field allows for reach-
ing the desired ground state on time scales where AQA
without bias would fail, at least for small systems and
for the choice of a good bias field. In Ref. [40], simu-
lations have shown that a bias field also enhances the
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performance in the ultrafast limit where the annealing
procedure is replaced by a sudden quench. Motivated
by these theoretical studies, the present paper reports
the experimental implementation of biased QAS algo-
rithm in a D-Wave machine. Hence, our study bench-
marks the biasing algorithm under realistic conditions
which includes also noisy incoherent processes.

Specifically, we have performed biased QAS for an
NP-hard optimization problem (exact cover), using
the same small instances (up to N = 14 spins) as
in the theoretical work from Ref. [32], and extending
the system size to N = 26. While solving the clas-
sical optimization problem of this size is still no se-
rious computational problem for classical computers,
simulating the quantum annealing dynamics of such
a large system would be extremely challenging on ex-
isting classical hardware. We have used different bias
fields which differ from the correct ground state by a
Hamming distance of 0 to 3 spins, and in all cases,
the bias field can improve the success rate consider-
ably. This result is in line with the results obtained
for biased AQA reported in Ref. [32], as well as for
biased quantum approximate optimization algorithm
in Ref. [41]. It is a clear demonstration of the po-
tential benefit due to a bias field, and it motivates
future work on strategies of how to find suitable bias
configurations.

The paper is organized as follows: In Section II, we
describe the nature of optimization problem (Section
II A), and the biased sampling algorithm used to solve
it (Section II B). In Section III, we present our results,
with the most relevant information being presented in
Fig. 2, showing the scaling of the success probabilities
of the biased scheme with the problem size. In Section
IV, we discuss the need of future research in order
to develop feasible schemes for obtaining good bias
configurations.

II. SETUP

A. Optimization problem

We study random instances of the exact cover prob-
lem. Choosing σzi as the computational basis for every
spin/qubit i, the cost function of the problem is given
as the following Ising Hamiltonian:

HP =
∑
C

hC =
∑
C

(σzC(1) + σzC(2) + σzC(3) − 1)2. (1)

At this point, we keep the Hamiltonian dimensionless,
but we will specify units of energy below. The problem
instance is defined through the set of clauses C. Each
clause consists of three numbers between 1 and N ,
denoted by C(1), C(2), C(3), which choose three out
of the N spins. A spin configuration in which two of
the three spins point upwards (σz = +1) and one spin
points downwards (σz = −1) has a cost function value
hC = 0 with respect to this clause. The configuration
is said to fulfill this clause. The goal of the problem

is to find the configuration which fulfills simultane-
ously as many clauses as possible. From randomly
generated problem instances, we have selected only
those instances which have exactly one configuration
fulfilling all clauses, as these instances are particularly
hard-to-solve, cf. Ref. [4]. The list of used instances,
together with the code of the biased annealing on the
D-Wave is provided at Ref. [42].

Given a set of clauses, the problem instance can be
rephrased in terms of a longitudinal Ising Hamilto-
nian,

HP =
∑
i<j

Jijσ
z
i σ

z
j +

∑
i

hiσ
z
i . (2)

When the so-defined Ising problem is implemented
on the D-Wave machine, the device’s operating sys-
tem Ocean automatically scales the parameters Jij
and hi in such a way that ensures that they remain
within, and fully exploit, the accessible parameter
range. On the D-Wave 2000Q device used in this
study, the parameter ranges are Jij ∈ [−2, 1] and
hi ∈ [−2, 2]. The corresponding frequency units are
specified by the annealing schedule, see below. To en-
code the problem Hamiltonian on the chimera geom-
etry of the D-Wave 2000Q device, a minor embedding
procedure is carried out [43, 44], using the function
EmbeddingComposite(), provided by the Ocean soft-
ware.

B. Biased sampling algorithm

For the solution of the optimization problem via
QAS we define a homogeneous driver Hamiltonian
Hdrive =

∑
i σ

x
i , which does not commute with HP,

as well as a longitudinal bias Hamiltonian Hbias =
−
∑
i µiσ

z
i . This bias term energetically favors the

spin configuration where 〈σzi 〉 = sign(µi) for all i, and
therefore, if sign(µi) agrees with the solution of HP

in all or many values of i, the presence such a bias
Hamiltonian enhances the annealer’s success rate.

In the AQA version of biased annealing, as de-
scribed in Ref. [32], the bias field is included in the
driver Hamiltonian, i.e. it is switched off during the
annealing. The implementation of biased QAS, pre-
sented here, differs from the earlier work, as the bias is
switched on simultaneously with the problem Hamil-
tonian. Accordingly, the full annealing Hamiltonian
reads:

H(t) = A(t)Hdrive +B(t)[HP +Hbias]. (3)

In the beginning (at t = 0), A(0) � B(0), whereas
at the end of the annealing, at time t = τ , B has ex-
ponentially decreased to B(τ)→ 0, and A has grown
to A(τ) ≈ B(0). The explicit schedules A(t) and B(t)
are shown in Fig. 1. For the sampling, we have chosen
different annealing times τ in the range between 1 µs
(the fastest possible choice) and 15 µs.

From the perspective of AQA, it is an advantage to
include the bias field in the driver, because with this
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FIG. 1. Annealing schedule used for the sampling.

choice, the adiabatic theorem still can guarantee that
the annealer ends up in the ground of HP, even for
a bad choice of µi. On the other hand, for the QAS
method, the adiabatic theorem is irrelevant. Including
the bias field into the problem part of the Hamiltonian
is, first and foremost, motivated by practical consid-
erations. Although the D-wave allows to control the
time dependence of the coupling terms (i.e. the terms
of type Jijσ

z
i σ

z
j ) and the longitudinal fields (i.e. the

terms of type hiσ
z
i ) independently from each other

through the function h_gain_schedule, we cannot in-
dependently control the problem and the bias Hamil-
tonians, because both parts contribute to the longitu-
dinal terms. However, from the point of view of QAS,
the presence of even a bad bias term at the end of the
sampling dynamics is harmless, because at that stage
of the annealing schedule, the quantum fluctuations
are too weak to produce significant changes anymore.
What matters instead is to have, at intermediate times
before the sampler starts freezing, the combined pres-
ence of all three terms Hdrive, Hbias, and HP. To this
end, it does not matter whether (Hdrive + Hbias) or
(Hbias +HP) are controlled jointly.

III. RESULTS

We have performed QAS for the exact cover prob-
lem, as specified in the previous section, for prob-
lem instances denoted (N,α), where N defines the
number of spins/qubits, and α is an index for each
of the random instances. We consider sizes between
N = 8 to N = 26, and for each size, we consider
Nα = 100 random instances, that is, α ∈ [1, 100].
From the solution of the problem Hamiltonian, which
in our case are a priori known and which we denote by
{si}, we have constructed bias fields {µi}, such that
the Hamming distance d =

∑
i |µi − si| between bias

and target is fixed. For every instance and for each
value of d, we perform Nanneal = 30 anneals, and we
count the number of times Nsuccess in which the final
measurement outcome agrees with the target config-

FIG. 2. The performance of biased QAS is benchmarked
and compared to unbiased QAS, by considering success
probability and average cost function value at the end of
the anneal (divided by the number M of clauses) as a
function of system size, and for different biases, distin-
guished by their Hamming distance d to the optimal solu-
tion. Here, the annealing time τ = 1µs is fixed. The error
bars represent the standard error of the mean.

uration. Then, the corresponding success probability
p(N,α)(d) = Nsuccess/Nanneal is averaged over all in-
stances of a given size, pN (d) =

∑
α p(N,α)(d)/Nα,

and the result is plotted in Fig. 2(a), with error bars
representing the standard error of the mean. We also
determine, after every anneal, the cost function corre-
sponding to the obtained configuration. The average
over all anneals and all instances, as a function of sys-
tem size N and for different bias choices d, is shown in
Fig. 2(b). For the annealing time τ in Fig. 2, we have
used the fastest possible choice, τ = 1µs. For compar-
ison, we have also performed QAS without bias field.

As expected, the obtained data provides evidence
that any of the chosen bias fields enhances the per-
formance of the annealer. Importantly, the enhance-
ment becomes more significant as the system size is
increased. To some extent, this behavior is also ex-
pected from the study of the biased AQA [32], and can
be attributed to the fact that, at a fixed Hamming dis-
tance d, the error ratio of the bias, r ≡ d/(N−d), that
is, the ratio of “bad” to “good” bias terms, decreases
with N . However, let us compare, for instance, the
results at N = 8 and d = 1 with the results at N = 26
and d = 3: Although in these two configurations, the
bias fields have a similar error ratio r, the enhance-



4

FIG. 3. We investigate the dependence of biased and un-
biased annealing on the annealing time τ . We focus on
N = 20 qubits, and plot the averaged success rates for un-
biased QAS and biased QAS with different choices of the
bias’ Hamming distance d from the correct solution. The
error bars represent the standard error of the mean.

ment factor (defined as success probability with bias
divided by success probability without bias) turns out
to be quite different: At N = 8, the enhancement is
by a factor of 2.6 ± 0.2, whereas at N = 26, we ob-
tain enhancement by a a factor of 23 ± 16. Despite
the large statistical uncertainty in the latter number,
owed to very low success rate of the unbiased anneal-
ing at N = 26, these numbers suggest that the biased
QAS method is particularly strong for larger prob-
lem instances. To further appreciate this strength of
the biased method, it is also illustrative to look at the
number of instances which, after 30 anneals, have been
solved correctly. At N = 26 and τ = 1µs, there are
only 4 (out of 100) instances which have been solved
without bias. This shows that unbiased QAS is es-
sentially not able to find the solution for this problem
size at this short annealing time. On the other hand,
even a d = 3 bias elevates the percentage of correctly
solved instances to almost 50 percent (47 out of 100
instances). Another interesting observation which can
be made for large system sizes is the fact that, within
the studied range of d, the Hamming distance d of
the bias affects the annealing outcome only weakly.
While at small N , both success probability and aver-
age cost function appear ordered according to d, for
N = 26 the bias with d = 1 achieves a slightly lower
success probability than for biases with d = 2 and
d = 3. As seen from the error bars in the plot, this
“under”-performance can be attributed to statistical
fluctuations, and in fact at large problem sizes, all the
different bias choices perform similarly well.

In Fig. 3, we study the dependence of the success
probability on the annealing time τ for N = 20. Ob-
viously, increasing τ increases the success probability,
both with and without bias fields. This improvement
is seen to happen at similar rates for different bias
configurations and in the unbiased case. For instance,
the success probability for the d = 3 bias increases

FIG. 4. We plot the success probabilities of biased QAS
(with d = 0 and d = 3) vs. the success probabilities of un-
biased QAS, for individual instances with N = 20 qubits.
In (a), the annealing time τ = 1µs; in (b), the anneal-
ing time τ = 15µs. We note that, owed to the fact that
the success probabilities are calculated from Nanneal = 30
annealing runs, there is a limited discrete set of possible
values, and hence it occurs that several (of the in total
100) instances have identical success probabilities, that is,
that the corresponding data points cannot discerned from
each other.

by a factor 3.6 ± 0.5, when increasing τ from 1µs to
15µs, and by factor 2.6± 0.8 for unbiased QAS. From
this, we conclude that the choice of τ does not seem to
be crucial for benchmarking biased against unbiased
QAS via average success probabilities. A more differ-
entiate picture can be obtained when analyzing the
success probability of individual instances. In Fig. 4,
we present a comparison between the success proba-
bilities of biased and unbiased annealing for individ-
ual instances. Again, we concentrate on N = 20, and
show the data for τ = 1µs, as well as for τ = 15µs,
considering bias fields with d = 0 and d = 3. It is ob-
vious that in all cases the majority of instances profit
from the presence of a bias field, but the number of
instances which do not take advantage from the bias
is significantly reduced by increasing τ . For instance,
at τ = 1µs, only 78 (65) instances (out of 100) have
higher success probabilities in biased QAS with d = 0
(d = 3) than in unbiased QAS. In the case of τ = 15µs,
however, this is the case for 98 (89) instances. From
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this perspective, the advantage of a bias field appears
to be increased if the annealing is performed at lower
speed.

We also note that, if the annealing time τ was the
only time scale in the annealing protocol, increasing τ
would, for allN , increase the average time-to-solution,
because the best ratios between average success prob-
ability over τ are achieved at τ = 1µs. However, since
most of the computational time is actually spent by
the programming of the annealer rather than by the
annealing procedure itself, the best choice of τ is not
obvious from these numbers alone, and it can actually
be beneficial to choose a larger value of τ .

IV. DISCUSSION AND OUTLOOK

For producing the improvements via bias fields
which have been demonstrated in the previous Sec-
tion, strategies to choose good bias fields are needed.
This choice requires some knowledge about the target
state, which here we have assumed to be given a pri-
ori. In practice, though, this might not be the case.
A strategy to find good bias configurations had been
proposed in Ref. [32]: The outcome of a previous an-
nealing run can be used as a bias in the subsequent
anneal, which can iteratively improve the bias, until
the correct solution is found. One limitation of this
strategy, discussed in the context of theoretical simu-
lations of the algorithm in Ref. [32], is the fact that in
certain cases the initially produced bias might actually
attract the annealer towards an excited state rather
than the ground state. In a practical implementation,
however, the iterative scheme suffers from another,
maybe more significant drawback: As already men-
tioned above, the time τ (or even Nannealτ) is typically
smaller than the time which is required for the pro-
gramming of the D-Wave device. Since in the iterative
procedure, the annealer has to re-programmed after
every anneal (or after some sampling period), the time
efficiency of iterative QAS becomes very low. Possi-
bly, in future hardware implementations, the fact that

the iterative updates occur only in the magnetic field
terms but not in the couplings might be exploited to
speed up iterative schemes.

While the iterative scheme is appealing because it
can be carried out entirely on a quantum device, fu-
ture research shall also explore the possibility of deter-
mining good bias fields through classical algorithms,
e.g. through variations of the simulated annealing al-
gorithm [45]. A final assessment whether biased an-
nealing has a real advantage to unbiased annealing
can only be made if the computational cost of finding
a suited bias is taken into account, but the improve-
ments due to bias fields, seen in the present work,
appear to be very promising.
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