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 2

Abstract 25 

 26 

Quantum biology seeks to explain biological phenomena via quantum mechanisms, such as 27 

enzyme reaction rates via tunneling and photosynthesis energy efficiency via coherent 28 

superposition of states. However, less effort has been devoted to study the role of quantum 29 

mechanisms in biological evolution. In this paper, we used transcription factor networks 30 

with two and four different phenotypes, and used classical random walks (CRW) and 31 

quantum walks (QW) to compare network search behavior and efficiency at finding novel 32 

phenotypes between CRW and QW. In the network with two phenotypes, at temporal 33 

scales comparable to decoherence time TD, QW are as efficient as CRW at finding new 34 

phenotypes. In the case of the network with four phenotypes, the QW had a higher 35 

probability of mutating to a novel phenotype than the CRW, regardless of the number of 36 

mutational steps (i.e., 1, 2 or 3) away from the new phenotype. Before quantum 37 

decoherence, the QW probabilities become higher turning the QW effectively more 38 

efficient than CRW at finding novel phenotypes under different starting conditions. Thus, 39 

our results warrant further exploration of the QW under more realistic network scenarios 40 

(i.e., larger genotype networks) in both closed and open systems (e.g., by considering 41 

Lindblad terms). 42 

Key words: quantum biology, quantum evolution, genotype networks, evolutionary 43 

biology 44 
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 3

Background 49 

 50 

Quantum biology is a novel discipline that uses quantum mechanics to better describe and 51 

understand biological phenomena (Mohseni 2014; Brookes 2017; McFadden and Al-Khalili 52 

2018). Over the last 15 years, there have been theoretical developments and experimental 53 

verifications of quantum biological phenomena (McFadden and Al-Kahlili 2014; Brookes 54 

2017) such as quantum tunneling effects for the efficient workings of enzymes at 55 

accelerating biological metabolic processes (e.g., Klinman and Cohen 2013), and quantum 56 

superposition for efficient energy transfer in photosynthesis (Panitchayangkoon et al. 57 

2010). The area of quantum evolution (McFadden and Al-Kahlili 1999), in which it is 58 

suggested that DNA base pairs remain in a superposition by sharing the proton of hydrogen 59 

bonds, still remains speculative and has practically stagnated since its theoretical inception 60 

twenty years ago (Ogryzko 1997; McFadden and Al-Kahlili 1999). However, recent 61 

theoretical developments on quantum genes (e.g., Brovarets’ and Hovorun 2015) suggest 62 

that further exploration of the superposition mechanism in evolution is worth undertaking. 63 

 64 

Theoretical framework: a) quantum measurement device 65 

From biological principles, genes do not vary in a continuous fashion, they are digital 66 

objects (i.e., a sequence of discrete nucleotides); such discontinuity renders mutations as 67 

quantum jumps between different states or possible variations of a gene (Schrödinger 1944; 68 

Godbeer et al. 2015). In other words, genes function as discrete packets, which are akin to 69 

quantum digital objects over which computations are performed (Lloyd 2008). Hence, the 70 

theoretical framework of quantum mechanics offers two characteristics that are 71 
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fundamental for life and its evolution: digitalization and probabilistic variation among the 72 

discrete states a quantum system can take (e.g., DNA nucleotides; Lloyd 2008).  73 

 74 

Focusing on DNA, the genetic code is ultimately determined by hydrogen bonds of protons 75 

shared between purine and pyrimidine nucleotide bases (McFadden and Al-Khalili 1999). 76 

Nucleotides have alternative forms knows as tautomers, where the positions of the 77 

hydrogen protons in the nucleotide are swapped, changing nucleotides chemical properties 78 

and affinities (Watson and Crick 1953a,b). Such changes make the DNA polymerase 79 

enzyme to sometimes pair wrong nucleotides (e.g., a tautomeric thymine with a guanine), 80 

generating mutations that change the genetic information and possibly the encoded protein 81 

(McFadden and Al-Khalili 1999, 2014; Fig. 1). An important consequence of this process, 82 

since genes can be thought of as quantum systems, is that nucleotides’ hydrogen bridges 83 

can be described as a quantum superposition, where protons can be found at both sides of 84 

the DNA chain at the same time (i.e., the physical variable in a superposition is the 85 

hydrogen proton joining DNA nucleotides; quantum genes), hence allowing the system to 86 

be described by a wave function (McFadden and Al-Kahlili 1999, Godbeer et al. 2015). A 87 

measurement (e.g., a chemical, UV light from the environment) can collapse the wave 88 

function producing either a normal base pair or a mutation (McFadden and Al-Kahlili 1999, 89 

2014). Thus, quantum processes can be of relevance in the generation of mutations (i.e., 90 

adaptive mutations) when influenced by the surrounding environment (i.e., selective 91 

factors; Brovarets’ and Hovorun 2015; Godbeer et al. 2015; Fig. 2), playing an important 92 

role in the exploration of evolutionary space (e.g., n-dimensional genotype networks, as 93 

introduced shortly in this manuscript). 94 

 95 
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Theoretical framework: b) n-dimensional genotype networks 96 

 97 

A theory based on n-dimensional genotype space at different levels of biological 98 

organization (e.g., metabolism, gene regulation) has been developed to understand the 99 

evolution of innovations (Wagner 2011, 2014). A genotype network implies the existence 100 

of a vast connected network of genotypes (nodes in a network) that produces the same 101 

phenotype (Schuster et al. 1994). Genotypes in a genotype network can share little 102 

similarity (e.g., lower than 25%) and still produce the same phenotype (Wagner 2011). To 103 

understand the concept of a genotype network we will focus on metabolic reactions 104 

(Wagner 2011; Fig. 3). 105 

 106 

A metabolic genotype is the total amount of chemical reactions that can be performed by 107 

the enzymes synthesized by an organism’s genotype (Wagner 2011). If we use digital (i.e., 108 

binary) categorization, then we can classify a metabolic genotype as a string of binary flags, 109 

indicating if the genotype has the information to synthesize a product that performs a 110 

metabolic reaction (represented by 1) or not (represented by 0; see Fig. 3). From current 111 

information we know there are about 104 metabolic reactions (no organism can perform all 112 

of them; Samal et al. 2010), in which case we would have in binary space with 210,000 113 

different possible metabolic genotypes, which is a large universe of possibilities available 114 

for evolution to explore (Samal et al. 2010, 2011; Wagner 2014). Hence, the genetic space 115 

of metabolic genotypes is composed of all possible binary strings of length 104, in this case 116 

a total of 210,000. A way to measure differences between two metabolic genotypes in this 117 

vast space is to use the fraction of reactions that are not catalyzed by one genotype in 118 

reference to the other; the letter D represents such a measure (Rodrigues and Wagner 119 
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2009). The maximal value D = 1 would be achieved when the two metabolic genotypes do 120 

not have any reaction in common and D = 0 when they have identical metabolic genotypes 121 

(i.e., they would encode the same products or enzymes). Two metabolic genotypes would 122 

be neighbors if they differ only by a single reaction (a 1 in our binary coding of metabolic 123 

genotypes). Hence, the neighborhood of a metabolic genotype is composed by all those 124 

genotypes that differ by exactly one reaction from it; there would be as many neighbors as 125 

there are metabolic reactions (Fig. 4). Considering the different possible metabolisms one 126 

step away from a focal one, each neighborhood would be a large collection of metabolic 127 

genotypes organized in a hyper-dimensional cube. With this we build an n-dimensional 128 

network, where each genotype is a node in the network and the edges represent mutational 129 

steps, nodes connected by an edge differ exactly by one mutation (Rodrigues and Wagner 130 

2009; Wagner 2014; Fig. 4).  131 

 132 

A metabolic phenotype is represented by all the environmental energy sources (e.g., 133 

glucose, methane) that can be used by a metabolic genotype to synthesize all biomolecules 134 

(e.g., amino acids, nucleotides) required for survival (Fig. 3). The metabolic phenotype can 135 

also be categorized as a binary string, a 1 represents a genotype network that can synthesize 136 

all required biomolecules relying solely on that specific source and a 0 otherwise; a 137 

phenotype with multiple ones means a metabolism that can produce all needed elements 138 

from many different sources (Wagner 2011). To calculate the number of possible 139 

phenotypes, we do the same as for metabolic genotypes; we raise two to the power of all 140 

the known different energy sources available. The set of those metabolic genotypes that 141 

have the same phenotype is what constitutes a genotype network. It has been shown 142 

computationally that similar (i.e., neighbors), as well as very dissimilar genotypes (as 143 
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different as 80% of their metabolic reactions), can still preserve the same phenotype, 144 

demonstrating that genotype networks are plastic and robust (e.g., Wagner 2008; Rodrigues 145 

and Wagner 2011). This is a good feature for evolving populations because browsing the 146 

vast genotypic space becomes feasible and moderately free of risk (Rodrigues and Wagner 147 

2009, Samal et al. 2010). However, how can new features evolve when a vast exploration 148 

leads us to the same viable result or phenotype? When comparing the neighborhoods of 149 

thousands of pairs of metabolic genotypes that are able to use the same energy source (i.e., 150 

they belong to the same phenotype network), but that are otherwise very different, it turns 151 

out that their neighborhoods are very different and diverse (i.e., novel phenotypes in one 152 

neighborhood might not be present in other neighborhoods of the same genotype network, 153 

Wagner 2014; Fig. 4). As the number of changed metabolic reactions increases, so does the 154 

number of unique phenotypes in a neighborhood, opening a bounty of novel phenotypes to 155 

an evolving population (Rodrigues and Wagner 2009). Furthermore, when comparing two 156 

genotype networks (i.e., networks that produce different phenotypes), the distance in 157 

genotype space that needs to be traversed to find a novel phenotype is rather small (i.e., the 158 

number of edges or mutational steps in the network separating nodes or genotypes with 159 

different phenotypes), raising the odds of finding novel traits (Wagner 2014, Rodrigues and 160 

Wagner 2011; Fig. 4). More impressive yet is the fact that networks other than metabolism, 161 

such as transcriptional regulatory circuits (Ciliberti et al. 2007, Espinosa-Soto et al. 2011) 162 

and the development of novel molecules (Li et al. 1996, Cui et al. 2002, Bastolla et al. 163 

2003, Sumedha et al. 2007) have the same basic structure (Wagner 2011). 164 

 165 

There is no true randomness as originally conceived in Darwinian evolutionary theory (e.g., 166 

Cairns et al. 1988; Hall 1995, 1997; Wagner 2012a). A series of experiments have shown 167 
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that mutations are not completely random and that they can actually happen as a response 168 

to an environmental factor (e.g., Cairns et al. 1988, Rosenberg et al. 1994; Hall 1997, 1998; 169 

Hendrickson et al. 2002; Stumpf et al. 2007; Braun and David 2011; Livnat 2013). Thus, 170 

we are ultimately interested in the potential effect that specific environmental conditions 171 

(i.e., probing agents that collapse the quantum superposition) have on the proposed genetic 172 

quantum system and the evolutionary pathway followed under such conditions (e.g., Fig. 173 

5). Yet, we must first understand how quantum processes behave under non-selective (i.e., 174 

neutral and in closed systems) scenarios, so we can determine their relevance for evolution. 175 

Thus, in this paper we explore how fast a quantum walk (QW) could explore an n-176 

dimensional genotype network, sensu Wagner 2011 (i.e., a state space) and compare its 177 

performance with that of a classical random walk (CRW) (e.g., Farhi and Gutmann 1998). 178 

Then, we explore under what scenarios of the state space (i.e., mutational steps between 179 

different phenotypes) may the quantum process be more efficient than the classical one at 180 

finding novel states (i.e., phenotypes) in n-dimensional genotype networks (Wagner 2014; 181 

Aguilar-Rodríguez et al., 2017). That is, we provide proof of concept that genotype 182 

networks are the evolutionary fabric on which the earlier proposed quantum wave function 183 

(Ogryzko 1997; McFadden and Al-Khalili 1999) can operate, and then how the quantum 184 

wave function actually operates on such evolutionary fabric. 185 

 186 

Methods 187 

 188 

QW are more efficient at exploring one dimension (e.g., linear) and two dimension (e.g., 189 

grid networks) regular networks (i.e., squared) compared to CRW. CRW remains around 190 

the neighborhood where it started expanding diffusively, whereas the superposition of QW 191 
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produces a probability cloud expanding ballistically throughout the whole network (Kempe 192 

2003; Venegas-Andraca 2012). 193 

 194 

The superposition property of QW would theoretically allow a more efficient exploration 195 

process throughout the network, given the previously proposed conditions by McFadden 196 

and Al-Khalili (1999):  197 

1) The cell is a quantum measurement device that constantly monitors the state of 198 

its own DNA molecule. The environment will induce the collapse of the quantum wave 199 

function, rendering the current state of the DNA (i.e., the DNA sequence we actually 200 

observe when we obtain the base pairs of a genome or a gene), indirectly via the influence 201 

of the environment on the cell (e.g., chemical conditions of the cell’s membrane and 202 

cytoplasm). 203 

2) Following quantum mechanical jargon, the DNA molecule persists in a 204 

superposition of their hydrogen protons binding nucleotides (i.e., the different mutational 205 

options representing the wave function; see Godbeer et al. 2015). For instance, a wave 206 

function evolving to incorporate the correct and incorrect bases in a DNA position, as a 207 

superposition of states (i.e., mutated and unmutated states [e.g., the Cytosine and Thymine 208 

nucleotides in a DNA base pair]) in a daughter DNA strand; that is, the new DNA state 209 

achieved after replication of the genetic material (|�� �) (McFadden and Al-Khalili 1999):  210 

|�� � �  �|���� ��������	 � |Cytosine �  � �|���������	 � |Thymine �  
3) The operational difference between the DNA and the cell is given by nucleotides 211 

(previous equation above) and amino acids, respectively (see McFadden and Al-Khalili 212 

1999): 213 
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|�
��� � �  �|���� ��������	 � |Cytosine � |Arginine �  � �|���������	 � |Thymine
� |Histidine � 

4) An evolving or new DNA wave function (i.e., the current DNA superposition 214 

after the collapse of the wave function due to environmental influences) must remain 215 

coherent or stable for long enough time to interact with the cell’s immediate environment, 216 

so the cell can act as a quantum device (Fig. 2). 217 

 218 

Genotype network construction 219 

 220 

We used a subset of the DNA transcription factor genotype networks from the sample file 221 

of Genonets server (http://ieu-genonets.uzh.ch; Khalid et al. 2016), which represent 222 

empirical data for the binding affinities of the Ascl2, Foxa2, Bbx, and Mafb transcription 223 

factors (TF) in mice (Badis et al. 2009, Payne and Wagner 2014; Fig. 6). To filter 224 

genotypes with low binding affinities we used the default value of the parameter tau (τ = 225 

0.35), and we only allowed for single point mutations (i.e., mutations where a letter in the 226 

sequence is changed, no indels were allowed; see http://ieu-genonets.uzh.ch/learn for 227 

definitions and tutorials; Khalid et al., 2016). Briefly, each node in the network represents a 228 

genotype with a specific TF phenotype (i.e., Ascl2, Foxa2, Bbx, Mafb), and the edges 229 

joining nodes represent mutational steps (i.e., two nodes joined by an edge are genotypes 230 

differing exactly by one position; in other words, only one mutation separates such nodes; 231 

see Figs. 3 and 4). We extracted the information of the genotype networks generated by 232 

Genonets, and performed all subsequent simulation analyses (described below) using the 233 

Mathematica software (Wolfram Research, Inc., 2020).  234 

 235 
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Genotype network exploration: closed systems (unitary evolution) 236 

 237 

The n-dimensional genotype networks developed by Wagner and his collaborators use as an 238 

exploration mechanism CRW (Wagner 2011). Here, we used QW in order to explore the 239 

importance of quantum superposition (Farhi and Gutmann 1998; Mülken and Blumen 240 

2011) as an evolutionary exploration device. Exploration of constructed networks was 241 

performed using both a continuous CRW (e.g., Rodrigues and Wagner 2009) and a 242 

continuous QW (Falloon et al., 2017). We used the QSWalk package developed under 243 

Mathematica to perform simulations on genotype networks (Falloon et al., 2017). The 244 

QSWalk package implements both CRW and continuous QW in arbitrary networks based 245 

on the so-called Quantum Stochastic Walk that generalizes quantum and classical random 246 

walks (Falloon et al., 2017). 247 

 248 

For simplicity, we considered undirected and unweighted networks, which were described 249 

by an adjacency matrix Aij whose matrix elements are 1 if the nodes i, j are connected and 0 250 

otherwise. For an undirected network, the adjacency matrix is symmetric Aij = Aji, which 251 

implies that transitions from any pair of neighboring nodes are equally probable 252 

independently of the direction. For each node i, we define the out-degree outDeg(j) = Σi ≠ j 253 

Aij, which counts the number of nodes connected to it. The CRW is described by the vector 254 

p(t) whose components pj(t) give the probability of occupancy of node j. The temporal 255 

evolution of the probability vector is determined by the equation 256 

d�
dt  � �p 

where H is the matrix 257 
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���  �  �γ��� ,                          i !  j
#γ outDeg&i', i � j.), 

γ determines the transition rate between neighbor nodes. We considered CRW beginning in 258 

node i, implying that the components of the initial vector are pk(t = 0) = δ{ki}. 259 

 260 

For the QW we considered a basis whose elements are associated to each node of the 261 

network |i>. A general pure state can be written as |ψ(t)> = Σ{i}ci|i>, where |ci|
2 is the 262 

probability of occupancy of node i. The dynamics of an initial configuration (similar to the 263 

CRW, we considered initial states with components given by ck = δ{ki}) is given by the 264 

Schrödinger equation 265 

d|*&t' �
dt � �|*&t' �, 

where H is a linear operator whose matrix elements are given by the same matrix 266 

introduced above 267 

+ i|�|j � � ��� 

We used DNA transcription factor genotype networks with two (410 nodes) and four (927 268 

nodes) different phenotypes, a representation of which is shown in Figure 6. Following, we 269 

determined the mutation rate, γc and γQ, for the CRW and the QW respectively. 270 

 271 

Mutation rate, γ  272 

 273 

The mutation rate between any pair of neighboring nodes is mapped in the QSWalk 274 

package by a parameter, γ. For a CRW, the probability of mutation of a given node to a 275 

new node for very short times is Pm = Nn × γc × t, where Nn is the number of neighboring 276 
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nodes; in other words, the probability of remaining in the initial node decays exponentially. 277 

The average number of neighbor nodes in the networks used in our simulations is Nn ~ 6.4 278 

± 3.3; therefore the mutation rate per node is mr = 6.4 ± 3.3 γc. Experimental estimation of 279 

this mutation rate (i.e., the rate of mutation of a single gene; Balin and Cascalho 2010) 280 

yields to mr = (4-9) × 10-5 mutations/base pair/cell generation. Assuming that a bacterial 281 

cell generation lasts around 1000 sec (i.e., ~20 minutes), the mutation rate is mr = (4-9) × 282 

10-8 mutations/base pair/sec, which when equated to 6.4 ± 3.3 γc allows obtaining an 283 

estimation of the order of parameter γc for the CRW of γc = 10-9 ~ 10-7 (1/sec). 284 

 285 

In contrast, for a quantum system described by a Hamiltonian, it can be shown that for very 286 

short times, the probability of transition of a given node to a new node grows quadratically 287 

with time (Mandelstam and Tamm 1945), Pm = Nn × (γQ × t)2. In order for the QW to be 288 

consistent with the experimental mutation rate mentioned above, we estimate γQ, the 289 

mutation probability of a given node to a new node, by equating the quantum probability of 290 

node mutation with the classical probability at the decoherence time TD (i.e., we considered 291 

γc × TD = (γQ × TD)2, which gives γQ
2= γc/ TD. Thus, to determine γQ, an estimation of TD is 292 

necessary. According to McFadden and Al-Khalili (1999), a rough estimation of the 293 

decoherence time is TD =100~102 sec, which allows an estimation of quantum parameter γQ 294 

= 10-6 ~ 10-3. We selected representative values for γc and γQ to perform our simulations, γc 295 

= 10-7 (1/sec) and γQ = 10-4 (1/sec). 296 

 297 

We follow McFadden and Al-Khalili (1999) at using the Zurek model to estimate 298 

the decoherence time of genotypes (nodes in the network) superposition (TD) 299 

 300 
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T
  ,  t� -.�
Δ�0

�

, .�  �  1
22mk�T 

where m is the mass of a proton in a superposition of two Gaussian wave packets separated 301 

by a distance Δ� , and .�  is the thermal de Broglie wavelength dependent (Djordjevic 302 

2016). 303 

 304 

For the small network consisting of 410 nodes and two phenotypes, we performed 305 

independent simulation runs with initial conditions that start from every single node of the 306 

Bbx phenotype to the Foxa2 phenotype and compared the probability to find the Foxa2 307 

phenotype as a function of time for CRW and QW, distinguishing the number of mutational 308 

steps (1, 2 or 3) needed to reach the new phenotype.  309 

 310 

For the larger network (927 nodes and 4 phenotypes), we conducted simulations starting at 311 

nodes that were shared between different pair-wise combinations of the four different 312 

phenotypic networks. The aim was to compare the efficiency at which CRW and QW find 313 

novel phenotypes as a function of time (for the quantum process within the decoherence 314 

time TD as calculated above) and of the initial position of a node within a genotype network 315 

in terms of the number of mutational steps (i.e., 1, 2 or 3 edges) needed to reach the new 316 

phenotype. 317 

 318 

Results 319 

 320 

Two phenotype networks (Bbx and Foxa2; 410 nodes) 321 
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For this two-phenotype network, the linear dependence on time of the mutation probability 322 

of the CRW at short times, induces a linear dependence on time of the probability of 323 

mutation to phenotype Foxa2 from nodes located one mutational step away (Fig. 7). For 324 

nodes located two or three steps away, the growth of the mutation probability to the new 325 

phenotype is slower. The same hierarchy in the probabilities is observed in the QW, the 326 

closer the node is located to the new phenotype the larger the mutation probability to this 327 

phenotype is. Since the probability of an initial node to mutate to its neighboring nodes 328 

grows quadratically in the QW model, the probability of mutation to a new phenotype is 329 

smaller in the QW model for very short times. But at the temporal scale of quantum 330 

decoherence, the CRW and QW probabilities become comparable. Furthermore, for larger 331 

times, QW probabilities become much larger than the classical ones, irrespective of the 332 

distance of the initial node to the new phenotype. These results show that at a temporal 333 

scale comparable or slightly larger than the decoherence time, the QW becomes more 334 

efficient than the CRW at finding the new phenotype. 335 

 336 

Four phenotype networks (Ascl2, Foxa2, Mafb, and Bbx; 927 nodes) 337 

Similar to the two-phenotype network simulation, for the CRW there is a linear dependency 338 

on the probability of mutating to a novel phenotype as a function of time (Fig. 8). For the 339 

QW at the temporal scale of quantum decoherence, the quadratic dependence of the 340 

probability of mutating makes the quantum process to have a higher probability of mutating 341 

to a novel phenotype under most conditions compared to the CRW. Such behavior was 342 

observed regardless of the number of mutational steps (i.e., 1, 2 or 3) away from the novel 343 

phenotype (Fig. 8), turning the QW effectively more efficient at finding novel phenotypes 344 

under different starting conditions. Furthermore, the QW became more efficient at finding 345 
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novel phenotypes when the network increased in complexity in terms of the number of 346 

phenotypes and network size (compare QW results from Figs. 7 and 8). 347 

 348 

Discussion 349 

 350 

The field of quantum biology has steadily grown over the last 15 years, in particular due to 351 

research focused on photosynthesis and enzymatic processes (Brooks 2017). However, 352 

advances on how quantum mechanisms are relevant to biological evolution have stagnated 353 

during the last two decades, most likely due to a lack of an evolutionary framework where 354 

such quantum processes can be studied (but see Martin-Delgado 2012; Asano et al. 2015). 355 

Here, we have suggested that n-dimensional genotype networks (sensu Wagner 2011) 356 

represent an ideal ground where the relevance of quantum superposition for evolution can 357 

be explored. We have shown that under neutral scenarios (i.e., non-selective environments 358 

or closed systems) QW become more efficient at the temporal scale of decoherence time 359 

and under more complex scenarios (four-phenotype vs. two-phenotype networks) than 360 

CRW. The QW model has exhibited a more diverse behavior in terms of mutation 361 

probabilities to a novel phenotype, which is readily observed under a varied array of 362 

conditions (i.e., when starting the simulations at 1, 2 or 3 mutational steps away from novel 363 

phenotypes). Interestingly, the efficiency of QW at finding novel phenotypes increased 364 

when the network structure increased in terms of number of phenotypes and size. This 365 

suggests that as network complexity (i.e., number of phenotypes) and size (number of 366 

genotypes or nodes) increases, we can expect the QW mechanism to be a more efficient 367 

exploration device for evolution given its superposition property. Thus, in order to move 368 
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forward, the next step is to simulate QWs in open systems coupled to the environment, for 369 

example using dissipative Lindblad terms (e.g., Godbeer et al. 2015). 370 

 371 

If QW prove indeed to be more efficient than CRW in an open network system, then 372 

the still controversial theoretical and experimental evidence in favor of adaptive mutations 373 

(e.g., Hall 1995, Palmer 2012, Braun and David 2011, Livnat 2013) would find an 374 

empirical framework supporting them. Of course, our proposal (i.e., quantum evolution on 375 

n-dimensional networks) does not preclude the existence and commonality of Darwinian 376 

random mutations; it only provides a complementary framework to understand currently 377 

suggested adaptive mutations. An example of a theory expanding current evolutionary 378 

understanding of mutations is that of the writing phenotype (Livnat 2013), which suggests 379 

that mutations are non-random in the sense that there is genomic data showing specific 380 

regions with higher rates of mutations due to specific genome structures. Mechanisms 381 

generating such non-random mutations include non-allelic homologous recombination, 382 

non-homologous DNA end-joining, replication-based mechanisms, and transposition (see 383 

Livant 2013 for details). In the cases of both n-dimensional genotype networks (Wagner 384 

2009) and writing phenotypes (Livnat 2013) there are evolutionary constraints. In other 385 

words, non-random mutations (sensu Livnat 2013) are embedded in a genomic context that 386 

is modified as populations change from generation to generation. Hence, context dependent 387 

evolutionary constraints are dynamic because evolution shuffles the genomic context 388 

through time. However, such dynamic process does not necessarily mean that the procedure 389 

is blind to evolutionary direction within those constraints, which is where the quantum 390 

proposed mechanism of exploration on n-dimensional networks needs further study to 391 

determine its relevance. For example, by using dynamic adaptive networks. 392 
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 393 

Philosophical extensions of QW to epigenetics and niche construction 394 

 395 

Epigenetics investigates the regulatory mechanisms that during development lead to 396 

persistent and inducible heritable changes that do not affect the genetic composition of the 397 

DNA. Some of these changes can actually regulate the function of DNA without changing 398 

its base composition, via for example methyl groups (Jablonka and Lamb 2010). Epigenetic 399 

inheritance refers to those phenotypic variations that do not depend on DNA sequence 400 

variations, and that can be transmitted across generations of individuals (soma-to-soma) 401 

and cell lines (i.e., cellular epigenetic inheritance); such processes can lead to soft 402 

inheritance (Jablonka 2011). There are four basic types of epigenetic inheritance: 1) self-403 

sustaining regulatory loops, where following the induction of gene activity, the gene’s own 404 

product acts as a positive feedback regulator maintaining gene’s activity across cell 405 

generations. 2) Structural templating, where preexisting 3D structures serve as models to 406 

build similar structures in the next generation of cells. 3) Chromatin markings, where small 407 

chemical groups (e.g., methyl CH3) bind to DNA, altering/controlling gene activity, they 408 

can segregate during DNA replication and be reconstructed in daughter DNA molecules. 4) 409 

RNA-mediated inheritance, where silent transcription states are maintained by interactions 410 

between small RNA molecules and their complementary mRNA and DNA. These states 411 

can be transmitted to cells and organisms via an RNA replication system, also by having 412 

small RNAs modifying heritable chromatin marks, and by inducing heritable gene deletions 413 

(Rassoulzadegan 2011; see Carey 2012 for a gently general introduction to epigenetics). 414 

 415 
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What is most relevant for the proposed framework is the fact that environmental 416 

factors (e.g., heat shock, starvation, chemicals, stress in general) can directly (germ line) or 417 

indirectly (somatic alterations) induce developmental modifications via heritable epigenetic 418 

variations, which underlie developmental plasticity and canalization (Nijhout 2003, 419 

Jablonka and Raz 2009, Jablonka 2011). If we implement the n-dimensional network 420 

concept of Wagner (2011) to an epi-genome, we can obtain an epigenetic network on which 421 

the environment can easily induce state changes in the expression and functioning of genes 422 

and even induce deletions and amplifications (Jablonka and Lamb 2010, see also Asano et 423 

al. 2015). Moreover, the response to the environment would be faster when less mutational 424 

or epi-mutational steps are required in reference to an environmental challenge (e.g., Blount 425 

et al. 2012). This last proposition can explain why in “clonal” bacterial evolutionary 426 

experiments not all colonies respond at the same time to the same environmental challenge, 427 

some respond differently but with similar results and some do not respond at all during the 428 

length of the experiment (e.g., Woods et al. 2006, Stanek et al. 2009, Braun and David 429 

2011, Blount et al. 2012, Cooper 2012). The outcome will depend on exactly the structure 430 

of the genotype network and where on the genotype network evolution started during 431 

experiments. 432 

 433 

Finally, niche construction is another non-Darwinian force imposing novel 434 

challenges on organisms via changes generated on the environment by the same organisms 435 

(Odling-Smee et al., 2003). In other words, changes imposed on the environment by species 436 

modify the adaptive landscape and the n-dimensional genotype network across generations. 437 

Such changes might produce environmental feedbacks on both the same organisms 438 

producing the change and indirectly on those other organisms under the influence of the 439 
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novel environment. A novel environment will alter the probabilistic nature of the QW, 440 

changing the likelihood of evolutionary pathways (i.e., creating new evolutionary 441 

constraints), which according to our results would be better explored by the diverse 442 

behavior of the QW than CRW. 443 

 444 

The framework presented here provides a probabilistic process (via a quantum wave 445 

function) that might act as the mechanism for the evolutionary exploration of n-dimensional 446 

genotype networks within the constraints established by the available options (i.e., 447 

phenotypes). In this sense, our study complements the initial work of Ogryzko (1997) and 448 

McFadden and Al-Khalili (1999) by providing an evolutionary context (highly diverse and 449 

robust n-dimensional genotype networks), where a quantum wave function is the 450 

mechanism of evolutionary exploration. The process still needs to be investigated in much 451 

larger n-dimensional genotype networks and also under open system scenarios, where the 452 

environment might influence system’s behavior. Such analysis will determine if certain cell 453 

states (quantum superposition) have stronger interactions with current environmental 454 

conditions compared to other states, which subsequently promotes quantum decoherence 455 

toward those more likely options resulting in adaptive mutations (e.g., Asano et al. 2015; 456 

Godbeer et al. 2015). Those likely options will be given by the current genomic context of 457 

the population (i.e., the n-dimensional genotype network), which are not necessarily better 458 

or best for the current conditions, but are most likely in accordance to current context (i.e., 459 

evolutionary constraints; see Rozen et al. 2008 for a probable example of this effect). 460 

 461 

A way to prove our theory experimentally can be by using clonal bacterial colonies 462 

that start from different positions in the genotype network, in such a way that decoherence 463 
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times can be measured under the influence of a novel environment (e.g., lactose); such 464 

times should be repeatable across experiments (see Fig. 5). Modern –omics (e.g., genomics, 465 

transcriptomics) and biotechnology techniques can be used to construct specific bacterial 466 

lines for such experiments. In addition, it would be possible to analyze the epi-genome of 467 

plants, which are the organisms where this type of non-Darwinian evolutionary process is 468 

more common.  469 
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 480 

Figure Legends 481 

Fig 1. At the top, (a) shows a correct A-T base pairing, whereas (b) shows an A-T base pair 482 

with their hydrogen protons switched. At the bottom, on the left a correct G-C base pair and 483 

on the right two tautomeric base pairs (modified from McFadden and Al-Kahlili 2014). 484 

 485 

Fig 2. Decoherence process of a quantum wave function with three possible states under 486 

the influence of an environmental factor (measurement). a) Three possible bacterial cell 487 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.10.197657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

states (we only use three for simplicity, but it can include all n-dimensional neighbors in a 488 

genotype network, see Fig. 4), represented by state vectors. b) Superposition of the three 489 

state vectors, which results in a linear combination of eigen functions each with a 490 

probability Ci. c) The quantum wave function collapses toward the fit cell variant (i). When 491 

measuring time to decoherence (ii) all states of the quantum superposition under no 492 

selective conditions (i.e., no lactose) are indistinguishable by the bacterial cell, eventually 493 

collapsing to any of the possible states at TD1. However, when the environmental factor is 494 

present (i.e., lactose present) the time to decoherence will be shorter (TD2) and biased 495 

toward fit variants (i.e., adaptive mutation) able to grow and reproduce. Those bacterial 496 

cells that do not reduce toward the adaptive state, will remain in a quantum superposition. 497 

Thus, the quantum superposition will collapse to the adaptive state with higher probability 498 

under the environmental adaptive conditions (i.e., lactose present) compared to the time it 499 

takes to appear under non-selective environments (TD2 < TD1). 500 

 501 

Fig 3. a) A list of metabolic reactions, a 1 next to a reaction indicates that an organism has 502 

such a metabolic path otherwise there is a 0. b) A list of resources that can be used (1) or 503 

not (0) by a metabolic genotype in order to synthesize all required biomolecules (see the 504 

text for details; modified from Wagner 2011). 505 

 506 

Fig 4. Representation of metabolic genotypes and phenotypes in different dimensions 507 

(modified from Wagner 2011). Networks in one, two, and three dimensions, where vertices 508 

are labeled with the binary strings that correspond to each dimension (1 = presence of 509 

metabolic pathway, 0 = absence of metabolic pathway; see Fig. 3). Two versions of a 3D 510 

representation of a four-dimensional cube are shown (i.e., the shadow of a Tesseract), each 511 
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with its own section of a genotype network (i.e., network of white circles in upper panel 512 

and network of black circles in lower panel representing different phenotypes). Each line 513 

(i.e., link or edge) connecting two symbols represents a single mutational step. Genotype 514 

networks (those with same symbols) are vast across hyper-dimensions (genotype space), 515 

maintaining the same phenotype (i.e., robust to mutational changes across the network) 516 

even if genotype similarity is low (e.g., nodes on opposite sides of the genotype network). 517 

On the right side, we unfold the 4D cubes into 2D images for clarity. There, neighborhoods 518 

at different places of the genotype space are very diverse (different symbols inside dashed 519 

circles), which opens opportunities to find novel phenotypes. Some of the same 520 

evolutionary novelties can also be found at different neighborhoods, allowing for 521 

convergence. Each genotype network is connected to an n-number of other genotype 522 

networks via extra-dimensional bypasses (black double lines connecting genotype networks 523 

belonging to different phenotypic networks). 524 

 525 

Fig 5. A bacterial genotype network under two environments without lactose (top) and with 526 

lactose (bottom). The superpositions of three possible cell states and times to decoherence 527 

are depicted in the middle, to the right of each genotype network (see Fig 2 for details). On 528 

the right hand side, there are three alternative neighborhoods of the original genotype 529 

network shown on the left. Different decoherence times (TD) to reach the genotype capable 530 

of using lactose are illustrated, based on different paths followed on different 531 

neighborhoods of the genotype network. The time to decoherence from the middle network 532 

on the right hand side is shorter compared to the other two (i.e., TD3 < TD2 < TD1). 533 

 534 
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Fig 6. A subset of transcription factor genotype networks representing four phenotype 535 

networks (different colors) extracted from Genonets server (Khalid et al. 2016) and used for 536 

simulation analyses via QW and CRW. 537 

 538 

Fig 7. Simulation results for two phenotype networks (Foxa2 and Bbx; see Fig. 6). 539 

Probability of mutating to a novel phenotype as a function of time under the CRW (blue 540 

lines) and the QW (red lines) in log-log scale. Upper lines represent the average probability 541 

of simulations started at nodes that were one mutational step away from the novel 542 

phenotype; middle and lower lines are probability averages of nodes two and three 543 

mutational steps away from the novel phenotype, respectively. Shaded areas limited by 544 

dotted lines around the average lines represent the respective standard deviations of each 545 

simulation. The orange shaded area indicates the temporal estimates to decoherence time, 546 

and the vertical gray line is the time of a bacterial cell generation (i.e., approximately 20 547 

minutes). 548 

 549 

Fig 8. Simulation results for four phenotype networks (see Fig. 6). Probability of mutating 550 

to a novel phenotype as a function of time under the CRW (left column) and the QW (right 551 

column) in log-log scale. Top panels show results for nodes one mutational step away from 552 

a novel phenotype, middle panels for nodes two mutational steps away from novel 553 

phenotypes, and bottom panels started from three mutational steps away from novel 554 

phenotypes. The color of the different lines indicates the phenotype network where the 555 

simulation started (see Fig. 6). Shaded areas limited by dotted lines around the average 556 

lines represent the respective standard deviations of each simulation. Orange shaded areas 557 
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indicate the temporal estimates to decoherence time, and the vertical dotted lines are the 558 

time of a bacterial cell generation (i.e., approximately 20 minutes). 559 

 560 
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