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Brain storm optimization (BSO) is a novel population-based swarm intelligence algorithm based on the human brainstorming
process. BSO has been proven feasible and has been successfully applied to benchmark problems in the electromagnetic field. In this
paper, inspired by the mechanism of quantum theories, a novel variant of BSO algorithm, called quantum-behaved BSO (QBSO),
is proposed to solve an optimization problem modeled for Loney’s solenoid problem. The new mechanism improves the diversity of
population and also utilizes the global information to generate the new individual. Simulation results show that QBSO has better
ability to jump out of local optima and perform better compared with the basic BSO.
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I. INTRODUCTION

O
PTIMIZATION design of electromagnetic devices has

been a specific focus in the field of electromagnetic

computing all along, particularly, with the development of

the modern computer and the maturity of numerical analyzing

technology.

The design of an electromagnetic device usually involves the

features of the optimization process, such as the constraint of

restrictive conditions, the uncertainty of the solution, and the

approach of optimization. Thus, when the optimization prob-

lems cannot be mathematically represented as continuous and

differentiable functions, it is not feasible to use deterministic

optimization methods.

In recent years, evolutionary algorithms (EAs) including

particle swarm optimization (PSO) [1], ant colony optimiza-

tion [2], and genetic algorithm [3] have become very popu-

lar in the optimization community and successfully applied

to a wide range of electromagnetic optimization problems.

In contrast to traditional single-point-based algorithms, EAs

are the population-based algorithms, which are character-

ized by the ability to find a satisfactory solution in a very

short time, especially when the objective functions are not

deterministic.

Brain storm optimization (BSO) is a novel swarm intel-

ligence optimization algorithm, which was first proposed in

[4]–[6]. Unlike other EAs, BSO is inspired by the coopera-

tive behavior of human being, specifically, the brainstorming

process. As for the optimization problem, each position within

the searching space can be regarded as an idea. In each

generation of the evolution, the ideas are gathered into separate

groups by k-means clustering operation, while the superior one

is the cluster center of each group. In addition, the updating

of ideas is accomplished by adding the Gaussian factor or
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combining with ideas from other clusters. BSO has previously

proven itself as a worthy competitor to its better known rivals.

Shi [4] has tested the BSO algorithm on ten benchmark func-

tions, of which five are unimodal functions and the other five

are multimodal functions. Compelling simulation results have

shown that the BSO algorithm performed reasonably well.

Recently, Duan et al. [7] have proven that BSO outperforms

PSO on dc brushless motor benchmarks.

In this paper, BSO is exploited to solve Loney’s solenoid

problem [8]. However, the basic BSO runs into local optima

easily and cannot make full use of global information to update

ideas. Thus, inspired by the quantum mechanism [9], [10],

a novel variant of BSO algorithm, named Quantum-behaved

BSO (QBSO), is proposed here. Specifically, the mechanism

of quantum behavior, which causes indeterminacy of each idea

leads to a better ability to jump out of local optima. As a result,

the new mechanism improves the diversity of population and

also utilizes the global information.

The rest of this paper is organized as follows. The main con-

cepts and process of basic BSO are introduced in Section II.

Section III demonstrates the principles of QBSO. Section IV

formulates the Loney’s solenoid problem and its simplified

model. Then, the simulation results and analysis are given.

Our concluding remarks are contained in Section V.

II. OVERVIEW OF BSO ALGORITHM

BSO is a newly developed optimization algorithm inspired

by human being’s behavior of brainstorming. As presented in

[4] and [5], rudimentary elements of BSO algorithm are as

follows.

A. Population

The population in BSO is called swarm and each individual

is called an idea. Initially, each idea is randomly initialized

within the searching space. For every round of idea generation

in the brainstorming process, a fixed number of n ideas will be

generated before the problem owners pickup good ideas, then

these n ideas can be considered as a population of individuals

(or solutions) with population size n in the solution space.
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B. Cluster Center

In contrast to the traditional EAs, BSO presents a new

mechanism for enhancing the performance of the algorithm

by clustering ideas. During each generation, all the ideas are

first grouped into k clusters using k-means clustering method,

and then the best one in each cluster is chosen as the cluster

center. Occasionally, a randomly selected center is replaced by

a newly generated idea with a probability of preplace, keeping

the swarm from local optimum.

C. Individual Generation

For the ideas generated by piggyback, BSO first randomly

selects one cluster or two with predetermined possibility. Then,

the cluster center with higher priority is selected. Otherwise,

select another idea in the cluster. If a new idea is generated

by piggybacking one existing idea, it can be written as

x i j
new = x

i j
old + ξ N(µ, σ ). (1)

Or else, if a new idea is generated by piggybacking two

existing ideas (individuals), the result can be formalized as

x
i j
new = x

i j
old + ξ N(µ, σ )

x
i j
new = w∗

1 x
i j
old1 + w∗

2 x
i j
old2

(2)

where xnew
i j and xold

i j are the j th dimension of i th individual of

xnew and xold, respectively; N(µ, σ ) is the Gaussian random

value with mean µ and variance σ ; w1 and w2 are weight

values of the two ideas, respectively; and ζ is an adjusting

factor slowing the convergence speed down as the evolution

goes, which can be expressed as

ξ(t) = log sig

(

Ncmax/2 − Nc

ς

)∗

rand (3)

where log sig() is a logarithmic sigmoid transfer function;

Ncmax is the maximum iteration number; Nc denotes the

number of the current iteration; and ζ is for changing the

slope of log sig() function.

D. Idea Updating

After the new idea has been created, the newly generated

idea is evaluated. Subsequently, the crossover operation is

conducted and the best idea among the group is selected to

update the old one. Basically, the process above is repeated

until n new individuals have been generated to finish one

generation. The iteration goes until the maximum number of

iterations is achieved. Eventually, the best idea is output as the

optimal solution to the problem.

III. QBSO ALGORITHM

BSO algorithm has been proven to be robust and reliable

when it is applied to solve benchmark unimodal functions [4].

However, when we deeply think about the BSO process above,

the basic BSO algorithm has some drawbacks that limit its

further application, especially in the process of idea genera-

tion. As the search behaviors of BSO use a fixed logarithmic

sigmoid transfer function, the fixed function cannot make full

use of global information about the entire swarm. In addition,

the range of the distribution function is generally small, which

leads to ultimate random noise with extremely high probability

within a small range. As a result, it seems to be infeasible

when utilizing BSO to deal with the problems with the search

range is large [5].

In recent years, the quantum mechanism is exploited to

improve the performance of the algorithm. Sun et al. [9], [10]

have proposed a quantum-behaved PSO (QPSO) algorithm,

which utilizes Delta potential well modeled rather than the

Newtonian rules assumed in all preceding versions of PSO.

In this model, each particle is considered to have quantum

behavior, searching within the entire solution space. A large

number of experiments indicate that the convergence of QPSO

has been remarkably improved. In addition, its global search-

ing ability is much better than the standard PSO. Similarly, in

our proposed QBSO, we assume that every idea in the swarm

has quantum behavior. In quantum time–space framework,

the quantum state of an idea is depicted by a wave function

ψ(−→x , t) instead of the position updated only in BSO. The

probability density function of the position that each idea is

located on can be obtained from the Schrödinger equation. For

the purpose of measuring the position for each idea from the

quantum state to the classical, Monte Carlo simulation method

is used, thus the expression for the new individual yields

x i j
new =

{

qi j + (1i j /2)∗ ln(1/u) (rand < 0.5)

qi j − (1i j /2)∗ ln(1/u) (rand ≥ 0.5)
(4)

where u is a random value within (0, 1). qi j and li j can be

expressed as

qi j = rand∗x
j
gbest + (1 − rand)∗x

i j
cbest

li j = 2b|mbest j − x
i j
old|

(5)

where x
j
gbest denotes the j th dimension of the global best

idea, and x
j
cbest is the best idea in the selected cluster. The

parameter b decreases from 1 to 0.5 linearly, which can be

expressed as

b = 1 − 0.5∗ Nc

Ncmax
(6)

x i j
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⎧

⎪

⎪

⎨

⎪

⎪

⎩
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(
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∣
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∣
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K
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x
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∣
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)

∗ ln(1/u) + ξ N(µ, σ ) (rand < 0.5)

rand ∗ x
j
gbest + (1 − rand) ∗ x

i j
cbest −

(

b

∣

∣

∣

∣

k
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i=1

x
i j
cbest/k − x

i j
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∣

∣

∣
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(8)
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Fig. 1. Flow chart of our proposed QBSO.

and m
j
best is the mean value that can be written as

m
j
best =

K
∑

i=1

x
i j
cbest/K (7)

where b is the contraction–expansion coefficient, controlling

the convergence speed and m
j
best is the mean best position

of the population. In QBSO, replace (4) with (5)–(7), the

new idea adding the Gaussian disturbance can be updated

as (8), shown at the bottom of the previous page. There

are two advantages using quantum mechanism instead of

simple Gaussian distribution to generate new ideas. First,

as presented in [6], the random noise produced by Gaussian

distribution of the basic BSO algorithm is within the small

range most of the time, which is not suitable for the problem

in a large range. In our model, as individuals do not have
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fixed paths, they can appear anyplace. Thus, the diversity of

the population may be improved. In this paper, to demonstrate

whether the quantum mechanism improves the diversity of

the population, the coefficient of variance (CV) of the QBSO

and BSO is compared in Section IV. Second, as the search

behaviors of BSO use a fixed logarithmic sigmoid transfer

function, the fixed function cannot make full use of global

information about the entire swarm. In this paper, the best

idea in clusters is exploited to generate the new idea. It is

of use to make the individual find a better position with high

efficiency.

The procedure of QBSO is presented as follows.

Step 1: Initializing.

Step 2: Randomly create n ideas within the search place

and evaluate the ideas.

Step 3: Cluster n ideas by k-means algorithm.

Step 4: Update the center of a randomly selected cluster

with a predetermined probability preplace directly.

Step 5: Individual generation.

a) Pick a random cluster with a probability pone,

otherwise, randomly select two clusters to generate

new individuals.

b) If select one cluster, select the center of cluster

with a probability pone−center and go to Step 6.

Otherwise, combine two ideas from each cluster

that are randomly selected and go to Step 6.

c) Else, combine two cluster centers with a prob-

ability ptwo−center and go to Step 6. Otherwise,

combine two ideas from two clusters that are

randomly selected and go to Step 6.

Step 6: Based on the picked idea, the quantum mecha-

nism is exploited to generate the new idea and evaluate

the idea.

Step 7: Crossover.

Step 8: Compare the new idea with the old one, and the

better one is kept and recorded as the new idea.

Step 9: If n ideas have been generated, go to Step 9.

Otherwise, go to Step 5.

Step 10: Terminate whether the current number of

iterations Nc reaches the Ncmax. Otherwise, go to

Step 5.

The flow chart of QBSO is shown in Fig. 1.

IV. OPTIMIZATION RESULTS AND COMPARISON

A. Testing on Mathematical Functions

To validate the QBSO algorithm and to compare its per-

formance with those of an available BSO, PSO, and QPSO

algorithms, six benchmark functions listed in Table I are

tested.

As presented in [4], the parameter ζ in (3) determines the

slope of the log sig() functions. Therefore, it determines the

decreasing speed of the step size over iterations. Different

ζ should have different impacts on the performance of BSO

algorithms [4]. Experiments conducted by Shi show that the

tradeoff between unimodal function and multimodal function

is satisfactory when k is 25. Besides, the number of indi-

viduals is small, thus the number of clusters is set to be

TABLE I

BENCHMARK FUNCTIONS TESTED IN THIS PAPER

TABLE II

CONTROL PARAMETERS OF BSO AND QBSO

three, and all the other parameters are set to be the same

as those in [4]. The control parameters of BSO and QBSO

are given in Table II, and the parameters for PSO are given

in Table III.

Each function is tested with the same dimension setting 30,

respectively, and runs independently 50 times. The results of

simulation are presented in Table IV.

From Table IV, it is obvious that both BSO and QBSO

can obtain satisfactory results for most benchmark functions.

It can be seen from results that QBSO outperforms the BSO

considerably on Rastrigin and Schwefel’s p222. Moreover, it

also turns out that quantum mechanism can indeed improve

the performance of BSO and PSO, respectively. Furthermore,

the performance of QBSO is far better than that of the QPSO

with the higher quality of the solution and the stronger search

ability, as shown in the table.

To further compare the QBSO with other algorithms, the

evolution curves of the function’s mean value in independently

50 runs for PSO, QPSO, BSO, and QBSO are shown in Fig. 2.

In this paper, the fitness in figures denotes log10 of the function

value.

As shown clearly in Fig. 2, the convergence rate of

QBSO is the highest among those algorithms. Due to the
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TABLE III

CONTROL PARAMETERS OF PSO AND QPSO

Fig. 2. Comparative curves of the mean value for benchmark functions.
(a) Iterative curves of f1. (b) Iterative curves of f2. (c) Iterative curves of
f3. (d) Iterative curves of f4. (e) Iterative curves of f5. (f) Iterative curves
of f6.

quantum mechanism, QBSO has the better ability to jump

out of local optima, finding a better position with higher

efficiency.

For different data sets to have the same standard deviation,

the one with the smaller mean value fluctuates more strongly.

Thus, the standard deviation cannot reflect the discrete degree

of the different data sets objectively when the mean value

of is significantly different. In this paper, to demonstrate

whether the quantum mechanism improves the diversity of the

population, a set of graphs is drawn to compare the CV of the

QBSO and BSO. The coefficient of variation, which shows the

extent of variability in relation to mean of the population, is

defined as the ratio of the standard deviation σ to the mean µ.

The evolution curves of the function’s CV in 50 independent

runs for BSO and QBSO are shown in Fig. 3.

Fig. 3(a)–(f) shows the CV over 50 runs versus iterations for

the above six benchmark functions, respectively. At the begin-

ning of the search, QBSO has more diverse population than

that of original BSO except for Ackley function. Moreover,

TABLE IV

SIMULATION RESULTS ON BENCHMARK FUNCTIONS

according to the simulation results, our improvement enhances

the diversity of population most of the time. Therefore, QBSO

has the better ability to jump out of local optima.

B. Application

To evaluate the performance of the proposed algorithm

for electromagnetic design problems, QBSO is exploited to

solve Loney’s solenoid problem. Loney’s solenoid design

problem is a nonlinear benchmark problem in the field

of magnetostatic inverse problems [8]. Fig. 4 shows the

upper half plane of the axial cross section of the system.

The key point of Loney’s solenoid problem is to determine

the position and size of two correcting coils to create an

approximate constant magnetic field in the interval of the

axis [11]. The Loney’s solenoid problem has two variables,

which are s and l, and this problem can be solved according

to the following global ministration problem:

min F(s, l) (9)
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Fig. 3. Comparative curves of the CV for benchmark functions. (a) Iterative
curves of f1. (b) Iterative curves of f2 . (c) Iterative curves of f3. (d) Iterative
curves of f4. (e) Iterative curves of f5. (f) Iterative curves of f6.

Fig. 4. Upper half plane of the axial cross section of Loney’s solenoid
problem.

Fig. 5. Magnetic field calculation of a current sheet.

and the objective function F can be expressed as

F(s, l) =
Bmax − Bmin

B0
(10)

Fig. 6. Contour map of the objective function.

Fig. 7. Contour map of the objective function (F(s, l) < 1e − 7).

where Bmax and Bmin represent the maximum and minimum

value of the magnetic flux density in the interval (−z0, z0),

respectively; and B0 is the magnetic flux density at z0 = 0.

There are numerous methods that have been proposed and

applied in this benchmark to calculate the field behavior

along the axis, such as finite elements method or analytical

integration [12]. To simplify the problem, a new approach [11]

carrying less computation cost is presented here. In this paper,

we adopt Duan’s model [11].

As presented in [11], each coil is simplified to four coaxial

current sheets (Fig. 5). Thus, the magnetic flux density in the

interval can be determined as follows:

B =
1

2
µ0

(

J
�r

4

)

(cos β2 − cos β1) (11)

where �r = r4 − r3, or �r = r2 − r1. J�r
/

4 denotes current

intensity in dl. R’ is the radius of a contemporary sheet.

Contour map of the objective function is shown in Fig. 6.

Suppose the objective function is less than 1e − 7, then Fig. 7

is obtained.

From Figs. 6 and 7, it is obvious to see that there is only a

small region where the objective function is less than 1e − 7.

Therefore, it is in general a complicated function to optimize.

To verify the feasibility of QBSO, PSO, QPSO, BSO, and

QBSO approaches were applied to the benchmark through

numerous experiments. The parameters of PSO and QPSO
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TABLE V

SIMULATION RESULTS IN 50 RUNS

Fig. 8. Comparative curves of the mean value.

are the identical ones with those in Table I. Table II displays

in detail the control parameters of BSO and QBSO, yet the

maximum times of iteration denote 100 here. Each algorithm

is run independently 50 times, and the comparative results are

shown in Table V.

From Table V, we can conclude that QBSO outperforms

PSO, QPSO, and BSO obviously. It is apparent that QBSO

has the lowest average value, as well as the lowest standard

deviation value of its solutions. It should be noted that the

PSO is easy to run into local optima and not suitable for this

benchmark.

To further compare the QBSO with other algorithms, the

evolution curves of the function’s mean value in 50 indepen-

dent runs for PSO, QPSO, BSO, and QBSO are shown in

Fig. 8. An analysis of Fig. 8 shows that PSO has the drawback

of slow convergence speed and is very apt to trap local optima.

Though BSO has a fast convergence speed, it is easy to run

into the local optimum. However, the comparative curves show

a quantum-behaved method can help BSO and PSO escape

from possible local entrapment and obtain satisfactory tradeoff

between exploration ability and exploitation ability. The new

mechanism can improve the diversity of population and also

utilize the global information. As a result, the performance of

our proposed QBSO is much better than the basic PSO and

BSO. Although QBSO cannot find the best solution each time,

it can be applied to Loney’s solenoid problem efficiently.

V. CONCLUSION

This paper presented a novel QBSO algorithm for Loney’s

solenoid problem. BSO is a novel algorithm based on the

human brainstorming process. It has been proven feasible and

successfully applied to some benchmark problems. However, it

is easy to run into local optima for some multimodal functions

and does not make full use of the global information when

generating new individuals.

In this paper, we assume that every idea in the swarm

has quantum behavior, and the quantum state of an idea is

depicted by a wave function. The new mechanism improves

the diversity of population and also utilizes the global infor-

mation instead of simple Gaussian distribution to generate

new individual. The simulation results show that the QBSO

clearly improves on the performance of the basic method by

utilizing the randomness of quantum behavior. Besides, QBSO

has a fast convergence rate, the lowest average value, and the

lowest standard deviation value of its solutions among these

algorithms.
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