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QUANTUM AUTOMORPHISM GROUPS OF FINITE GRAPHS
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(Communicated by David R. Larson)

Abstract. A quantum analogue of the automorphism group of a finite graph
is introduced. These are quantum subgroups of the quantum permutation
groups defined by Wang. The quantum automorphism group is a stronger
invariant for finite graphs than the usual automorphism group. We get a
quantum dihedral group D4.

1. Introduction

The problem of defining the quantum automorphism group of a quantum space
arises quite naturally in noncommutative geometry [3, 5]. In his paper [8], S. Wang
solves this problem for the finite space Xn with n points. The main step was
to formulate the universal problem that the quantum automorphism group must
solve. The constructed object Aaut(Xn) is a compact quantum group in the sense
of Woronowicz [9] and is called “the quantum permutation group on n symbols”.
Loosely speaking Aaut(Xn) is the C∗-algebra of functions on the usual permuta-
tion group where the commutativity relations have been forgotten (and is infinite-
dimensional for n ≥ 4). Wang also discusses the quantum automorphism groups
of noncommutative finite-dimensional C∗-algebras (see the remark at the end of
section 2). The representation theory of Aaut(Xn) has been described recently by
T. Banica [2]: the irreducible representations of Aaut(Xn) have the same fusion
rules as the ones of SO(3) (if n ≥ 4).

In this paper we discuss the quantum automorphism groups of finite graphs.
These are quantum subgroups of the quantum permutation groups. Our results
clearly illustrate the richness of Wang’s principle for quantum automorphism groups.
For example let us consider the graph with n vertices and without edges: the quan-
tum automorphism group is obviously the quantum permutation group. Now let us
consider the complete graph with n vertices where every pair of vertices is an edge:
the quantum automorphism group is the usual permutation group. This example
shows that the construction of the quantum automorphism group is far more in-
volved than a simple freeness procedure from the usual automorphism group to the
quantum one. It also shows that the quantum automorphism group is a stronger
invariant for finite graphs than the usual one.

For a special graph with 4 vertices and 4 edges (which is not a square) we obtain
a quantum dihedral group D4 whose C∗-algebra is infinite-dimensional.
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666 JULIEN BICHON

Our work is organized as follows. In section 2 we recall some basic definitions
and results on compact quantum groups and quantum automorphism groups and
in section 3 we describe the quantum automorphism groups of finite graphs.

2. Compact quantum groups and quantum automorphism groups

We first recall some basic notions and results which will be used freely in the
rest of the paper.

Let us recall that a compact quantum group [9, 11] is a pair (A,∆) where A
is a C∗-algebra (with unit) and ∆ : A −→ A⊗A is a coassociative ∗-homomorphism
such that the sets ∆(A)(A ⊗ 1) and ∆(A)(1 ⊗ A) are both dense in A ⊗A (where
⊗ stands for the minimal C∗-tensor product). By abuse of notation a compact
quantum group is often identified with its underlying C∗-algebra. A morphism
between compact quantum groups A and B is a ∗-homomorphism π : A −→ B such
that ∆ ◦ π = (π ⊗ π) ◦∆ ([7]).

Given a compact quantum group A, there is a canonically defined Hopf ∗-algebra
Ao (which we call the algebra of representative functions) which is dense in
A. The existence of the Haar measure on A [6, 11] shows that furthermore Ao

is unitarizable [9]: for every matrix u = (uij) ∈ Mn(A) such that ∆(uij) =∑
uik ⊗ ukj and ε(uij) = δij , there exists a matrix F ∈ GLn(C) such that the

matrix FuF−1 is unitary (in other words every Ao-comodule is unitarizable). If
π : A −→ B is a morphism of compact quantum groups, then π(Ao) ⊂ Bo and π is
a Hopf algebra morphism ([7]).

Conversely if Ao is a unitarizable Hopf ∗-algebra (a CQG algebra in [4]), the
upperbound of C∗-semi-norms exists on Ao (since Ao is generated by the entries of
unitary matrices) and is a C∗-norm (use the regular representation; see [4], 4.4).
Let C∗(Ao) be the enveloping C∗-algebra of Ao. Then C∗(Ao), endowed with the
obvious coproduct, is a compact quantum group. This construction is often useful
when one deals with universal problems ([10] or [8]). We will use it since it is
more precise than the direct C∗-construction for the definitions by generators and
relations (no additional relations from C∗-norms).

When Ao is a matrix Hopf ∗-algebra, i.e. is generated as a ∗-algebra by entries
uij of a matrix u = (uij) ∈Mn(Ao) such that ∆(uij) =

∑
uik⊗ukj and ε(uij) = δij

(this condition is equivalent for Ao to be a finite-type ∗-algebra), there is an easy
way to see if Ao is unitarizable: indeed Ao is unitarizable if and only if there are
matrices F ∈ GL(C) and G ∈ GLn(C) such that the matrices FuF−1 and GuG−1

are unitary; see [4], 2.4. (S. Wang pointed out that the proof of this proposition in
[4] is false. The conclusion is true, however.)

An action of a compact quantum group A on a C∗-algebra Z is a unital ∗-
homomorphism α : Z −→ Z ⊗ A such that there is a dense sub-∗-algebra Zo of Z
for which α restricts to a coaction α : Zo −→ Zo⊗Ao, i.e. Zo is a rightAo-comodule
algebra. The category of compact quantum transformation groups of Z is
the category whose objects are compact quantum groups acting on Z and whose
morphisms are coaction preserving morphisms of compact quantum groups (see [8]
for more details).

Definition 2.1 ([8], 2.3). Let Z be a C∗-algebra. The quantum automorphism
group of Z is a compact quantum group A acting on Z by α : Z −→ Z ⊗ A and
satisfying the following universal property:
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If B is a compact quantum group acting on Z by β : Z −→ Z ⊗ A, there is a
unique compact quantum group morphism π : A −→ B such that (1⊗ π) ◦ α = β.

When X is a compact space, the quantum automorphism group of X is the
quantum automorphism group of the C∗-algebra C(X).

Remarks. 1) When Z is a finite-dimensional C∗-algebra, it is natural to think that
the quantum automorphism group must be compact. For general C∗-algebras, the
object defined above should be called the compact quantum automorphism group.

2) It is clear that the quantum automorphism group, if it exists, is unique up to
isomorphism. It may not exist (see [8]).

Let n ∈ N∗ and let Xn be the space with n points. The C∗-algebra C(Xn) is the
universal ∗-algebra with generators (ei)1≤i≤n and relations e∗i = ei ; eiej = δijei
and

∑n
i=1 ei = 1 ; 1 ≤ i, j ≤ n. The following theorem gives the first example of a

quantum automorphism group:

Theorem 2.2 ([8], 3.1). Let Aoaut(Xn) be the universal (complex) algebra with
generators (xij)1≤i,j≤n and with relations

xijxik = δjkxij ; xjixki = δjkxji ;
∑
l

xil = 1 =
∑
l

xli , 1 ≤ i, j, k ≤ n.

1) There is a Hopf ∗-algebra structure on Aoaut(Xn) defined by

x∗ij = xij ; ∆(xij) =
∑
k

xik ⊗ xkj ; ε(xij) = δij ; S(xij) = xji , 1 ≤ i, j ≤ n.

Furthermore Aoaut(Xn) is a unitarizable Hopf ∗-algebra.
2) Let Aaut(Xn) be the enveloping C∗-algebra of Aoaut(Xn). There is an action of

Aaut(Xn) on C(Xn) defined by α(ei) =
∑
j ej ⊗ xji, and Aaut(Xn) is the quantum

automorphism group of the space Xn. The spectrum of Aaut(Xn) is the symmetric
group Sn.

The above quantum group is called the quantum permutation group on n
symbols. When n ≥ 4 then Aaut(Xn) is a noncommutative and infinite-dimensional
C∗-algebra.

Remark. Let Z be a finite-dimensional noncommutative C∗-algebra. Wang shows
in [8] that the quantum automorphism of Z does not exist. However if ψ = Tr is a
trace on Z, he shows the existence of the quantum automorphism group of the pair
(Z,ψ) (see [8] for the definition). We note here that this result can be obtained in
the algebraic category of quantum transformation groups of (Z,ψ), and the Hopf
algebra representing the algebraic quantum automorphism group is a unitarizable
Hopf ∗-algebra whose enveloping C∗-algebra is isomorphic with the quantum group
described in theorem 5.1 of [8].

3. Quantum automorphism group of a finite graph

In this paper a finite graph G = (V,E) is understood to be a pair G = (V,E)
which consists of a finite set of vertices V and a set of edges E ⊂ V × V .

Let s : E → V (resp. t : E → V ) be the source map (resp. the target map). The
source and target maps induce ∗-homomorphisms s∗, t∗ : C(V ) −→ C(E).

An (usual) automorphism of a graph is a permutation of the vertices which
preserves the set of edges.
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Definition 3.1. An action of a compact quantum group A on a finite graph
G = (V,E) consists of an action of A on the set of vertices α : C(V ) −→ C(V )⊗A
and an action of A on the set of edges β : C(E) −→ C(E) ⊗ A such that the
following diagram commutes:

(?)

C(V )⊗ C(V )
α⊗α−−−−→ C(V )⊗ C(V )⊗A

m◦(s∗⊗t∗)
y y(m◦(s∗⊗t∗))⊗idA

C(E)
β−−−−→ C(E)⊗A

where m : C(E) ⊗ C(E) → C(E) is the multiplication map of C(E) and α⊗α is
the tensor product of the coaction α by itself.

The quantum automorphism group of a finite graph G = (V,E) is a
compact quantum groupA acting on G by α : C(V ) −→ C(V )⊗A and β : C(E) −→
C(E)⊗A, and satisfying the following universal property:

If B is a compact quantum group acting on G by α′ : C(V ) −→ C(V )⊗ B and
β′ : C(E) −→ C(E) ⊗ B, there is a unique morphism of compact quantum groups
φ : A −→ B such that (id⊗ φ) ◦ α = α′ and (id⊗ φ) ◦ β = β′.

It is easy to see that this definition coincides with the usual one for compact
groups. In the group case the action on the edges is entirely determined by the
action on the vertices. This is also true in the quantum case (since the map m ◦
(s∗ ⊗ t∗) is surjective).

Notation. Let G = (V,E) be a finite graph with n vertices V = {1, ..., n} and
m edges E = {γ1, ..., γm}. Let (ei)1≤i≤n be the elements of C(V ) defined by
ei(k) = δik, 1 ≤ k ≤ n, and let (fj)1≤j≤m be the elements of C(E) defined by
fj(γl) = δjl, 1 ≤ l ≤ m.

Theorem 3.2. Let G = (V,E) be a finite graph with n vertices and m edges:
E = {γ1, ..., γm}. Let Aoaut(G) be the universal complex algebra with generators
(Xij)1≤i,j≤n and relations
(3.1)

XijXik = δjkXij ; XjiXki = δjkXji ;
n∑
l=1

Xil = 1 =
n∑
l=1

Xli , 1 ≤ i, j, k ≤ n,

(3.2) Xs(γj)iXt(γj)k = Xt(γj)kXs(γj)i = 0,

Xis(γj)Xkt(γj) = Xkt(γj)Xis(γj) = 0 , γj ∈ E, (i, k) 6∈ E,

(3.3) Xs(γj)s(γl)Xt(γj)t(γl) = Xt(γj)t(γl)Xs(γj)s(γl) , γj , γl ∈ E,

(3.4)
m∑
l=1

Xs(γl)s(γj)Xt(γl)t(γj) = 1 =
m∑
l=1

Xs(γj)s(γl)Xt(γj)t(γl) , γj ∈ E.

1) There is a Hopf ∗-algebra structure on Aoaut(G) defined by

X∗ij = Xij ; ∆(Xij) =
n∑
k=1

Xik ⊗Xkj ; ε(Xij) = δij ; S(Xij) = Xji ; 1 ≤ i, j ≤ n,

and Aoaut(G) is a unitarizable Hopf ∗-algebra.
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2) Let Aaut(G) be the enveloping C∗-algebra of Aoaut(G). The formulas

α(ei) =
n∑
k=1

ek ⊗Xki , 1 ≤ i ≤ n,

β(fj) =
m∑
l=1

fl ⊗Xs(γl)s(γj)Xt(γl)t(γj) , 1 ≤ j ≤ m,

define an action of Aaut(G) on G, and Aaut(G) is the quantum automorphism group
of G. The spectrum of Aaut(G) is the usual automorphism group of G.

Proof. Let I be the two-sided ideal of Aoaut(Xn) generated by relations (3.2), (3.3)
and (3.4). Obviously we have Aoaut(G) ∼= Aoaut(Xn)/I. It is easy to see that I is a
∗-ideal and hence Aoaut(G) is a ∗-algebra. We must prove that the maps ε, ∆ and
S of the theorem are well defined. It is easy to check that the character ε and the
anti-homomorphism S are well defined. Let γj ∈ E and (i, k) ∈ V ×V be such that
(i, k) 6∈ E. We have

∆(Xs(γj)iXt(γj)k) =
n∑
p,q

Xs(γj)pXt(γj)q ⊗XpiXqk

=
∑

p,q (p,q)∈E
Xs(γj)pXt(γj)q ⊗XpiXqk (by (3.2))

=
m∑
l=1

Xs(γj)s(γl)Xt(γj)t(γl) ⊗Xs(γl)iXt(γl)k = 0 (by (3.2)).

In the same way we have

∆(Xt(γj)kXs(γj)i) = 0 = ∆(Xis(γj)Xkt(γj)) = ∆(Xkt(γj)Xis(γj)).

Let γj , γl ∈ E. We have

∆(Xs(γj)s(γl)Xt(γj)t(γl)) =
n∑
i,k

Xs(γj)iXt(γj)k ⊗Xis(γl)Xkt(γl)

(by (3.2)) =
m∑
l′=1

Xs(γj)s(γl′)
Xt(γj)t(γl′ )

⊗Xs(γl′ )s(γl)
Xt(γl′)t(γl)

(by (3.3)) =
m∑
l′=1

Xt(γj)t(γl′)
Xs(γj)s(γl′ )

⊗Xt(γl′)t(γl)
Xs(γl′ )s(γl)

(by (3.2)) =
n∑
i,k

Xt(γj)iXs(γj)k ⊗Xit(γl)Xks(γl)

= ∆(Xt(γj)t(γl)Xs(γj)s(γl)).

Now let γj ∈ V . We have

∆(
m∑
l=1

Xs(γl)s(γj)Xt(γl)t(γj)) =
m∑
l=1

n∑
k,i

Xs(γl)iXt(γl)k ⊗Xis(γj)Xkt(γj)

(by (3.2)) =
m∑
l,l′

Xs(γl)s(γl′ )
Xt(γl)t(γl′)

⊗Xs(γl′)s(γj)
Xt(γl′ )t(γj)

= 1⊗ 1 = ∆(1) (by (3.4)).
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In the same way ∆(
∑m

l=1Xs(γj)s(γl)Xt(γj)t(γl)) = ∆(1). Therefore ∆ is a well
defined algebra morphism and in this way Aoaut(G) is a bialgebra. It is clear that
the antihomomorphism S is an antipode for this bialgebra and hence Aoaut(G) is a
Hopf ∗-algebra which is clearly unitarizable. There is an obvious surjective Hopf
∗-algebra morphism π : Aoaut(Xn) −→ Aoaut(G) defined by π(xij) = Xij .

2) By relations (3.1) and Theorem 2.2 we have an action α : C(V ) −→ C(V ) ⊗
Aaut(G) as defined in the theorem. Let γj , γl and γj′ ∈ E. By (3.3) we have

(Xs(γl)s(γj)Xt(γl)t(γj))
∗ = Xs(γl)s(γj)Xt(γl)t(γj)

and by (3.1), (3.2) and (3.3) we have

Xs(γl)s(γj)Xt(γl)t(γj)Xs(γl)s(γj′ )
Xt(γl)t(γj′ )

= δjj′Xs(γl)s(γj)Xt(γl)t(γj).

Finally using (3.4) we see that there is a ∗-homomorphism β : C(E) −→ C(E) ⊗
Aaut(G) as defined in the theorem and β is coassociative (see the calculations in 1)).
Let us check that the diagram (?) commutes. Let i, k ∈ V . We have α⊗α(ei⊗ek) =∑n
p,q ep⊗eq⊗XpiXqk. We also have s∗(ei) =

∑
l,s(γl)=i

fl and t∗(ek) =
∑

l,t(γl)=k
fl.

Hence

((m ◦ (s∗ ⊗ t∗))⊗ id) ◦ (α⊗α) =
n∑
p,q

∑
l,(p,q)=γl

fl ⊗XpiXqk

=
m∑
j=1

fj ⊗Xs(γj)iXt(γj)k.

On the other hand

β ◦m ◦ (s∗ ⊗ t∗)(ei ⊗ ek) =
∑

l,γl=(i,k)

m∑
j=1

fj ⊗Xs(γj)s(γl)Xt(γj)t(γl)

=
m∑
j=1

fj ⊗Xs(γj)iXt(γj)k.

In this way we have defined an action of Aaut(G) on the graph G.
Let B be a compact quantum group acting on G by α′ : C(V ) −→ C(V ) ⊗ B

and β′ : C(E) −→ C(E) ⊗ B. There are elements (aij)1≤i,j≤n of B such that
α′(ei) =

∑
j ej ⊗ aji and by Theorem 2.2 these elements satisfy relations (3.1) (the

elements aij belong to the algebra of representative functions Bo). There are also
elements (bjl)1≤j,l≤m of Bo such that β′(fj) =

∑
l fl⊗ blj and Theorem 2.2 ensures

that they satisfy the same relations as (3.1). By the commutativity of the diagram
(?), we have blj = as(γl)s(γj)at(γl)t(γj) and hence there is a surjective morphism of
compact quantum groups φ0 : Aaut(Xn) −→ B defined by φ0(xik) = aik. It remains
to check that the aik’s satisfy relations (3.2), (3.3) and (3.4). We have b∗lj = blj and
hence

at(γl)t(γj)as(γl)s(γj) = as(γl)s(γj)at(γl)t(γj) , γj , γl ∈ E,
and relations (3.3) hold. We have

∑m
l=1 blj = 1 =

∑m
l=1 bjl, ∀γj ∈ E and hence

relations (3.4) are satisfied. Using once again the commutativity of the diagram (?),
we get as(γj)iat(γj)k = 0 whenever (i, k) 6∈ E. Using the involution and the antipode
of Bo, it is easy to see that the other relations in (3.2) are fulfilled. Thus we have
a morphism of quantum groups φ : Aaut(G) −→ B such that (id ⊗ φ) ◦ α = α′
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and (id ⊗ φ) ◦ β = β′: this morphism is obviously unique and Aaut(G) is the
quantum automorphism group of G. The last statement follows immediately from
the universal property of Aaut(G). �

Let us take a look at some examples. First let us consider the graph G = (V,E)
with n vertices and E = ∅. It is obvious that Aaut(G) is the quantum permutation
group Aaut(Xn). Less trivially, let us consider the graph G = (V,E) with n vertices
V = {1, ..., n} and E = {(i, i), i ∈ E}. Then it is easy to check that relations (3.2),
(3.3) and (3.4) all follow from (3.1) and hence Aaut(G) = Aaut(Xn).

Now let us consider the complete graph G = (V,E) with n vertices and E =
V × V . Then relations (3.3) imply that Aaut(G) is a commutative C∗-algebra.
Since the spectrum of Aaut(G) is the usual automorphism group of G (in this case
the symmetric group Sn), we have Aaut(G) ∼= C(Sn). Hence the quantum auto-
morphism group and the usual one coincide in this example.

These simple examples show that the quantum automorphism group is a stronger
invariant for finite graphs than the usual automorphism group.

Another elementary example is the following one. Let us consider the polygonal
graph G with n vertices V = {1, ..., n} and E = {γ1, ..., γn} where γi = (i, i + 1),
1 ≤ i ≤ n − 1 and γn = (n, 1). It is easily seen that Aaut(G) ∼= C(Z/nZ), the
algebra of functions on the cyclic group Z/nZ.

We now examine a less trivial example:

Proposition 3.3. Let G = (V,E) be the graph with 4 vertices V = {1, 2, 3, 4} and 4
edges E = {γ1, γ2, γ3, γ4} where γ1 = (1, 2) , γ2 = (2, 1), γ3 = (3, 4) and γ4 = (4, 3).
Then Aaut(G) is a noncommutative infinite-dimensional C∗-algebra whose spectrum
is the dihedral group D4.

The quantum group above will be called the quantum dihedral group D4.

Proof. It is easily seen that the usual automorphism group of the above graph is a
finite group with 8 elements which is the dihedral group D4 and hence by Theorem
3.2 the spectrum of Aaut(G) is the group D4.

Let us now describe the ∗-algebra Aoaut(G). First let us translate relations (3.2).
We get the following relations (3.2)′:
X11X23 = X23X11 = 0 = X32X11 = X11X32,
X11X24 = X24X11 = 0 = X42X11 = X11X42,
X12X23 = X23X12 = 0 = X32X21 = X21X32,
X12X24 = X24X12 = 0 = X42X21 = X21X42,
X13X21 = X21X13 = 0 = X31X12 = X12X31,
X13X22 = X22X13 = 0 = X31X22 = X22X31,
X14X22 = X22X14 = 0 = X41X22 = X22X41,
X14X21 = X21X14 = 0 = X12X41 = X41X12,
X31X43 = X43X31 = 0 = X13X34 = X34X13,
X31X44 = X44X31 = 0 = X13X44 = X44X13,
X32X43 = X43X32 = 0 = X23X34 = X34X23,
X32X44 = X44X32 = 0 = X23X44 = X44X23,
X33X41 = X41X33 = 0 = X33X14 = X14X33,
X33X42 = X42X33 = 0 = X33X24 = X24X33,
X34X42 = X42X34 = 0 = X43X24 = X24X43,
X34X41 = X41X34 = 0 = X14X43 = X43X14.
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Relations (3.3) are translated in the following relations (3.3)′:
X11X22 = X22X11 , X31X42 = X42X31,
X12X21 = X21X12 , X32X41 = X41X32,
X13X24 = X24X13 , X33X44 = X44X33,
X14X23 = X23X14 , X34X43 = X43X34.

Relations (3.4) become relations (3.4)′:
X11X22 +X21X12 +X31X42 +X41X32 = 1 = X11X22 +X12X21 +X13X24 +X14X23,
X12X21 +X22X11 +X32X41 +X42X31 = 1 = X21X12 +X22X11 +X23X14 +X24X13,
X13X24 +X23X14 +X33X44 +X43X34 = 1 = X31X42 +X32X41 +X33X44 +X34X43,
X14X23 +X24X13 +X34X43 +X44X33 = 1 = X41X32 +X42X31 +X43X34 +X44X33.
Combining (3.1), (3.2)′, (3.3)′, (3.4)′ we get the following useful relations:
X11 = X22 = X11X22 = X22X11 , X12 = X21 = X12X21 = X21X12,
X13 = X24 = X13X24 = X24X13 , X14 = X23 = X14X23 = X23X14,
X31 = X42 = X31X42 = X42X31 , X32 = X41 = X32X41 = X41X32,
X33 = X44 = X33X44 = X44X33 , X34 = X43 = X34X43 = X43X34.
We are now able to describe the algebra Aoaut(G) in a simpler way. Let Bo be

the universal ∗-algebra with generators (yi)1≤i≤8 and relations

y∗i = y2
i = yi , 1 ≤ i ≤ 8 ; y1yi = 0 = yiy1 , 2 ≤ i ≤ 6 ;

y2yi = 0 = yiy2 , 3 ≤ i ≤ 6 ; y3yi = 0 = yiy3 , i ∈ {4, 7, 8} ;

y4yi = 0 = yiy4 , i ∈ {7, 8} ; y5yi = 0 = yiy5 , i ∈ {6, 7, 8} ;

y6yi = 0 = yiy6 , i ∈ {7, 8} ; y7y8 = 0 = y8y7 ;

y1 + y2 + y3 + y4 = y1 + y2 + y5 + y6 = 1 = y3 + y4 + y7 + y8 = y5 + y6 + y7 + y8.

The reader will easily check that there is a ∗-homomorphism ϕ : Bo −→ Aoaut(G)
defined by ϕ(y1) = X11, ϕ(y2) = X12, ϕ(y3) = X13, ϕ(y4) = X14, ϕ(y5) = X31,
ϕ(y6) = X32, ϕ(y7) = X33, ϕ(y8) = X34.

In the same way there is a ∗-homomorphism ψ : Aoaut(G) −→ Bo defined by
ψ(X11) = ψ(X22) = y1, ψ(X12) = ψ(X21) = y2, ψ(X13) = ψ(X24) = y3, ψ(X14) =
ψ(X23) = y4, ψ(X31) = ψ(X42) = y5, ψ(X32) = ψ(X41) = y6, ψ(X33) = ψ(X44) =
y7, ψ(X34) = ψ(X43) = y8.

We have ϕ ◦ψ = id and ψ ◦ϕ = id and therefore the ∗-algebras Bo and Aoaut(G)
are isomorphic.

Let us now show that Bo is noncommutative and infinite-dimensional. There is
a representation π : Bo −→M2(C) defined by

π(y1) =
(

1 0
0 0

)
, π(y2) =

(
0 0
0 1

)
, π(y7) =

(
1 0
1 0

)
, π(y8) =

(
0 0
−1 1

)
and π(y3) = π(y4) = π(y5) = π(y6) = 0. We have π(y1y7) = π(y1) while π(y7y1) =
π(y7): Bo is not commutative.

Let us suppose that Bo is finite-dimensional. Then Bo would be a finite-
dimensional C∗-algebra since Bo ∼= Aoaut(G). But π(Bo) is contained in the algebra
of lower-triangular matrices. This means that the representation π is not semisim-
ple: we have a contradiction. Hence Aaut(G) ∼= C∗(Bo) is infinite-dimensional. �

Proposition 3.3 gives a concrete example of a non-trivial quantum subgroup (i.e.
noncommutative and noncocommutative) of Aaut(Xn). It is expected that the
construction described in [1] furnishes many other examples of this kind.
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