
Quantum Belief 
Propagation

M. B. Hastings, T-13 LANL



Classical Belief Propagation:
the transfer matrix

• Solve system of N sites, compute probability 
distribution of last site

• Add one more site and repeat

H =

∑

i

hi,i+1

h
(N)

≡

N−1∑

i=1

hi,i+1

σiDiscrete set of states on each site:

Nearest neighbor Hamiltonian:

Hamiltonian on first N sites:

1 2 3 4



Z
(N) =

∑

{σ1,...,σN}

exp(−βh
(N))

Partition function for chain of N sites:

Probability distribution:

Probability of last site:

Recursion relation:
P

(N+1)(σN+1) ∝
∑

σN

P
(N)(σN ) exp(−βhN,N+1)

P (N)(σ1, ...,σN ) =
1

Z(N)
exp(−βh(N))

P (N)(σN ) =
∑

{σ1,...,σN−1}

P (N)(σ1, ...,σN )



Quantum belief 
propagation:

• Analogue of probability on last site is 
reduced density matrix

• Need window of several sites.  Window size 
is 

ρ(N) = exp(−βh
(N))

l0 − 1

N N+1.....N + 2− l0

ρ
(N)
red = Tr1,...,N+1−l0(ρ

(N))



Quantum belief propagation:

Construct O such that: ρ
(N+1)

≈ ON+1ρ
(N)

O
†
N+1

ρ
(N+1)

= ON+1ONON−1...O
†
N−1O

†
N

O
†
N+1

N N+1.....N + 2− l0

Support of ON+1

ρ
(N+1)
red

= TrN+2−l0

(

ON+1(ρ
(N)
red

⊗ 1N+1)O
†
N+1

)



Algorithm:
• Initialize reduced density matrix on first          

sites

• Iterate completely positive map until 
convergence

• Compute partition function from 
normalization

• Observables:  insert operator before tracing 
on first site

l0 − 1

ρred → Tr1

(

ON+1(ρ
(N)
red

⊗ 1N+1)O
†
N+1

)

ρred → Tr1

(

S
z

1ON+1(ρ
(N)
red

⊗ 1N+1)O
†
N+1

)

Completely positive map:

Observables:



• Computational effort : diagonalize operators 
of dimension        to compute O.

• Window size needed scales as

• No Trotter error, very accurate at high 
temperature 

• Handle disorder by precomputing operators.  

Performance:

l0 ∼ vLRβ

2
l0

Heisenberg chain: χexact(Tmax) = 0.146926279....

χQBP (Tmax) = 0.146927031....

for 10-by-10 matrices diagonalized (<.1 second CPU time)



Spin-1/2 Heisenberg Chain
H =

∑

i

!Si ·
!Si+1

1
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FIG. 1: Specific heat against temperature for l0 = 3 (dashed line),5 (dotted line), 7 (solid line). Curves that go negative are
from −3β2∂β〈S

z

i S
z

i+1〉. while those that diverge positively are from β2∂2
β log(Z). Inset: l0 = 9 and Bethe ansatz.

thanks A. C. 
Klumper for data



Spin-1/2 disordered chain:
H =

∑

i

Ji
!Si ·

!Si+1 +

∑

i

Ki
!Si ·

!Si+2
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FIG. 1: Top: specific heat for the pure system. Middle: uniform susceptibility for the pure system (l0 = 5, 7, 9 are black, red,
green respectively) and the disordered system (l0 = 5, 7, 9 are blue, yellow, brown respectively). Bottom: dimer susceptibility
for the pure system (l0 = 5, 7, 9 are black, red, green respectively) and the disordered system (l0 = 5, 7, 9 are blue, yellow,
brown respectively).



O = exp(

∫
1

0

ds ηs)

Integrate to add site:

QBP Equations:

ηs = −

∫
dω (

β

2
+ βF (ω))Aω,s

∂s exp[−β(H + sA)] = ηs exp(−βHs) + exp(−βHs)η
†
s

Exact result for small change in H:

classical term quantum term
Perturbation at 

frequency omega



Conclusions

• Accurate at high temperature

• Works well on loopless models

• Can we extend to loopy models?

• How do the different QBPs relate?

• Works well for disorder by precomputing O

• A new kind of transfer matrix

(Poulin, Leifer)


