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Abstract. In this review we consider the performance of the quantum
adiabatic algorithm for the solution of decision problems. We divide
the possible failure mechanisms into two sets: small gaps due to quan-
tum phase transitions and small gaps due to avoided crossings inside
a phase. We argue that the thermodynamic order of the phase transi-
tions is not predictive of the scaling of the gap with the system size. On
the contrary, we also argue that, if the phase surrounding the problem
Hamiltonian is a Many-Body Localized (MBL) phase, the gaps are go-
ing to be typically exponentially small and that this follows naturally
from the existence of local integrals of motion in the MBL phase.

1 Introduction: The original proposal by Farhi et al.

The first branch, one you might call a side-remark, is, Can you do it
with a new kind of computer–a quantum computer?

R.P. Feynman, Simulating physics with computers, 1982.

In a famous aside, Feynman posited that Nature could be simulated by a device
composed of discrete quantum elements [1]. These quantum elements, not yet known
as qubits, interact locally within a space-time volume asymptotically no larger than
the system to be simulated. It was apparent to Feynman that such a system would
suffer from none of the difficulties that plague classical simulations of quantum physics
– neither the sign problems of quantum Monte Carlo nor the exponential overhead
of wavefunction representations. Rather, interacting qubits form a universal quantum
simulator, more powerful than any known classical device.1

1 It’s interesting to note that Feynman was pretty certain that a system of locally interact-
ing spin 1/2 objects could simulate bosonic field theories due to the known behavior of spin
waves in magnetic systems. He was not at all sure that such spin degrees of freedom could
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Fast-forward thirty years and Feynman’s theoretical universal quantum simulator
has evolved into a general-purpose quantum computer2, capable of efficiently solving
problems outside the usual domain of Physics. Shor showed that a quantum computer
could factor large numbers exponentially faster than any known classical algorithm
[2], and Grover showed that it could find a needle in a haystack provably more ef-
ficiently than any classical search party [3]. These results relied on the development
of specific quantum algorithms3 within the unitary circuit model of quantum com-
putation. These algorithms solve these problems and several closely related variants
effectively.
It is a fact, however, that the design and analysis of quantum algorithms has

not proceeded with the same pace of its classical counterpart and, apart from these
notable examples we lack a “standard algorithm” for the solution of large classes
of quantum or classical problems, the role that for example DPLL plays in classical
decision problems. In this context the quantum adiabatic algorithm (QAA) came as
a nice surprise.
The QAA is an alternative paradigm for quantum computation, prominently pro-

posed by Farhi et al. [4] in 2000, although the idea of using quantum fluctuations
to speed up annealing processes for discovering the ground states of Hamiltonians
more efficiently had already been proposed by [5,6] in 1998. It is a general purpose
optimization algorithm, whose goal is to determine the ground state properties of a
“problem” Hamiltonian. In its original formulation, a large transverse field is applied
to the system of qubits representing the problem and the system is prepared in the
(simple) ground state of the field Hamiltonian. The algorithm proceeds by slowly
turning off the external field until only the problem Hamiltonian remains. If this pro-
cedure is slow enough, the systems remains in its adiabatic ground state and the final
state will correspond to the ground state of interest with probability close to 1.
A bit more precisely, the QAA corresponds to quantum evolution with the time-

dependent Hamiltonian,

H(t) = s(t)Hp + (1− s(t))Hb, (1)

where Hp is the problem Hamiltonian, Hb is the beginning (field) Hamiltonian and
s(t) ∈ [0, 1], s(0) = 0, s(T ) = 1 specifies an annealing protocol. In the simplest case,
s(t) = t/T specifies a linear interpolation over time T in Hamiltonian space, but in
many applications4 it is advantageous to optimize s(t) = f(t/T ). The dependence of
T on the system/problem size N defines the efficiency of the QAA on the class of
problem Hamiltonians Hp at hand.
In order to guarantee that the ground state of Hp is found with finite probability,

T must be large enough to satisfy the adiabatic theorem,

T � �maxs |V10(s)|
Δ(s)2

, (2)

where V10 = 〈1|∂H∂s |0〉 is the matrix element between the instantaneous ground and
first excited states of H(s) and Δ = E1 − E0 is the corresponding energy gap. Both
quantitites depend on s. This expression makes clear the importance of the spectral
gap for the success of the QAA, which is why much of the literature has focused on

simulate fermions. The modern theory of spin liquids such as the Z2 gauge theory/toric code
has shown that fermionic degrees of freedom can likewise be locally simulated with spins.
2 Still theoretical.
3 Shor’s and Grover’s.
4 Such as the solution of Grover’s problem by adiabatic computation.
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the scaling of the minimum gap. As we shall see, the matrix elements V10 may also
play an important role in determining the efficiency of the algorithm.
The QAA immediately appeals to the working Physicist. Tuning fields slowly as

control “knobs” during the investigation of an experimental system is, of course,
a part of the day-to-day routine in many labs. Morever, adiabatic passage is a well
established technique for manipulating individual quantum optical systems. The QAA
bootstraps that understanding to the direct simulation of problem Hamiltonians. It
took quantum Computer Scientists only a few years to warm to the idea of robust
computation by continuous evolution. They soon established that adiabatic evolutions
could be used to simulate the evolution of quantum circuits (and vice versa) and
thus that a suitably generalized QAA constitutes a completely universal model for
quantum computation [7].
In practice, the complexity theoretic universality of the QAA may not be nearly as

important as the “one size fits all” scheme it provides for attacking classical optimiza-
tion problems. In this regard, the QAA shares many features with classical simulated
annealing (CSA) [8]. In CSA, the temperature of a classical Monte Carlo simulation
of the problem Hamiltonian is slowly tuned to zero, ideally annealing the system to
its ground state. Both algorithms can be readily applied to essentially arbitrary opti-
mization problems as is. They both proceed by slowly turning down the fluctuational
dynamics, quantum or thermal, which allow the system to explore phase space. There
are no guarantees that these fluctuations will succeed in evading metastable traps and
finding the true ground state. Indeed, the theory of NP-completeness [9] essentially
guarantees the contrary: there are classes of intractable optimization problems on
which CSA and the QAA must surely fail. Nonetheless, simulated annealing has be-
come a workhorse of practical optimization and one hopes that the QAA will play a
similar role.
After this paean to classical simulated annealing, why should we consider the QAA

at all? As we know neither is likely to solve all NP-complete problems, the question
amounts to whether there are practical problems on which we expect the QAA to
perform materially better than CSA. This is a difficult question, as it requires under-
standing the physical mechanisms that underly the success or failure of each heuristic
algorithm and whether those mechanisms arise in particular problem domains. We
will return to this in more detail below. Broadly, however, many practitioners invoke
quantum tunneling as a more effective means of exploring configuration space than
thermal fluctuations. The intuition is based on the following gedanken-optimization
problem in which a single particle on a line is trapped in a local potential minimum
behind a barrier of height ΔE (for small T we assume the free energy F � E) and
width w. In CSA at temperature T , the particle escapes the trap when a sequence
of like-minded stochastic fluctuations combine to provide the energy necessary to
escape. This occurs with an exponential Arrhenius timescale,

τc ∼ eΔE/T . (3)

We now turn off thermal fluctuations T in favor of quantum fluctuations governed
by the inverse mass 1/m. The quantum particle tunnels with a rate ∼ eS where S
is the action of the path tunnelling underneath the barrier. The WKB decay length
l ≈ 1/√2mΔE for a particle tunneling under a barrier of height ΔE. This produces
an escape timescale exponential in the width w,

τq ∼ ew
√
mΔE/2. (4)

So if w = O(1), this gives τq ∼ e
√
ΔE while τc ∼ eΔE , which suggests that quantum

tunneling is more effective at getting past high barriers ΔE than thermal fluctuations.
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Of course, quantum tunneling is less efficient if those barriers are also parametrically
wide.
In the remainder of this review, we focus on the application of the QAA to clas-

sical combinatorial optimization problems. As these problems typically have a high
dimensional phase space with a complicated energy landscape, the intuition garnered
from the particle on a line example is at best heuristic. Moreover, the estimates
above address the escape time under fixed Hamiltonian dynamics – not the likeli-
hood of avoiding traps during annealing from the large fluctuation regime. In order
to make more detailed progress, practitioners have turned to case studies of the QAA
applied to various model problems, with the goal of extracting generalizable success
and failure mechanisms. Unfortunately, most of the crispest results have been fail-
ure mechanisms. In Sect. 2, we summarize the known failure modes from a physics
perspective. In the following two sections, we expand on two of the arguments that
we find most interesting: the role of thermodynamic phase transitions and that of
many-body localization (MBL) in frustrating the QAA. Many-body localization is
the interacting generalization of Anderson localization and corresponds to a dynam-
ical phase of disordered systems in which transport is completely inhibited. That
MBL may play a starring role in frustrating the QAA applied to random combina-
torial optimization problems came as a surprise to many researchers a few years ago
[10,11], and remains a contentious issue [12,13]. Here, we will content ourselves with
reframing the arguments leading from MBL to the failure of QAA in terms of local
integrals of motion [14,15].
Before continuing, we should note that perhaps the most commercially practical

reason to study the QAA is that D-Wave [16] claims to have built a special purpose
quantum computer whose sole capability is the QAA, and Google bought one. The
D-Wave device allows for the semi-quantum simulation of an arbitrary Ising model
on the “chimera” graph subject to a tunable transverse field. We call the simulation
semi-quantum as it is known that there is a great deal of extrinsic noise in the system
on the time scales of the operation of the QAA [17–19]. Thus, it may be better to
view the current device as a low temperature field annealer. In any event, the jury
is out on both the “quantumness” of the machine and the asymptotic efficency of its
semi-quantum annealing of hard optimization problems.

2 Case studies of classical difficult problems

In this section, we briefly review the physical mechanisms which are known to frustrate
the QAA, especially in its application to random ensembles of hard optimization
problems. For a more exhausting discussion from the perspective of spin glass theory,
see [20].
In principle, the quantum adiabatic algorithm can be used to search for the ground

state of any Hamiltonian system. This includes quantum Hamiltonians which encode
QMA-complete problems [9,21] such as local Hamiltonian [21] and quantum satisfia-
bility [22]. Relatively little is known about the typical behavior of the QAA for these
quantum problems as they can not be simulated to any appreciable size. Indeed, even
extending equilibrium notions such as phase transitions and “free energy landscapes”
to these models is an immature undertaking [23–25].
Luckily, most of the optimization problems of human interest correspond to clas-

sical (diagonal) Hamiltonians. These have naturally attracted much more attention
from researchers who have thus uncovered much more about both the equilibrium and
dynamical properties of “typical” ensembles of such problems. Indeed, the first case
study of the QAA explored its application to random ensembles of classically difficult
NP-complete problems [26]. These initial numerical studies of the performance of the
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QAA in solving Exact-Cover (one of the NP-complete problems) instances seemed
to show polynomial scaling of the gap [26]. Successive studies [27–30] have provided
compelling evidence in favour of the exponential scaling of the gap for both some clas-
sically easy (XORSAT which is in P), and difficult problems (3-SAT and MAX-CUT,
two NP-complete problem). See also the review by Hen and Young in this volume.
There are a number of physical mechanisms underlying this failure of the QAA

to effectively solve these optimization problems. The most well understood arise in
extremely non-local Hamiltonians, which can often be solved exactly. Quantum first
order transitions which provably frustrate the QAA arise in such non-local prob-
lems whose energy functions do not provide “basins of attraction” suitable to local
exploration in configuration space [12,27,31–33]. This reflects the inability of local
quantum fluctuations to explore non-local landscapes effectively – either due to exten-
sive disorder [12,31] or because of flat golf-course like landscapes with exponentially
small holes [27,32,33]. In a dual sense, golf-course like driving Hamiltonians, such
as using a non-local projector onto the transverse field ground state rather than the
full transverse field, also lead to provably exponentially small gaps [27,34,35]. Some
mean-field-like ferromagnetic models with infinite range interactions exhibit exponen-
tially small gaps on their first order lines [36], but, as we will discuss further below,
one should be careful assuming a connection between thermodynamic transitions and
gap closing [37,38].
In models with local energetics on bounded degree interaction graphs, the situation

is less clear. Thermodynamic calculations within replica theory [39–41] and quantum
cavity theory [42] suggest random quantum first order transitions persist in at least
some local models [43], although QMC data is inconclusive [29]. Controversial work
suggests that Anderson localization may arise in configuration space when quantum
fluctuations are very weak, leading to “perturbative crossings” and exponentially
small gaps near the endpoint of the evolution [11,13,44,45]. Heuristic arguments
assuming the presence of “clustering” of pure states in a glassy phase suggest that
such crossings may arise throughout an extended regime of the adiabatic evolution
[46]; such crossings may even have been observed in QMC [30]. We will return to
localization in more detail below and present a new heuristic derivation of its dire
consequences for the QAA.
In disordered, geometrically local optimization problems in 1D, Griffiths-like ef-

fects may arise in which large local regions order before the whole [47,48]. It is unlikely
that such Griffiths effects play an important role in higher dimensions or on long-range
interaction graphs, as they tend to be most important in very low dimensions.

3 Small gaps from critical points

Critical slowing down is the name given to the phenomenon that at second order phase
transitions, not only do (spatial) correlation lengths but also (temporal) correlation
times diverge [49]. This means in particular that, in order for a simulated annealing
algorithm to remain in equilibrium through a second order phase transition, the rate
of cooling must vanish as the critical point is approached.
From a complexity point of view, this is not as bad as it sounds. Since at second

order phase transitions quantities vary as power laws with the distance from the
critical point, the sweep rate will only need to be power-law small in the system size.
This is what is known as “easy” in complexity theory.
At second order quantum phase transitions, the corresponding expectation is for

gaps in the many-body spectrum to be algebraically small. Indeed, the idea of a
dynamical critical exponent states that a gap, Δ, should vanish according as a power
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law in the separation, g − gc from the critical point gc:
Δ ∼ ξ−z ∼ (g − gc)νz, (5)

where z is known as the dynamical critical exponent relating the correlation length
ξ to the gap Δ. As an aside, notice that for quantum systems, which are specified
by a Hamiltonian as well as by the commutation relations between the operators
it contains, the dynamics is fully specified, whereas for classical systems, a given
Hamiltonian may be supplemented with a range of different dynamical prescriptions.
This may in particular lead to different dynamical scaling relations.
The power law form is then bequeathed to the finite-size scaling properties. Thus,

as far as the gap Δ is concerned, we are still in an ‘easy’ regime.
A priori, things look considerably more grim for the performance of the QAA in

the case of first-order phase transitions. Here, the expectation is that gaps will be
exponentially rather than algebraically small in system size. The basic intuition be-
hind this can be formulated in a number of ways. The first stems from the fact that
correlation lengths remain finite at such transitions. Local operators should therefore
have expectation values which are exponentially small in the number of correlation
volumes contained in the system, and level crossings should be correspondingly expo-
nentially small in size. Another goes along with the observation that at a second order
transition, gapless excitations in the form of a soft mode exist, e.g. when a spin wave
or triplon dispersion become gapless in a magnet. These gapless excitations under-
pin the algebraic finite-size gap if they have a power-law dispersion, as is generically
the case when a dispersion minimum goes through zero at the soft mode transition.
At first-order transitions, no such modes exist, and hence there is no mechanism for
generating polynomial gaps.
This expectation is indeed regularly fulfilled, and in the course of time has ac-

quired the status of a folk theorem. However, it turns out to be incorrect. The reason
is basically the following. Whereas the above arguments on soft modes involved exci-
tations in a hydrodynamic sense – spin waves in a Heisenberg magnet being related
to spin-rotational symmetry breaking – it is in fact also possible to have “accidental”
excitations which are due to, e.g., “inappropriate” choices of boundary conditions.
In this vein, let us consider [37] the case of an antiferromagnetic Ising spin chain

in a transverse field Γ. Let us also add a staggered field, h, to this, which prefers one
particular of the two possible Neel states as ground states for small Γ.

Hafm =
∑

i

σzi σ
z
i+1 + (−1)ihσzi + Γσxi . (6)

As the staggered field changes sign, all spins need to be flipped so that the spin
state is reversed from one ground state to the other. This is in fact a thermodynamic
first-order transition, trivially related to that of a ferromagnetic Ising model in a
longitudinal field at zero temperature.
The way the system can dynamically flip all the spins is by sweeping a domain

wall across the system. For a chain of even length, this process requires the generation
of a domain wall, which then needs to hop L steps until all spins are flipped. Due to
the excitation energy of the domain wall, the resulting action, and hence the splitting
between the ground states, is exponentially small in L – as expected for a first-order
transition.
However, what happens for a spin chain of odd length? In that case, there always

has to be a domain wall somewhere in the system, and the staggered field will chose a
preferred location for it. However, as the sign of the field is now changed, it no longer
is necessary to generate a domain wall before sweeping it across the system – it’s
already there in the ground state. What one finds instead is a hopping problem for
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the domain wall, which at the transition point has a cosine-shaped dispersion with a
minimum at zero energy. Hence, the finite-size gap is again algebraically small, and
we have an avoided crossing which is much bigger than exponential. So, for some
first-order transitions, the QAA does not fail!
The lesson from this is that the many-body finite-size gap is not the same as that

of the local hydrodynamic modes usually considered in critical phenomena. In the
simplest examples, this happens in the same way that choosing antiperiodic boundary
conditions for an Ising ferromagnet will not change the dispersion of its excitations,
but can give rise to gapless excitations of the defect which is unavoidably present.
More generally, the many-body finite size gap at first order transitions may exhibit
extremely complicated size dependence due to commensuration effects. For example,
the first order transition in the long-range ferromagnetic XY model exhibits a finite-
size gap scaling polynomially, exponentially or even factorially small depending on
the precise sequence of system sizes taken in the thermodynamic limit [38].

4 Small gaps from the integrals of motion of MBL

In recent years our understanding of quantum systems with quenched disorder has
greatly improved thanks to research on many-body localization (MBL). The concept
of localization originated in the work of Anderson on disordered lattices [50]; the
question of its stability in the presence of interactions has been a theoretical pastime
ever since [51]. Modern computational power, the development of quantum optical
systems where these questions might be probed experimentally and the perturbative
analysis of Basko, Aleiner and Altshuler [52] have motivated a recent explosion of
interest and progress in understanding the interacting (hence “many-body”) form of
localization.
Now it appears that MBL phases appear generically in the strong disorder region

of quantum spin systems, ranging from one-dimensional [53–55] to fully connected
models [56–58]. The MBL phase can be non-perturbatively characterized by the exis-
tence of an extensive collection of many-body local integrals of motion [14,15,59–62].
The presence of these conserved quantities inhibits transport on large distances in
the system, protect Z2 order against perturbations at infinite temperature [63] and
slow down considerably the spread of entanglement [64–66].
All these features suggest that the adiabatic algorithm will indeed run into trouble

in MBL phases. Morally, as quasi-static quantum fluctuations are unable to change
the local integrals of motion, they will be unable to explore phase space effectively. In
the context of random combinatorial optimization problems, the MBL regime would
be a phase extending around the problem Hamiltonian of interest, causing difficulty
for the QAA as it comes into the homestretch.
This scenario was first explored by Altshuler, Krovi and Roland (AKR) in [11]

where it was argued that MBL allows for the perturbative treatment of level crossings
near the classical endpoint of the QAA and that these in turn lead to exponentially
small gaps. Indeed, in the most recent numerical studies like [28], the fastest decreasing
gap found by quantum Monte Carlo techniques appears well within the spin-glass
region, rather than simply at the transition into it. We note that we generically
expect the spin-glass phase, as predicted by statistical mechanics, to lie within the
dynamical MBL region, as this is the case in the only model in which both phases
have been analyzed [57].
Based on a case study of random instances of the problem EXACT COVER 3

(EC3), AKR conjecture that random NP-complete optimization problems generically
exhibit MBL phases and small crossings in the vicinity of the problem Hamiltonian. In
the following, we will review their arguments and reframe them in terms of integrals
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of motion. This will lead us to the observation that the mechanism for avoided level
crossings identified by AKR can be extended throughout any MBL phase, rather than
simply near the endpoint. However, there are many conjectural assumptions that go
into this argument (just as with AKR’s original work) which may or may not be
satisfied depending on the nature of the decision problem at hand. We will return
at the end to which aspects we feel are on solid ground and which need much more
work.
Let us now review these arguments in the context of EXACT COVER 3. The cost

function of the problem EC3 is a positive integer

EC(x) =

M∑

a=1

(xia + xja + xka − 1)2, (7)

where M is the number of clauses and xi = 0, 1 are the bit assignments and if
EC(x) = 0 we have found a satisfying assignment. As a function of α = M/N there
is a transition at αc � 0.62, where the probability to have a satisfying assignment of
the random formula goes from 1 for α < αc to 0 for α > αc. By going from xi to
σzi = xi − 1/2 and introducing the conjugate operator σx we can write the adiabatic
Hamiltonian

H(t) = s(t)Ec(σ) + (1− s(t))
N∑

i=1

σxi , (8)

where
Ec(σ) = −

∑

i

hiσi −
∑

i,j

Jijσiσj , (9)

is a classical Hamiltonian with integer coefficients.
For 1 > s > 0 one can introduce the parameter λ = (1 − s)/s and consider

perturbation theory in this parameter. When perturbation theory converges one can
link in a one-to-one way an eigenstate |n〉 to a spin configuration |σ〉 and write down
energies of eigenstates in a series

En(λ) = EC(σ) +

∞∑

m=1

λ2mF (m)(σ). (10)

This expression can be used to find an avoided crossing of two levels for which
EC(σ1) 
= EC(σ2) but for a certain λ, E2(λ) � E1(λ).
AKR claim that this happens for λ � λ∗ ∼ 1/N1/8 and λ � λcr ∼ 1/ lnN . This

latter value of the critical “hopping” λcr follows from a parallel with localization on
the Bethe lattice [67]. Taking the difference between E2 and E1 of (10) and considering
the behaviour of the typical values of F1,2 obtained from the numerics, they find
that the difference in energy between two eigenstates pertaining to different spin
configurations (at λ = 0) is

|E1(λ)− E2(λ)| =
√
N

∞∑

m=2

λ2mf (m), (11)

with f (m) = (F
(m)
1 − F (m)2 )/

√
N a random variable of O(1). The sum starts from

m = 2 rather than m = 0 because the lower order terms are independent of the
configuration and cancel out. By starting from two satisfiable configurations and
adding a clause which leaves only one of the two satisfiable, we get the equation
|E1(λ)−E2(λ)| = O(1) for the location of the level crossing, which gives λ∗ ∼ N−1/8
quoted before.
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This avoided crossing gives an exponentially small gap if the Hamming distance
between σ1 and σ2 is d(σ1, σ2) = ν(α)N = O(N). That random EC3 possesses
such macroscopically distinct global ground states is known from classical statistical
mechanical studies [68]. From this avoided crossing, one obtains a gap

Δ ∼ e− ν8N ln(N/N0), (12)

where N0 = O(1). This is even smaller than exponential.
A crucial point of the analysis of [11] is the convergence of perturbation theory

for the energy En(λ), which is claimed on the basis of the existence of an MBL region
for λ < λcr. The existence of a localized region is probably on safe ground, although
the value of λcr is far from certain, since the parallel with the Anderson model on the
Bethe lattice requires several crucial assumptions. One of these, statistical indepen-
dence of the energies of neighbouring configurations, is certainly violated. Another
assumption, the absence of loops in the hypercube of configurations, is also certainly
violated.
The reasons to believe that a λcr exists that separates the MBL from the ergodic

phase should be based on considerations more akin to those presented in [52,57,62],
where the assumption of the independence of the energies of neighbouring configura-
tions and/or the absence of loops is not made.
Even leaving the question of the existence of an MBL region however, a criticism

was posed to [11] in [13]. The authors of [13] claim that the level splitting is not
exponential and blame the fact that the system size analyzed in [11] are too small.
In their analysis the avoided crossing occurs at λ∗ ∼ 1� λcr for sufficiently large N ,
therefore invalidating the use of perturbation theory.
However we find that this objection may not be as fatal as it looks at first sight,

and in the following we propose a possible line of argument for tightening the connec-
tion between MBL and computational hardness which suggests that an appropriate
perturbation theory may be constructed “locally” in λ. We hope that this will stim-
ulate further detailed study of this conceptually important aspect of both MBL and
the QAA.
If there is an MBL phase for λ < λcr then perturbation theory in the hopping λ

should converge (with large probability). Then, the question of the smallness of the
gap is discussed most naturally in the set-up of the integrals of motion for MBL. Let
us now recall how these are defined [14]. Starting from the MBL phase of a generic
spin Hamiltonian, which we restrict to the form relevant to the QAA:

H = Hp(σz) + λHb(σx). (13)

In the whole MBL phase, for all λ < λc, one can perform a convergent series of local
unitary rotations [14,61] which sums up to a unitary U which at the same time brings

U†σzi U = τ
z
i , (14)

and

H = H ′(τz) = −
∑

i

hi(λ)τ
z
i −
∑

i,j

Jij(λ)τ
z
i τ
z
j −
∑

i,j,k

Jijk(λ)τ
z
i τ
z
j τ
z
k + ..., (15)

where the couplings J ’s have short range (exponential decay with MBL length ξ).
The transformation U can be found as a power series in λ (for a model of spin chain
with disorder this transformation has been proved to exist in [61])

U = I+ λu(1) + λ2u(2) + ..., (16)
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Fig. 1. Exact crossing for a N = 15 spin model (15) with random integer fields and 2-spin
couplings, which evolve smoothly with λ. Only the lowest 100 levels are shown. The level
crossing the ground state at the smallest λ � 0.28 has Hamming distance 5 = L/3 from the
ground state. The l-bits assignments of the ground state change extensively from λ = λc to
λ = 0.

which is convergent for any λ < λc. The l-bits τ (l is for “localized”) can be used to
label the exact 2N MB eigenstates with a bit string

|Ψn〉 = |τ1, ..., τN 〉 ≡ |τ 〉. (17)

The couplings h, J ’s are all functions of λ, which reduce to the classical hamiltonian
for λ = 0. Usually for the classical hamiltonian one has integer h, J and only up to
a fixed number of spins interaction Ji1,...,in = 0 for n > K in K-SAT for example
(counterintuitively, K = 2 for EC3 as the 3-body interaction can be expressed as a
quadratic form).
Since the unitary rotation U can be obtained as a convergent series of local uni-

tary operators [61] for λ < λc, the resulting hamiltonian H
′(τz) has couplings which

depend analytically on λ (with radius of convergence at least λc) and decrease expo-
nentially with the distance between the indices i, j, etc.
For example, considering the case in which only hi and Jij are 
= 0 for λ = 0, the

couplings have the form

hi(λ) = h
(0)
i + λh

(1)
i + λ

2h
(2)
i + λ

3h
(3)
i + ...

Jij(λ) = J
(0)
ij + λJ

(1)
ij + λ

2J
(2)
ij + λ

3J
(3)
ij + ...

...

Ji1,...,in(λ) = λ
b(J

(1)
i1,...,in

+ λJ
(2)
i1,...,in

+ ...), (18)

where b > 0 and grows with n.
The question of the smallness of the gap is now turned into the question of what

are the gaps of the classical Hamiltonian H ′. We will see that it is easy for this
Hamiltonian to have exponentially small gaps. In particular, small gaps are natural
if, in the adiabatic transformation, the value of an extensive number of local integrals
of motion change from λ = λc to λ = 0. In the following we try to explain this
mechanism in detail.
First of all one should notice that the integrals of motion τa are not conserved by

the adiabatic evolution. This is because the commutation rules

[H(t), τa(t)] = 0, (19)
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of τ with a time-dependent Hamiltonian do not imply that

[Te−i
∫
t
0
dt′H(t′), τa(0)] = 0, (20)

where T is the time-ordered product.
As one reduces λ from large to small in the QAA, let us assume that one enters

an MBL phase at λ = λc. We make the further hypothesis that the entire spectrum
is MBL and that the Hamiltonian (15) describes all the eigenvalues and eigenstates.
Assuming the transition itself has polynomially small gaps (as seen for example in
[28]), just after the transition the state is with high accuracy in the ground state of
H(λc). This corresponds to some assignments of the τ ’s

Ψ(λc) = |τ1(λc), ..., τN (λc)〉 = |τ (λc)〉. (21)

However, since the integrals of motion are not conserved in the arbitrarily slow adi-
abatic evolution, the classical ground state can have assignments of the integrals of
motion which are extensively different from those of the quantum ground state at λc:

d(τ (0), τ (λc)) = O(N). (22)

The last bit which we are left to prove is that the crossing between states which are
O(N) spin-flips apart is exponentially small in N .
For this we need the fact that the unitary transformation that sends σz → τz also

sends σx → τx, where the commutation rules are preserved
U†σx,yi U = τ

x,y
i , (23)

[τai , τ
b
j ] = iδijεabcτ

c
j . (24)

Therefore one consider the perturbation of λ → λ + δλ, with δλ = O(λ) and λ <
λc  1. Then we can write

H(λ+ δλ) = H(λ) + δλ
∑

i

σxi , (25)

which can be written, going from σ to τ ’s:

H(λ+ δλ) = H(λ) + δλ
∑

i

τxi +O(λδλ)

= −
∑

i

hi(λ)τ
z
i −
∑

i,j

Jij(λ)τ
z
i τ
z
j −
∑

i,j,k

Jijk(λ)τ
z
i τ
z
j τ
z
k + ...+

+ δλ
∑

i

τxi +O(λ
2), (26)

where we should keep only the terms in the hamiltonian which are of O(λ) or larger.
If we want, we could to re-absorb the δλ term we can, by redefining the coefficients
hi(λ), Jij(λ), ...→ hi(λ+ δλ), Jij(λ+ δλ), ... etc. and τa(λ)→ τa(λ+ δλ).
By changing δλ from 0 to δλ, assuming there is an avoided level crossing some-

where in the range [0, δλ] keeping the Hamiltonian in this form, with the assumption
(22), it follows easily that the avoided crossings generate exponentially small gaps.
In fact, the perturbation δλ flips only one τi at a time, and if the crossing has to
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be avoided, one needs to apply the perturbation d = d(τ(λc), τ(0)) times, generating
therefore a gap proportional to the matrix element:

Δ � δλd
d∏

n=1

1

E0 − En ∝ δλ
νN ∼ λνN , (27)

where ν = O(1) and the product is over the order of spin flips which maximises
the amplitude (some work is necessary to show that this actually gives at most an
exponential contribution but this has been discussed at length in [52,62]).
To summarise, the existence of integrals of motion in the entire MBL region means

that a slight increase of the external magnetic field by δλ has the exactly same effect
of applying a perturbatively small transverse magnetic field to a classical (containing
only σz’s) spin hamiltonian: if, because of the field, a crossing occurs between states
which have extensively different values of the spins/integrals of motion, then the
avoided crossing is necessarily going to be exponentially small.
The question is now reduced to finding these two almost degenerate states which

have extensive difference in the values of the l-bits integrals of motion. In the hypoth-
esis of AKR, where the crossing is perturbative, this is a purely classical question and
depends on the classical structure of the decision problem. This structure has been
studied extensively for some classical problems like XORSAT, EC, SAT, etc. and
some details of the interaction graph seem to matter more than the complexity class
of the problem itself. If the crossing occurs at non-perturbative λ (although λ < λc)
as suggested in [13], then the structure of the classical problem is less relevant, and
one should look at the structure of the classical H(λ) in terms of τz’s. It is possible
that the structure of H(λ) for λ not perturbatively small is radically different from
that of H(0) but only an extensive investigation can resolve this issue for the given
decision problem.
We point out that this phenomenon is reminiscent of “temperature chaos” in

some spin glasses, in which at an arbitrary small change of the external parameters
(usually temperature) the state of the system changes abruptly. At the change of the
external magnetic field, states which are macroscopically different swap positions in
the spectrum, and this originates a wealth of exponentially small gaps in avoided
crossings. We note that a version of the arguments above have been applied to local
perturbations in the MBL phase in parallel work [69].
Finally, on the grounds that QMA-hard (quantum) problems should be at least

as refractory NP-hard (classical) problems, we conjecture further that random QMA-
complete problems, such as quantum satisfiability, would likewise reside within MBL
phases and exhibit “field chaos”. There are limited numerical studies to support this
claim [70]; we believe this to be an interesting direction for future research.

5 Conclusion

We have described the current understanding of the behaviour of the QAA for the
solution of classical decision problems like EC, XORSAT or SAT. We have discussed
how the common lore linking exponentially small gaps to first order transitions and
polynomially small gaps to second order phase transitions can be deceptive. We have
also pointed out that a common source of exponentially small gaps is (as pointed
out in [11]) an MBL region surrounding the classical point λ = 0. With the help
of the local integrals of motion of MBL, and an assumption on the structure of the
classical spectrum, we have proved that avoided crossings in the MBL region give
exponentially small gaps.
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Linking MBL to the failure of the QAA and possibly using this information to
improve the performance is a promising new line of research on which progress we
hope we will be able to report in the near future.
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23. C.R. Laumann, A.M. Läuchli, R. Moessner, A. Scardicchio, S.L. Sondhi, Phys. Rev. A
81, 062345 (2010)

24. C.R. Laumann, R. Moessner, A. Scardicchio, S. Sondhi, Quant. Inf. Comp. 10, 1 (2010)
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