
 Open access  Journal Article  DOI:10.1109/3.157

Quantum box fabrication tolerance and size limits in semiconductors and their
effect on optical gain — Source link 

Kerry J. Vahala

Institutions: California Institute of Technology

Published on: 01 Mar 1988 - IEEE Journal of Quantum Electronics (IEEE)

Topics: Quantum optics, Quantum number, Quantum well and Stimulated emission

Related papers:

 Gain and the threshold of three-dimensional quantum-box lasers

 Multidimensional quantum well laser and temperature dependence of its threshold current

 Low threshold, large To injection laser emission from (InGa)As quantum dots

 Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser

 InGaAs-GaAs quantum-dot lasers

Share this paper:    

View more about this paper here: https://typeset.io/papers/quantum-box-fabrication-tolerance-and-size-limits-in-
3x598bmk0q

https://typeset.io/
https://www.doi.org/10.1109/3.157
https://typeset.io/papers/quantum-box-fabrication-tolerance-and-size-limits-in-3x598bmk0q
https://typeset.io/authors/kerry-j-vahala-8zhghdb796
https://typeset.io/institutions/california-institute-of-technology-3qpga2aa
https://typeset.io/journals/ieee-journal-of-quantum-electronics-3j14ovil
https://typeset.io/topics/quantum-optics-26reyjm3
https://typeset.io/topics/quantum-number-1wus73nx
https://typeset.io/topics/quantum-well-3kjdtttw
https://typeset.io/topics/stimulated-emission-zaghd7f3
https://typeset.io/papers/gain-and-the-threshold-of-three-dimensional-quantum-box-4kcu56tzh1
https://typeset.io/papers/multidimensional-quantum-well-laser-and-temperature-4e7c4zdga1
https://typeset.io/papers/low-threshold-large-to-injection-laser-emission-from-inga-as-3rpgxhylv0
https://typeset.io/papers/inhomogeneous-line-broadening-and-the-threshold-current-1hxg8w9w14
https://typeset.io/papers/ingaas-gaas-quantum-dot-lasers-42o2ropc4k
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/quantum-box-fabrication-tolerance-and-size-limits-in-3x598bmk0q
https://twitter.com/intent/tweet?text=Quantum%20box%20fabrication%20tolerance%20and%20size%20limits%20in%20semiconductors%20and%20their%20effect%20on%20optical%20gain&url=https://typeset.io/papers/quantum-box-fabrication-tolerance-and-size-limits-in-3x598bmk0q
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/quantum-box-fabrication-tolerance-and-size-limits-in-3x598bmk0q
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/quantum-box-fabrication-tolerance-and-size-limits-in-3x598bmk0q
https://typeset.io/papers/quantum-box-fabrication-tolerance-and-size-limits-in-3x598bmk0q


IEEE JOURNAL OF QUANTUM ELECTRONICS, GOL. 24, NO. 3, MARCH 1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA523 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Quantum Box Fabrication Tolerance and Size Limits 

in Semiconductom and Their Effect 
on Optical Gain 

Abstract--Lower and upper limits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsize are established for quan- 

tum boxes. The lower limit is shown to result from a critical size below 

which bound electronic states no longer exist. This critical size is 

different for electrons and holes. The optical gain of arrays of quantum 

boxes is computed taking into account the inhomogenous broadening 

of the gain spectrum resulting from fabricational variations in quan- 

tum box zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsize and shape. The dependence of maximum possible gain on 

an rms quantum box roughness amplitude is determined. For high gain 

operation a medium composed of quantum boxes does not offer signif- 

icant advantages over a conventional bulk semiconductQr unless quan- 

tum box fabricational tolerances are tightly controlled. For low gain 
operation, however, arrays of quantum boxes may offer the unique 

advantage of optical transparency at zero excitation. This property does 

not require excellent fabricational control and may make possible ul- 
tralow threshold semiconductor lasers and low noise optical amplifiers. 

INTRODUCTION 
IRECT write lithography technology is now capable D of fabricating structures having nanometer scale fea- 

ture sizes. If combined with epitaxially-grown quantum 
well material in systems like GaAs(A1GaAs) or In- 
GaAsP(1nP) structures exhibiting quantum size effects in 
two or three dimensions can be contemplated. Quantum 
wires and quantum boxes are examples of such structures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 11441. 

It has been proposed that arrays of quantum wires or 
quantum boxes might be used as the active layer of a 
semiconductor laser [5]. In these devices the quantum 
wires or quantum boxes, composed of a low band-gap ma- 
terial like GaAs, would be imbedded in a higher band-gap 
material like AlGaAs (see Fig. 1). Theoretical studies in- 
dicate the potential advantages of these structures are re- 
duced threshold current densities [5], [6], improved phase 
noise characteristics (i.e., reduced field spectrum line- 
widths) [7], [8], and improved To's [5]. Some of these 
effects have been observed by simulating quantum boxes 
and quantum wires using high magnetic fields [7], [8]. 

These improvements result from the narrower optical 
gain spectrum provided by these structures. In essence, 
the importance of Fermi statistics in shaping the gain pro- 
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Fig. 1 .  A quantum box semiconductor laser in the GaAs(A1GaAs) system. 
The quantum boaes are not drawn to scale. 

file is reduced as confinement is increased in one or more 
dimensions. To clarify this point consider a simple model 
of the optical gain spectrum. This model assumes that rig- 
omus k-selection rules hold and ignors any homogenous 
broadening associated with the individual optical transi- 
tions. The optical gain spectrum is then directly propor- 
tional to the density of states function Dd (E ) where d is 
the system dimension. Dd (E ) is illustrated in Fig. 2 for 
various dimensions d. A typical gain profile is also shown 
in each case as th6'dashed curve. The narrowing of the 
gain spectrum with increasing quantum confinement (de- 
creasing d ) is apparent. Subsequent improvements in the 
static and dynamic properties of the laser are also ob- 
vious. Threshold current, for example, must decrease as 
the spectrum narrows (all other factors remaining the 
same) since to achieve threshold fewer carriers are wasted 
in regions of spectral space that do not contribute to lasing 
action. These effects have been experimentally verified in 
quantum well semiconductor lasers where lower threshold 
currents and superior dynamic performance as compared 
to the conventional device have been demonstrated [9], 

[lo]. 
The above model also shows that a quantum box active 

layer is the optimal choice to achieve maximum improve- 
ment in semiconductor laser performance. With a quan- 
tum box the gain spectrum broadening associated with the 
effective density of states is reduced to zero. This leaves 
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Density of States Functions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 2. The density of states function for zero-, one-, two-, and three- 
dimensional systems. The dashed curve indicates approximately the op- 
tical gain which results when the medium is inverted. 

only the natural linewidth of the optical transition (ho- 
mogeneous broadening). This paper will focus on the 
quantum boxes as a source of optical gain. It differs from 
previous treatments of this subject in that the practical 
problems and limitations affecting the optical gain attain- 
able with an array of quantum boxes are addressed. There 
are a host of problems associated with fabricating quan- 
tum box active layers which we must assume to be sur- 
mountable. There remain, however, basic theoretical 
questions concerning the quantum box volumetric density 
required to furnish a given optical gain, the limitations 
imposed on quantum box size, and the tolerances which 
must be maintained during fabrication. Fabrication tol- 
erance will be of central importance since it determines 
the degree to which the optical gain spectrum is inhomo- 
geneously broadened (see Fig. 3). It may be the case that 
a quantum box laser is theoretically feasible, but highly 
unrealistic in terms of the required fabricational toler- 
ances. For example, since two dimensions of the quantum 
box are defined by a combination of beam writing and 
subsequent processing, it would be highly unrealistic to 
assume that these dimensions could be held to the same 
tolerance that can be achieved in the other direction by 
epitaxial means (e.g., held to a monolayer or less with 
molecular beam epitaxy). 

In this paper we attempt to answer these questions. We 
will calculate the optical gain achievable with a given 
density of quantum boxes and study the effect of fabri- 
cation tolerance on the optical gain. In addition to study- 
ing optical gain we will address the issue of upper and 
lower limits on quantum box size, establishing allowable 
ranges and introducing a critical quantum box radius be- 
low which there are no bound electronic states in a quan- 
tum box. Two regimes of quantum box size will be dis- 
cussed below. The behavior of optical gain with pumping 
will be seen to depend on the particular quantum box re- 
gime selected. 

QUANTUM Box SIZE LIMITATIONS 

It is necessary to establish what the characteristic sizes 
of quantum boxes must be and to determine if there are 
limits imposed on the range of allowable sizes. The model 
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Fig. 3. The cross section of ideal and actual quantum boxes appears in the 
upper half of the figure. The boundary indicates the separation between 
low and high band-gap material. The roughness function and roughness 
amplitude are introduced to account for fabricational imperfections. In 
the lower half of the figure the density of states function for a single 
quantum h x  appears as a delta function. An ensemble of quantum boxes, 
however, is inhomogeneously broadened by random fluctuations in 
quantum box size and shape. 

of quantum boxes employed here will be based on the 
effective mass approximation and will assume the carriers 
in the box behave as particles in a spherical well. The 
spherical well potential, unlike the three-dimensional 
square well potential employed elsewhere is separable and 
thus lends itself to simplified analytical solutions. Elec- 
tronic states in these structures are given by the kets 1 k, 
j, m ) where j is the quantum number of total angular 
momentum, m is the z-component of angular momentum, 
k is a quantum number associated with radial motion and 
the subscript n is an energy band index. An optical dipole 
transition from the conduction band to the valence band 
conserves j and m in the single electron approximation. 
This rule differs from its free-space counterpart because 
the j  and m emp!oyed here refer to envelope functions in 
the effective mass approximation. k is also conserved pro- 
vided that the wave function does not extend significantly 
outside of the well. A transition from the lowest energy 
eigenstate of the conduction band will therefore be to the 
highest energy eigenstate in one of the respective valence 
bands. This rule will be assumed to hold rigorously 
throughout this analysis. 

The two lowest energy eigenstates occur fo r j  = 1/2, 
m = f 1 /2. These correspond to the two spin states hav- 
ing zero orbital angular momentum. The radial quantum 
number for these states obeys a particularly simple eigen- 
value equation which upon soluton of the Schrodinger 
equation in spherical coordinates is easily shown to be 
U11 

$* - k2 = -kcot ( k ~ )  

where me is the effective mass, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, is the depth of the well, 
and R is the radius of the quantum box. The eigenenergy 
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E is related to k through the familiar expression, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 2k2 
E = - .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2me 

Equations (1) and (2) are similar to the eigenvalue equa- 
tions for a one-dimensional potential well of width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and 
depth V, if we make the correspondence R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--+ w. In fact, 
the eigenvalues of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) correspond to the odd parity solu- 
tions in the one-dimensional well. Consequently, whereas 
the one-dimensional problem has a bound state for all w 
(i.e., the lowest energy even parity solution), there exists 
a critical radius R, in the three-dimensional problem be- 
low which there are no bound states. For the spherical 
well this critical radius is given by 

(3) 

Three-dimensional wells of arbitrary shapes should also 
have such a critical size.' This fact seems to have gone 
unnoticed thus far in the study of quantum boxes. It has 
important consequences, one of which is illustrated in Fig. 
4. There, ( 3 )  has been used to plot the critical quantum 
box diameter against the energy-gap difference between 
GaAs and AlGaAs. We have assumed effective masses of 
0.067m0 for electrons and 0.47 m, for heavy holes in GaAs 
with m, the free electronic mass. Furthermore, a 60-40 
percent apportioning of the band-gap offset energy is as- 
sumed. Note that because of the large difference in the 
electron and hole effective masses there is a range of di- 
ameters for which there remain bound holes, but no bound 
electrons. 

R, for the electrons sets a lower limit on quantum box 
size. The upper limit is set by the need to create a "dis- 
crete" state space in at least one of the energy bands. A 
state space will appear discrete at a given temperature T 
if the energy spacing between states is larger than kB T (26 
meV at room temperature). In a quantum box laser it is 
actually better to have the energy spacing still larger, since 
ideally only the two lowest energy states in a given band 
should contribute to lasing. As already noted, in the con- 
duction band the lowest energy eigenstates are states of 
zero orbital angular momentum (i.e., 1 = 0). The next 
highest energy eigenstates, however, occur for 1 = 1 .  For 
the infinite potential well their energy separation from the 
lowest energy states is given by the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 2  r i  
AEl.0 = 10.3 - 

2m,R2 
(4)  

For conduction band oelectrons in GaAs if A E l , o  = 
3 k ~  T,,, then R = 87 A (i.e., a quantum box diameter d 

'The existence of a critical size for quantum boxes of arbitrary shapes 
can be proven within the limits of the first-order perturbation approach used 
to derive (12). To see this consider an irregularly-shaped quantum box. 
The largest sphere that fits inside the box and the smallest sphere that con- 
tains the box can then be used to set upper and lower bounds on the quan- 
tum box eigenenergy. A critical size associated with each sphere then proves 
the existence of a critical size for the irregularly-shaped box. 
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Fig. 4. The curves give critical quantum box diameters for electrons and 
holes at a given energy-gap difference between GaAs and AIGaAs. In 
the upper region bound states exist for both electrons and holes; in the 
intermediate region only bound hole states exist; and in the cross hatched 
region there are no bound states. 

of 174 a ). At this energy separation the sixfold degen- 
erate 1 = 1 states will have an electron Fermi occupancy 
of 0.047 when the Fermi level resides at the energy of the 
two lowest energy states. Consequently, for practical con- 
siderations involving computation of threshold gain, etc., 
the conduction band in a structure this small can be treated 
as one doubly-degenerate energy level. 

At this same diameter, however, the heavy hole system 
will remain a quasi-continuum owing to the heavy hole 
effective mass. This range of sizes will be referred to as 
the large quantum box regime. To achieve a discrete spec- 
trum of states in both the conduction and valence bands 
the quantum box size must be reduced still further to what 
we call the small quantum box regime. For the purposes 
of demonstration we will neglect problems associated with 
valence band mixing effects and consider only the heavy 
hole band. To achieve a AEl ,o  = 3kB T,,, for the heavy 
hole baad in GaAs would require a quantum box diameter 
of 66 A .  If we tolerate an increased occupancy of lower 
energy hole states by recucing A E, ,  to A E,,  = kB T,,, 
then a diameter of 114 A is possible. In view of Fig. 4 it 
is clear that selection of such small diameters must be 
accompanied by an adequately deep well to guarantee the 
existence of bound electron states. The results of this sec- 
tion are summarized in Fig. 5 .  In particular, the small and 
large quantum box regimes are given at several tempera- 
tures for the material systems GaAs(A1GaAs) and Ga- 
InAs(1nP). The latter system has been chosen because of 
its very light electronic effective mass (O.Wm,). 

There are important differences between active layers 
composed of large quantum boxes and small quantum 
boxes. These will be addressed below. 

FABRICATION TOLERANCE AND THE GAIN SPECTRUM 
A quantum box semiconductor laser can be viewed as 

a gas laser in which the atoms are likened to the quantum 
boxes. The overall gain spectrum produced by this gas is 
broadened both homogeneously by the natural linewidth 



526 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24, NO. 3, MARCH 1988 

SMALL QUANTUM BOX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- LARGE QUANTUM BOX 
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Fig. 5. The allowable ranges of quantum box size for two material sys- 
tems. The lower limit is determined by the critical diameter below which 
there exist no bound electrons in the quantum box. The upper limit is set 
by the requirement that the quantum boxes exhibit measurably discrete 
spectra at a given temperature. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

of a single transition in a given box and inhomogeneously 
by fabricational variations in the quantum box sizes. There 
is even the equivalent of pressure broadening in this sys- 
tem, since when the quantum box density becomes too 
large the state space broadens as a result of interaction 
between electrons in different quantum boxes. In this sec- 
tion the gain spectrum resulting from a given volumetric 
density of quantum boxes will be calculated. 

The optical transition from conduction band state to 
valence band state in each quantum box is assumed to be 
homogeneously broadened according to a broadening 
function g (E ). In addition we must account for variations 
in transition energy resulting from the varying sizes of the 
quantum boxes. This produces an inhomogeneous 
broadening of the gain spectrum which we describe using 
a distribution function D (E ) (in effect, a density of states 
function) that is related to the distribution of quantum box 
sizes. The gain coefficient per unit time at frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is 
related to these functions through the following expres- 
sion [12]: 

G(N, U )  = 2 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdED(E - E,) g(Aw - E )  

where E, is the average transition energy, M is the matrix 
element for a quantum box transition, N is the camer den- 
sity, and fc( fv) is the Fermi factor for the conduction 
(valence) band. A typical quantum box active layer will 
be composed of several hundred thousand quantum boxes. 
It is therefore reasonable to assume that D (E ) is a Gauss- 
ian distribution function of the form 

D ( E )  = - 

where 7 is the number of quantum boxes per unit volume 
(note: this quantity can have a spatial dependence) and 
where the normalization factor for D (E ) includes a factor 
of two to account for spin degeneracy. 

The quantity y gives a measure of the inhomogeneous 
broadening resulting from the variations in quantum box 

sizes (see Fig. 3). It is important to relate this quantity to 
actual statistical variations in quantum box size. Smearing 
of the optical transition energy will result primarily from 
variations of the lowest conduction band eigenenergy , be- 
cause of the small conduction band effective mass. To 
simplify the calculation we therefore consider only vari- 
ations in the conduction band eigenenergy that result from 
quantum box size variation (i.e., variations of valence 
state energies are ignored). Obviously, fluctuations in size 
and shape of a quantum box can take on a very compli- 
cated form as illustrated in Fig. 3. Therefore, to proceed 
consider first a simple variation 6R of a perfectly spherical 
well. If the electron is tightly bound to the quantum box, 
as a result of either the well potential being deep or the 
quantum box being large, then it is adequate to approxi- 
mate the well as infinitely deep. The lowest eigenenergy 
is then given by 

A2T2 E," = - 
2m,R2 (7) 

and therefore the associated energy shift in the optical 
transition due to the variation 6R is given by 

6R 
6E = -2ET -. R 

In general, the potential cannot be treated as infinite. It is 
straightforward to show using (1) that a more general 
expression is given by 

6R 
6E = -(Ec- 

R (9) 

where ( < 2 approaches zero as the electron becomes 
more weakly bound. 

To include the possibility of more complex shape and 
size variations we introduce an amplitude roughness func- 
tion p (8, 4)  which characterizes deviations from the ideal 
spherical well (see Fig. 3). We will assume that the actual 
well potential has the following form as a result of im- 
perfections in the fabrication process: 

V ( r )  = V,U(r - R - d e ,  4)) (10) 

where U ( r )  is the Heaviside function. Upon application 
of first-order perturbation methods this yields the follow- 
ing expression for the resulting shift in the optical tran- 
sition energy 

6~ = -v,(J.(R)~~Rz~ ( 1 1 )  

where ii is the average of the roughness function p (8, 4 )  
over 47r steradians and where $( r )  is the eigenfunction 
of the lowest energy conduction band state. In the limit 
of an infinite potential well (i.e., V, + 00) it can be shown 
that this expression reduces to the following form: 

- 

(12) 
P 6 E =  -2E,"- 
R 

where E," is given by (7). This is similar to (8) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
replacing 6R. We will assume this relation also holds in 
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the finite well. Finally, it is helpful to relate to a rough- 
ness amplitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApa (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) by assuming a particular 
form for p(d, 4). For the purposes of demonstration we 
will assume that p (0, 4)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= pa cos2 (ad) cos2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b4 ). For 
a and b large enough we obtain F = p a / 4 .  Using this 
result and (9), the characteristic inhomogeneous line- 
width, y, can be expressed as 

where ( ), indicates an average over the ensemble of 
quantum boxes and where O 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ( p: ),. That is, 0 is an 
rms roughness amplitude for the ensemble of quantum 
boxes. 

To simplify (5 )  we will assume that the homogeneous 
broadening function g (E ) is also a Gaussian of the fol- 
lowing form: 

r 

g ( E )  =F$exp( - i ( f ) ’ ) .  6 2  (14) 

The normalization here is chosen so as to recover Fermi’s 
Golden Rule in (5 )  in the limit 6 + 0. Using this form, 
the gain spectrum is given by 

where we have assumed both the matrix element and the 
quasi-Fermi factors are approximately constant over the 
width of the quantum box gain spectrum. This expression 
will now be studied for the two size regimes discussed in 
the previous section. 

Small Quantum Boxes 
Small quantum boxes have dimensions that cause the 

energy spectrum in the both the conduction and valence 
bands to be discrete. Equation (15) can be written in terms 
of the carrier density N by noting that N = 2f,q and by 
assuming that the quantum boxes are, on the average, 
quasi-neutral and undoped (i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfu = 1 - f,). Doing so 
yields 

(- - (16) 
2(y2 + a2) 

G, = A,(N - q )  exp 

41 M I2h 
A, = 

The gain is therefore linear in carrier density and abruptly 
saturates when all quantum boxes are filled (i.e., N = 
2q ). This is illustrated in Fig. 6 where G, is plotted versus 
N .  Transparency of the active layer occurs at the excita- 
tion level N = q.  

It is also possible to calculate the optical gain when the 
quantum boxes have been doped. fc or f, will then be 
biased by the presence of donors or acceptors. In Fig. 6 

Fig. 6. Optical gain versus carrier density for an array of small quantum 
boxes with a density of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr )  boxes per unit volume. For undoped quantum 
boxes the transparency excitation level occurs at a carrier density of r). 

For quantum boxes doped with two donors or acceptors per box the trans- 
parency excitation level is effectively zero. In both cases the optical gain 
saturates at a carrier density of 27. 

we have plotted the case of doping at a level of two donors 
or acceptors per quantum box. The differential gain A, is 
reduced by doping. Notice, however, that a significant 
improvement in the transparency level has occured under 
doping. In fact, a nearly zero transparency level is ex- 
pected. This result has important consequences to the de- 
sign of lasers and optical amplifiers. For lasers it means 
there is no transparency penalty in achieving threshold. 
Extremely low threshold semiconductor lasers are there- 
fore possible by simply reducing loss. In amplifiers, this 
eliminates the spontaneous noise associated with achiev- 
ing transparency and hence reduces the overall amplifier 
noise at a given gain. 

In Fig. 7 G, as a function of carrier density has been 
plotted for the specific case of an armyoof quantum boxes 
having an avtrage diameter d = 100 A ,  center to center 
spacing 200 A (i.e., q = 1.45 X l O I 7  crnw3), and a fab- 
ricational tolerance d = 20 A .  Gain has been plotted in 
both temporal and spatial rate units. In performing this 
calculation we have used [ 121 

2 CO 2 

IMI = - I  2€h2 c1 I 
where E is the dielectric constant of the material and p is 
the component of the dipole matrix element in the direc- 
tion of the electric field vector. In aScordance with the 
results contained in [6 ] ,  1 p I / q  = 4 A ,  corresponding to 
the value in bulk GaAs, has been employed here. In ad- 
dition I p l 2  has no field polarization dependence owing to 
the spherical symmetry of these lowest energy box states. 

Large Quantum Boxes 
A large quantum box falls at the other end of the range 

indicated in Fig. 5 .  It has a conduction band energy spec- 
trum that is discrete, but its valence band remains a quasi- 
continuum. This makes it more difficult to invert the 
quantum box to achieve optical gain, since a large number 
of holes must be added to the structure to produce an ap- 
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Fig. 7. Optical gain plotted versus carrier density for an array of small 

GaAs quantum boxes with average diameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ,  density of boxes 7 ,  and 
rms roughness amplitude 8 as indicated. 

preciable hole occupancy in the highest energy state in the 
valence band. By quasi-neutrality these holes must be bal- 
anced by an equal number of electrons. The net effect is 
thus to increase the required threshold camer density. To 
see this Sonsider an undoped quantum box of diameter d 
= 200 A .  Suppose that this structure is quasi-neutral and 
contains a single electron and a single hole. Upon intra- 
band thermalization the electron will occupy the lowest 
energy level of the conduction band. The hole occupancy, 
however, is smeared out over a larger number of valence 
band states owing to the narrow energy spacing of the 
heavy hole states. 

The occupancyf, at a given energy is related to the hole 
occupancy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfh by the expressionf, = 1 - fh. In Table If, 
has peen tabulated for various numbers of holes in this 
quantum box. The equivalent hole density is also given. 
The heavy hole effective mass in GaAs has been used €or 
this calculation and we have assumed the hole state space 
to be a quasi-continuum. The optical gain of this structure 
will be proportional toff - f,, the difference in electronic 
occupancies between the lowest energy conduction band 
state and the highest energy valence band state. Ideally, 
to achieve maximum gain we would likef, = 1 andf, = 
0. Fgr the present case of one electron and one hole in the 
quantum box, however,f, = 1 and f, = 0.97, resulting 
in a greatly-reduced optical gain. For this size quantum 
box the large effective mass of the heavy holes therefore 
underpines the potential advantages offered by the struc- 
ture.' To circumvent this problem the quantum boxes could 
be p-doped to biasf, towards zero. 

The optical gain of an array of large quantum boxes can 
also be expressed in terms of the injected camer density 
N by ping N = 2qff and by treatingf, as a fixed quantity 
dependent upon the p-doping level. Using (15) we find 

This function, like G,, is linear in camer density and sat- 
urates when N = 2q. It is plotted in Fig. 8 for the various 

TABLE I 
HOLE VOLUMETRIC DENSITY AND ELECTRONIC OcCUPANCY' 

1.2 x 10'8 0.86 

'Hole volumetric density and electronic occupancy (i.e.,  f, = 1 - J,) 
for various numbers of holes in a 200 A diameter GaAs  quantum box. The 
letters a, b, c refer to Figs. 8 and 9. 

HEAVILY DOPED 
241 - 

I 

Fig. 8. Optical gain versus camer density for an array of large quantum 
boxes at various levels of p-doping (a, b, c correspond to f, given in 
Table I). The reduction in transparency excitation level with increased 
pdoping is apparent. 

Fig. 9. Optical gain versus carrier density for an array of large GaAs quan- 
tum boxes with density of boxes 7, box diameter d, and rms roughness 
amplitude 8 as indicated. The different curves comspond to different 
p-doping levels (a, b, c cornspond to the levels given in Table I). 

p-doping levels given in Table I. The effect of p-doping 
on the transparency level is apparent. In Fig. 9 a specific 
case is plotted in which the array contains quantum boxes 
having 5 diameter d = 200 A, center to center spacing 
of 400 A (i.e., q = 1.56 X 1OI6 ~ m - ~ ) ,  and a fabrica- 
tional tolerance 8 = 20 A. It should be noted that the 
introduction of heavy p-doping will produce strong Cou- 
lomb effects which will in turn alter the electronic state- 
space of the quantum box [ 131. Such heavily-doped struc- 
tures would become a variation of the so-called superatom 
[ 141. These effects will not be addressed bere. 
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Fig. 10. Maximum possible optical gain versus fabrication tolerance (given 
as the rms roughness 0 )  for arrays of quantum boxes of various densities. 
Large quantum boxes (density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq L )  have an average diameter of 200 A 
apd small quantum boxes (density qs ) have an average diameter of 1 0 0  

A .  The cross hatched region is beyond the geometrical packing limit of 
the quantum boxes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Maximum Possible Gain 
For the purposes of determining whether lasing thresh- 

old is possible it is necessary to estimate the maximum 
optical gain possible with a given density of quantum 
boxes having a given fabricational tolerance. For the large 
quantum box array the maximum possible gain is 24.v 
(assuming heavy p-doping) and for the small quantum box 
array maximum possible gain is Asq.  In Fig. 10 we show 
how these quantities vary with fabrication$ tolerance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 
for 100 A small quantum boxes and 200 A large quan- 
tum boxes. In general, large quantum boxes are less sus- 
ceptible to fabricational induced smearing of the gain 
spectrum [see (13)]. As a result higher gains for given 
quantum box densities are possible as compared to the 
small quantum box case. The cross hatched region of the 
figure is forbidden. It corresponds to densities beyond 
those possible with the assumed quantum box diameters 
(note: cubic packing is assumed). The homogenous line- 
width has been neglected in making these plots. Ob- 
viously, however, the presence of a finite homogenous 
linewidth will cause these curves to flattfn as 8 decreases. 
For the purpose of comparison 8 = 10 A corresponds to 
an energy broadening of 2.8 meV for the large quantum 
boxes and 22.6 meV for the small quantum boxes. 

CONCLUSION 

Arrays of quantum boxes may one day be employed as 
sources of optical gain in lasers or amplifiers. We have 
established size limitations on the quantum boxes in these 
arrays and have studied the dependence of optical gain on 
quantum box fabricational tolerance. The lower limit on 
quantum box size is set by the disappearance of bound 
electronic states at a critical diameter. We have calculated 
this critical diameter for the spherical quantum box and 
have shown that it differs for electrons and holes owing 
to the difference in their effective masses. The upper limit 
on quantum box size is set by the need to generate a dis- 
crete spectrum of states in one or both of the principal 

energy bands. When both the conduction band and va- 
lence band spectra are discrete, the quantum box is in the 
small regime. When only the conduction band spectrum 
is discrete the quantum box is in the large regime. The 
optical properties of quantum box arrays is regime depen- 
dent. Each regime has its own advantages and disadvan- 
tages. For example, it would appear unlikely that an array 
of large quantum boxes would provide the necessary gain 
for lasing action (even under high excitation) unless it is 
heavily p-doped. An array of small quantum boxes, on 
the other hand, can provide gain without being doped. 
Large quantum boxes, however, are easier to fabricate and 
once p-doped should attain higher optical gains for a given 
quantum box density at a given excitation level. This is a 
direct result of their gain spectra being less sensitive to 
fabricational induced broadening. 

To compare quantum box arrays and bulk semiconduc- 
tor material in terms of their optical gain at a given ex- 
citation level, it is useful to distinguish between the cases 
of high and low gain. To achieve the very high gains typ- 
ical of a conventional semiconductor laser (e.g., tens of 
cm-’), arrays of quantum boxes do not offer significant 
advantages unless there is very good control of fabrica- 
tional tolerance. For example, Fig. 9 indicates improve- 
ments in threshold carrier density exceeding two orders of 
magnitude (bulk carrier densities of 3 X 10l8 cm-3 are 
typical for an optical gain of 50 cmo- ’) provided the rms 
r9ughness amplitude is held to 20 A o! an array of 200 
A diameter quantum boxes. Since 200 A diameter quan- 
tum boxes have not yet been fabricated it is impossible to 
assign a difficulty factor to this specification. It most 
probably exceeds the state-of-the-art in direct-write li- 
thography, however. 

For low optical gains, however, a quantum box me- 
dium may offer a unique advantage that does not require 
extremely good fabricational control. This is a nearly-zero 
transparency level made possible by p-doping the quan- 
tum boxes. This property may make possible very low 
threshold semiconductor lasers provided that cavity losses 
are substantially reduced. It may also lead to optical am- 
plifiers with improved noise characteristics. We will in- 
vestigate these applications elsewhere. 
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