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Classical Belief Propagation:

the transfer matrix
® Solve system of N sites, compute probability

distribution of last site

® Add one more site and repeat
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Discrete set of states on each site: 0

Nearest neighbor Hamiltonian: H = Z hi’f,;_|_1

)
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Hamiltonian on first N sites: hV) = E hz’,z’—l—l
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Partition function for chain of N sites:

ZW) = Z exp(—BhM)

{0'1,...,0']\7}

Probability distribution:
1

P(N)(Ula .y ON) = 7(N)

exp(—BhY))

Probability of last site:

PN (on) = Z PN (gy,...,oN)

Recursion relation:
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Quantum belief
propagation:

® Analogue of probability on last site is
reduced density matrix

® Need window of several sites. Window size
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Quantum belief propagation:

Construct O such that; ,0(N+1) ~ 0N+1,0(N)O}L\r+1
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Algorithm:

® [nitialize reduced density matrix on first [ — 1
sites

® |terate completely positive map until
convergence

e Compute partition function from
normalization

® Observables: insert operator before tracing
on first site

Completely positive map: Pred — 111 (0N+1(p£g£ & 1N+1)O}L\;+1)



Performance:

® Computational effort : diagonalize operators
of dimension 2/ to compute O.

® Window size needed scalesas [ ~ v 3

® No Trotter error, very accurate at high
temperature

® Handle disorder by precomputing operators.

Heisenberg chain:  Xezact (Tnaz) = 0.146926279....
XQBP(me) — (0.146927031....

for 10-by-10 matrices diagonalized (<.l second CPU time)



Spin-1/2 Heisenberg Chain
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FIG. 1: Specific heat against temperature for o = 3 (dashed line),5 (dotted line), 7 (solid line). Curves that go negative are
from —33205(S7S7.,). while those that diverge positively are from 526?3 log(Z). Inset: lo = 9 and Bethe ansatz.



Spin-1/2 disordered chain:
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FIG. 1: Top: specific heat for the pure system. Middle: uniform susceptibility for the pure system (lop = 5,7,9 are black, red,
green respectively) and the disordered system (lo = 5,7,9 are blue, yellow, brown respectively). Bottom: dimer susceptibility
for the pure system (lp = 5,7,9 are black, red, green respectively) and the disordered system (lop = 5,7,9 are blue, yellow,
brown respectively).



QBP Equations:
Exact result for small change in H:

83 exp[—ﬁ(H + SA)] = Ts eXp(_ﬁHs) T eXp(_ﬂHs)n;[
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Perturbation at
classical term quantum term frequency omega

Integrate to add site:

1
O = exp(/ ds ns)
0



Conclusions

Accurate at high temperature

Works well on loopless models

Can we extend to loopy models!?

How do the different QBPs relate? (Poulin, Leifer)
Works well for disorder by precomputing O

A new kind of transfer matrix



