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Abstract

Using the Euclidean path integral approach with functional methods, we discuss the (g0 ϕ p)d

self-interacting scalar field theory, in the strong-coupling regime. We assume the presence of
macroscopic boundaries confining the field in a hypercube of side L. We also consider that the
system is in thermal equilibrium at temperature β −1. For spatially bounded free fields, the
Bekenstein bound states that the specific entropy satisfies the inequality S

E
< 2πR, where R

stands for the radius of the smallest sphere that circumscribes the system. Employing the strong-
coupling perturbative expansion, we obtain the renormalized mean energy E and entropy S for the

system up to the order (g0)
− 2

p , presenting an analytical proof that the specific entropy also satisfies

in some situations a quantum bound. Defining ε
(r)
d as the renormalized zero-point energy for the

free theory per unit length, the dimensionless quantity ξ = β
L

and h1(d) and h2(d) as positive
analytic functions of d, for the case of high temperature, we get that the specific entropy satisfies
S
E

< 2πR h1(d)
h2(d)

ξ. When considering the low temperature behavior of the specific entropy, we have
S
E

< 2πR h1(d)

ε
(r)
d

ξ 1−d. Therefore the sign of the renormalized zero-point energy can invalidate this

quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate
temperatures and in the low temperature limit, there is a quantum bound.
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1 Introduction

There have been a lot of activities discussing classical and quantum fields in the presence of
macroscopic boundaries. These subjects raise many interesting questions, since the boundaries
introduce a characterized size in the theory. For example, in the field-theoretical description
of critical phenomena, the confinement of critical fluctuations of an order parameter is able to
generate long-range forces between the surfaces of a film. This is known as statistical mechanical
Casimir effect [1] [2] [3]. These long-range forces in statistical mechanical systems is characterized
by the excess free energy due to the finite-size contributions to the free energy of the system
[4]. It should be noted that the critical-statistical mechanical Casimir effect is still waiting for
a quantitative satisfactory experimental verification. By the other hand, the electromagnetic
Casimir effect, where neutral perfectly conducting parallel plates in vacuum attract each other,
has been tested experimentally with high accuracy. The origin of the electromagnetic Casimir
effect, as pointed out by Casimir [5], is the fact that the introduction of a pair of conducting
plates into the vacuum of the electromagnetic field alters the zero-point fluctuations of the field
and thereby produces an attraction between the plates [6] [7] [8]. A still open question is how the
sign of the Casimir force depends on the topology, dimensionality of the bounding geometry or
others physical properties of the system [9] [10] [11] [12]. We should emphasize that the problem
of the sign of the renormalizad zero-point energy of free fields described by Gaussian functional
integrals is crucial for the subject that we are interested to investigate in this paper.

Another basic question that has been discussed in this scenario, when quantum fields interact
with boundaries, is about the issue that these systems may be subjected to certain fundamental
bounds. ’t Hooft [13] and Susskind [14], combining quantum mechanics and gravity, introduced
the holographic entropy bound S ≤ π c3 R2/h̄G [15]. This bound relates information not with the
volume, but with the area of surfaces. Since in a local quantum field theory on classical spacetime,
we expect that the number of degrees of freedom of a system must be proportional to the volume
of the system, the holographic principle implies a radical reduction in the number of degrees of
freedom we use to describe physical systems. Therefore we face here a basic difficulty of combining
the principles of quantum field theory with the holographic principle. To solve this puzzle one need
to explain how does locality emerges in a framework where Nature is described by a holographic
principle.

Another of these proposed bounds relates the entropy S and the energy E of the quantum
system, respectively, with the size of the boundaries that confine the fields. This is known as
the Bekenstein bound which is given by S ≤ 2π E R/h̄ c, where R stands for the radius of the
smallest sphere that circumscribes the system [16] [17] [18] [19] [20] [21]. Such bound was originally
motivated by considerations of gravitational entropy, a consistency condition between black hole
thermodynamics and ordinary statistical physics that could guarantee that the generalized second
law of thermodynamic is respected, which states that the sum of the black-hole entropy and the
entropy of the matter outside the black-hole does not decreases. For example, in a Schwarschild
black-hole in a four-dimensional spacetime, the Bekenstein entropy, which is proportional to the
area of the spherical symmetric system, exactly saturates the bound. As was stressed by ’t Hooft,
a black-hole is the most entropic physical system one can put inside a spherical surface [13]. When
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gravity is negligible, the bound must be valid for a variety of systems.
Although analytical proofs of this quantum bound on specific entropy for free fields has been

proposed in the literature, there are many examples pointing out that the Bekenstein bound is not
valid in many situations [22] [23] [24] [25] [26] [27]. An argument used in one of these examples
is based the fact that the renormalized zero-point energy of some free quantum field could be
negative [22] [23]. Some authors claim that if we take into account the boundaries responsible
for the Casimir energy, it is possible to compensate their negative energy yielding a positive total
energy which respects the Bekenstein bound, although this is far from a simple problem [28].
Deutsch claims that the quantum bound is inapplicable as it stands to non-gravitating systems,
since an absolute value of energy can not be observed, and also that for sufficient low temperatures,
a generic system in thermal equilibrium also violates the entropy bound. Unruh pointed out that
for system with zero modes, the specific entropy can not satisfies any bound.

We may observe that in all of these discussions a quite important situation has not been
discussed in the literature, at least as far we known. A step that remains to be derived is the
validity of the bound for the case of interacting fields, which are described by non-Gaussian
functional integrals, at least up to some order of the perturbation theory. Nonlinear interactions
can change dramatically the energy spectrum of the system and this might lead to the overthrow
of the bound [29] [30]. The difficulties that appear in the implementation of this program are
well known. A regularization and renormalization procedure can in principle be carry out in any
order of the perturbative expansion [31]. See for example the Refs. [32] [33] [34] [35], where the
perturbative renormalization were presented in first and second order of the loop expansion in the
λϕ4 self-interacting scalar field theory. We might attempt to show for a given self-interaction field
theory in which situations the specific entropy satisfies a quantum bound.

The aim of this paper is to study the (g0 ϕ p)d self-interacting scalar field theory in the strong-
coupling regime. We assume the presence of macroscopic boundaries that confine the field in a
hypercube of side L and also that the system is in thermal equilibrium with a reservoir. We

present an analytic proof that, up to the order (g0)
− 2

p , the specific entropy also satisfies in some

situations a quantum bound. Defining ε
(r)
d as the renormalized zero-point energy for the free

theory per unit length, ξ = β
L

and h1(d) and h2(d) as positive analytic functions of d, for the

case of high temperature, we get that the specific entropy satisfies the inequality S
E

< 2πR h1(d)
h2(d)

ξ.

When considering the low temperature behavior of the specific entropy, we have S
E

< 2πR h1(d)

ε
(r)
d

ξ d−1
.

We are establishing a bound in the strong-coupled system in the following cases: in the high
temperature limit and if the renormalized zero point-energy is a positive quantity, at intermediate
temperatures and also in the low temperature limit.

In the weak-coupling perturbative expansion, the information about the boundaries can be
implemented over the free two-point Schwinger function G0(m0; x − y) of the system. In the
strong-coupling perturbative expansion, we have to deal with the problem of how the boundary
conditions can be imposed. Let us briefly discuss the strong-coupling expansion in Euclidean
field theory at zero temperature. The basic idea of the approach is the following: in a formal
representation for the generating functional of complete Schwinger functions of the theory Z(V, h),
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we treat the Gaussian part of the action as a perturbation with respect to the remaining terms
of the functional integral, i.e., in the case for the (g0 ϕ p)d theory, the local self-interacting part,
in the functional integral. In the generating functional of complete Schwinger functions, V is the
volume of the Euclidean space where the fields are defined and h(x) is an external source. We are
developing our perturbative expansion around the independent-value generating functional Q0(h)
[36] [37] [38] [39] [40]. In the zero-order approximation, different points of the Euclidean space are
decoupled since the gradient terms are dropped [41] [42] [43] [44] [45] [46] [47] [48] [49].

The fundamental problem of the strong-coupling expansion is how to give meaning to the
independent-value generating functional and to this representation for the Schwinger functional.
One attempt is to replace the Euclidean space by a lattice made by hypercubes. A naive use of
the continuum limit of the lattice regularization where one simply makes use of the central limit
theorem for the independent-value generating functional leads to a Gaussian theory. A solution to
this problem was presented by Klauder long time ago [37] [40] [49]. The modification which allows
to avoid this limitation is a change in the definition of the measure in the functional integral. In
the usual approach one adopts a measure, which possess local translational invariance. Instead
we can use the non-translational invariant measure, [dφ] =

∏
x

d φ(x)
|φ(x)| .

There is another point that must be considered. There are some analytical and numerical
evidences based fundamentally in the results of Frohlich [50] and Aizenman and Graham [51],
suggesting that the (λϕ4)d≥ 4 field theory constructed as a scaling limit of ferromagnetic lattice
field theory, is non-interacting. If the only non-perturbative solution of (λϕ4)d=4 field theory is
the trivial one, how can it have a non-trivial renormalized perturbative series [52]? Gallavottti
[53] concludes that could be a different regularization procedure which would converges to a non-
trivial solution. The key point is that with an appropriate replacement in the path integral measure
[dφ] =

∏
x dφ(x), which possess local translational invariance, by the non-translational invariant

measure made the scalar model non-trivial.
Let us remark that, in the strong-coupling regime, assuming that the source is constant, we

can perform the perturbative expansion around a independent-value generating function, up to

the order (g0)
− 2

p , and it is possible to split ln Z(V, h) in two contributions: one that contains only
the independent-value generating function and other that contains the spectral zeta-function.
Therefore, in order to obtain the thermodynamic quantities, one must give a operational meaning
to the independent-value generating function, and, as discussed before, implement the boundary
conditions. To implement boundary conditions, we use the spectral zeta-function method [54] [55]
[56] [57] [58]. Quite recently a very simple application of this formalism was presented [59] [60].

The organization of the paper is as follows: In section II we discuss the strong-coupling expan-
sion for the (g0 ϕ p)d theory. In section III we discuss he free energy and the spectral zeta-function
of the system. In section IV we show that it is possible to obtain in some situations a quantum
bound in the considered model. Finally, section V contains our conclusions. In the appendix
A we present the Klauder’s result, as the formal definition of the independent-value generating
functional derived for scalar fields in a d-dimensional Euclidean space. In the appendix B we proof
that the spectral zeta-function ζD(s) evaluated in the extended complex plane at s = 0 vanishes.
To simplify the calculations we assume the units to be such that h̄ = c = kB = 1.
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2 The strong-coupling perturbative expansion for scalar

(g0 ϕp)d theory

Let us consider a neutral scalar field with a (g0 ϕ p) self-interaction, defined in a d-dimensional
Minkowski spacetime. The vacuum persistence functional is the generating functional of all vac-
uum expectation value of time-ordered products of the theory. The Euclidean field theory can
be obtained by analytic continuation to imaginary time allowed by the positive energy condition
for the relativistic field theory. In the Euclidean field theory, we have the Euclidean counterpart
for the vacuum persistence functional, that is, the generating functional of complete Schwinger
functions. In a d-dimensional Euclidean space, the self-interaction contribution to the action is
given by

SI(ϕ) =
∫

d dx
g0

p !
ϕ p(x). (1)

The basic idea of the strong-coupling expansion at zero temperature is to treat the Gaussian
part of the action as a perturbation with respect to the remaining terms of the action in the
functional integral. Let us assume a compact Euclidean space with or without a boundary, where
the volume of the Euclidean space is V . Let us suppose that there exists an elliptic, semi-
positive, and self-adjoint differential operator O acting on scalar functions on the Euclidean space.
The usual example is O = (−∆ + m2

0 ), where ∆ is the d-dimensional Laplacian. The kernel
K(m0; x, y) ≡ K(m0; x − y) is defined by

K(m0; x − y) =
(
−∆ + m2

0

)
δd(x − y). (2)

Using the fact that the functional integral which defines Z(V, h) is invariant with respect to the
choice of the quadratic part, let us consider a modification of the strong-coupling expansion. We
split the quadratic part in the functional integral which is proportional to the mass squared in two
parts; one in the derivative terms of the action, and the other in the independent value generating
functional. The Schwinger functional can be defined by a new formal expression for the functional
integral given by

Z(V, h) = exp

(
−1

2

∫
ddx

∫
ddy

δ

δh(x)
K(m0, σ; x − y)

δ

δh(y)

)
Q0(σ, h), (3)

where Q0(σ, h), the new independent value functional integral, is given by

Q0(σ, h) = N
∫

[dϕ] exp

(∫
ddx

(
−1

2
σ m2

0 ϕ2(x) − g0

p !
ϕp(x) + h(x)ϕ(x)

))
, (4)

and the modified kernel K(m0, σ; x − y) that appears in Eq. (3), is defined by

K(m0, σ; x − y) =
(
−∆ + (1 − σ)m2

0

)
δd(x − y), (5)
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where σ is a complex parameter defined in the region 0 ≤ Re (σ) < 1.
The factor N is a normalization that can be found using that Q0(σ, h)| h=0 = 1. Observe

that the non-derivative terms which are non-Gaussian in the original action do appear in the
functional integral that defines Q0(σ, h). At this point it is convenient to consider h(x) to be
complex. Consequently h(x) = Re(h) + i Im(h). In the paper we are concerned with the case
Re(h) = 0.

Since we are assuming a spatially bounded system in equilibrium with a thermal reservoir
at temperature β−1, the strong-coupling expansion can be used to compute first the partition
function defined by Z(β, Ω, h)| h=0, where h is a external source and we are defining the volume of
the d−1 manifold, Vd−1 ≡ Ω. From the partition function we define the free energy of the system
given by F (β, Ω) = − 1

β
ln Z(β, Ω, h)| h=0. This quantity can be used to derive the mean energy

E(β, Ω), defined as

E(β, Ω) = − ∂

∂β
ln Z(β, Ω, h)| h=0, (6)

and the canonical entropy S(β, Ω) of the system in equilibrium with a reservoir with a finite size
given by

S(β, Ω) =
(
1 − β

∂

∂β

)
ln Z(β, Ω, h)|h=0. (7)

In the next section we will show that in a particular situation it is possible, up to the order

(g0)
− 2

p to split ln Z(β, Ω, h) into two parts: the first one that contains only the independent-value
generating function and the second one that has the information on the boundary condition and
it is given by derivative of the spectral zeta-function.

3 The independent-value generating functional and the

spectral zeta-function

We are interested in global quantities. For simplicity we are assuming that the external source
h(x) is constant. In this situation we call ln Z(V, h) as a generating function. At zero temperature,

in the leading-order approximation (up to the to the order (g0)
− 2

p ) we can write

ln Z(V, h) = − 1

2Q0(σ, h)

∂2

∂ h2
Q0(σ, h)

∫
ddx

∫
ddy K(m0, σ; x − y). (8)

Since we are introducing boundaries in the domain where the field is defined, the spectrum of the
operator D = (−∆ + (1 − σ)m2

0 ) has a denumerable contribution, and an analytic regularization
procedure can be used to control the divergences of the theory.
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In order to impose boundary conditions the functional integral must be taken over functions
restricted to the geometric configurations. The generating function can be rewritten as

ln Z(β, Ω, h) =
1

Q0(σ, h)

∂2

∂ h2
Q0(σ, h)

(
−α

2
+

1

2

d

ds
ζD(s)| s=0

)
, (9)

where α is a infinite constant and ζD(s) is the spectral zeta-function associated with the operator
D.

Let us consider now the situation in which the system is finite along each one of the spatial
dimensions, i.e., xi ∈ [0, L], i = 1, 2, ..., d − 1. For the Euclidean time we assume periodic
boundary conditions (Kubo-Martin-Schwinger KMS [61] [62] conditions) and for the Euclidean
spatial dimensions we assume Dirichlet-Dirichlet boundary conditions. We call this latter situation
”hard” boundaries. See for example the Ref. [63]. For different kinds of confining boundaries see
[64] [65]. The choice of the hard boundary provides an easy solution to the eigenvalue problem, so
that explicit and complete calculation using the spectral-zeta function can be performed without
difficulty.

It follows that the operator D has the spectrum given by λn1, ... , nd
where

λn1, ... , nd
=
[(

n1π

L

)2

+ ... +
(

nd−1π

L

)2

+
(

2nd π

β

)2

+ (1 − σ)m2
0

]
, (10)

n1, n2, ... , nd−1 are natural numbers and nd are integer numbers. The spectral zeta-function asso-
ciated with the operator D in this situation reads

ζD(s) =
∞∑

n1,..., nd

λ−s
n1,..., nd

, (11)

where s is a complex parameter. The series above converges for Re s > d
2

and its analytic
continuation defines a meromorphic function of s, analytic at s = 0. To take into account the
scaling properties we should have to introduce an arbitrary parameter µ with dimension of a mass
to define all the dimensionless physical quantities and in particular make the change

1

2

d

ds
ζD(s)| s=0 → 1

2

d

ds
ζD(s)| s=0 − 1

2
ln
(

1

4πµ2

)
ζD(s)| s=0. (12)

Before continue, it is possible to show that there is no scaling in the situation that we are interested
in. Let us first show that there is no scaling when the length of the size of the hypercube is large
compared with β. The spectral zeta function in this situation is given by

ζD(s) ≡ V

(2π)d−1β

∞∑
n=−∞

∫
dd−1k

1(
k2 + (2πn

β
)2 + (1 − σ) m2

0

)s . (13)
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Defining the quantity ν 2 =
(

β
2π

)2 (k2 + (1 − σ) m2
0

)
, we have that the spectral zeta function can

be written as

ζD(s) =
V

(2π)d−1β

(
β

2π

)2s ∫
dd−1k

∞∑
n=−∞

1

(ν 2 + n 2)s
. (14)

Here, it is useful to define a modified Epstein-Hurwitz zeta-function in the complex plane s, ζ(s, ν)
by:

ζ(s, ν) =
∞∑

n=−∞
(n2 + ν2)−s, ν2 > 0. (15)

Note that we wrote the spectral zeta function in terms of the modified Epstein-Hurwitz zeta-
function. The series defined by Eq.(15) converges absolutely and defines in the complex s plane
an analytic function for Re(s) > 1

2
. It is possible to analytically extend the modified Epstein-

Hurwitz zeta-function where the integral representation is valid for Re(s) < 1, [66] [67]. For a
different representation for the analytic extension of the modified Epstein-Hurwitz zeta function
in terms of the modified Bessel function Kα(z) or the Macdonald’s function, see Ref. [68]. As we
discussed, the series representation for ζ(s, ν) converges for Re(s) > 1

2
and its analytic continuation

defines a meromorphic function of s which is analytic at s = 0. The modified Epstein-Hurwitz
zeta-function has poles at s = 1

2
,−1

2
, etc. It is not difficult to show that the values for the modified

Epstein-Hurwitz zeta function ζ(s, ν), at s = 0 and ∂
∂s

ζ(s, ν)|s=0 are given respectively by

ζ(s, ν)|s=0 = 0, (16)

and also
∂

∂s
ζ(s, ν)|s=0 = −2 ln (2 sinh πν). (17)

Therefore, there is no scaling in this situation. The same result was obtained by Hawking in Ref.
[55]. For the case of d = 4 and two sumations, using the Refs. [66] [67] and [68], is easy to prove
that in the presence of boundaries the ζD(s)| s=0 vanishes, therefore there is no need for scaling
in this situation also. This result can be generalized. The spectral zeta-function is related to the
heat-kernel or diffusion operator via a Mellin transform. The trace of the diffusion operator is
the integral of the diagonal part of the heat-kernel over the manifold. It is possible to perform an
asymptotic expansion for the heat-kernel and this asymptotic expansion shows that the spectral
zeta-function is a meromorphic function of the complex variable s possessing simple poles where
the residues of the poles depends on the Bn coefficients which depends on the Seeley-DeWitt
coefficients, the second fundamental form on the boundary and the induced geometry on the
boundary. See for example the Ref. [56] and [69]. It is possible to show that the polar structure of
the analytic extension of the spectral zeta function in a compact manifold with boundary is given
by

ζD(s) =
1

(4π)
d
2

1

Γ(s)

[ ∞∑
n=0

Bn

n − d
2

+ s
+ g2(s)

]
, (18)



CBPF-NF-022/07 8

for n integer or odd-half integer, where g2(s) is an analytic function in C. As was stressed by Blau
et al [70], in a four dimensional flat spacetime with massless particles and thin boundaries the
geometric coefficient B2 vanishes. This result can be generalized for the hypercube with Dirichlet
boundary conditions (see the appendix A). Therefore in the case that we are interested there is
no scaling.

Let us study in Eq. (9) the contribution arising from the spectral zeta-function which takes
into account the geometric constrains upon the scalar field. Using the spectrum of the D operator
give by Eq. (10) and the definition of the spectral zeta-function given by Eq. (11), we get that
the derivative of the spectral zeta-function in s = 0 yields

d

ds
ζD(s)| s=0 = −

∞∑
�nd−1=1

∞∑
nd=−∞

(
ln
((

π β q

L

)2

+ (2πnd)
2
)

+ ln

(
1 +

a2β2

4n2
dL

2 + q2β2

))
, (19)

where nd−1 = (n1, n2, ..., nd−1), q2 = n2
1 + n2

2 + ... + n2
d−1 and a2 =

(
(1−σ)m2

0L2

π2

)
. Note that in Eq.

(19) we are using that ζ(s, ν)|s=0 = 0. Using the following identity [71]

ln

((
π β q

L

)2

+ (2πnd)
2

)
=
∫ (π β q

L
)2

1

dθ2

θ2 + (2πnd)2
+ ln

(
1 + (2πnd)

2
)
, (20)

we can see that the first term in the right hand side of Eq. (19) gives a divergent contribution.
To proceed we use another useful identity given by

∞∑
nd=−∞

1

θ2 + (2πnd)2
=

1

2θ

(
1 +

2

eθ − 1

)
. (21)

Using both identities given by Eq. (20) and Eq. (21), it is possible to express the double summation
that appears in Eq. (19) by a single summation given by

∞∑
�nd−1=1

∞∑
nd=−∞

ln

((
π β q

L

)2

+ (2πnd)
2

)
= 2

∞∑
�nd−1=1

∫ (π β q
L

)

1
dθ
(

1

2
+

1

eθ − 1

)
+ α1, (22)

where α1 =
∑∞

�nd−1=1

∑∞
nd=−∞ ln

(
1 + (2πnd)

2
)
. Carrying out the θ integration, we finally arrive

that Eq. (22) can be written as

∞∑
�nd−1=1

∞∑
nd=−∞

ln

((
π β q

L

)2

+ (2πnd)
2

)
= 2

∞∑
�nd−1=1

(
π β q

2L
+ ln

(
1 − e−

π β q
L

))
+ α2 , (23)

where α2 = α1 −∑∞
�nd−1=1

(
1+2 ln(1−e−1)

)
. Since this divergent contribution α2 is β-independent

we will see that can be eliminated using the third law of thermodynamics. The first term on the
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right side of Eq. (23) is a divergent contribution, corresponding to the zero-point energy term.
Using the following mathematical result [72] [73] given by

∞∏
n=−∞

(
1 +

a2

n2 + b2

)
=

sinh2(π
√

a2 + b2)

sinh2(π b)
, (24)

we can write the last term of Eq. (19) in a more manageable way. Using the Eq. (23) and Eq.
(24), the derivative of the spectral zeta-function in s = 0 can be rewritten as

d

ds
ζD(s)| s=0 = −2

∞∑
�nd−1=1

⎡
⎣ln

⎛
⎝sinh

(
πβ
2L

√
q2 + a2

)
sinh

(
πβq
2L

)
⎞
⎠+ ln

(
1 − e−

π β q
L

)
+

π β q

2L

⎤
⎦− α2 . (25)

It is possible to show that in the finite temperature case the independent-value generating function
Q0(σ, h) satisfies Q0(σ, h)|

h=σ=0
= 1, and

∂2

∂ h2
Q0(σ, h)| h=σ=0 =

Γ(2
p
)

2p g
2
p

0 (p !)
p
2

. (26)

See the appendix A for the derivation. In the next section we show that it is possible to obtain
a quantum bound in the spatially bounded system defined by a self-interacting scalar field in the
strong-coupling regime, in high temperatures. As we will see, for the cases of intermediate or
low temperatures, the sign of the renormalized zero-point energy is crucial for the validity of a
quantum bound in the specific entropy.

4 The specific entropy for strongly coupled (g0 ϕp)d theory

In this section we compute the specific entropy S
E

of the system. For simplicity, let us define
ln Z(β, Ω, h)| h=0 = ln Z(β, Ω). From Eq. (6) and Eq. (7), and using for simplicity that the mean
energy E(β, Ω) = E and the specific entropy S(β, Ω) = S, is given by

S

E
= β − ln Z(β, Ω)

(
d

dβ
ln Z(β, Ω)

)−1

. (27)

Substituting Eq. (25) and Eq. (26) in Eq. (9) we have that lnZ(β, Ω) is given by

ln Z(β, Ω) = − Γ(2
p
)

2p (p !)
p
2 g

2
p

0

(
α ′

2
+ I2(β)

)
, (28)
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where α ′ = α + α2 and the quantity I2(β) is given by

I2(β) =
∞∑

�nd−1=1

⎡
⎣ln

⎛
⎝sinh

(
πβ
2L

√
q2 + a2

)
sinh

(
πβq
2L

)
⎞
⎠+ ln

(
1 − e−

π β q
L

)
+

π β q

2L

⎤
⎦ . (29)

Defining C1 and C2 = −2C1

α ′ that depend only of p and g0 and do not depend on β as

C1 = − α ′ Γ(2
p
)

4p (p !)
p
2 g

2
p

0

, (30)

the quantity ln Z(β, Ω) can be written in a general form as

ln Z(β, Ω) = C1 − C2 I2(β). (31)

It is worth to mention that the quantity C1 corresponds to a divergent expression, C2 is finite and
the summation term in the right-hand side of Eq. (25) is proportional to the zero-point energy. In
order to renormalize ln Z(β, Ω) we first can use the third law of thermodynamics. The derivative
of ln Z(β, Ω) with respect of β yields

d

dβ
ln Z(β, Ω) = −C2

d

dβ
I2(β), (32)

where the derivative of I2(β) with respect to β is given by

d

dβ
I2(β) =

π

2L

∞∑
�nd−1=1

((√
q2 + a2 coth

(
πβ

2L

√
q2 + a2

)
− q coth

(
πβ q

2L

))
+

2 q

e
π β q

L − 1
+ q

)
. (33)

Substituting Eq. (31) and Eq. (32) in the definition of the entropy given by Eq. (7), we have that
the entropy of the system can be written as

S = C1 − βC2

(
I2(β)

β
− d

dβ
I2(β)

)
. (34)

This expression of the entropy must satisfy the third law of thermodynamics, i.e., the entropy of
a system has a limiting property that limβ→∞ S = 0. To proceed, lets analyze the limit given by

lim
β→∞

I2(β)

β
= lim

β→∞
d

dβ
I2(β) =

πa2

2L

∞∑
�nd−1=1

1√
q2 + a2 + q

+
π

2L

∞∑
�nd−1=1

q . (35)

Substituting Eq. (35) in Eq. (34), and using the third law of thermodynamics, we get

lim
β→∞

S = C1 = 0 . (36)
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Therefore the first step to find a finite result for ln Z(β, Ω), was achieved, since we were able to
renormalize C1 to zero using the third law of thermodynamics. After this step we have

ln Z(β, Ω) = −C2 I2(β) . (37)

Note that in the ln Z(β, Ω) expression (see Eq. (29)) we still have the contribution coming from
the zero-point energy, which is given by

E0 =
π

2L

∞∑
�nd−1=1

(n2
1 + n2

2 + ... + n2
d−1)

1
2 . (38)

After an analytic continuation we obtain the renormalized zero-point energy defined by E
(r)
0 , and,

consequently, a finite result for lnZ(β, Ω).
Substituting Eq. (37) in Eq. (27) we can see that for the case a = 0, i.e., the massless case,

the quotient S
E

yields
S

E
= 2πR Td(ξ) , (39)

where we are defining the dimensionless variable ξ given by ξ = β/L. Since the field is confined in
a hypercube, the radius of the smallest (d − 1)-dimensional sphere that circumscribe this system

should be given by R = 1
2

√
(d − 1) L. The function Td(ξ) defined in Eq. (39) is given by

Td(ξ) =
1

π
√

d − 1

ξ Pd(ξ) + Rd(ξ)

ε
(r)
d + Pd(ξ)

, (40)

where ε
(r)
d = LE

(r)
0 and the positive functions Pd(ξ) and Rd(ξ) are defined respectively by

Pd(ξ) =
∞∑

�nd−1=1

π q
(
eπ ξ q − 1

)−1
(41)

and

Rd(ξ) = −
∞∑

�nd−1=1

ln
(
1 − e−π ξ q

)
. (42)

Now let us study the function Td(ξ) given by Eq. (39). The quantum bound holds whenever
Td(ξ) ≤ 1 for all values of ξ. From the definition of the function Td(ξ), given by Eq. (40), we have
that Td(ξ) has a divergent value only if the renormalized zero-point energy is negative. For the

point ξ = ξ0 which satisfy ε
(r)
d + Pd(ξ0) = 0, the quantum bound is invalidated.

Numerical calculations can help us understand the quantum bound. In the Fig. (1) we present
the plot of the function Td(ξ) in the case of d = 3 over the interval 0 < ξ < 2. Since the
renormalized zero-point energy is positive [74], the function Td(ξ) also is positive for all values of
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ξ. There is a maximum for some value of ξ that we are calling ξmax which is near one. For this
case there is a quantum bound. In Fig.(2) we present the function Td(ξ) in the case of d = 4 over
the interval 0 < ξ < 2. Since in this case the renormalized zero-point energy is negative we have
that for some value of ξ = ξ0 the function Td(ξ) diverges. There exists a critical value ξc where
for ξ > ξc, the specific entropy is unbounded above.

Let us analyze two cases. The first one is where the renormalized zero-point energy is positive
(see Fig. 1) when a maximum value for Td(ξ) appears. The second case, with a negative renor-
malized zero-point energy, invalidate the quantum bound. For even space-time dimensions, the
renormalized zero-point energy is always negative. For the odd space-time dimensional case, it is
known that for d ≤ 29 this quantity is positive and for d > 29 it changes the sign [10].

For the cases of positive renormalized zero-point energy, an equation for the maximum value of

Td(ξ) can be found. The equation for the maximum is given by Rd(ξmax) = ε
(r)
d ξmax. Substituting

this ξmax in Eq. (40) we can find that Td(ξmax) = ξmax

π
√

d−1
. Using the same procedure in Eq. (39)

we get S
E

= βmax, where βmax = L ξmax. Therefore we can conclude that for odd space-time
dimensions d ≤ 29 there exists a maximum value for the function Td(ξ).

We can see that the maximum value of Td(ξ) depends on the renormalized zero-point energy,
where for the case d = 3 is less than one. To prove that for odd d ≤ 29, we have that Td(ξ) satisfies
the inequality Td(ξ) < 1, let us define an auxiliary function R ′

d(ξ) that satisfies Rd(ξ) < R ′
d(ξ).

This function is given by

R ′
d(ξ) = −

∫
ΩR

dΩd−1

∫ ∞

0
dr rd−2 ln

(
1 − e−π ξ r

)
, (43)

where the angular domain of integration ΩR correspond to the region where ri > 0. Performing
this integral [73] we have that

R ′
d(ξ) = Sd−1 Γ(d − 1) ζ(d)

(
1

πξ

)d−1

. (44)

where the angular term is Sd−1 = (
√

π)d−1

2d−2Γ(d−1
2

)
. Using the Eq. (44) in the equation for the maximum,

i.e., Rd(ξmax) = ε
(r)
d ξmax, we can find that ξmax < ξ′max, where

ξ′max =

⎛
⎝ 2

(2
√

π)d−1

Γ(d − 1) ζ(d)

Γ(d−1
2

) ε
(r)
d

⎞
⎠

1
d

, (45)

and we have that Td(ξmax) < ξ′max

π
√

d−1
. In the table 1 we present the maximum values for d = 3 until

d = 29 for odd d’s.

d 3 5 7 9 11 13

ε
(r)
d 4.1 × 10−2 6.2 × 10−3 1.1 × 10−3 2.2 × 10−4 4.4 × 10−5 9.4 × 10−6

Td(ξmax) < 0.3763 0.2645 0.2303 0.2130 0.2025 0.1953
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d 15 17 19 21 23 25

ε
(r)
d 2.0 × 10−6 4.5 × 10−7 1.0 × 10−8 2.2 × 10−8 5.0 × 10−9 1.1 × 10−9

Td(ξmax) < 0.1901 0.1861 0.1829 0.1804 0.1784 0.1769

d 27 29 31

ε
(r)
d 2.3 × 10−10 3.0 × 10−11 −1.1 × 10−11

Td(ξmax) < 0.1761 0.1781 no maximum

Ξmax0. 0.5 1. 1.5 2.

Ξ

0.

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Td�Ξ�

0. 0.5 1. 1.5 2.

0.

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Figure 1: Td(ξ) as a function of ξ for the case of positive renormalized zero-point energy for d = 3.

Until now we studied the quantum bound for general dimensions based on the summations
given by Eq. (41) and Eq. (42). Nevertheless we can find an upper bound function T ′

d(ξ) of the
function Td(ξ) which is more manageable. For this purpose, in a similar way as we have defined
the function R ′

d(ξ), let us define also the auxiliary functions P ′
d(ξ) and P ′′

d(ξ), that satisfy

Pd(ξ) < P ′
d(ξ) , (46)

and
Pd(ξ) > P ′′

d(ξ) , (47)
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Ξc Ξ00. 0.5 1. 1.5 2.

Ξ

-3.

-2.

-1.

0.

1.

2.

3.

Td�Ξ�

0. 0.5 1. 1.5 2.

-3.

-2.

-1.

0.

1.

2.

3.

Figure 2: Td(ξ) as a function of ξ for the case of negative renormalized zero-point energy for d = 4.

so that the specific entropy satisfies the following inequality

S

E
< 2πR T ′

d(ξ) , (48)

where

T ′
d(ξ) =

1

π
√

d − 1

ξ P ′
d(ξ) + R ′

d(ξ)

ε
(r)
d + P ′′

d(ξ)
. (49)

Without loss of generality we can choose as the auxiliary functions P ′
d(ξ) and P ′′

d(ξ) the integrals

P ′
d(ξ) = π

∫
ΩR

dΩd−1

∫ ∞

0
dr rd−1

(
eπ ξ r − 1

)−1
(50)

and

P ′′
d(ξ) = π

∫
ΩR

dΩd−1

∫ ∞

1
dr rd−1

(
eπ ξ r − 1

)−1
. (51)

Performing these integrals [73], we obtain that P ′
d(ξ) and P ′′

d(ξ) are given by

P ′
d(ξ) = πSd−1Γ(d)ζ(d)

(
1

πξ

)d

(52)
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and

P ′′
d(ξ) = πSd−1

(
Γ(d)ζ(d)− f(d)

)( 1

πξ

)d

, (53)

where the series f(d) is given by

f(d) =
∞∑
l=0

Bl

(d + l − 1)l!
. (54)

To obtain an upper bound for the specific entropy in a generic Euclidean d-dimensional spacetime
we have only to substitute Eq. (44), Eq. (52) and Eq. (53) into Eq. (49). We have that

T ′
d(ξ) =

h1(d)

ε
(r)
d ξd−1 + h2(d) ξ−1

, (55)

where

h1(d) =
Sd−1

πd
√

d − 1
ζ(d)

(
Γ(d) + Γ(d − 1)

)
, (56)

and

h2(d) =
Sd−1

πd−1

(
Γ(d) ζ(d)− f(d)

)
. (57)

It is interesting to study the behavior of the specific entropy for low and high temperatures.
For the case of high temperatures, we get

S

E
< 2πR

h1(d)

h2(d)
ξ . (58)

This behavior of the specific entropy increasing with β in the high-temperature limit was obtained
by Deutsch in Ref. [24]. Bekenstein using the condition β � R (high temperature limit) also
obtained the same behavior in Ref. [21]. Since the thermal energy can compensate the negative
renormalized zero-point energy, the quantum bound holds.

When considering the low temperature behavior of the specific entropy, we can see that the
problem of the sign of the renormalized zero-point energy can invalidate the quantum bound. In
this limit we have

S

E
< 2πR

h1(d)

ε
(r)
d

ξ1−d . (59)

It is well known that the renormalized zero-point energy for massless scalar fields in a cube,
assuming Dirichlet boundary conditions change sign with the dimension, i.e., for d = 2 we have

E
(r)
0 < 0, for d = 3 we have E

(r)
0 > 0 and for the important case d = 4 we have E

(r)
0 < 0.

Although some authors claim that the energy of the boundaries of such systems can compensate
the negative renormalized-zero point energy yielding a net positive energy, this is still an open
question in the literature.
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5 Conclusions and discussions

In this paper we study self-interacting scalar fields in the strong-coupling regime in equilibrium
with a thermal bath, also in the presence of macroscopic boundaries. In the strong-coupling
perturbative expansion we may split the problem of defining the generating functional into two
parts: how to define precisely the independent-value generating functional and how to go beyond
the independent-value approximation, taking into account the perturbation part. The presence of
the spectral zeta-function allow us to introduce the boundary conditions in the problem. Using the

Klauder representation for the independent-value generating functional, and up to the order (g0)
− 2

p ,
we show that it is possible to obtain a quantum bound in the system defined by a self-interacting
scalar field in the strong-coupling regime. We established a bound on information storage capacity
of the strong-coupled system in a framework independent of gravitational physics.

We have shown, in the strong-coupling regime, at low and intermediate temperatures (β ≈ L),

the quantum bound depends on the sign of the renormalized zero-point energy given by E
(r)
0 . For

even spacetime dimensions d and also for odd values satisfying the inequality d > 29, E
(r)
0 is a

negative quantity. Therefore the quantum bound is invalidated. For odd values of d, satisfying

the inequality d ≤ 29, E
(r)
0 is a positive quantity. In this situation the specific entropy satisfies

a quantum bound. Defining ε
(r)
d as the renormalized zero-point energy for the free theory per

unit length, we get the following functional dependencies. For low temperatures we get S
E

<

2πR h1(d)

ε
(r)
d

ξ d−1
, where R is the radius of the smallest sphere circumscribing the system. For the case

of high temperature, we get that the specific entropy always satisfies a quantum bound, given by
S
E

< 2πR h1(d)
h2(d)

ξ.

Although our results are based in a quite particular choice of the shape of the macroscopic
boundaries that confine the field in the volume Ω, it is extremely interesting to point out that the
quantum bound that we are obtaining is independent of the shape of the boundaries. In other
words, even though we choose the hypercube to confine the fields in a finite volume, an arbitrary
boundary should give the same results. If we have a domain G and if we consider the eigenvalue
problem for a self-adjoint second-order partial differential operator acting on scalar functions,
an important property of monoticity of the eigenvalues associated with the Dirichlet boundary
condition lead us to the result that under the Dirichlet boundary condition, the nth eigenvalue
of the domain G never exceeds the nth eigenvalue of the sub-domain G∗. Also, the asymptotic
behavior of the eigenvalues does not depend on the shape, but only on the size of the fundamental
domain. These two results can be used to show that for any shape we will get the same results.
This argument also was presented by Schiffer and Bekenstein.
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A Appendix: The Klauder representation for the indepen-

dent value generating functional

To give meaning to the independent value generating functional Q0(σ, h), we may either discretize
the space or use the Klauder’s result, as the formal definition of the independent-value generating
functional derived for scalar fields in a d-dimensional Euclidean space. This generating functional
is a mean zero Gaussian functional integral and using the fact that the fields defined in each point
of the Euclidean time are statistically independent we are able to write

Q0(σ, h) = exp
(
−
∫

ddxL(σ, h(x))
)

, (A.1)

for some function L(σ, h(x)). The formula above is fundamental for our study. Let us see how it is
possible to extract some information from it. Before studying the interacting case, let us analyze
a simple example, i.e., g0 = 0. In this case we have

Z(β, Ω, h) g0=0 = exp

(
−1

2

∫
ddx

∫
ddx′ δ

δh(x)
K(m0, σ ; x − x′)

δ

δh(x′)

)
Q0(σ, h)| g0=0, (A.2)

where Q0(σ, h), the independent-value generating functional, is given by

Q0(σ, h)| g0=0 = N
∫

[dϕ(x)] exp

(∫
ddx

(
−1

2
σ m2

0 ϕ2(x) + h(x)ϕ(x)
))

, (A.3)

where once more the modified kernel K(m0, σ; x − x′) was defined by Eq.(5).
The free independent-value functional must satisfies Q0(σ, h)|h=g0=0 = 1. We would like to

point out that in Klauder’s derivation for the free independent-value model a result was obtained
which is well defined for all functions which are square integrable in Rn i.e., h(x) ε L2(Rn). Since
we are assuming that h = cte, we have to normalize our expressions. Therefore we have

Q0(σ, h)| g0=0 = exp

(
− 1

2V σ m2
0

∫
ddxh2(x)

)
. (A.4)

The generalization for the self-interaction scalar field with the g0

p !
ϕp(x) self-interacting contribution

is straightforward. It is possible to show that the independent-value generating function can be
written as

Q0(σ, h) = exp

(
− 1

2V

∫
ddx

∫ ∞

−∞
du

|u| (1 − cos(hu)) exp

(
−1

2
σ m2

0 u2 − g0

p !
up

))
. (A.5)

There is no need to go into details of this derivation. The reader can find it in Ref. [49]. In order
to study Q0(σ, h) let us define E(m0, σ, g0, h) given by

E(m0, σ, g0, h) =
∫ ∞

−∞
du

|u| (1 − cos(hu)) exp

(
−1

2
σ m2

0 u2 − g0

p !
up

)
. (A.6)
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Using a series representation for cos x and using the fact that the series obtained (
∑∞

k=1 ck fk(u))
not only converges on the interval [0,∞), but also converges uniformly there, the series can be
integrated term by term. It is not difficult to show that

E(m0, σ, g0, h) = 2
∞∑

k=1

(−1)k

(2k)!
h2k

∫ ∞

0
du u2k−1 exp

(
−1

2
σ m2

0 u2 − g0

p !
up

)
. (A.7)

Now let use the fact that the σ parameter can be choosen in such a way that the calcula-
tions becomes tractable. This is the main difference from Klauder’s result. Analysing only the
independent-value generating functional it is not possible to write Q0(σ, h) in a closed form even
in the case of constant external source. Let us choose σ = 0. Therefore we have

E(m0, σ, g0, h)| σ=0 = 2
∞∑

k=1

(−1)k

2k!
h2k

∫ ∞

0
du u2k−1 exp(−g0

p !
up). (A.8)

At this point let us use the following integral representation for the Gamma function [72]

∫ ∞

0
dx xν−1 exp(−µ xp) =

1

p
µ− ν

p Γ

(
ν

p

)
, Re(µ) > 0 Re(ν) > 0 p > 0. (A.9)

At this point it is clear that the (g0 ϕp) theory, for even p > 4, can also easily handle applying our
method. Using the result given by Eq.(A.9) in Eq.(A.8) we have

E(m0, σ, g0, h)| σ=0 =
∞∑

k=1

g(p, k)
h2k

g
2k
p

0

, (A.10)

where the coefficients g(p, k) are given by

g(p, k) =
2

p

(−1)k

(2k)!
(p !)

2k
p Γ(

2k

p
). (A.11)

Substituting the Eq.(A.10) and Eq.(A.11) in Eq.(A.5) we obtain that the independent-value gen-
erating function Q0(σ, h)| σ=0 can be written as

Q0(σ, h)| σ=0 = exp

[
− 1

2Ωβ

∫ β

0
dτ
∫

dd−1x
∞∑

k=1

g(p, k)
h2k

g
2k
p

0

]
. (A.12)

It is easy to calculate the second derivative for the independent-value generating function with
respect to h. Note that Q0(σ, h)|

h=σ=0
= 1. Thus we have

∂2

∂ h2
Q0(σ, h)| σ=0 =

⎛
⎝−1

2

∞∑
k=1

g(p, k)(2k)(2k − 1)
h2k−2

g
2k
p

0

⎞
⎠ exp

⎛
⎝−1

2

∞∑
k=1

g(p, k)
h2k

g
2k
p

0

⎞
⎠+ G(g0, p, h),

(A.13)
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where G(g0, p, h) is given by

G(g0, p, h) =

⎛
⎜⎝ ∞∑

k, q=1

g(p, k, q)
h2k+2q−2

g
2(k+q)

p

0

⎞
⎟⎠ exp

⎛
⎝−1

2

∞∑
k=1

g(p, k)
h2k

g
2k
p

0

⎞
⎠ , (A.14)

and g(k, q) = k q g(k)g(q). We are interested in the case h = 0, therefore the double series does
not contributes to the Eq.(A.13), since limh→0G(h) = 0. Using the fact that we are interested in
the case h = 0, we have the simple result that in the Eq.(A.13) only the term k = 1 contributes.
We get

∂2

∂ h2
Q0(σ, h)| h=σ=0 =

1

2p g
2
p

0

Γ(2
p
)

(p !)
p
2

. (A.15)

B Appendix: Proof that the value of the spectral zeta-

function in the origin vanishes, i.e., ζD(s)|s=0 = 0

As we discussed before, to take into account the scaling properties we should have to introduce an
arbitrary parameter µ with dimension of a mass to define all the dimensionless physical quantities
and in particular make the change

1

2

d

ds
ζD(s)| s=0 → 1

2

d

ds
ζD(s)| s=0 − 1

2
ln
(

1

4πµ2

)
ζD(s)| s=0. (B.1)

In this appendix we have a proof that the spectral zeta-function in s = 0 is zero, consequently
there is no scaling in the theory. The Epstein zeta-function is defined by

Zp (a1, ..., ap ; 2s) =
∞ ,∑

n1,..., np =−∞

(
(a1 n1)

2 + ... + (ap np)
2
)−s

, (B.2)

where the prime indicates that the term for which all ni = 0 is to be omitted. This summation
is convergent only for 2s > p. Nevertheless, we can find an integral representation which gives
an analytic continuation for the Epstein zeta-function except for a pole at p = 2s [9]. This
representation is given by

(π η)−s Γ(s) Zp (a1, ..., ap ; 2s) =

−1

s
+

2

p − 2s
+ η−s

∫ ∞

η
dx xs−1

(
ϑ(0, ..., 0; a2

1 x, ..., a2
p x) − 1

)

+η(2s−p)/2
∫ ∞

1/η
dx x(p−2s)/2−1

(
ϑ(0, ..., 0; x/a2

1, ..., x/a2
p) − 1

)
, (B.3)
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where η p/2 is the product of the p ′s parameters ai given by η p/2 = a1...ap, and the generalized
Jacobi function ϑ(z1, ..., zp; x1, ..., xp), is defined by

ϑ(z1, ..., zp ; x1, ..., xp) =
p∏

i=1

ϑ(zi; xi) , (B.4)

with ϑ(z; x) being the Jacobi function, i.e.,

ϑ(z; x) =
∞∑

n=−∞
eπ(2nz−n2x) . (B.5)

Using this integral expression for the Epstein zeta-function, given by Eq. (B.3), we can find that

Zp(a1, ..., ap ; 2s)|s=0 = −1 , (B.6)

for any p ≥ 1. To proceed, let us define the function Z(q)
p (a1, ..., ap ; 2s), given by

Z(q)
p (a1, ..., ap ; 2s) =

∞∑
n1,..., nq=1

∞∑
nq+1,...,np =−∞

(
(a1 n1)

2 + ... + (ap np)
2
)−s

. (B.7)

Using the result given in Eq. (B.6) we can show that, after performing the analytic continuation
of the function Z(q)

p (a1, ..., ap ; 2s), the following property holds

Z(q)
p (a1, ..., ap; 2s)|s=0 = 0 , (B.8)

where this result is valid only for 0 < q < p. We can prove this property by induction. First, let
us verify that for q = 1 the above property hold. Therefore, assuming that is valid for q, we have
only to show that is true for q + 1. For q = 1 we have that

Zp(a1, ..., ap ; 2s)| s=0 = Zp(a2, ..., ap ; 2s)| s=0 + 2Z(1)
p (a1, ..., ap ; 2s)| s=0 . (B.9)

Since p > 1 we can use the property given by Eq. (B.6), for the two first terms of Eq. (B.9)
and verify that Z(1)

p (a1, ..., ap ; 2s)|s=0 = 0. The next step in the proof by induction is to assume

the validity of this property for some q, i.e., Z(q)
p (a1, ..., ap ; 2s)| s=0 = 0, with p being arbitrary,

but satisfying the condition 0 < q < p, then we must to verify the validity of this property for

q + 1, i.e., Z
(q+1)
p ′ (a1, ..., ap ′ ; 2s)| s=0 = 0 with p ′ also being arbitrary but satisfying the condition

0 < q + 1 < p ′. ¿From the following property

Z
(q)
p ′ (a1, ..., ap ′ ; 2s)|s=0 = Z

(q)
p ′−1(a1, ..., aq, aq+2, ..., ap ′; 2s)|s=0 + 2Z

(q+1)
p ′ (a1, ..., ap ′ ; 2s)| s=0 , (B.10)

since 0 < q < p ′ − 1 and using the assumption of the validity of this property for arbitrary q,
given by Eq. (B.8), we can see that the two first terms in Eq. (B.10) vanish. Therefore we finally
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proved that Z
(q+1)
p ′ (a1, ..., ap ′ ; 2s)| s=0 = 0. We are interested in a particular case of this property,

given by

Z(p−1)
p (a1, ..., ap; 2s)|s=0 =

⎛
⎝ ∞∑

n1,..., np−1=1

∞∑
np=−∞

(
(a1 n1)

2 + ... + (ap np)
2
)−s

⎞
⎠
∣∣∣∣∣
s=0

= 0 . (B.11)
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