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Particles spatially confined in trapping potentials have attracted increasing interest over the recent decade. Of
particular importance are systems of charged particles, such as non-neutral plasmas, nanoplasmas, electrons
in metal clusters, electrons in quantum-confined semiconductor structures (“artificial atoms”), electrons on the
surface of liquid helium, ions in traps or highly charged particles (grains) in dusty plasmas. A second example of
recent interest are systems with other kinds of pair interactions, including dipole interaction, which is important
for excitons in quantum wells or ultracold Fermi and Bose gases in traps and optical lattices.

Trapped systems are fundamentally different from macroscopic systems since they are dominated by strong
spatial inhomogeneity and finite size effects (the properties depend on the exact particle number). Furthermore,
by changing the strength of the confinement potential, the many-particle state of the system can be externally
controlled—from weak coupling (gas-like) to strong coupling (crystal-like). While trapped classical particles
are meanwhile well understood and accessible to first-principle computer simulations, their quantum counter-
parts still pose big challenges, both for experiment and theory. Therefore, collective properties that can be easily
measured or computed and allow to diagnose the many-particle state of the system are of prime importance.
It has been found that the quantum breathing mode (monopole oscillation) is one of the most important such
properties. In recent years a number of theoretical studies has demonstrated that the quantum breathing mode
is ideally suited to measure the coupling strength (the degree of nonideality) of a trapped system, its kinetic
and interaction energy and other key observables. This give rise to a novel kind of “spectroscopy” of trapped
systems.

In this review these developments are summarized. The quantum breathing mode is studied for trapped
fermions and bosons with Coulomb and dipole interaction, respectively. A systematic description of collective
oscillations and especially the breathing mode is provided. Making use of time-dependent perturbation theory, it
is shown how the corresponding breathing frequencies are connected to the properties of the initial equilibrium
system. This gives rise to the application of the quantum mechanical sum rules. It is demonstrated how an
improved version of the conventional sum rule formulas is suitable for an accurate description of the breathing
mode in small systems. Finally, the dependence of the breathing mode on the particle number N is analyzed
and the limit of large N is studied for one-dimensional and two-dimensional systems.
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1 Introduction

1.1 Examples of trapped systems and common physical properties

The physics of confined systems is of major interest in many fields of research. Historically this topic was first

studied in nuclear matter (shell structure of nuclei, collective excitations etc.), and many of the theoretical tools

that are successfully used today, including the sum rule formalism [1–4] and numerical models have their origin

there. Another line of research originated in plasma physics. While conventional plasmas are electrically neutral

containing (at least) two oppositely charged components, it has long ago been realized that also a single charge

component can be kept stable [5]. To this end one can use an electrical field (trapping potential) that compensates

the mutual repulsion of the particles. The first systems where this was studied in detail were cold ionic plasmas
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in Paul or Penning traps, where it is possible to confine from small to large numbers of particles, for an overview

see [6].

During the recent 20 years the topic of spatially confined finite systems regained new interest. The long row

of prominent examples comprises correlated electrons in metal clusters, see e.g. [7] for an overview, ultracold

quantum gases in traps or optical lattices, e.g. [8–10], quantum dots, e.g. [11–14], confined plasmas [15], trapped

ions [16], and colloidal particles [17, 18]. These systems may differ in various of their properties including

the types of particle species, the relevant length and time scales, the temperature and the number of effective

spatial dimensions. Beyond that, the type of pair interaction—especially the distinction between long-range and

short-range forces (which is particularly important to characterize the system)—may be very different. Trapped

particles cover all possible cases of interaction range—from long-range Coulomb interaction (plasmas, ions)

to short-range contact interaction, in the case of neutral atoms and molecules in ultracold gases. Intermediate

types of interactions are common as well: ultracold atoms and molecules often possess an electrical or magnetic

dipole moment, so in many cases the dipole-dipole interaction may be important [19, 20]. Other systems with

dipole interaction include excitons in semiconductors or in electron-hole bilayers, e.g. [21, 22]. Here, variation

of the layer separation can even lead to a smooth transition from Coulomb to dipole interaction, e.g. [23, 24].

Another example of different interaction are semiconductor quantum wells. As a result of the finite layer width

the interaction between electrons or electrons and holes may differ both from Coulomb and dipole interaction,

for a numerical analysis of the resulting potential and its implication on the phase diagram see Refs. [25, 26].

Interestingly, despite these differences in the physical details, many of the collective properties of all these

systems are very similar and so are the theoretical descriptions of these many-body systems. In many cases,

different interaction potentials do not qualitatively alter the behavior but lead to a rescaling of the parameters

which can be accomplished by a suitable choice of coupling parameters (dimensionless interaction strength, cf.

Sec. 2.1.1). On the other hand, the external trap is often well modelled by a parabolic potential (with the trap

frequency Ω), at least for small amplitude excitations.

1.2 Quantum versus classical systems

When large particles are confined in a trap, such as micrometer-size dust particles, e.g. [27] or colloidal particles,

quantum effects are irrelevant and a classical treatment is adequate. On the other hand, in the case of micropar-

ticles (electrons, ions, atoms), from a general theoretical point of view, a quantum mechanical description of

the systems seems mandatory. However, if the repulsive interaction is very strong, than the combination of in-

teraction and confinement force leads to a strong localization of the particles; they are nearly point-like (strong

coupling limit), and the system is again well described with the classical equations of motion. This is the case,

e. g., for trapped ions or small charged grains in a plasma with Coulomb or Yukawa interaction [28,29]. Classical

behavior dominates at sufficiently low density, even in the case of electrons in semiconductors (Wigner crystal

regime [30]).

In Fig. 1, the spatial arrangement of 19 charged particles in a two-dimensional (2D) trap is illustrated for

different coupling strengths (for a definition of the coupling parameter, see Sec. 2.1.1). It is shown how the system

transitions between a liquid-like quantum state (at large trap frequency, corresponding to high density, left part)

and a state that is characterized by strongly localized particles (small trap frequency, low density, middle figure).

The figure shows that, even at temperature T = 0, the quantum nature of the particles causes them to have finite

extensions that may lead a finite overlap of the orbitals. In case of particles in a confining field this effect can be

tuned by the changing the trap frequency (and thus the density and the coupling strength). Note that, in the case

of wave function overlap, also the spin statistics plays an important role. In the case of trapped bosons coherence

effects may give rise to Bose condensation and superfluidity which may be inhomogeneously distributed among

the shells and even externally controlled [31]. If the delocalization of the particles becomes negligibly small, the

system can be considered point-like (right part of Fig. 1), i. e., the particles are well described in terms of the

classical equations of motion and the many-particle state resembles a crystal. Of course, in classical systems as

well, one can achieve a spatial delocalization of the particles, simply by increasing the temperature giving rise

to melting, e.g. [32, 33]. This situation is briefly considered below when we compare the quantum mechanical

breathing mode with the classical analogue in Sec. 3.2. The remaining parts of this work, however, concentrate

on the zero-temperature case of quantum systems since here the main effects are seen more clearly. In this case

“melting” of the particle ensemble is only possible due to quantum effects (so-called quantum melting [11]).
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Fig. 1 Ground-state configurations (densities) of N = 19 charged particles in a 2D harmonic trap with different coupling

strengths. Left: liquid-like state at weak coupling (high density). Center: crystal-like state at strong coupling with quantum

mechanical finite extensions of the particles (low density). Right: classical point charges. The two left figures are obtained

from Hartree-Fock simulations.

1.3 Normal modes as a novel spectroscopy tool for strongly correlated trapped systems

Strongly interacting systems in traps are complicated few- or many-body systems, due to the spatial inhomogene-

ity of their properties. In the quantum case, in addition, quantum diffraction and spin effects have to be accounted

for simulataneously. This is theoretically extremely challenging. Also, from the experimental side, a diagnostics

is very difficult since, usually no single-particle resolution is possible—with the exception of several classical

systems with sufficiently large particles, such as colloids or dusty plasmas [18, 27, 34]). Therefore, typical di-

agnostics e.g. in ultracold gases, are related to studying the expansion of the whole particle ensemble after the

trap is being turned off. Alternatively one can analyze the response of the whole system to an external excitation.

Obviously, such a collective response yields only rather indirect information on the state of the system.

The situation is a bit similar to studying atoms (or molecules). These are also highly inhomogeneous systems

where electrons are trapped by the Coulomb potential of the nucleus (or several nuclei or ions), and the quantum

mechanical state of the electrons is very complicated problem. Here, by far the most successul and sensitive

experimental approach consists in (absorption or emission) spectroscopy. The measured spectrum usually allows

for detailed information on the type of atom and, at high density, also on the atom-atom interaction or on the level

shift in the presence of a strong electromagnetic field. Now, we may proceed similarly with a finite ensemble

of trapped atoms: in order to gain insight into static features or the time-dependent behavior of trapped systems,

we may attempt to use properties of their low-lying collective oscillations [8, 35, 36]. The experimental and

theoretical importance of these oscillations, which are also known as normal modes, is comparable to that of

spectroscopy in atomic systems. In fact, as we will see below, a measurement of the normal modes is indeed a

sensitive diagnostic. This concept has recently been worked out explicitly for 2D systems by McDonald et al. in

Ref. [37]. There it was shown that the breathing frequency allows to directly infer important collective properties

of the system, including its mean kinetic and potential energy. Details will be givn in Sec. 3.3.

This analogy to the spectroscopy in atomic or molecular systems is sketched in Fig. 2 and becomes immedi-

ately evident for quantum dots, which—due to their similarities to real atoms—are also termed “artificial atoms”.

The lowest normal modes are the monopole (“breathing”) mode and the dipole (Kohn/sloshing) mode1. While

there exists a complete analytical solution for the dipole mode [38,39], the breathing mode demands a numerical

approach in the general case. Particularly, due to the increasing success of time-dependent numerical methods,

the quantum mechanical behavior of the breathing mode (BM) has been subject of several very recent investiga-

tions [37, 40–43]. In these works, the time-dependent response of the system to a monopole-type perturbation

has been studied for finite numbers of various trapped interacting fermions and bosons with Coulomb or dipole

interaction. The large variety of trapped systems in many field of physics has given rise to a large number of other

works that are concerned with the quantum breathing mode. An early example is the systematic study of giant

monopole resonances in nuclear matter systems [3, 4, 44–46]. But also in the rapidly growing field of quantum

gases, including Bose-Einstein condensates [35,47–50] and optically trapped Fermi gases [51–53], the BM plays

an important role.

1 If the Hamiltonian of the system is rotationally invariant, there is also a collective rotation mode of the system as a whole with frequency

zero. This trivial excitation is not relevant in the present context and will not be considered.

www.cpp-journal.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



30 J.W. Abraham and M. Bonitz: Quantum breathing mode of trapped particles

For classical systems consisting of strongly interacting point masses, the breathing mode and other normal

modes are well understood [16, 28, 29, 54, 55]. According to the definition of the term “normal mode”, all

particles oscillate with the same frequency and a fixed phase relation around their initial positions. In particular,

the normal modes can occur independently from eath other, i. e., collective oscillations may be formed by complex

superpositions of the normal modes. For the example of three confined particles in a plane, some basic normal

modes—rotational oscillations, oscillations of the center of mass (sloshing mode), and a uniform radial expansion

and contraction of the system (breathing mode)—are illustrated in Fig. 3. As has been shown [29, 55], the

normal mode spectrum of a crystallized system at zero temperature can be obtained by diagonalizing the Hessian

matrix of the potential terms. Beyond that, an extension for finite temperatures in the framework of the classical

Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is to be found in Ref. [28].

If quantum effects cannot be neglected, the theoretical description becomes more complex. Furthermore, as

was reported in Refs. [42, 56], the quantum breathing mode is characterized by some unique properties. The

authors analyzed the time-dependent breathing motion of small quantum systems, covering different types of

interactions, and distinguishing, in addition, between bosonic and fermionic particles. An important result of

this analysis is the fact that the quantum breathing mode is characterized by a superposition of two sinusoidal

oscillations with different frequencies. As it is not possible to excite these oscillations independently of each

other, this is a remarkable difference from the classical case. While one of the frequencies—called ωrel—is

strongly dependent on the coupling parameter of the system, λ, the other one, ωcm, has a universal value. The

occurence of two frequencies has its origin in a separation of the Hamiltonian in center-of-mass and relative

coordinates. In fact, the frequency ωrel is even accompanied by an infinite set of higher frequencies (harmonics),

which, however, have very low spectral weights if the system is in the ground state or equilibrium and is only

weakly excited.

Fig. 2 Left: schematic energy spectrum of a real atom (example for one electron). Absorption or emission spectroscopy

accesses the allowed transition energies between two energies �ωm→n = En − Em. Right: schematic energy spectrum of

an “artificial atom”—a finite system of N particles in a 2D harmonic trap. The excitation energies are N -particle energies

and correspond to normal modes (collective excitations) of all particles. These modes correspond to specific well defined

perturbations of all particles, such as “sloshing” and monopole oscillations, see. Fig. 3, for an illustration in the classical case.

The excitation energies En,m are characterized by two quantum numbers, correponding to excitations of the center-of-mass

and relative subsystem, respectively, see Sec. 2.

The normal modes are usually excited by weak perturbations of the ground-state configurations, so that the

reactions of the systems can be considered in the linear response regime. The frequencies of the oscillations are

thus to be found in the spectra of the ground states. Consequently, it becomes clear again how the normal mode

analysis is able to take over the role of spectroscopy in atomic systems. The excitation process of a real atom

can be recapitulated in Fig. 2. For comparison, this figure also illustrates the normal mode excitation in quantum

dots (“artificial atoms”). From one of the most famous examples—the hydrogen atom—the discrete nature of the

energy levels as well as the ionized continuum states are well known. A quantum dot models the features of a

real atom, but due to the harmonic trap potential, there exist only bound states with unique distributions of the

energy levels. As will be shown in Sec. 2.2, the total energies of the system are composed of two terms that can
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be attributed to the aforementioned separation of the Hamiltonian in center-of-mass an relative coordinates. On

the one hand, the figure shows the excitation of the sloshing/dipole mode with just a single frequency (left green

arrow). On the other hand, the first three breathing/monopole excitations are illustrated (red arrows). In contrast

to atomic systems, the spacings between the energy levels can be shifted by modifying the coupling parameter

λ [for a definition, see Sec. 2], e.g. via changing the steepness of the trapping potential. If the particles do not

interact with each other (λ = 0), the first two energies of the monopole excitation are equal. By contrast, in the

classical limit, λ → ∞, the spacing between these energies attains a maximum. Furthermore, except for the first

excitation energy, the corresponding oscillations have vanishing spectral weights in this case. As has been shown

for up to 20 fermions with Coulomb interaction in 1D in Ref. [41], not only the coupling parameter, but also the

particle number has a considerable influence on the spacing of the energy levels.

Fig. 3 Illustration of classical normal modes: rotational mode (left), dipole (sloshing, center of mass) mode, breath-

ing/monopole mode (right). Note that in a quantum system, in addition to the quasi-classical relative breathing modes there

exists a second (center of mass) breathing mode (not shown), see Sec. 2.

1.4 Outline of this paper and notational remarks

A central goal of this work is the phenomenological explanations given above on a firm theoretical basis. In fact,

in recent years impressive theoretical progress has been made in many fields and by applying a variety of methods.

It is, therefore, of high interest to review the common but very diverse approaches to calculate the frequencies of

the breathing mode and to provide additional details that are often skipped in the original literature. To compute

the breathing frequencies of large strongly correlated quantum systems in a harmonic trap, a sum rule formalism

is introduced which allows for a—although approximate—reliable prediction of the breathing frequencies with

the help of time- independent methods. Two models and a first-principle simulation approach are used:

a.: the Hartree-Fock approximation,

b.: the Thomas-Fermi approximations,

c.: path integral Monte Carlo simulations.

We present simulation results for the following cases:

i.: one-dimensional fermions with Coulomb and dipole interaction,

ii.: two dimensional fermions with Coulomb interaction,

iii.: two-dimensional bosons with dipole interaction.

These settings are of high fundamental theoretical and experimental interest. Systems of interacting electrons

in two spatial dimensions are realized in quantum dots, for example. As it is possible to set up the number of

participating particles precisely, starting with just one electron [14], quantum dots are a well suited environment

for the study of few-body physics. By contrast, typical examples for larger systems are cold fermionic or bosonic

quantum gases [8, 9]. They can be realized in one to three effective spatial dimensions [35, 36, 57]. As the gases

consist of atoms or molecules, the binary interactions are modelled in terms of contact and dipole interaction

potentials [49, 58, 59]. Typical simplifications for the theoretical description of Bose gases are, for example,
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the application of hydrodynamic theory [59]. Furthermore, for the numerical investigation of Bose-Einstein

condensation, the Schrödinger equation is commonly replaced by the Gross-Pitaevskii equation [9]. Such a

mean-field description allows one to reduce the N -particle problem to an effective single-particle problem. In this

work, however, the BM of dipolar bosons is studied with the equilibrium results from first-principles Quantum

Monte Carlo simulations. These simulations are considered exact, but the analysis is restricted to relatively small

particle numbers (N < 1000).

The fundamental idea of the derivations in this work is the application of time-dependent perturbation theory,

as it allows to systematically describe the normal modes based essentially on the equilibrium properties of the

system (linear response theory). Comparing with results from time-dependent calculations, it is shown that the

breathing mode is accurately described by various time-independent methods. With these methods, it is possible

to work out the peculiarities of finite systems as well as to consider large systems which will be done by means

of the Thomas-Fermi theory.

This review is organized as follows. The presentation of the theory starts with an introduction to the quantum

mechanical description of the breathing mode (Sec. 2), including the formalism of time-dependent perturbation

theory. Furthermore, the two-particle system is extensively studied since it can be solved exactly and allows to

benchmark approximations. For the determination of the breathing frequencies in larger systems, the theory of the

sum rules and an approximate solution of an operator equation are presented (Sec. 3). Concerning the numerical

solutions of the many-body problem, remarks on single-particle basis sets and brief descriptions of exact methods

are given in Sec. 4. Thereafter, the Hartree-Fock approximation and the Thomas-Fermi approximation are

explained in detail (Secs. 5 and 6). The numerical results are separately considered for the 1D case (Sec. 7) and

the 2D case (Sec. 8). Finally, the results are summarized and an outlook is provided (Sec. 9).

2 Quantum Mechanical Description of the Breathing Mode

In this section, the underlying equations for the quantum mechanical description of the breathing mode are

presented. The consideration starts with a general approach, which can also be applied for the investigation

of other collective modes. After a specification of the breathing mode, this section provides an overview of

some basic properties of the expected breathing frequencies, and shows how the computation can be approached.

Finally, a thorough review of the two-particle system is given, providing the understanding of the peculiarities of

the breathing mode.

2.1 Basic equations

A quantum system of N particles in d-dimensional space is described by an N -body wave function Ψ. Neglecting

relativistic effects, its time-evolution is governed by the time-dependent Schrödinger equation (TDSE)

i�
d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 . (1)

The characteristics of the system are determined by the explicit form of the Hamilton operator Ĥ(t). Remaining

on a general level of description, Ĥ(t) can be constructed as a sum of a stationary part Ĥ0 and an explicitly

time-dependent part. Since the normal modes are usually excited from an initial equilibrium state, it is natural to

start the description of the system by specifying Ĥ0. For simplicity, all N particles are assumed to have equal

(effective) masses mi = m and—in case of charged particles—equal charges qi = q. The dynamics of the system

are determined by repulsive interactions and an external trapping potential, driving the particles to the center of

the trap. The corresponding equilibrium Hamiltonian has the general form

Ĥ0 = T̂ + V̂ + Ŵ , (2)

where the single-particle operators T̂ and V̂ refer to the kinetic energy and the external trap energy, respectively,

and the two-particle operator Ŵ represents the binary interactions. Setting the external potential to be harmonic

with a trap frequency Ω and introducing the coordinates r = (r1, . . . , rN ), the Hamiltonian finally takes the
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form2

H0(r) =
N
∑

i=1

{

− �
2

2m

∂2

∂r2i
+

1

2
mΩ2r2i

}

+
∑

i<j

w(|ri − rj |) . (3)

The major interest of this work is to investigate charged particles with Coulomb interaction, i. e.,

w(|ri − rj |) =
q2

ǫ|ri − rj |
. (4)

The constant ǫ is the proportionality constant of the Coulomb potential. In SI units, it is given by ǫ = 4πε0ε,

where ε is the dielectric constant of the background material.

Another physically relevant interaction considered in this work is the long-range part of the dipole interaction.

It is given by [58]

w(r) =
Cdd

4π

1− 3(r · n)2/|r|2
|r|3 =

Cdd

4π

1− 3 cos2(θ)

|r|3 , (5)

where n is a unit vector in the direction of the dipole axis, θ is the angle between the dipole axis and r, and Cdd

is a proportionality constant. It depends on the physical situation and especially on the character of the dipoles

being electric or magnetic. In this work, dipolar particles are investigated in 1D chains and 2D “pancake-shaped”

geometries. It is always assumed that an external field aligns the dipoles perpendicular to their distance vectors.

As a consequence, the expression for the interaction between two dipolar particles can be reduced to

w(|ri − rj |) =
Cdd

4π

1

|ri − rj |3
. (6)

It shall be remarked that this type of interaction is a very basic model. For the modeling of Bose-Einstein

condensates, one often takes into account the finite extension of the particles by adding a contact potential

∝ δ(ri − rj) [60]. Following Ref. [20], however, it is assumed that the interaction is so strong that one can

neglect the cores of the particles.

A final remark is made to keep the notations consistent throughout the following sections. It is assumed

that Ĥ0 is diagonalized by the N -body wave functions {|k〉 | k = 0, 1, . . . } with the corresponding eigenvalues

{Ek | k = 0, 1, . . . }.

2.1.1 Coupling parameter and dimensionless units

For both notational convenience and an appropriate numerical handling, it is useful to rewrite the TDSE in

dimensionless units. With the standard oscillator length l0 = [�/(mΩ)]
1/2

, one can define new spatial coordinates

r̃i = ri/l0. After rescaling the time by t̃ = Ωt, inserting the new quantities in Eq. (1), and omitting the tilde

symbol, one arrives at the rescaled Hamiltonian

H0(r) =

N
∑

i=1

{

−1

2

∂2

∂r2i
+

1

2
r2i

}

+ λC/dd

∑

i<j

1

|ri − rj |α
, (7)

where, a dimensionless coupling parameter has been introduced. For Coulomb interaction (α = 1), it takes the

form

λC =
q2

ǫl0�Ω
≥ 0 , (8)

whereas, for repulsive dipole interaction (α = 3), it is given by

λdd =
Cdd

4πl30�Ω
≥ 0 . (9)

2 The statement
∑

i<j means a summation over j = 2, . . . , N and i = 1, . . . , (j − 1).
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Since λC/dd is a prefactor of the interaction potential, it determines the strength of interaction effects. Defining

the scales for the trap energy E0, the Coulomb interaction energy, EC and the dipole interaction energy Edd as

E0 =
1

2
mΩ2l20 , EC =

q2

2ǫl0
, Edd =

Cdd

2 · 4πl30
, (10)

the coupling parameter can directly be interpreted as

λC/dd =
EC/dd

E0
. (11)

In experiments, λC/dd can be directly controlled by the trap frequency of the confining field.3

From now on, lengths, times and energies of numerical results will be given in units of l0, Ω−1 and �Ω,

respectively. Nevertheless, for the sake of clarity, the units are explicitly written out for most values in the text.

Furthermore, it is always written λ instead of λC or λdd. It can be seen from the context to which interaction the

coupling parameter corresponds.

Coupling in the macroscopic uniform electron gas. For a later discussion, it will be interesting to compare

the coupling parameter to the relevant quantities of a macroscopic uniform electron gas [32]. In such a system,

one of the important characteristic parameters is the average interparticle distance r ∝ n−1/d, where n is the

density of the d-dimensional system. With this, one defines the mean Coulomb energy (per particle) for the

electrons (charge e) and the mean kinetic energy of a classical system

EC =
e2

4πεr
, Ekin =

d

2kBT
, (12)

where kB is the Boltzmann constant and T is the temperature. In contrast, in a degenerate Fermi system, the

kinetic energy is given by

Ekin =
3

5
EF (13)

with the Fermi energy EF. Defining the Coulomb coupling parameter as the ratio of the mean Coulomb energy

and the kinetic energy, we obtain, for a classical and a Fermi system, resprectively,

Γ =
EC

kBT
, rs =

r

aB
∝ EC

EF
, (14)

where we introduced the Bohr radius aB as the relevant quantum length scale. The parameter rs is also called

Brueckner parameter. Finally, with the help of the degeneracy parameter

χ =

(

Λ

r

)d

, (15)

measuring the ratio of the de Broglie wavelength Λ and the interparticle distance, one can discriminate between

quantum-like (χ ≥ 1) and classical (χ < 1) behavior.

2.1.2 Excitation of collective modes

So far, only the initial Hamiltonian has been considered. The excitation of collective modes can be achieved by a

short perturbation of the system. Such a perturbation is formally included in the Hamiltonian as

Ĥ(t) = Ĥ0 + ηδ(t)Q̂ . (16)

3 Of course, there are also other possible dimensionless forms of the TDSE, involving different coupling parameters. In this work, the

given form of Eq. (7) is used. It has the advantage that it is straightforward to numerically implement this Hamiltonian in the standard

oscillator basis.
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In this equation, Q̂ is a perturbation operator which is not further specified at this point. It is just assumed that

the action of Q̂ is delta-like in time and that the small parameter η guarantees a weak perturbation.

Of course, the excitation process which is defined by Eq. (16) is just an idealization of a real process. In both

experimental and numerical situations, the duration and the strength of the excitation are always finite. However,

the above definition has the advantage that it allows for a mathematical definition of collective modes in terms

of time-dependent perturbation theory. As will be seen in the results, the perturbative treatment is justified. For

the time-dependent calculations presented in Refs. [42,56], it was stated that the action of the excitation operator

should be very short. Here, the mathematical foundation in terms of δ-like perturbations is given.

At t = 0, the system is assumed to be in the state |n〉. The wave function of the perturbed system has to obey

the TDSE

i
d

dt
|Ψ(t)〉 =

(

Ĥ0 + ηδ(t)Q̂
)

|Ψ(t)〉 . (17)

At any time t, the wave function can by expanded by

|Ψ(t)〉 =
∑

k

ck(t) exp {−iEkt} |k〉 . (18)

For sufficiently small η, one can make use of time-dependent perturbation theory up to the first order to calculate

the coefficients ck(t). According to the derivation in Appendix A.1.2, the perturbation ηδ(t)Q̂ leads to time-

independent coefficients

ck = δkn − iη〈k|Q̂|n〉 . (19)

The expectation value of an observable Â which is not explicitly time-dependent is given by

〈Â〉(t) =
∑

ij

c∗i cj exp {i (Ei − Ej) t} 〈i|Â|j〉 . (20)

This equation shows that the expectation value of Â can only oscillate with the frequencies

ωij = |Ei − Ej | . (21)

These frequencies correspond to the normal modes of the system. However, a given frequency ωij can only be

observed if each of the terms ci, cj and 〈i|Â|j〉 is non-zero.

2.1.3 Definition of the quantum breathing mode

The quantum breathing mode is defined as the collective oscillation which is induced by the monopole operator

Q̂ = r̂2 =

N
∑

i=1

r̂2i . (22)

A perturbation with this operator can be realized by a short switch of the trap frequency. In this work, the system

is always assumed to be initially in the lowest eigenstate |0〉 of Ĥ0. This corresponds to a temperature T = 0. An

appropriate observable for the determination of the breathing frequencies is 〈r̂2〉. This quantity is proportional

to the trap energy 〈V̂ 〉. Inserting the expansion coefficients from Eq. (19) into Eq. (20) for this special case, one

finds

〈r̂2〉(t) = 〈0|r̂2|0〉 − 2η
∑

i

|〈0|r̂2|i〉|2 sin(ωi0t) +O(η2) . (23)

The structure of this result is quite simple. The first term is constant. It represents the expectation value of

the unperturbed system. The second term is a superposition of oscillations induced by the perturbation. The

amplitudes of these oscillations are determined by the strength of the perturbation η and the matrix elements

〈0|r̂2|i〉. As a special consequence, only frequencies with non-vanishing matrix elements can be observed. In

other words, a frequency can only contribute to the oscillations if its corresponding transition is not forbidden

by the selection rules of the monopole operator. Furthermore, all contributions in the second order of η can be

neglected, because η is small.
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2.2 Limiting cases and analytical results

According to the derivation in Sec. 2.1.3, the breathing motion comprises a variety of possible frequencies. In

Refs. [41, 42, 56], however, it was shown that the breathing mode is dominated by just two frequencies. One

of these has the universal value 2Ω. It is independent of the particle number, the coupling strength and the

dimension of the system. The universality of this frequency can be explained with a formal decoupling of the

wave function into a center-of-mass and a relative part,

|Ψ(t)〉 = |Ψcm(t)〉 ⊗ |Ψrel(t)〉 . (24)

Such a decoupling is induced by the splitting of the Hamiltonian [61],

Ĥ(t) = Ĥcm(t) + Ĥrel(t) , (25)

where the contributions read

Ĥcm(t) =
N

2
P̂2 +

N

2
R̂2 + ηδ(t)NR̂2 , (26)

Ĥrel(t) =
∑

i<j

{

1

2N
p̂2
ij +

1

2N
r̂2ij + ŵ(|r̂ij |) + ηδ(t)

1

N
r̂2ij

}

. (27)

Here, the center-of-mass and relative coordinates have been introduced, according to the scheme

Ô =
1

N

N
∑

i=1

ôi , ôij = ôi − ôj . (28)

The above separation does not only achieve a splitting of the time-independent part of the Hamiltonian, but also of

the excitation operator
∑N

i=1 r̂
2
i . Hence, the monopole operator excites the breathing motion in both independent

subsystems at the same time. The time-dependent expectation value of the trap energy consequently takes the

form

〈V̂ 〉(t) = 〈Ψcm(t)|V̂cm(t)|Ψcm(t)〉+ 〈Ψrel(t)|V̂rel(t)|Ψrel(t)〉 . (29)

The corresponding expression for the kinetic energy 〈T̂ 〉(t) follows analogously. The interaction energy, however,

has no contributions originating from the center-of-mass system, because the operator Ŵ only appears in the

relative system.

The above insights allow for a further specification of the expected breathing oscillation. Equation (26) de-

scribes an ideal quantum mechanical oscillator problem for the observables T̂cm = NP̂2/2 and V̂cm = NR̂2/2.

Factoring out the particle number N with a rescaling of the coordinates, one can show that the eigenvalues of this

system are given by Ek
cm = (k + d/2) �Ω. Hence, one can conclude with Eq. (23) and the selection rules of the

monopole operator that the center-of-mass system contributes to the breathing motion with the frequency 2Ω.

The frequencies of the relative motion, however, are more complex. Depending on the coupling parameter λ, the

dominating frequency attains the values
√
3Ω ≤ ωrel ≤ 2Ω, for Coulomb interaction, and 2Ω ≤ ωrel ≤

√
5Ω,

for dipole interaction [42, 55, 56]. This frequency is the first frequency that is allowed by a monopole excitation

in the relative system. For λ = 0, ωrel reaches the ideal quantum limit, because the interaction vanishes. In this

case, the frequency 2Ω is degenerate. By contrast, the classical limit with the frequencies
√
3Ω and

√
5Ω, re-

spectively, is reached for λ → ∞, i. e., dominating interaction energy. In this case, the particles can be described

like classical point masses. To conclude, the separable structure of the TDSE gives some important insight into

the expected behavior of the system. As will be shown in Sec. 2.4, one can particularly make use of it in the case

of N = 2 interacting particles. For larger particle numbers, however, computations are usually performed in the

full system without the splitting.

2.2.1 Quantum virial theorem

As it is important for some derivations, it is briefly remarked that the quantum virial theorem holds in the consid-

ered systems [62]. This theorem states that there is a fixed relation between the ground-state expectation values
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of the kinetic energy and all potential terms. This relation is given by

2〈T̂ 〉 − 2〈V̂ 〉+ α〈Ŵ 〉 = 0 . (30)

Additionally, the virial theorem also holds for the subsystems given by the center-of-mass coordinate and the

relative coordinates,

2〈T̂rel〉 − 2〈V̂rel〉+ α〈Ŵ 〉 = 0 and 〈T̂cm〉 − 〈V̂cm〉 = 0 . (31)

2.2.2 Sloshing mode

Although this work is concerned with the breathing mode, it is recapitulated that the system possesses another

mode, which can be described analytically. This mode, which is known as the sloshing mode, corresponds to the

dipole excitation operator,

Q̂ =

N
∑

i=1

r̂i = NR̂ . (32)

This operator induces an oscillation of the center of mass coordinate 〈R̂〉. The mode has the universal frequency

1Ω and can be used as a sensitive test for the conserving properties of an approximation [39]. To demonstrate

the universal capabilities of the methods introduced in Sec. 5 (time-dependent Hartree-Fock and perturbation

theory), this result is numerically reproduced in Sec. 7.1.1.

2.3 Calculation of the breathing frequencies

The purpose of this work is to show how the breathing frequency ωrel can be determined in dependence of

the particle number and the coupling strength for systems with Coulomb interaction and systems with dipole

interaction. Having laid the mathematical foundation of the quantum breathing mode, one can conclude how to

generally approach the calculation of the breathing frequencies.

On the one hand, one can perform time-dependent calculations like in Refs. [41,42,56]. For that purpose, one

calculates the ground state of the system, excites the breathing mode and propagates the system for a sufficiently

long time. Finally, the breathing frequencies can be extracted from the spectrum of some time-dependent quan-

tities, for example, the potential energy 〈V̂ 〉. As the investigation with time-dependent methods is the natural

approach, the presentation of the results in Sec. 7 starts with a comprehensive study of the time-dependent be-

havior and its peculiarities. Besides, recent works on the breathing mode from different authors [37, 40] confirm

the relevance of time-dependent methods in current research.

On the other hand, Eq. (23) suggests to avoid time-dependent calculations because the spectrum of the initial

state already yields all possible frequencies. As a consequence, each method that is suited to calculate the

spectrum of the initial ground state—or at least a sufficient part of it—can be used to determine the breathing

frequencies. Compared to the methods of Refs. [42,56], this is a new ansatz. A major part of this work is devoted

to the presentation of several ground-state methods. Not only do such methods save the computational time of

the propagation, they also yield useful formulas for the physical interpretation of the breathing mode. Before

continuing with applications in the quantum case, some of the most important classical results are repeated in the

following subsection.

2.3.1 Breathing frequencies in the classical limit

In the classical limit of strongly interacting particles that can be treated like point masses, the breathing mode is

well understood. For completeness, a summary of the theoretical approaches is given in the following. Analogous

to Eq. (7), the Hamiltonian of the classical system (with m ≡ 1) takes the form

H0(r) =
N
∑

i=1

1

2
p2
i + U(r) , U(r) =

N
∑

i=1

1

2
Ω2r2i +

∑

j<k

1

|rj − rk|α
(33)
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where U denotes the total potential energy. For a ground state with vanishing kinetic energy (pi = 0), the forces

on each particle with the coordinate r∗i must vanish, i. e.,

0 = ∇iU(r)|r=r
∗ . (34)

For small excitations from the ground state, the potential may be approximated harmonically,

U(r) ≈ U(r∗) +
1

2
(r− r∗)THr

∗

(r− r∗) , (35)

where the real symmetric and positive semidefinite dN × dN matrix Hr
∗

= ∇∇TU(r)|r=r
∗ is the so-called

Hessian. The eigenvalue problem

ω2r̃ = Hr
∗

r̃ (36)

yields dN linearly independent eigenvectors r̃i and corresponding eigenvalues ω2
i [29, 55]. Expressing the col-

lective motion with the expansion

r(t) = r∗ +

dN
∑

i=1

ci(t)r̃i , (37)

one can derive the scalar solutions

ci = Ai cos(ωit+Bi) (38)

for all i ≤ dN [55]. These terms contain all normal modes and their corresponding frequencies. For the breathing

mode, the values ωBM =
√
3Ω and ωBM =

√
5Ω are well known for the cases α = 1 and α = 3, respectively

[29, 42, 55, 63].

The above considerations correspond to the zero-temperature limit, because it has been assumed that the parti-

cles have no kinetic energy. A more general approach including finite temperatures can be found in Ref. [28]. In-

troducing the ratio of the thermal kinetic energy and the energy of the harmonic trap potential, p ∼ (kBT/Etrap),
the authors arrive at the general formula

ωBM = Ω((2− α)(p− 1) + 4)
1/2

. (39)

This result reveals that the breathing frequency of non-interacting quantum systems, 2Ω, has a classical analogue

in the high-temperature limit with p = 1.

2.4 Review of the two-particle system

Before the methods for many-particle systems are presented, the two-particle system shall be reviewed. The

corresponding Schrödinger equation can essentially be simplified. Furthermore, one can gain insight into some

properties that also hold for larger systems. Since the numerical techniques for the following results are quite

simple, they need not be described in detail here. The purpose of this section is to provide a qualitative picture of

the quantum breathing mode.

The first time-dependent investigations for the breathing mode of two particles in a trap are presented in

Refs. [42, 56]. In this section, an alternative time-independent approach is followed. According to the separation

procedure discussed in Sec. 2.2, the stationary relative problem in coordinate representation reads

ErelΨrel(r) =

{

−∇2
r
+

1

4
r2 +

λ

|r|α
}

Ψrel(r) , (40)

where the coordinate r := r1 − r2 has been defined. In this equation, it is advantageous that the interaction term

is of single-particle type, i. e., one can avoid the numerical effort of handling the two-particle interaction operator.
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After rescaling r =
√
2r̃ , and omitting the tilde symbol, one obtains an equation with the standard oscillator

prefactors of the kinetic and trap energy terms,

ErelΨrel(r) =

{

−1

2
∇2

r
+

1

2
r2 +

λ

2α/2|r|α
}

Ψrel(r) . (41)

If the dimension of the system is d ≥ 2, one can take advantage of the radial symmetry, expressing r in hyper-

spherical coordinates (ρ, φ1, . . . , φd−1) [64]. In these coordinates, the Laplace operator reads

∇2
r
=

∂2

∂ρ2
+

d− 1

ρ

∂

∂ρ
+

1

ρ2
∇2

φ , (42)

where ∇2
φ is the Laplace operator on the unit hypersphere Sd−1 [65]. With the separation ansatz

Ψrel (ρ, φ1, . . . , φd−1) = Rl(ρ)Yl (φ1, . . . , φd−1) , (43)

one can reduce the problem to the radial equation
{

−1

2

[

d2

dρ2
+

d− 1

ρ

d

dρ
− l(l + d− 2)

ρ2

]

+
1

2
ρ2 +

λ

2α/2ρα

}

Rl(ρ) = ErelRl(ρ) . (44)

The functions Yl with l = 0, 1, 2, . . . are normalized hyperspherical harmonics with the eigenvalues l(l + d− 2)
[64, 66]. For a further simplification, one can make the ansatz

Rl(ρ) =
ul(ρ)

ρ(d−1)/2
, (45)

resulting in the equation
{

−1

2

d2

dρ2
+

ρ2

2
+

(l + (d− 2)/2)
2 − 1/4

2ρ2
+

λ

2α/2ρα

}

ul(ρ) = Erelul(ρ) . (46)

Compared to Eq. (40), one has reduced the problem to compute a 1D wave function instead of a d-dimensional

one. In the following subsections, 1D and 2D systems are investigated in detail.

2.4.1 Solution for the one-dimensional system

The introduction of spherical coordinates is only meaningful for systems with dimensions d ≥ 2. The starting

point for the numerical investigation of 1D systems is thus Eq. (41), describing the 1D wave function Ψrel(r). It

can be solved with standard numerical techniques. In this work, the results were obtained with an expansion of

the wave function in FEDVR basis functions4. With this procedure, one has to solve an eigenvalue problem for

the matrix representation of Eq. (41). Hence, one obtains a set of eigenfunctions with corresponding eigenvalues

from which the breathing frequencies can be extracted.

Before showing the results for different interaction types, the influence of the particle statistics shall be dis-

cussed. For bosonic particles, the relative wave function must fulfill

Ψrel(r) = Ψrel(−r) . (47)

This is also the case for fermions with anti-parallel spin projections. Nevertheless, such a symmetric wave

function will be referred to as bosonic in the following. On the other hand, for fermionic particles with parallel

spin projections,

Ψrel(r) = −Ψrel(−r) (48)

is demanded. One can immediately conclude that such an anti-symmetric wave function—that will be called

fermionic—must vanish at the origin. Hence, it is sufficient to solve Eq. (41) on the positive interval [0,∞[
with the condition that the wave function vanishes at the boundaries. This condition is a priori fulfilled with

the FEDVR basis functions, but for numerical reasons, the interval is finite. For bosons, by contrast, the wave

function can be non-zero at the origin. Hence, one has to do the calculations on the complete interval ]−∞,∞[,
demanding that the wave function vanishes at ±∞. Since this approach also yields fermionic eigenfunctions, one

has to select the desired particle species by the spatial symmetry.

4 Details of the FEDVR basis are given in Sec. 4.2.2
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Fig. 4 Breathing frequency ωrel vs. coupling parameter λ for two particles in a 1D system with Coulomb interaction (top)

and dipole interaction (bottom). Both potentials are screened, according to Eq. (49). The plus (minus) signs denote symmetric

(anti-symmetric) wave functions. The curves with κ = 0 originate from calculations on the interval [0,∞]. For symmetric

wave functions, the screening parameter κ leads to strongly non-monotonic behavior. This effect is weakened in the dipolar

case.

If one solves the problem on the complete interval, one has to overcome the problem of the divergence in

the potential w(r) = 1/|r|α. One solution to this problem is the physically motivated replacement of the pure

Coulomb/dipole potential by the screened potential

w(r) =
1

(r2 + κ2)
α/2

(49)

with the small parameter κ. Here, κ is intended to approximately represent the extension of the wave function

in the other spatial dimensions [67, 68]. The screened potential, however, leads to a non-monotonic behavior of

the breathing frequency for bosonic particles. In Ref. [56], this issue was thoroughly discussed. In Fig. 4, the

κ-dependence of the breathing frequency is illustrated for Coulomb and dipole interaction. The influence of κ can

be understood as follows. As κ appears as an additional constant in the denominator of the interaction potential,

it only has an influence if the distance of the particles r is small. For strongly separated particles, however, κ
becomes negligible. As the average particle distance depends on the coupling parameter λ, there is a strongly

coupled regime for each κ in which its influence on the frequency vanishes. The smaller the value of κ is, the

smaller is also the value of λ for which κ can be neglected. In the weakly interacting regime (small λ), however,
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the error induced by the screening leads to a non-monotonic behavior of the breathing frequencies. As can be

seen from the figure, this behavior is only apparent for bosonic particles. For fermions, having vanishing wave

functions at the origin, the dominating influence of κ is suppressed. Furthermore, in the case of dipolar bosons,

the influence of κ is strongly reduced.

Fig. 5 Breathing frequency ωrel vs. coupling parameter λ for two particles in a 1D system with Coulomb interaction (top)

and dipole interaction (bottom). Both interactions include an additional hard-core term as introduced by Eq. (50). As the

Bose-Fermi mapping holds, there is no difference between bosonic and fermionic curves. For small core extensions a, the

results converge to those from fermionic systems with pure Coulomb/dipole interaction (a = 0).

In Ref. [56], the authors mention that they expect the same results for bosons and fermions in 1D systems

due to the Bose-Fermi mapping [69]. They explain that their calculations with the screened potential are not

able to fulfill these expectations. To add a thought to their analysis, one can again cite Ref. [69], noticing that

the one-one correspondence between 1D Bose and Fermi systems holds under the restriction that the interactions

have an impenetrable core. Hence, another useful possibility for the numerical simulation of the 1D system is to

employ a hard-core potential

w(r) =

{

∞ |r| ≤ a

1/|r|α |r| > a ,
(50)

forbidding the particles to approach each other closer than twice the extension of the core a. For the numerical

implementation, it is sufficient to replace infinity by a very large number for the case |r| ≤ a. One only has
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to check that the wave function is close to zero in the forbidden region. In Fig. 5, the results for the potential

(50) are shown for Coulomb and dipole interaction. As expected, the Bose-Fermi mapping holds for every core

extension. Apparently, in the limit a → 0, the bosonic results converge to the fermionic results with a = 0. From

this analysis, one can conclude that a hard-core interaction potential is a possible alternative to the regularization

with κ, because such a potential forces the relative wave function to vanish around the origin. Hence, symmetric

and anti-symmetric wave functions can be handled at the same time. Finally, to emphasize the differences of the

proposed modified interaction potentials in 1D systems, Fig. 6 shows the relative wave functions and densities

of two Coulomb interacting bosons and fermions with the κ-regularization and the additional hard-core term,

respectively.

Fig. 6 Comparison of the relative wave functions (left column) and the corresponding densities (right column) of two charged

particles with a screened potential as in Eq. (49) (top row) and a hard-core potential as in Eq. (50) (bottom row). Only in the

case of a hard-core potential, the bosonic density (+) is equivalent to the fermionic density (−). The data were produced for

the coupling λ = 1.

As mentioned before, the breathing mode comprises the frequencies ωrel and ωcm as well as weakly contribut-

ing higher frequencies. The mathematical reason is found in Eq. (20), stating that, in principle, all frequencies

Ei−E0 can occur. These higher frequencies are the last feature that shall be analyzed in the framework of the 1D

two-particle system. Starting the consideration with the center-of-mass system, it is easy to see that this subsys-

tem yields no other frequencies than ωcm = 2Ω. This can be explained with the selection rules of the monopole

operator, because the system is non-interacting. The relative system, however, is perturbed with the interaction

potential. Therefore, transitions to higher states are not forbidden anymore. In order to interpret the spectra of

time-dependent quantities, it is important to know the values of the higher frequencies. Figure 7 presents an

overview of the λ-dependent behavior of the higher breathing frequencies for Coulomb interaction as well as

dipole interaction. One can see that the quantum limits of the i-th possible breathing frequency takes the value
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2iΩ. Similarly, the classical limits attain the values
√
3iΩ for Coulomb interaction and

√
5iΩ for dipole interac-

tion. But still, it is important to note that for intermediate couplings, the frequencies do not scale exactly with the

factor i. It remains to investigate the weights of the higher frequencies. From Eq. (23), one can conclude that the

expectation value of the quantity r̂212 := (r̂1 − r̂2)
2

has breathing oscillations with the weights |〈0rel|r̂212|irel〉|2.

Here, |irel〉 are the eigenstates of the Hamiltonian Ĥrel. In Fig. 8, the λ-dependent weights are shown for the

example of two Coulomb-interacting fermions of parallel spin. One can see that for each coupling, the weight

of the first excited breathing frequency is several orders of magnitude larger than those of higher frequencies.

While the contributions of the higher frequencies have their maximum for intermediate couplings 1 ≤ λ ≤ 10,

in the limiting cases, only the first frequency remains. Noticing the increasing weight of the first frequency with

λ, one can also understand that the frequency 2Ω from the center-of-mass system is a pure quantum effect, as its

constant weight is always negligible in the classical limit λ → ∞.

Fig. 7 Transition of the first and two higher breathing frequencies of the relative system from weak to strong coupling in the

case of two particles with Coulomb interaction (left) and dipole interaction (right) in 1D. Keeping the notation from Eq. (20),

the index i denotes the corresponding transition from the energy eigenvalue Erel,0 to Erel,i.

Fig. 8 Spectral weights of the i-th breathing oscillation of the quantity r̂
2
12 := (r̂1 − r̂2)

2
in the relative subsystem. These

data have been produced for a 1D two-particle system with Coulomb interaction.

Having analyzed the higher frequencies for the two-particle system in 1D, one can expect that the behavior is

similar for other system parameters. However, this has to be checked as far as this is possible. As will be seen
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later in this work, for the application of the sum rule formulas, it is an important property that the contributions

from higher frequencies are very small.

2.4.2 Solution for two and higher dimensions

For dimensions d > 1, it is useful to solve Eq. (46), which is an essential simplification of the full problem.

Concentrating on the 2D system, the equation takes the form

{

−1

2

d2

dρ2
+

ρ2

2
+

l2 − 1/4

2ρ2
+

λ

2α/2ρα

}

ul(ρ) = Erelul(ρ) . (51)

Compared to the 1D system, this equation includes the additional centripetal term
l2−1/4
2ρ2 . In the case of Coulomb

interaction, Taut has found analytical solutions of Eq. (51) for an infinite and countable set of trap frequencies,

i. e., selected coupling parameters [70]. Similarly to the non-interacting harmonic oscillator, Taut’s idea is to

make an ansatz with a sum of polynomials, yielding a recurrence relation for the coefficients of the polynomials.

Fig. 9 Breathing frequency ωrel vs. coupling parameter λ for two particles in a 2D system with Coulomb interaction (top)

and dipole interaction (bottom). The curves with l = 0 (l = 1) represent symmetric (anti-symmetric) wave functions. For

comparison, the frequencies of 1D systems with anti-symmetric wave functions and pure Coulomb/dipole interaction are also

plotted.

This ansatz, however, forces the trap frequency to obtain selected values, and one cannot get pairs of the ground

state and the first monopole-allowed state. That is why the problem is treated numerically in this work. With

negligible computational effort taking no more than seconds or minutes, one can calculate the full spectra for
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arbitrary couplings. Contrary to the 1D system, the symmetry of the wave function is conveniently determined

by the quantum number l. To understand this, one can recall that in 2D, the spherical harmonic is proportional

to exp(ilφ) for l = 0,±1,±2, . . . [66, 70]. Exchanging the positions of the two particles, the difference vector

r changes its sign, i. e., it points to the opposite direction. That means that the coordinate r remains the same,

while φ goes over to φ+ π. As a consequence, the spherical harmonic is multiplied by

exp (ilπ) = (−1)
l
, (52)

yielding symmetric wave functions for even l and anti-symmetric wave functions for odd l. The ground states for

both cases are found for l = 0 and l = ±1, respectively.

Fig. 10 Dependence of the breathing frequency on the parameter l̃ for Coulomb interaction (top) and dipole interaction

(bottom). With increasing l̃, the frequencies are shifted towards the ideal quantum regime.

In Fig. 9, the breathing frequencies are plotted for Coulomb and dipole interaction. As expected, the values

transition from the ideal quantum limit into the classical limit. Compared to the frequencies of a 1D system, the

breathing frequencies are shifted in the classical direction for l = 0 and in the direction of the ideal quantum

system for l = 1. To understand this on a more general level, one can take another look at Eq. (46) for the

d-dimensional system, focusing on the centripetal term

(l + (d− 2)/2)
2 − 1/4

2ρ2
. (53)
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This term results from the kinetic energy operator. It can be interpreted as an additional contribution to the

(effective) interaction potential5

w̃(ρ) =
(l + (d− 2)/2)

2 − 1/4

2ρ2
+

λ

2α/2ρα
. (54)

If l or d is strongly increased, the second term of w̃ can be neglected. In this case, the breathing frequency

possesses the value 2Ω [71]. The influence of l and d can be summarized in the quantity l̃ = |l + (d − 2)/2|,
which can assume the values 0, 0.5, 1, 1.5, . . . . For example, the 1D system and the 3D system with l = 0
have the same value l̃ = 0.5 and thus the same breathing frequencies. As is confirmed in Fig. 10, the breathing

frequencies are shifted to the ideal limit with increasing l̃.
To summarize, it has been shown how to generalize the breathing frequency of two particles to arbitrary

dimensions d and quantum numbers l. One always has to solve a 1D equation. In the above considerations, the

case d = 1 has been excluded from the treatment of Eq. (46). Nevertheless, one can formally include this case,

setting l = 0 and assuming that the boundary condition u0(r = 0) = 0 holds due to the Bose-Fermi mapping.

3 The Breathing Frequency in Terms of Equilibrium Expectation Values

As has been shown in the last section, the possibility to induce breathing oscillations of a trapped system by

a δ-like perturbation opens the route towards time-independent calculations and measurements. Using the ter-

minology of statistical physics, these methods will be called “equilibrium methods” to distinguish them from

time-propagation approaches. While in general any thermodynamics ensemble (mixed state) is suitable as a

starting point, in the following, we will concentrate on systems in the ground state. We will derive a variety of

expecation values of relevant quantum mechanical observables that are directly related to the breathing mode.

These expectation values can be computed from the wave function of the system. If needed, the obtained results

are straightforwardly extended to mixed states (e.g. to the canonical or grand canonical ensembles) by replacing

the wave functions by the proper density operator.

The direct way to calculate the breathing frequencies exactly is to determine the spectrum of the full system

Hamiltonian Ĥ0. This can be, in principle, accomplished with the configuration interaction method (CI) that

allows for a diagonalization of the Hamiltonian, see Sec. 4.3. The computational effort of this method, however,

can only be handled for very small particle numbers. To overcome this problem, one can use approximate

formulas for the breathing frequencies, allowing to employ other analytical or computational approaches. In

this section, some equilibrium approaches are presented, namely the sum rules and the solution of an operator

equation.

3.1 Sum rule approach

The quantum mechanical sum rules are an important tool to gain spectral information from equilibrium states

and to compute dynamical properties of many-body systems. At the same time, sum rules are a powerful method

to verify the consistency of theoretical models and computational schemes. For spatially homogeneous systems

sum rules put important constraints on the density response, dielectric function and the plasmon spectrum. Here

the most important sum rule is the f-sum rule, e.g. [72], for an overview see Ref. [73] and references therein.

Sum rules are equally important for spatially inhomogeneous finite systems in traps. They can be used to

calculate mean excitation energies which, in turn, yield approximations for the breathing frequency. Two famous

examples for the sum rules, the Thomas-Reiche-Kuhn sum rule for the coordinate operator r̂ [74,75] and the Bethe

sum rule for the operator exp(ik̂ · r̂) [76], have been known already since the early days of quantum mechanics.

Generalizations of these expressions have been extensively studied, see Ref. [77], for an example. Especially

in nuclear physics, the sum rules have been an important tool for the investigation of collective resonances of

nuclei [1–4]. In this section, the sum rules are introduced and it is shown how to make use of them for the

calculation of the breathing frequencies. For all of the following considerations, the notations for the unperturbed

Hamiltonian Ĥ0 (see Sec. 2) are used. The validity of the derived sum rules, however, extends to a large variety

of other systems.

5 The introduction of an effective potential is a common method for the solution of the central-force problem in classical mechanics.
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3.1.1 Weighted moments

The central quantities for the calculation of average excitation energies are the so-called weighted moments [1].

For any operator Q̂ and any integer number k, they are defined by

mk =
∞
∑

i=1

(Ei − E0)
k |〈0|Q̂|i〉|2 . (55)

For the case k = 1, one usually finds the term “energy-weighted moment” in the literature. For other values of

k, for example, k = −1 and k = 3, one uses the terminology “inverse energy-weighted moment” and “cubic

energy-weighted moment”, respectively. For the following considerations, the suggestive notation ωij = Ei−Ej

will be used, as the oscillator units allow one to express the frequencies in terms of energies. Furthermore, it is

assumed that Ea is the lowest energy excited by the operator Q̂. More technically speaking, that means that the

matrix elements fulfill 〈0|Q̂|i〉 = 0, for all 0 < i < a and 〈0|Q̂|a〉 �= 0.

Containing the exact excitation energies, the moments can be used to define average excitation energies

Ek,l =

(

mk

mk−l

)1/l

, (56)

for positive integer numbers l. In the literature, one typically finds the quantities [1]

Ek,2 =

√

mk

mk−2
and Ek,1 =

mk

mk−1
. (57)

The average excitation energies fulfill the relation

· · · ≥ Ek+2,1 ≥ Ek+2,2 ≥ Ek+1,1 ≥ Ek+1,2 ≥ . . . (58)

and, especially, [3] the limit limk→−∞ Ek,1 = ωa0 . All Ek,l are upper bounds for the exact excitation energy

ωa0.

Expressing the excitation energies in terms of weighted moments is advantageous because of the fact that

various moments can be calculated with rather simple formulas instead of the direct evaluation of the sum in

Eq. (55). Those formulas are called “sum rules” and they always refer to a special physical system, an integer

number k, and an operator Q̂. In some cases, however, the sum rules even hold for a general class of systems [1].

The next subsections deal with the calculation of the sum rules and their applicability to the breathing mode.

Henceforth, the notation Ek,l will be replaced by sr(k, k − l).

3.1.2 Selected sum rules

In the following, some selected sum rules with significance for this work are presented. They can be used to

calculate the moments m1 and m−1.

Sum rules for energy-weighted moments: The first moment of interest is the energy-weighted moment m1. It

can be expressed with a double commutator, involving the Hamiltonian Ĥ0. Following the derivation in Ref. [77],

one can write

m1 =
∞
∑

i=1

ωi0 〈0|Q̂|i〉〈0|Q̂|i〉∗ =
∞
∑

i=1

ωi0 〈0|Q̂|i〉〈i|Q̂|0〉

=
∞
∑

i=0

〈0|[Q̂, Ĥ0]|i〉〈i|Q̂|0〉 = 〈0|[Q̂, Ĥ0]Q̂|0〉,
(59)

for any Hermitean operator Q̂, i. e., Q̂ = Q̂†. Analogously, one finds

m1 =

∞
∑

i=1

ωi0 〈0|Q̂|i〉〈i|Q̂|0〉 = −
∞
∑

i=0

〈0|Q̂|i〉〈i|[Q̂, Ĥ0|0〉 = −〈0|Q̂[Q̂, Ĥ0]|0〉 . (60)
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These two results can be combined, resulting in the sum rule for the operator Q̂,

m1 =
1

2
〈0|[Q̂, [Ĥ0, Q̂]]|0〉 . (61)

For further simplifications of the double commutator in this equation, it is assumed that Q̂ is a one-particle

operator of the form

Q̂ =
N
∑

i=1

q̂(r̂i) . (62)

Noting the commutativity of all potentials in the Hamiltonian Ĥ0 from Eq. (3) with the operator Q̂, i. e.,

[Q̂, V̂ ] = [Q̂, Ŵ ] = 0, (63)

one finds

[Ĥ0, Q̂] = [T̂ , Q̂] . (64)

This is a property that holds for a variety of physical situations in which the potentials only have a spatial depen-

dence. The commutator in Eq. (64) can immediately be reduced to

[T̂ , Q̂] =
1

2

N
∑

i=1

[

p̂2
i , q̂(r̂i)

]

=
1

2

N
∑

i=1

[p̂i, q̂(r̂i)] p̂i + p̂i [p̂i, q̂(r̂i)] . (65)

For further calculations, it is useful to switch to the coordinate representation of the operators,

p̂i → pi = −i
∂

∂ri
, q̂(r̂i) → q(ri) . (66)

Making use of the commutator relation

[pi, q(ri)] = −i
∂q(ri)

∂ri
, (67)

one can calculate the coordinate representation of the commutator in Eq. (65),

[T (r), Q(r)] = −1

2

N
∑

i=1

i
∂q(ri)

∂ri
pi +

∂2q(ri)

∂r2i
. (68)

As a next step, one calculates

[Q(r), [T (r), Q(r)]] = − i

2

N
∑

i=1

∂q(ri)

∂ri
[q(ri),pi] =

1

2

N
∑

i=1

(

∂q(ri)

∂ri

)2

. (69)

Applying this result to the monopole excitation operator Q̂ = r̂2, one arrives at the monopole sum rule

∞
∑

i=1

ωi0 |〈0|r̂2|i〉|2 = 2 〈0|r̂2|0〉 . (70)

It is often practical for the computations to take the trap energy operator V̂ = r̂2/2 instead of r̂2, yielding the

sum rule

∞
∑

i=1

ωi0 |〈0|V̂ |i〉|2 = 〈0|V̂ |0〉 . (71)
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Without proof, some interesting relations are also mentioned here. For the kinetic energy operator, one can

derive

∞
∑

i=1

ωi0 〈i|T̂ |0〉〈0|V̂ |i〉 = − 〈0|T̂ |0〉 . (72)

Similarly, for the interaction operator, one obtains

∞
∑

i=1

ωi0 〈i|Ŵ |0〉〈0|V̂ |i〉 = −1

2
〈0|Ŵ |0〉 (73)

in the case of Coulomb interaction (α = 1) and

∞
∑

i=1

ωi0 |〈0|Ŵ |i〉|2 = −3

2
〈0|Ŵ |0〉 (74)

in the case of dipole interaction (α = 3). Further, it is remarked that the quantum virial theorem manifests itself

in the sum rules. With the diagonality of the Hamiltonian,

〈i|Ĥ0|j〉 = δijEi , (75)

one can conclude

0 =
∞
∑

i=1

ωi0 〈0|Ĥ0|i〉〈0|V̂ |i〉 =
∞
∑

i=1

ωi0 〈0|T̂ + V̂ + Ŵ |i〉〈0|V̂ |i〉 = −〈T̂ 〉+ 〈V̂ 〉 − α

2
〈Ŵ 〉 . (76)

This result can be used for consistency checks.

Sum rules for inverse energy-weighted moments. Another important sum rule can be derived for the inverse

energy-weighted moment. To do so, one considers the Hamiltonian under the perturbation of the Hermitean

one-body operator Q̂,

Ĥ0 + ηQ̂ . (77)

Here, η is assumed to be small enough to ensure that time-independent perturbation theory can be applied (see

Appendix A.1.1). With the perturbed wave function, the η-dependent expectation value of any operator F̂ is

given by

〈F̂ 〉η = 〈0|F̂ |0〉 − η

∞
∑

i=1

{

〈0|F̂ |i〉〈i|Q̂|0〉+ 〈0|Q̂|i〉〈i|F̂ |0〉
ωi0

}

+O(η2) . (78)

For the special case F̂ = Q̂, one obtains [3]

m−1 =

∞
∑

i=1

|〈i|Q̂|0〉|2
ωi0

= −1

2
lim
η→0

〈Q̂〉η − 〈Q̂〉0
η

= −1

2

∂

∂η
〈Q̂〉η=0 . (79)

For one of the following ideas, it is also interesting to consider a Hamiltonian that contains an operator γcQ̂,

where c is an arbitrary constant and γ is a tunable parameter. A slight increase of the parameter γ to the value

(1 + η)γ can be interpreted as a perturbation with the operator ηcQ̂. Similarly to the derivation of Eq. (79), one

can show

m−1 = − 1

2c

∂

∂γ
〈Q̂〉γ . (80)
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This means that the sum m−1 can be calculated with a simple derivative of the ground-state expectation value of

Q̂. The simplest calculation of such a derivative can be performed with a finite difference of the results from two

separate computations. Of course, any other more sophisticated standard technique can be applied, too.

In order to apply Eq. (80) to the breathing mode with the Hamiltonian Ĥ0, one can write Ĥ0(γ) = T̂+γV̂ +Ŵ ,

where Ĥ0 = Ĥ0(1) is valid. Since V̂ = r̂2/2, one identifies c = 1/2 and Q̂ = r̂2. Finally, one obtains

m−1 = − ∂

∂γ
〈r̂2〉γ=1 . (81)

In this equation, the expectation value 〈·〉 is taken with respect to the ground-state wave function of the Hamilto-

nian Ĥ0(γ), and the derivative is evaluated at the point γ = 1.

3.1.3 Upper bounds for the breathing frequency

Using the moments m−1 and m1 from formulas (81) and (70), one can write the simple formula

ωa0 ≤
{

−2
〈r2〉

[∂〈r2〉/∂γ]γ=1

}1/2

, (82)

for the first excitation frequency of the operator r̂2. Using the original units of the Hamiltonian (3), this formula

reads

ωa0 ≤
{

−2
〈r2〉

∂〈r2〉/∂Ω2

}1/2

. (83)

Equation (83) has already been presented as a rigorous upper bound of the breathing frequency in the work of

Menotti and Stringari [36]. However, aiming at the calculation of ωrel, one should take into account that this

statement is not necessarily true for all kinds of interaction. For example, in the case of dipole interaction,

ωrel ≥ ωcm always holds. That means that the frequency of interest, ωrel, does not correspond to the first

excitation energy of r̂2. In the case of Coulomb interaction, by contrast, ωrel ≤ ωcm is valid, i. e., it is assured

that ωrel is the lowest possible frequency. Furthermore, one can expect that the non-vanishing contribution of the

center-of-mass system in the moments lowers the quality of the sum rule approximation. In the following, these

ideas are expressed more formally. This will allow one to eliminate all center-of-mass contributions from the

moments.

To start, the separable structure of the wave function is recalled, i. e., the set of eigenstates {|i〉} can be

expressed as {|irel〉 ⊗ |kcm〉}. The corresponding eigenvalues are given by Erel,i + Ecm,k. Further, introducing

the notations

R̂2
cm := NR̂2, and r̂2rel :=

1

N

∑

q<r

r̂2qr , (84)

one can simply write

r̂2 = R̂2
cm + r̂2rel . (85)

With this, the moments take the form

ml =
∞
∑

i=1

(Erel,i − Erel,0)
l |〈0rel|r̂2rel|irel〉|2 +

∞
∑

k=1

(Ecm,k − Ecm,0)
l |〈0cm|R̂2

cm|kcm〉|2 . (86)

This notation reveals the influence of the center-of-mass system, because all the terms in the second sum can be

determined analytically. First, for all k with non-zero matrix elements 〈0cm|R̂2
cm|kcm〉, the energy difference is

Ecm,k − Ecm,0 = 2. Second, one can show

∞
∑

k=1

(Ecm,k − Ecm,0)
l |〈0cm|R̂2

cm|kcm〉|2 = 2l−1d , (87)
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where d is the dimension of the system. This equation can be derived, making use of the fact that the center-of-

mass system has the potential energy 〈0|NR̂2|0〉 = d/4, because it must be half the total energy d/2.

Fig. 11 Demonstration of the sum rule approximation for two particles with Coulomb interaction (top) and dipole interaction

(bottom). For dipole interaction, the curves are not upper bounds. In this special case, the results for sr(3, 1) are closer to the

exact results than those for sr(1,−1).

The above derivations allow one to specify corrected moments m∗
l which do not contain any center-of-mass

contributions,

m∗
l = ml − 2l−1d . (88)

Using these moments, the following improved sum rule formulas,

ωrel ≤
(

m∗
k

m∗
k−l

)1/l

=: sr∗(k, k − l) , (89)
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are valid for both Coulomb and dipole interaction. Especially the formula by Menotti and Stringari takes the form

ωrel ≤
{

− 2〈r2〉 − d

[∂〈r2〉/∂γ]γ=1 + d/4

}1/2

. (90)

Finally, to provide a visual impression of the sum rule formulas, Fig. 11 shows the calculated frequencies of

a Coulomb interacting and a dipole interacting two-particle system. For this figure, the non-improved formulas

have been used. For comparison, the corresponding formulas with the improved moments have been used for the

results in Fig. 12. One can see that the results from the improved sum rule formulas have not only smaller errors,

they also guarantee the bounding character in the case of dipole interaction.

Fig. 12 Demonstration of the improved sum rule approximation for two particles with Coulomb interaction (top) and dipole

interaction (bottom). The errors of the results for sr∗(1,−1) are nearly hidden by the resolution of the image.

The quality of the sum rule formulas strongly depends on the weights of the higher frequencies. For the

breathing mode, their contribution is very small, which has already been shown for two particles in Fig. 8. As
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will be seen later, this is still the case for larger particle numbers. All in all, the sum rules provide very accurate

approximations to the relative frequency, and they demand only little computational effort.

3.2 Operator equation for the breathing mode

Another approach to the investigation of the quantum breathing mode is an approximate solution of the operator

equation which was presented by Geller and Vignale [71]. In this section, the corresponding derivations are

provided. A similar approach is presented in Ref. [37]. Following Ref. [71], the operator equation for the

breathing oscillation reads

d2

dt2
V̂ + (2 + α) V̂ = αĤ0 + (2− α) T̂ . (91)

In the Heisenberg picture of quantum mechanics, the operators in this equation have an implicit time-dependence

induced by the breathing motion. The goal is to simplify the equation to a basic harmonic oscillator equation

which yields the breathing frequency. For that purpose, one can take the expectation value with respect to the

ground state on both sides of the equation,

d2

dt2
〈V̂ 〉+ (2 + α) 〈V̂ 〉 = αE0 + (2− α) 〈T̂ 〉 . (92)

One important idea for the simplification of this equation is to make use of Eq. (20), which describes the basic

structure of the time-dependent expectation values. To be precise, each quantity has small oscillations around its

initial value. That means that the operator Â, representing T̂ , V̂ or Ŵ , has the form 〈Â〉(t) = 〈Â〉(0)+〈∆Â〉(t) .
Applying this to Eq. (92), one obtains

d2

dt2
〈∆V̂ 〉(t) + (2 + α)

(

〈V̂ 〉(0) + 〈∆V̂ 〉(t)
)

= αE0 + (2− α)
(

〈T̂ 〉(0) + 〈∆T̂ 〉(t)
)

. (93)

Making use of 〈T̂ 〉(0) + 〈V̂ 〉(0) + 〈Ŵ 〉(0) = E0, and of the virial theorem

2〈T̂ 〉(0)− 2〈V̂ 〉(0) + α〈Ŵ 〉(0) = 0 ,

Eq. (93) can be simplified to

d2

dt2
〈∆V̂ 〉(t) + (2 + α) 〈∆V̂ 〉(t) = (2− α) 〈∆T̂ 〉(t) . (94)

The next idea is to separate the relative problem again, resulting in the equation

d2

dt2
〈∆V̂rel〉(t) + (2 + α) 〈∆V̂rel〉(t) = (2− α) 〈∆T̂rel〉(t) . (95)

To eliminate 〈∆T̂rel〉(t), it is useful to write

d2

dt2
〈∆V̂rel〉(t) + (2 + α) 〈∆V̂rel〉(t) = (2− α)

〈∆T̂rel〉(t)
〈∆V̂rel〉(t)

〈∆V̂rel〉(t) . (96)

The goal is thus to find an expression for

K(t) :=
〈∆T̂rel〉(t)
〈∆V̂rel〉(t)

. (97)

Using again Eq. (20), one can write

K =

∑∞
i=1〈0rel|V̂rel|irel〉〈irel|T̂rel|0rel〉 sin ([Erel,i − Erel,0] t)

∑∞
i=1〈0rel|V̂rel|irel〉〈irel|V̂rel|0rel〉 sin ([Erel,i − Erel,0] t)

. (98)
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At this point, the only approximation is made: One assumes that in both sums, one can neglect all contributions

except for one with the index a. Hence, the expression reduces to

K =
〈0rel|V̂rel|arel〉〈arel|T̂rel|0rel〉
〈0rel|V̂rel|arel〉〈arel|V̂rel|0rel〉

. (99)

Using the sum rules for the potential energy and the kinetic energy—Eqs. (71) and (72)—and assuming again

that the term with index a dominates, one arrives at

K =
〈0rel|V̂rel|arel〉〈arel|T̂rel|0rel〉 (Erel,a − Erel,0)

〈0rel|V̂rel|arel〉〈arel|V̂rel|0rel〉 (Erel,a − Erel,0)
=

−〈T̂rel〉
〈V̂rel〉

= const. (100)

With this time-independent expression, one can finally reduce Eq. (96) to a simple oscillator equation that yields

the breathing frequency

ωrel =

{

(2 + α) + (2− α)
〈T̂rel〉
〈V̂rel〉

}1/2

. (101)

Of course, this formula is also just an approximation. Similarly to the sum rules, the quality of this approximation

depends on the contribution of higher excitation energies. From the analysis of the two-particle system, one can

expect that it is reasonable to neglect these energies. Later in this work, there will also be some tests for higher

particle numbers.

An interesting property of formula (101) is that it exactly includes both, the quantum limit, with

〈T̂rel〉/〈V̂rel〉 = 1, and the classical limit, with 〈T̂rel〉/〈V̂rel〉 = 0. Furthermore, for arbitrary intermediate cou-

plings, this formula gives rise to a very intuitive interpretation of the breathing frequency in terms of energy

ratios6.

Comparison with classical formulas. Equation (101) resembles a formula by Olivetti et al. [28, 78] for the

breathing frequency of classical systems,

ω =
√

(2 + α) + (2− α)p , (102)

where p is the ratio of the thermal energy (∝ kBT ) and the potential energy due to the trap. That means that

in classical systems, only finite temperatures can induce deviations from the frequency
√
2 + αΩ. In quantum

systems, however, the kinetic energy may be non-zero even for zero temperature. Hence, the thermal fluctuations

in the classical expression are replaced by quantum fluctuations in Eq. (101).

Other analytical representations. For the application of Eq. (101) in practical computations, it is often easier

to calculate the energies of the full system instead of just the relative energies. To do so, one has to subtract the

center-of-mass contributions from the full energies,

ωrel =

{

(2 + α) + (2− α)
〈T̂ 〉 − d/4

〈V̂ 〉 − d/4

}1/2

. (103)

With the help of the virial theorem, one can find various other representations of this formula, for example

ωrel =

{

(2 + α) + (2− α)

(

1− α〈Ŵ 〉
2〈V̂ 〉 − d/2

)}1/2

. (104)

One might prefer this notation for the demonstration of the ideal quantum limit which is recovered by simply

setting 〈Ŵ 〉 = 0.

6 The idea to characterize the breathing mode of quantum systems with ratios of relevant contributions to the total energy was already

presented in Ref. [41], although Eq. (101) was still unknown at the time of publication.

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org



Contrib. Plasma Phys. 54, No. 1 (2014) / www.cpp-journal.org 55

Finally, it is emphasized that the above considerations are only strictly valid for pure power-law potentials,

i. e., screened potentials or wake potentials in nonequilibrium plasmas, e.g. [79, 80] are not covered. For those

potentials, for example, the virial theorem is not as simple as it is stated here. In Ref. [37], an attempt was made

to incorporate the effect of static screening into the final formula which is discussed in Sec. 7.1.4

3.3 Using the breathing mode for diagnostics of correlated trapped systems

In Section 1.3 the idea was outlined that the normal modes of strongly correlated trapped systems may be used as

a diagnostic of the system properties. We are now in the position to outline a possible realization of this concept

which was presented in Ref. [37]. To this end, we first establish a direct relation between the formula (101)

and the sum rules and then express the different energy contributions of a trapped system as a function of the

breathing frequency.

Relation to the sum rules. In fact, there is a direct connection between formula (101) and the sum rules. To

realize this, one must evaluate the commutator for the moment m3 which, in general, is given by [1]

m3 =
1

2
〈0| [[Q̂, Ĥ0], [Ĥ0, [Ĥ0, Q̂]]] |0〉 . (105)

Since the calculation for the operator Q̂ = r̂2 is a bit tedious only the result is given here,

m3 = 8〈T̂ 〉+ 8〈V̂ 〉+ 2α2〈Ŵ 〉 . (106)

The derivation which is straightforward can be found in Appendix A.2. A similar result for contact interaction

was derived in Ref. [49]. Recalling that m1 = 4〈V̂ 〉 , and computing the ratio

{

m∗
3

m∗
1

}1/2

=

{

8〈T̂rel〉+ 8〈V̂rel〉+ 2α2〈Ŵ 〉
4〈V̂rel〉

}1/2

, (107)

with the improved moments, one immediately recovers formula (101). Hence, one can conclude that Eq. (101)

yields another upper bound which, however, is slightly less accurate than the improved formula (90). Neverthe-

less, Eq. (101) is well suited for physical interpretations, and it can easily be evaluated numerically.7

From Eq. (107), we can now establish relations of the breathing frequency to many-particle observables of the

system. In particular, it is straightforward to deduce how the breathing frequency is related to the kinetic energy,

the trap energy and the interaction energy. Making use of the virial theorem, one can even go further and rewrite

the contributions to the total energy, where the breathing frequency is the only independent quantity [37],

〈Ŵ 〉
Erel

=
2(4− ω2

rel)

(2− α)(2α+ 4− ω2
rel)

, (108)

〈T̂rel〉
Erel

=
α(ω2

rel − α− 2)

(2− α)(2α+ 4− ω2
rel)

, (109)

〈V̂rel〉
Erel

=
α

2α+ 4− ω2
rel

. (110)

We underline that all energy contributions depend in a complicated way on the nature of the system—the type

of particles and their spin, the type of pair interaction and the system dimensionality, as well as on the system

parameters, including particle number N and the coupling strength λ. The same properties and parameters deter-

mine the breathing frequency. The power of the above relations is that they show that, via a single measurement

(or computation) of the breathing frequency, one can determine the kinetic, trap and interaction energy. While

these relations have been derived for a quantum system in the ground state, they are straightforwardly extended

to excited states or to systems at finite temperature. Then standard thermodynamic relations can be used to obtain

e.g. the free energy and other quantities.

This discussion underlines again the central importance of the breathing frequency for trapped strongly corre-

lated quantum systems and the need for its accurate computation to which we now proceed.

7 Although the operator approach is redundant due to the derivation of Eq. (107), it is interesting an reassuring to see that the different

approaches lead to the same result.
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4 Exact and Approximate Many-body Methods for the Breathing Mode

After having derived a number of important relations for the quantum breathing mode in terms of equilibrium

expactation values we now turn to the computation of theses expectation values. To this end many-body theory

provides a broad arsenal of exact and approximate tools. Our choice is by no means complete or general but

is dictated solely by the suitability of the methods for computing the required expectation values for strongly

correlated trapped quantum systems. Several methods and details of their implementations will be presented.

The focus of the present work is on large quantum systems which can only be treated approximately. Here,

the methods of choice are the Hartree-Fock approximation and the Thomas-Fermi approximation that will be

discussed in detail in sections 5, 6 below. Nevertheless, it is important to benchmark these approximate methods.

Here we take advantage of existing exact resutls for some systems which will also be presented. These are exact

diagonalization (CI) solutions of the Schrödinger equation and quantum Monte Carlo simulations. This section

briefly introduces these exact methods. Beforehand, some notational conventions and the single-particle basis

sets for the implementations of the configuration interaction method and the Hartree-Fock method are presented.

4.1 Notational conventions

For some of the following derivations, there are important peculiarities of the notation. These are briefly men-

tioned hereinafter. The product state |φa〉|φb〉 is often abbreviated by |φaφb〉. For the adjoint state, the notation

|φaφb〉† = 〈φb|〈φa| = 〈φaφb| (111)

is used. A representation of the product state |φa〉|φb〉 in the coordinates 1, 2 is obtained via

φa(1)φb(2) = 〈2|〈1|φa〉|φb〉 = 〈1 2|φaφb〉 . (112)

The operator of the binary interactions ŵ has the property

〈r1r2|ŵ|r′1r′2〉 = δ(r1 − r′1)δ(r2 − r′2)
λ

|r1 − r2|α
. (113)

Using the above basis states the matrix elements become

〈φaφb|ŵ|φcφd〉 =
∫

dr1

∫

dr2

∫

dr′1

∫

dr′2 δ(r1 − r′1)δ(r2 − r′2)

× 〈φaφb|r1r2〉〈r1r2|ŵ|r′1r′2〉〈r′1r′2|φcφd〉

=

∫

dr1

∫

dr2 φ
∗
a(r1)φ

∗
b(r2)

λ

|r1 − r2|α
φc(r1)φd(r2).

(114)

Below we will use the following notations for the matrix elements of the single-particle and two-particle operators

hab := 〈φa|ĥ|φb〉, and wac,bd := 〈φaφb|ŵ|φcφd〉, (115)

where the latter indicates that the indices a and c (b and d) refer to the first (second) particle.

4.2 Single-particle basis sets

It is a common idea in many-body theories to expand certain quantities in terms of a basis. This allows one to

reformulate abstract wave functions and operators with vectors and matrices. Thus, the problems are transferred

to the level of discrete linear algebra. The configuration interaction method and the Hartree-Fock method need

data from single-particle basis sets as an input. To be more precise, the matrix representations of the Hamiltonian

and all other quantities of interest are needed. In the following, the used basis sets are briefly documented. Details

of the implementation are skipped, but the necessary references are provided.
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4.2.1 Harmonic oscillator basis

If the interaction terms of the considered problem of particles in a trap were absent, the Schrödinger equation

could be reduced to a single-particle harmonic oscillator equation. Therefore, a reasonable choice for the single-

particle basis are the eigenfunctions of the harmonic oscillator Hamiltonian

h(r) = −1

2

d2

dr2
+

1

2
r2 . (116)

In the following, 1D and 2D systems are considered.

One-dimensional systems. In 1D, the eigenfunctions of h(r) are given by the Hermite functions [81]

ψn(r) = π−1/4 1√
2nn!

Hn(r) exp

(

−1

2
r2
)

, (117)

where Hn(r) is the n-th Hermite polynomial. The eigenfunction |ψn〉 corresponds to the eigenvalue

ǫn = n+
1

2
. (118)

The matrix elements for the kinetic energy and the trap energy

tnm =
1

2
〈ψn|p̂2|ψm〉 , and vnm =

1

2
〈ψn|r̂2|ψm〉 , (119)

are listed in Refs. [68, 82]. For all required two-body operators û—especially the operator of the screened

Coulomb/dipole interaction—the matrix elements uij,kl are precalculated on a grid. For 1D systems, this can

be done in an acceptable amount of time. The 1D harmonic oscillator basis was used for all of the following

configuration interaction results in one dimension.

Two-dimensional systems. For 2D systems, one may choose between basis functions in Cartesian coordinates

and spherical coordinates. The presented results in this work were obtained with the single-particle basis func-

tions in the latter coordinates. The eigenfunctions read

ψnm(r, θ) = (−1)n
{

2n!

(n+ |m|)!

}1/2

exp(imθ)r|m|L|m|
n (r2) exp(−r2/2) , (120)

where L
|m|
n is the generalized Laguerre polynomial. The eigenfunction |ψnm〉 corresponds to the eigenvalue

ǫnm = 2n+ |m|+ 1 . (121)

The representation in spherical coordinates has the advantage that the matrix elements of the Coulomb interaction

can efficiently be evaluated. Furthermore, the potential does not have to be screened. The calculation of the matrix

elements is based on implementations by Hochstuhl [83] and Kvaal [84]. The 2D harmonic oscillator basis in

spherical coordinates was used for all 2D Hartree-Fock calculations.

4.2.2 FEDVR basis

The acronym FEDVR stands for “finite-element discrete variable representation”. The underlying idea of the

basis is to split a finite interval [ra, rb] into nd divisions (finite elements), each of which contains ne weighted

Lobatto shape functions (element functions). Further, neighboring finite elements are connected via bridge func-

tions which ensure the continuity of the wave function at the boundary points. In Fig. 13, the FEDVR basis

functions are illustrated. Typically for finite-element methods, an important property of the basis is that it re-

stricts the wave function to a finite interval. The size of this interval has to be chosen carefully.

The mathematical details of the basis are left out here, as they can be found in numerous references [83, 85–

87]. Nevertheless, it shall be emphasized that the FEDVR basis has the important numerical advantage that the

interaction energy matrix is highly sparse due to the diagonality in several indices. Hence, with the total number of

basis functions nb, one only has to store n2
b matrix elements instead of n4

b in the general case. Another advantage

of the FEDVR basis is its flexible applicability to various physical situations. In this work, the FEDVR basis was

used for the 1D Hartree-Fock calculations and the exact solutions of the two-particle problems in Sec. 2.4.
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Fig. 13 Exemplary FEDVR basis functions on the grid [0, 9] with nd = 3 divisions. Each division has ne = 3 element

functions.

4.3 Exact solution of the Schrödinger equation: configuration interaction

With the configuration interaction (CI) method, one can obtain exact stationary and time-dependent solutions of

the TDSE

i
d

dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 . (122)

In this section, the main ideas are outlined. Further details of this standard method can be found in Refs. [83, 88,

89]. Configuration interaction can be applied to both bosonic and fermionic systems. This explanation, however,

refers to fermions. The fundamental idea is to expand the many-body wave function in Slater determinants,

|Ψ(t)〉 =
∑

I

CI(t)|φi1 . . . φiN 〉 . (123)

The multi-index I = (i1, . . . , iN ) represents the indices of the single-particle orbitals φij that form the Slater

determinants. Analogously to the derivation in Sec. 5, these orbitals are constructed as products of a spatial part

and a spin part. If nb is the number of single-particle orbitals, a total number of

ns =

(

nb

N

)

(124)

different determinants can be formed. Inserting the expansion (123) into the TDSE and multiplying with

〈φj1 . . . φjN | from the left, one obtains

i
∑

I

SJI
d

dt
CI(t) =

∑

I

HJI(t)CI(t) (125)

with the matrix elements

HJI(t) = 〈φj1 . . . φjN |Ĥ(t)|φi1 . . . φiN 〉 and SJI(t) = 〈φj1 . . . φjN |φi1 . . . φiN 〉 . (126)

As it is the case for the basis sets introduced above, in the following

SJI = δJI = δj1i1 . . . δjN iN (127)

is assumed. Defining the matrix H , containing the elements HJI , and the coefficient vector C, containing the

coefficients CI , Eq. (125) can also be written as the matrix equation

i
d

dt
C(t) = H(t)C(t) . (128)
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To obtain the exact breathing frequencies, it is sufficient to solve the stationary problem

HC = EC . (129)

More precisely, one has to diagonalize the matrix H to obtain its eigenvalues EK . Then, one can calculate the

breathing frequencies EK − E0 for all K with a non-vanishing matrix element

〈ΨK |r̂2|Ψ0〉 . (130)

Here, |ΨK〉 is an abstract eigenfunction of Ĥ , which can be expressed with the K-th coefficient eigenvector of

H .

The CI method was used for the results of small 1D systems with N ≤ 8. For 2D, it could only be applied

to the two-particle system, for which the methods from Sec. 2.4 already provide satisfactory results. The limited

applicability of the method is due to the strong increases of required basis sizes ns for larger particle numbers

and higher dimensions. Hence, the number of determinants can become a problem for the memory as well as for

the CPU, noting that modern linear algebra libraries perform diagonalizations with run times of the order O(n3
s ).

4.3.1 Implementation of time-independent perturbation theory

Fig. 14 Formation of the first four Slater determinants in a non-interacting 1D oscillator system with three spin-polarized

particles. The horizontal lines indicate the orbital energies with the equal spacing �Ω. The energies E2 and E3 correspond to

the monopole oscillation with the degenerate frequency 2Ω.

With only very little programming effort, a CI program can be modified to perform calculations in the frame-

work of time-independent perturbation theory (PT). In Appendix A.1.1, the theory is explained. The Slater

determinants |ΨI〉 of the non-interacting system are constructed with the harmonic oscillator single-particle basis

functions. The indices I are assumed to be sorted according to the corresponding energy eigenvalues, starting

with the lowest energy E0 for I = 0. In fact, one does not need any other input quantity than the matrix elements

of the interaction energy, WIJ . For a clear notation, the WIJ are defined without the prefactor λ. Furthermore,

only 1D systems of fermions with spin polarization, i. e., with equal spin projections, are considered. The for-

mation of the Slater determinants with the lowest energies is illustrated in Fig. 14. Recalling that the oscillator

orbitals have the energies ǫi = i+1/2, one finds that the ground-state energies of the non-interacting systems are

given by E0(N) = 1/2N2. For small coupling parameters, one can use first-order perturbation theory to obtain

the energy of the interacting system,

EPT
0 = E0 + λW00 . (131)

The lowest states for the breathing excitation are |Ψ2〉 and |Ψ3〉 with the degenerate eigenvalues E2/3 = E0 + 2.

For the interacting system, the corrections are

EPT
2/3 = E2/3 + λẼ2/3 , (132)

where Ẽ2/3 are the eigenvalues of the matrix

(

W22 W23

W32 W33

)

. (133)

Hence, ω20 = EPT
2 −EPT

0 and ω30 = EPT
3 −EPT

0 are easily obtainable estimators for the two lowest breathing

frequencies. According to the theory, one of those frequencies must have the value 2.
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4.4 Path integral Monte Carlo

This work contains results for dipolar zero-spin bosons, which were obtained with the ab initio path integral

Monte Carlo (PIMC) method in continuous space. The idea of the method is to express the partition function of

a quantum-statistical ensemble in Feynman’s path integral picture. Based on first principles, PIMC is considered

exact within some statistical errors. Differing relatively strong from the other methods in this work, a complete

understanding of PIMC cannot be provided here, instead we refer to the extensive literature, for example, Ref.

[90]. The main idea of PIMC consists in generating successive randomly sampled particle configurations with

the fixed conditions that are imposed by the selected statistical ensemble. More precisely, the samples form a

Markov chain [90]. To ensure that the sampling reproduces the correct probability distribution, a generalized

Metropolis algorithm [91] is employed. After a sufficient number of Monte Carlo steps, the quantities of interest

can be calculated as thermodynamic averages over the samples.

A peculiarity of the PIMC method8 is—in contrast to the implicit zero-temperature assumptions of the other

methods—that the temperature has to be finite. The lower is the temperature, the higher is the computational effort

because of the increasing role of spin statistics. The results in this work were obtained with an implementation of

the worm algorithm by Alexey Filinov [19,92]. As these PIMC simulations are performed in the grand canonical

ensemble, the system is embedded in a heat reservoir with fixed temperature T and chemical potential μ. The

central quantity for the description of such a system is the grand canonical partition function

Z = Tr
{

exp
(

−β
(

Ĥ0 − μN̂
))}

, (134)

where β = 1/T , and the Boltzmann constant kB has been set equal to 1. Using dimensionless oscillator units the

temperature is measured in units of �Ω. In the simulations, the parameter β = 30 has been used to obtain low

temperature results (essentially ground state results) at an acceptable numerical cost. Since the particle number

may fluctuate in the simulations, the chemical potential must be chosen in a way that the particle numbers of

interest have a high sampling probability.

5 The Hartree-Fock Approximation

The Hartree-Fock (HF) approximation is one of the main tools with which the numerical results in this work were

obtained. It can be used for both time-independent and time-dependent considerations. This section deals with

the derivation of the time-independent and time-dependent Hartree-Fock equations as well as their application to

perturbed systems. The derivations are intended to be on a rather general level. The necessary restrictions for the

breathing mode are explicitly mentioned.

5.1 Time-independent Hartree-Fock

The time-independent Hartree-Fock approximation is used to determine the fermionic ground state of the N -

particle stationary Schrödinger equation. It is a standard method for the numerical treatment of atoms and

molecules in quantum chemistry, see, e. g., Refs. [93, 94]. Further, it is often the starting point of more so-

phisticated methods which handle correlation effects [68,95]. This section contains a review of the Hartree-Fock

equations. The purpose is to show the basic ideas of the method. Complete introductions are given in the litera-

ture, for example, see Refs. [89, 96]. Details on the implementation can also be found in Refs. [68, 97].

5.1.1 Hartree-Fock equations

The following considerations refer to fermions with spin 1/2, e. g., electrons. The goal of the Hartree-Fock

method is to get an approximate ground-state solution of the stationary Schrödinger equation

Ĥ0|Ψ〉 = E|Ψ〉 . (135)

8 Here we do not discuss the corresponding zero temperature methods such as diffusion Monte Carlo.
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Just for this introduction, it is assumed that Ĥ0 is a general Hamiltonian of the form

Ĥ0 =

N
∑

i=1

ĥ(p̂i, r̂i) +
∑

i<j

ŵ(r̂i, r̂j) , (136)

where ĥ represents all the single-particle terms, i. e., the kinetic energy operator t̂ and maybe an additional

external potential operator v̂, and ŵ is—just for simplicity—assumed to represent the Coulomb interaction.

The basic idea of the Hartree-Fock approximation is to assume that the desired fermionic wave function is a

single Slater determinant

|Ψ〉 ≡ |φ1 . . . φN 〉 , (137)

where the particles are represented by the spin orbitals φi. This assumption is exact for a non-interacting system,

which is described by single-particle operators only. It will be shown that the Hartree-Fock equations are used

to describe the system solely with single-particle operators that effectively contain the binary interactions. Ac-

cording to the Ritz variational principle [98], the desired Slater determinant has to minimize the total energy, for

which one finds the expression

E = 〈Ψ|Ĥ0|Ψ〉 =
N
∑

i=1

〈φi|ĥ|φi〉+
1

2

N
∑

i=1

N
∑

j=1

〈φiφj |ŵ|φiφj〉 − 〈φiφj |ŵ|φjφi〉 . (138)

Defining the Coulomb and the exchange operator by their action

Ĵi|φk〉 = 〈φi|ŵ|φi〉|φk〉 and K̂i|φk〉 = 〈φi|ŵ|φk〉|φi〉 , (139)

respectively, Eq. (138) can also be written as

E =
N
∑

i=1

〈φi|ĥ|φi〉+
1

2

N
∑

i=1

N
∑

j=1

〈φj |Ĵi|φj〉 − 〈φj |K̂i|φj〉 . (140)

The interaction energy has two contributions. The one due to the Coulomb operator is usually called “Hartree”

term, and the other one due to the exchange operator is usually called “Fock” term.

A systematic variation of the spin orbitals with the orthonormality constraint 〈φi|φj〉 = δij yields the Hartree-

Fock equations [89]

F̂ |φk〉 = ǫk|φk〉 (141)

for k = 1, . . . , N . Equation (141) resembles a stationary Schrödinger equation with the Hamiltonian replaced by

the so-called Fock operator

F̂ := ĥ+
N
∑

i=1

Ĵi − K̂i . (142)

The Hartree-Fock method aims at finding the spin orbitals that solve Eq. (141). Since the Fock operator itself

depends on the spin orbitals φk, the problem is nonlinear. Hence, it requires a self-consistent solution.

Going more into detail, one has to make an a priori decision for the treatment of the spins. For that purpose,

one first factorizes the wave function into a spatial part |ϕk〉 and a spin part |χk〉,

|φk〉 = |ϕk〉|χk〉 . (143)

As a first restriction, one allows the |χk〉 to be only one of the orthonormal eigenfunctions |+〉 or |−〉 of the

spin operator ŝz . This assumption is made, because the Hamiltonian is spin-independent. In the following, two

different treatments of the spins are outlined.
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Hartree-Fock for spin polarization. Several systems investigated in this work are assumed to be spin-polarized.

That means that all N particles have the same spin projection. In this simplest case, one can assume without loss

of generality that the spin orbitals have the form

|ϕ1〉|+〉, |ϕ2〉|+〉, . . . , |ϕN 〉|+〉 . (144)

Calculating

(

〈+|F̂ |+〉 〈+|F̂ |−〉
〈−|F̂ |+〉 〈−|F̂ |−〉

)

=

(

F̂+ 0
0 0

)

, (145)

one obtains a set of N Hartree-Fock equations for the spatial orbitals,

F̂+|ϕk〉 = ǫk|ϕk〉 . (146)

Here, the Fock operator F̂+ is defined by its action

F̂+|ϕk〉 = ĥ|ϕk〉+
N
∑

i=1

〈ϕi|ŵ|ϕi〉|ϕk〉 −
N
∑

i=1

〈ϕi|ŵ|ϕk〉|ϕi〉 . (147)

In the literature, one usually finds an analogous derivation for systems in which each pair of particles with anti-

parallel spins share the same spatial orbital. For such a configuration, requiring even particle numbers, one speaks

of restricted closed-shell Hartree-Fock. The more general approach, respecting the different spin projections and

allowing each particle to have its own spatial orbital, is presented in the following.

Unrestricted Hartree-Fock. As a starting point, one divides the particles into one fraction of N+ particles

with the spin orbitals

|ϕ+
1 〉|+〉, |ϕ+

2 〉|+〉, . . . , |ϕ+
N+〉|+〉 (148)

and another fraction of N− particles with the spin orbitals

|ϕ−
1 〉|−〉, |ϕ−

2 〉|−〉, . . . , |ϕ−
N−

〉|−〉 . (149)

With these orbitals, one calculates

(

〈+|F̂ |+〉 〈+|F̂ |−〉
〈−|F̂ |+〉 〈−|F̂ |−〉

)

=

(

F̂+ 0

0 F̂−

)

, (150)

yielding two coupled sets of Hartree-Fock equations for each spin projection,

F̂+|ϕ+
k 〉 = ǫ+k |ϕ+

k 〉 and F̂−|ϕ−
k 〉 = ǫ−k |ϕ−

k 〉 . (151)

The actions of F̂+ and F̂− are given by

F̂+|ϕ+
k 〉 = ĥ|ϕ+

k 〉+
N+

∑

i=1

〈ϕ+
i |ŵ|ϕ+

i 〉|ϕ+
k 〉+

N−

∑

i=1

〈ϕ−
i |ŵ|ϕ−

i 〉|ϕ+
k 〉 −

N+

∑

i=1

〈ϕ+
i |ŵ|ϕ+

k 〉|ϕ+
i 〉 (152)

and

F̂−|ϕ−
k 〉 = ĥ|ϕ−

k 〉+
N−

∑

i=1

〈ϕ−
i |ŵ|ϕ−

i 〉|ϕ−
k 〉+

N+

∑

i=1

〈ϕ+
i |ŵ|ϕ+

i 〉|ϕ−
k 〉 −

N−

∑

i=1

〈ϕ−
i |ŵ|ϕ−

k 〉|ϕ−
i 〉 . (153)
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5.1.2 Basis expansion

So far, the presented Hartree-Fock equations do not allow for an easy computational solution. Aiming at the

application of standard linear algebra techniques, it is useful to expand the spatial orbitals in a single-particle

basis, according to

|ϕσ
k〉 =

basisσ
∑

i

cσik|ψi〉 . (154)

The index σ represents both spin sorts, + and −. The special choice of the ψi is determined by numerical con-

venience and physical motivations. The notation of the sum is meant to suggest that the summation is performed

over all possible basis functions. In many cases, the dimension of the basis is infinity. Following a standard

numerical technique, the basis is therefore restricted to a finite number of basis functions nb. For this derivation,

it is required that the ψi form a complete orthonormal9 system. Concentrating on the unrestricted case, the next

step is to insert the expanded orbitals into the Hartree-Fock equations,

∑

i

cσikF̂
σ|ψi〉 =

∑

i

cσikǫ
σ
k |ψi〉 . (155)

Multiplying these equations with 〈ψj | from the left, the matrix equations

FσCσ = ǫσCσ (156)

can be obtained for both σ = + and σ = −. These equations can be identified as two coupled Roothaan-Hall

equations [99, 100]. In the literature, they are also referred to as Pople-Nesbet equations [89, 101]. The matrix

Cσ has the matrix elements cσik, representing the i-th expansion coefficient of the k-th spatial orbital. The matrix

ǫσ only has the diagonal entries ǫσk . The matrix elements of the Fock operators are given by

F+
ab = 〈ψa|F̂+|ψb〉 = hab +

basis+
∑

ij

D+
ji (wab,ij − waj,ib) +

basis−
∑

ij

D−
jiwab,ij (157)

and

F−
ab = 〈ψa|F̂−|ψb〉 = hab +

basis−
∑

ij

D−
ji (wab,ij − waj,ib) +

basis+
∑

ij

D+
jiwab,ij . (158)

Here, the single-particle density matrix

Dσ
ij =

Nσ

∑

k=1

cσik
(

cσjk
)∗

(159)

has been defined. In the Hartree-Fock approximation, it contains the full information of the system.

5.1.3 Solution of the Pople-Nesbet equations

To solve the problem in Hartree-Fock approximation, one has to find the coefficient matrices Cσ and the corre-

sponding eigenvalue matrices ǫσ that solve the Pople-Nesbet equations. As the Fock matrix Fσ itself depends on

the coefficients, the following iterative scheme is applied.

1. Precalculation of the matrix elements hij and wij,kl.

2. Initialization of the density matrices Dσ with random or physically motivated values.

3. Calculation of the Fock matrices Fσ with the density matrices as an input.

9 In general, orthogonality is not required, but since all basis sets used in this work are orthogonal, this simplification is appropriate.
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4. Diagonalization of the Fock matrices.

5. Calculation of the new density matrices with the eigenvectors of the Fock matrix.

6. Procession with step 3 until a stopping criterion is fulfilled. (For the stopping criterion, one typically mea-

sures the difference between the previous and the current density matrix, and claims that the algorithm stops

when the difference is in the range of a predefined accuracy.)

After step 6, one can output all interesting quantities, for example, the kinetic energy and the energy of the

external potential

〈T̂ 〉 =
∑

σ

basisσ
∑

ab

tabD
σ
ba , and 〈V̂ 〉 =

∑

σ

basisσ
∑

ab

vabD
σ
ba, (160)

respectively, and the interaction energy

〈Ŵ 〉 = 1

2

∑

στ

basisσ
∑

ab

basisτ
∑

cd

Dσ
abD

τ
cdwba,dc −

1

2

∑

σ

basisσ
∑

abcd

Dσ
cbD

σ
dawac,bd . (161)

Another quantity of interest is the diagonal element of the single-particle density operator in spatial coordinates,

n(r) = 〈r|D̂|r〉 . (162)

This quantity is often suitable to provide insight into the basic physical behavior of the system. For example, in

Fig. 15, one can track the crystallization process of charged particles in a trap.

Fig. 15 Schematic densities n(r) in Hartree-Fock approximation (2D, N = 4, spin polarization, Coulomb interaction) for

different coupling parameters λ. Although the Hartree-Fock approximation is usually inaccurate for λ ≥ 1, the trend of

crystallization can be reproduced.

5.2 Time-dependent Hartree-Fock

The extension of the static Hartree-Fock equations to nonequilibrium leads to the well-known time-dependent

Hartree-Fock (TDHF) equations. As well as the TDSE, they can be derived from the time-dependent variational

principle [102], which states that the action functional

S[Ψ] =

∫ t1

t0

dt 〈Ψ|Ĥ(t)− i∂t|Ψ〉, (163)

must be stationary under arbitrary variations of Ψ. In the general case, this leads to the time-dependent Schrödinger

equation. However, the Hartree-Fock approximation makes the assumption that the wave function is a single de-

terminant, i. e., |Ψ〉 ≡ |φ1 . . . φN 〉 . In this case, the stationarity condition δS = 0 refers to variations of the

orbitals φi at times t0 and t1 [103]. The resulting time-dependent Hartree-Fock equations were already derived
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by Dirac [104] and Frenkel [105] in the 1930s. Using a time-dependent Fock operator F̂ , they can be written in

the simple form

i
d

dt
|φi〉 = F̂ (t)|φi〉, i = 1, . . . , N. (164)

These equations are the time-dependent counterpart of Eqs. (141), which resembles the relation between the

stationary and the time-dependent Schrödinger equation. The time-dependence of the Fock operator depends on

the terms in the time-dependent Hamiltonian Ĥ(t). Henceforth, it is assumed that the Fock operator has the form

F̂ (t) = ĥ+ Λ̂(t) +

N
∑

i=1

Ĵi + K̂i , (165)

i. e., the time-dependence is incorporated by an additional single-particle operator Λ̂. For the excitation of the

breathing mode, it has the form

Λ̂(t) = ηδ(t)r̂2 . (166)

Nevertheless, the following derivations are valid for arbitrary operators. It is convenient to express Eqs. (164) in

an equivalent equation of motion for the single-particle density operator. The resulting equation is

i
d

dt
D̂ = [F̂ , D̂] , (167)

which is also known as the first-order equation of the quantum mechanical BBGKY in HF approximation [95,

106–109].

There are several ways to resolve the time-dependence of the density matrix. A calculation usually starts with

the determination of the initial density matrix. For example, this can be done as explained in the last section. But

there are also other methods, e. g., imaginary time stepping [83]. Knowing the initial density matrix, one can start

the propagation, according to Eq. (167). Without explicitly writing out the spin, the basis representation of the

equation reads

i
d

dt
Dab =

basis
∑

k

(hak + Λak)Dkb +
basis
∑

kij

DkbDji (wij,ak − wik,aj)

−
basis
∑

k

(hkb + Λkb)Dak −
basis
∑

kij

DakDji (wij,kb − wib,kj) .

(168)

These equations can be solved with arbitrary integrators for the numerical solution of differential equations. The

main problem to handle is the fact that the matrix D can be very large, resulting in a large system of equations.

In the FEDVR matrix, for example, typical matrix sizes for the problems considered in this work were between

120× 120 and 700× 700.

To overcome the problem of large matrices, one can also perform the time propagation in the Hartree-Fock

basis, i. e., in the basis formed by the eigenfunctions of the Fock operator. Especially for small particle numbers,

this is very useful, as basis sizes of nb = N + nadd with nadd ≈ 15 are usually sufficient to capture the time-

dependent breathing oscillation. In order to perform the calculations in the HF basis, one starts the calculation of

the ground state in an arbitrary basis and afterwards transforms all necessary matrix elements into the obtained

HF basis. The transformation into the Hartree-Fock basis does not only allow to speed up calculations. It also

gives rise to another approach to solve Eq. (167) perturbatively which is illustrated in the next subsection.

5.2.1 Perturbative solution of the TDHF equations

In the theory part of this work, it was shown how to calculate the collective modes with time-dependent pertur-

bation theory by applying a monopole-type perturbation to the initial Hamiltonian Ĥ0. Another idea is to make
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the HF approximation first and to treat the resulting equations with perturbation theory. In the following, this

procedure is elaborated in detail.

The starting point is the basis representation of the equation for the time-dependence of the density matrix,

Eq. (167). Writing ηΛ̂ with the small parameter η instead of Λ̂ from now on, it is intended to assure that the

system is exposed to a weak perturbation. Furthermore, all quantities are expanded in the basis of the initial HF

states. As the perturbation is weak, one can make an ansatz for the density matrix,

D = D(0) + ηD(1)(t) +O(η2) . (169)

In this ansatz, D(0) is the time-independent density matrix of the unperturbed system. It is given by D
(0)
ab = δabna

with

na =

{

1 1 ≤ a ≤ N

0 else .
(170)

Fig. 16 Structure of the density matrix D(t) = D(0) +

ηD(1)(t), according to the perturbative solution of the Hartree-

Fock equations.

Furthermore, the unperturbed Fock operator has the eigenvalues ǫk. Inserting the ansatz for D with all terms up

to the first order into Eq. (168), one obtains

i
d

dt

(

D
(0)
ab + ηD

(1)
ab (t)

)

=

basis
∑

k

(hak + ηΛak(t))
(

D
(0)
kb + ηD

(1)
kb (t)

)

+
basis
∑

kij

(

D
(0)
kb + ηD

(1)
kb (t)

)(

D
(0)
ji + ηD

(1)
ji (t)

)

(wij,ak − wik,aj)

−
basis
∑

k

(hkb + ηΛkb(t))
(

D
(0)
ak + ηD

(1)
ak (t)

)

−
basis
∑

kij

(

D
(0)
ak + ηD

(1)
ak (t)

)(

D
(0)
ji + ηD

(1)
ji (t)

)

(wij,kb − wib,kj) .

(171)

This equation can be reduced to

{

i
d

dt
− ǫa + ǫb

}

D
(1)
ab (t) = (nb − na)

⎧

⎨

⎩

Λab(t) +

basis
∑

ij

D
(1)
ji (t) (wij,ab − wib,aj)

⎫

⎬

⎭

. (172)
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The prefactor nb − na on the right side of this equation is responsible for the fact that the matrix D(1) only has

entries for the pairs of indices (b > N, a < N) and (a > N, b < N). That means that for all a, b ≤ N the

matrix D has the “frozen core” Dab = D
(0)
ab = δab. Furthermore, for all a, b > N , Dab remains zero. The overall

structure of the matrix D is illustrated in Fig. 16.

With the assumption of a weak perturbation, one has derived the simplified equation (172). Hence, instead

of solving the full system as in Eq. (168), one can also numerically solve Eq. (172) for the remaining 2Nnadd

indices α, β with the property nβ − nα �= 0. However, one can even go further, making use of the structure of

Eq. (172). In the following, this is explained in detail.

One starts by defining the multi-index I = (α, β) for the 2Nnadd relevant combinations of α and β. Further,

the inverse functions α(I) and β(I) shall be given. With the additional definitions

AIK =
(

nβ(I) − nα(I)

) (

wj(K)i(K),α(I)β(I) − wj(K)β(I),α(I)i(K)

)

+
(

ǫα(I) − ǫβ(I)
)

δKI (173)

and gI =
(

nβ(I) − nα(I)

)

ΛI , one can write

i
d

dt
D

(1)
I =

∑

K

AIKD
(1)
K + gI (174)

instead of Eq. (172). Further, defining the vectors d with the elements −iD
(1)
I and g with the elements −igI , one

obtains the simple form

d

dt
d(t) = Ad(t) + g(t) . (175)

This is an inhomogeneous system of linear differential equations with constant coefficients. To find a general

solution of this system, one first has to solve the corresponding homogeneous problem

d

dt
dh(t) = Adh(t) . (176)

A fundamental system for this differential equation is given by the matrix exponential F (t) = exp(tA) . Instead

of this, however, in practical situations, one calculates the fundamental system

F ′(t) = S exp(tJ) , (177)

where J = S−1AS is the Jordan normal form. According to the variation of parameters, a solution to the

inhomogeneous system is given by

dp(t) = F (t)

∫

F−1(t)g(t) dt . (178)

Restricting the inhomogeneity to be of the type g(t) = δ(t)q , the particular solution is simply given by dp = q.

As a consequence, one can finally formulate the general solution

d(t) =

2Nnadd
∑

I=1

(F ′(t))
(I)

cI + q , (179)

where (F ′(t))
(I)

is the I-th column of the fundamental system. The cI are determined with respect to the initial

condition d(t = 0) = 0, i. e., one has to solve the system of equations

2Nnadd
∑

I=1

(S)
(I)

cI = −q . (180)

As for the systems in this work, the matrix A is diagonalizable, the Jordan normal form J is a diagonal matrix,

which contains the eigenvalues of A. Consequently, all possible mode frequencies are

ωI = ℜ(JII) . (181)
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The frequencies corresponding to a specific mode are given for all indices I with the property cI �= 0.

In summary, a semi-analytical solution of the time-dependent Hartree-Fock problem has been found. With this

solution, one can exactly reproduce the time-dependent behavior that one would obtain with a time propagation

for a weak and rapid excitation process. The advantage of the method is that it can be applied to arbitrary

excitation operators. Furthermore, it reveals all frequencies of a mode. Hence, it can be a valuable alternative

to the sum rules. For the breathing mode, one specifies the inhomogeneity with qI = qab = 〈φa|r̂2|φb〉. The

dipole mode (sloshing mode)—just as another example—is reproduced for qab = 〈φa|R̂|φb〉. In Sec. 7.1.1, this

method is used for a supportive analysis of the results from time-dependent calculations. In principle, with this

perturbative approach, time-dependent HF calculations become unnecessary unless one is interested in higher-

order processes or the sizes of the involved matrices 2Nnadd × 2Nnadd are too large for a diagonalization.

However, in the latter case, one can expect that the time-dependent calculations are also quite costly.

6 Thomas-Fermi Theory

Although this work focuses on small systems, it is interesting to get an estimation for the behavior of larger

systems. An appropriate tool for the investigation of large systems is the Thomas-Fermi (TF) approximation—a

theory which was independently formulated by Thomas [110] and Fermi [111] to approximate the electronic

density in an atom. Comprehensive overviews of the theory are given in Refs. [112,113]. In Refs. [114,115], it is

shown that the approximation becomes exact for large atomic systems. Further, a systematic analysis on the effect

of neglected correlations is found in Ref. [116]. Being a very simple theory, the Thomas-Fermi approximation

enables one to quickly get a rough overview of some basic physical properties. In this section, an introduction

to the theory is given for fermions in arbitrary dimensions. After that, some different applications for Coulomb

interacting particles in one- and two-dimensional systems are explained.

6.1 Energy functional and Thomas-Fermi equation

In the following, N fermionic particles, e. g., electrons, are considered in a d-dimensional space. The extension

of the whole system is restricted to a volume V . The goal is to describe all properties of the system with the

particle density n(r).

Fig. 17 Setting for the Thomas-Fermi approximation. A system of N particles extends over a volume V . In a small volume

element ∆V , the particles have a uniform distribution. On the global scale, the density n(r) may vary.

One starts with the concentration on a small volume element ∆V at the point r, containing ∆N particles

(see Fig. 17). Although the density n(r) may vary in space, one approximates the local density by that of a

homogeneous gas. This is a classical idea, requiring that the de Broglie wavelength has only a weak dependence

on the spatial coordinate. It is assumed that the particles in ∆V have an energy E that is below the Fermi energy

E ≤ EF =
p2F
2

, (182)
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where pF is the Fermi momentum, which may be different for each coordinate r outside the volume ∆V . This

idea corresponds to the picture of a hypersphere in momentum space with the radius pF, where the momenta of

the particles must be within the hypersphere (see Fig. 18). The volume of such a hypersphere is given by

∆Ṽ = Vdp
d
F , (183)

where Vd is the volume of a d-dimensional unit hypersphere. The explicit values for Vd and the corresponding

surfaces Ad are listed for d = 1, 2 and 3 in Table 6.1. With the phase space volume ∆Ṽ∆V , one finds

∆N =
2s+ 1

(2π)d
∆Ṽ∆V . (184)

Here, one has made use of the quantum mechanical idea that the unit volume in the phase space is occupied by

(2s+ 1) particles10. In the limit of infinitely small volumes ∆V , one obtains the density

n(r) =
∆N

∆V
=

2s+ 1

(2π)d
Vdp

d
F(r) . (185)

With this expression, one can calculate the kinetic energy density

t(r) =

∫ pF

0

n(r)
p2

2

Adp
d−1

VdpdF(r)
dp = Ck(d, s)n(r)

(d+2)/d,

with the constant

Ck(d, s) =
2s+ 1

(2π)
d

Ad

2(d+ 2)

(

1

2s+ 1

(2π)d

Vd

)(d+2)/d

.

Fig. 18 Fermi hypersphere in two dimensions with the volume

πp2F and a Fermi surface of equal energy, with the correspond-

ing momentum p.

Table 1 Volumes Vd and surfaces Ad of d-dimensional unit hyperspheres.

d Vd Ad

1 2 2

2 π 2π
3 4π/3 4π

10 In SI units, the unit volume is (2π�)d.

www.cpp-journal.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



70 J.W. Abraham and M. Bonitz: Quantum breathing mode of trapped particles

For probably the most prominent example of electrons in 3D with s = 1/2, the constant is

Ck(3, 1/2) =
6π2

5

(

3

8π

)2/3

.

Hence, for the mean kinetic energy and mean potential (trap) energies in Thomas-Fermi approximation we have

〈T̂ 〉 = Ck(d, s)

∫

n(r)(d+2)/d dr , and 〈V̂ 〉 =
∫

v(r)n(r) dr .

The mean interaction energy is taken into account on the Hartree level,

〈Ŵ 〉 = λ

2

∫ ∫

n(r)n(r′)

|r− r′|α drdr′ .

This is even simpler than the interaction term in Hartree-Fock approximation, where also exchange effects are

respected. Further, obviously, the interaction in Hartree approximation lacks all correlation effects. The goal of

the approximation is to find the density n(r) which minimizes the energy functional

E[n] = 〈T̂ 〉+ 〈V̂ 〉+ 〈Ŵ 〉 (186)

under the normalization constraint,
∫

n(r)dr = N. In principle, one can try to find the density directly by

inserting trial densities into the energy functional. In fact below, for 2D systems, we will proceed this way

However, another systematic way to find the density is to introduce a Lagrange multiplier μ and set the variational

condition

δ(E − μN) = 0 . (187)

Then, one arrives at the Thomas-Fermi equation

d+ 2

d
Ck(d, s)n(r)

2/d + v(r) + λ

∫

n(r′)

|r− r′|α dr′ = μ . (188)

With Eq. (187), one recognizes

∂E

∂N
= μ , (189)

that is, μ can be interpreted as the chemical potential of the system. Compared to Eq. (186), this equation has

the advantage that due to the variation, one integral was canceled in each term. But still, one has to search for

a pair of the density and a corresponding chemical potential. This can be a difficult task, because Eq. (188) is

an integral equation. For 3D systems with Coulomb interaction, it is therefore a typical procedure to transform

Eq. (188) into a differential equation. For that purpose, one introduces the potential

u(r) = λ

∫

n(r′)

|r− r′| dr
′, (190)

which has to satisfy Poisson’s equation ∆u(r) = −4πλn(r) . For other dimensions and interactions, such a

transformation can be impossible. A discussion on the treatment of the dimensionality is to be found in Ref. [112].

In the following sections, the specific methods for the problems in this work are presented.

6.2 Solution for one-dimensional systems

For a 1D system with spin-polarized Coulomb-interacting particles, the Thomas-Fermi equation (188) is solved

on a spatial grid. This requires again that the interaction potential is screened. Hence, the equation to be solved

reads

3Ck(1, 0)n(r)
2 +

1

2
r2 + λ

∫

n(r′)

((r − r′)2 + κ2)
1/2

dr′ = μ . (191)
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The following scheme is applied to solve this equation self-consistently:

1. Initial guess of the density n(r) with respect to the normalization condition.

2. Calculation of the Hartree terms with the current density n(r),

w(r) = λ

∫

n(r′)

[(r − r′)2 + κ2]
1/2

dr′, on the whole grid.

3. Determination of the new chemical potential μ and a new density ñ(r), according to

ñ(r) =
1

√

3Ck(1, 0)

{

μ− 1

2
r2 − w(r)

}1/2

, (192)

where μ ensures that the density is normalized. Further, one must take into account that the density ñ(r) is

only non-zero for μ− 1
2r

2 − w(r) > 0 .

4. Return to step 2 with n(r) = ñ(r) until a given stopping criterion is fulfilled.

5. Calculation of all necessary observables.

Fig. 19 Comparison of the densities in Hartree-Fock and Thomas-Fermi approximation for 1D systems with Coulomb

interaction, at λ = 0.1 with the particle numbers N = 5 (top) and N = 22 (bottom). The oscillations of the HF density (and

the exact density) are reduced with increasing particle number.
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Of course, it cannot be guaranteed that the density converges. A proper choice of the initial density is crucial for

the convergence. For the results in this work, the following scheme was applied:

• Choice of a particle number N and definition of a series λ1 < λ2 < . . . , starting with a very small initial

value λ1. The difference between the successive values λi and λi+1 should be small.

• First calculation with λ1. The initial guess for the density is that of a non-interacting system,

n(r) =
1

√

3Ck(1, 0)

{

μ− 1

2
r2
}1/2

,

with μ = N [117]. This density has the shape of a semicircle.

• For the subsequent calculations with λi, one starts with the final densities from the calculations with λi−1.

In this work, the calculations were restricted to the positive coordinate axis, as the problem is symmetric. Typi-

cally, satisfactory results were obtained with a grid size around 3
√
N and 5000 grid points.

Figure 19 provides a first visual impression of the density in TF approximation in comparison with the corre-

sponding Hartree-Fock result. One can see that the oscillations are not reproduced in the TF model. However, for

large particle numbers, these oscillations tend to vanish. This is one reason why TF is expected to become more

accurate with increasing N .

6.3 Solution for two-dimensional systems

In Ref. [118], the Thomas-Fermi equation is exactly solved for fermions in a 2D trap with logarithmic interaction.

In this work, maintaining the Coulomb interaction, the energy functional (186) is minimized directly. The spin is

set to s = 1/2. According to Ref. [119], it is assumed that the density is radial-symmetric and has the shape of

an inverted parabola,

n(r) = n(r) =
1

2πγ
(r20 − r2) (193)

with the variational parameter γ. For the non-interacting system, this yields the exact density profile. The ansatz

has the advantage that the interaction energy can be calculated analytically [119],

〈Ŵ 〉 = λ
512

315

√
2

πγ1/4
N7/4 . (194)

For the mean kinetic an potential (trap) energy, one obtains, respectively,

〈T̂ 〉 = 1

3
N3/2 1

γ1/2
, 〈V̂ 〉 = 1

3
N3/2γ1/2 .

Hence, in order to minimize the functional E[n], one only has to find the parameter γ. This is a very easy

task, which, for example, can be accomplished with the golden section search [120]. Finally, we mention recent

attempts to further improve the Thomas-Fermi model [121] that might be helpful for obtaining more accurate

results for the breathing frequency of large Fermi systems in the future.

7 Results for the Breathing Frequency of 1D Systems

The first many-body results shown in this work are for 1D systems. Although the real space is always three-

dimensional, there are some physical situations that can be treated as effective 1D systems, see, e. g., Refs. [35,

36,122,123]. Offering a drastic computational simplification, the 1D system is also interesting from a theoretical

point of view, as it can be used to quickly test diverse numerical methods. In this section, the results from

both time-dependent and time-independent methods are applied. A major goal is to show that the presented

equilibrium methods can be used for an accurate description of the collective monopole mode. The focus will
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be on an overview on results for Coulomb-interacting fermions that have been presented in Ref. [41]. Beyond

that, some results for dipolar fermions are presented. However, quite unlike Coulomb systems, the numerical

treatment of the 1D dipole system turns out to be a difficult problem, where the standard Hartree-Fock procedure

fails.

Before presenting the results, some numerical details are mentioned. To treat the singularity in the Coulomb/di-

pole potential, the potential is screened, according to

w(|ri − rj |) =
λ

{

(ri − rj)
2
+ κ2

}α/2
. (195)

If not stated otherwise, the parameter κ is set to 0.1. Since only spin-polarized particles are considered, one does

not have to expect a non-monotonic λ-dependence as described in Sec. 2.4.1. The main methods used for the

results in this section are the Hartree-Fock (HF) method and its time-dependent extension (TDHF). The single-

particle basis for the HF ground-state calculations is always the FEDVR basis with sizes in the range between

nb ≈ 120 and 2500. Time-dependent calculations of the single-particle density matrix were performed in the

FEDVR basis as well as in the Hartree-Fock basis. In order to estimate the error of the HF approximation, results

from the configuration interaction (CI) method are also shown. The breathing frequencies were determined with

an exact diagonalization of the ground-state Hamiltonian, followed by an evaluation of the eigenvalue spectrum.

Furthermore, several time-dependent CI calculations were performed, allowing to compare the TDHF spectra to

exact ones. The single-particle basis for the CI calculations is always the 1D harmonic oscillator basis. For two

particles with Coulomb interaction, usually nb ≈ 15 basis functions are sufficient. For larger particle numbers,

the size of the single-particle basis is chosen in a way that the total number of N -particle basis functions, ns, does

not exceed 10000.

7.1 Fermions with Coulomb interaction

We start with spin-polarized Coulomb-interacting fermions, e. g., electrons. This system is used as a test for most

methods described in the following and we, therefore, present a broad overview of the relevant characteristics. We

first present results from time-dependent calculations which will serve to test and verify the equilibrium methods

that will be used in the following.

7.1.1 Time-dependent results

Extensive computations for up to 20 particles with coupling parameters λ = 0.1, 0.3, and 1 were performed to

study the time-dependent reaction to a monopole-type excitation [41]. In time-dependent calculations, one cannot

use the idealized instantaneous excitation with a δ-like perturbation. Instead, the excitation is turned on at t = 0
and turned off again at texc > 0. This time interval is chosen very short, usually on the order of the time step of

the integrator. To guarantee a monopole-type excitation we employ a short reduction of the trap frequency [56].

Then the Hamiltonian takes the form

Ĥ(t) = Ĥ0 − ηf(t)V̂ , where f(t) :=

{

1, 0 ≤ t ≤ texc

0, else

has been defined. For the excitation strength, η, we use very small positive values on the order of 0.01. A typical

time series of the potential trap energy 〈V̂ (t)〉 is shown in Fig. 20. As expected, the beating of two sinusoids with

the frequencies ωrel and ωcm is observed. The small value of η guarantees that there are only weak oscillations

around the initial value and no higher harmonics are being excited.

In order to determine the breathing frequencies, the spectra of the time-dependent quantities 〈V̂ 〉 are evaluated

for each parameter set. To uncover peaks with small spectral weights, the spectra are calculated, by multiplying

the time-dependent quantities with a Blackman function. Further, to achieve a high resolution in frequency space,

large propagation times tprop are required. Performing the computations in the Hartree-Fock basis on one CPU,

one can achieve propagation times tprop ≈ 5000Ω−1 in several hours, which usually leads to a sufficiently high

accuracy.
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To provide a first visual impression, Fig. 21 shows the relevant parts of the monopole spectra from TDHF

calculations for different coupling strengths and particle numbers. As expected, each spectrum shows one peak,

representing the relative frequency ωrel, and another one, representing the center-of-mass frequency ωcm. Further,

the weights of the ωcm peaks do not depend on the particle number, in agreement with our theory, cf. Sec. 2.

However, for λ = 0.3, one can already notice that this analytical fact is slightly violated in the Hartree-Fock

approximation, and the effect increases with growing coupling parameter. For λ = 1, for example, the ωcm peak

already shows up around 2.04Ω in the case of two particles. However, another small peak appears close to the

expected value 2Ω, which can be seen in Fig. 22. Despite the fact that the small peak has the wrong spectral

weight, one can also vary η and observe how the peak heights change. As the figure shows, only the leftmost and

the rightmost peaks scale down linearly with η. The peaks close to 2Ω, by contrast, scale down quadratically with

η. However, in the sense of time-dependent perturbation theory, described in Sec. 2.1.3, only the linear terms are

relevant for the breathing mode. This example should demonstrate that the spectra have to be analyzed carefully

and that the excitation strength must be very weak.

Fig. 20 Exemplary time series of the potential (trap) energy for two particles with Coulomb interaction and coupling strength

λ = 1. The waveform clearly shows a superposition of two sinusoids, resulting from the breathing frequencies ωrel and ωcm,

respectively. The excitation time for this calculation, texc = 0.01, is much smaller than the relevant oscillation periods

assuring excitation of a broad spectrum.

Fig. 21 Monopole excitation spectra for 2, 8 and 17 particles for the coupling strengths λ = 0.1 (left) and λ = 0.3
(right) [41]. The spectra show the expected peaks for the breathing frequencies ωrel (left peaks) and ωcm = 2Ω (right peaks).

The data is taken from TDHF calculations in the HF basis with tprop = 6000Ω−1 and η = 0.001.

To fully understand the spectra, one should also note the higher frequencies. For two particles, their occurrence

has already been predicted quantitatively in Sec. 2.4.1. In Fig. 23, the spectrum is shown around the breathing
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frequencies and the nearest higher spectral features. The figure shows both the spectra of TDHF and time-

dependent CI (TDCI) calculations with the same parameter sets (N = 2, λ = 1) and a very small excitation

strength. As expected, the CI calculations exactly represent the breathing frequencies, in good agreement with

the predictions in Sec. 2.4.1. Especially the center-of-mass peak appears on the right position 2Ω. Regarding the

leftmost peaks, one notices that TDHF produces the frequency ωrel quite accurately. Similarly like the value for

ωcm, the first possible higher TDHF frequency deviates from the exact value by ∼ 0.05Ω. Further, TDHF even

produces a peak around 4.05Ω in first order of η. This peak probably represents a higher harmonic of the center-

of-mass mode. However, it can be shown analytically that in first-order perturbation theory, the center-of-mass

subsystem only produces one frequency 2Ω. This analytical fact is also confirmed by the exact TDCI results,

which do not show an equivalent peak. One can conclude that weak excitations do not produce completely the

same physics in TDHF and exact methods. Just for comparison, the figure also shows the corresponding spectrum

obtained by Bauch et al. [56] with an exact solution of the TDSE. On the one hand, this is to show the progress

in the spectral accuracy. On the other hand, this curve shows once more—as it was produced with the excitation

strength (η = 1)— that processes of higher order can occur: The peak at 4Ω represents a two-fold transition in

the center-of-mass system, and the peak near 3.9Ω represents an addition of the transition 2Ω in the center-of-

mass system and the frequency ωrel ≈ 1.9Ω in the relative system. Loosely speaking, this is explained by the

fact that in second-order perturbation theory, it is allowed to add up the transitions from the first order.

Fig. 22 Vanishing of higher-order peaks in the spectrum with decreasing excitation strength η [41]. The peaks close to 2Ω
do not represent the center-of-mass frequency ωcm, because they can be suppressed with η. The data were obtained by TDHF

calculations in the HF basis with the parameters N = 2, λ = 1.

Fig. 23 Comparison of the spectra from different time-dependent methods around the breathing frequencies ωrel and ωcm

(left), and the first occurrence of higher frequencies (right) [41]. The relevant parameters are N = 2, λ = 1 and η = 0.0001.

The emphasis is on the difference between the TDCI and the TDHF results. The curve by Bauch et al. [56] is just for further

comparison, as it was obtained with the large excitation strength η = 1 and a relatively short propagation time.

In Sec. 5.2.1, it was shown how to solve the time-dependent Hartree-Fock equations with perturbation theory

(TDHF+PT). As the excitation strength has been kept weak in the TDHF calculations, it should be possible to
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compare with the frequencies obtained by the perturbative solution. To do so, Fig. 24 shows the λ-dependent

monopole frequencies occurring in the first order of TDHF+PT. Further, as the TDHF+PT solution is not limited

to monopole excitations, the figure also shows the frequency of the sloshing mode, ωslosh, which is known to have

the universal value 1Ω (see Sec. 2.2.2). The reason to plot this frequency is the following: On the one hand, it is a

good test for the correctness of the implementation and the applicability of the theory. On the other hand, one can

observe that the numerical accuracy gets lower, the higher the excitation energies are. This is expressed in false

increases of the frequencies, starting in certain coupling regimes. The calculations have been performed with 13

Hartree-Fock basis functions. For coupling parameters up to λ ∼ 5, this is sufficient for an accurate description

of the sloshing frequency and the relative monopole frequency ωrel. The next frequency, ωcm, is already visibly

inaccurate at the coupling λ = 1. To be precise, it attains the value 2.04Ω, as has also been observed in the

time-dependent calculations. As this frequency can be traced back to the correct value 2Ω with decreasing λ,

another hint is given that the problematic peaks close to 2.04Ω in the TDHF examples actually represent the

center-of-mass mode.

Fig. 24 λ-dependent prediction of the first monopole-allowed frequencies for two particles. The frequencies were obtained

with a perturbative solution of the TDHF equations (TDHF+PT). To show the capabilities of the method, the sloshing fre-

quency ωslosh with the theoretical value 1Ω is also plotted. The exact values calculated in Secs. 2.4.1 and 2.2 are shown for

comparison.

Having analyzed the various features of the spectra, one can finally concentrate on the investigation of the

relative frequency ωrel. In Fig. 25, a more detailed view on the N -dependence is provided for the selected

coupling strength λ = 1. First, one notices again the qualitatively wrong behavior of the ωcm peaks. Not only

is the frequency too large, the peaks also exhibit an unphysical N -dependence. Second, the peaks of the relative

frequencies are clearly dependent on the particle number. This dependence is expressed in a monotonic decrease

of the breathing frequency from two up to five particles, followed by a monotonic increase for larger particle

numbers. Hence, the breathing frequency attains a minimum for five particles. Contrary to the unphysical N -

dependence of the frequency ωcm, this behavior is not caused by numerical problems that arise with a growing

coupling parameter. As Fig. 26 shows, the same characteristic N -dependence shows up for the different coupling

strengths λ = 0.1, 0.3 and 1. For comparison, the results from exact diagonalizations (CI) are also plotted in

the figure. For small coupling parameters like λ = 0.1, one notices that the overall agreement between CI and

TDHF is quite good. Nevertheless, the CI frequencies have their minimum for six instead of five particles, but the

difference between the frequencies for both particle numbers is very small. For further comparison, the results

from TDHF+PT are also plotted in the case λ = 0.1. These frequencies attain a minimum for six particles,

just like the CI values. Since the TDHF+PT calculations do not demand as much computational effort as the

corresponding time propagations they could be obtained with a relatively large single-particle-basis. Furthermore,

the accuracy of the results is not limited by the resolution in the frequency space. As the TDHF+PT results agree

well with the exact CI solutions, one can assume that the exact position of the minimum actually occurs for six

particles. Nevertheless, despite the small numerical errors, one can state that the TDHF solutions are capable to

reproduce the correct trend of the N -dependence.
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Fig. 25 Dependence of the TDHF spectrum on the particle number N [41]. The coupling strength is λ = 1. The relative

mode (left peaks) has a characteristic N -dependence, which is trustworthy, as it is also apparent for very weak couplings. As

a guide for the eye, the peak positions for all particle numbers N ≤ 20 are highlighted by a bold line (with crosses for N = 2,

5, 10, 20). The center-of-mass mode frequency (right peaks), however, deviates from the analytical prediction ωcm = 2Ω.

Fig. 26 N -dependence of the breathing frequencies for the selected coupling parameters λ = 0.1, 0.3 and 1. The results

from TDHF calculations (in the FEDVR basis) are compared with the results from exact diagonalizations (CI). For λ = 0.1,

the perturbative solution of the TDHF equations is also shown (TDHF+PT). While the TDHF frequencies attain a minimum

for five particles, in the CI and TDHF+PT calculations, the minima show up for six particles.
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All in all, it has been shown that time-dependent Hartree-Fock calculations allow for a relatively accurate

determination of the breathing frequencies for coupling strengths up to λ = 1 and particle numbers up to N = 20.

The various features of the spectra could be identified. Further, the TDHF equations need not be solved with a

propagation. The solution based on time-dependent perturbation theory yields the same or—due to the possibility

to increase the basis sets—even more accurate results. The calculations reveal the unexpected result that for each

coupling parameter, the frequency ωrel has a minimum for six particles. In the following, equilibrium methods

are used to check the position of the minimum and to investigate the trend of increasing frequencies for larger

particle numbers.

7.1.2 Application of equilibrium methods to the breathing fequency

For a further analysis, the formulas presented in Sec. 3 are applied. First of all, it is of interest to see how the sum

rule formulas are able to reproduce the N -dependence of the breathing frequencies. In Fig. 27, the results for

the improved sum rule formula sr∗(1,−1) are compared to the CI and TDHF results. The input data for the sum

rules is taken from static Hartree-Fock calculations. One notices that the results with the sum rules are always

closer to the exact CI results than the TDHF results. This can be explained by the large single-particle basis that

could be used for the sum rule calculations. Furthermore, the minimum coincides with the CI results for N = 6
particles. All in all, the exact results and the sum rules are in good agreement. The most important error in the

sum rule results is due to the Hartree-Fock approximation. This error, which increases with λ, is also responsible

for the fact that the frequencies are not necessarily above the exact CI values.

Fig. 27 Results for the N -dependence of the breathing frequencies for the coupling strengths λ = 0.3 and 1. The results

with the sum rule formulas perform better than those from the TDHF calculations. With the sum rules, one can reproduce the

minimum for six particles.

For a further comparison, Fig. 28 shows the N -dependent breathing frequencies for different sum rule formu-

las. As expected, the frequencies for sr∗(3, 1) are always above the values for sr∗(1,−1). Moreover, the curves

reveal that the correct behavior for small systems is only captured by the improved formulas. With the formula

sr(3, 1), the minimum occurs for seven particles instead of six. Already for 25 particles, however, the differences

between sr and sr∗ are nearly vanished.

Finally, to provide an overview of the dependence on the coupling parameter, the λ-dependent breathing fre-

quencies are plotted for selected particle numbers in Fig. 29. As expected, the frequencies start at the ideal value

2Ω, followed by a monotonic decrease with λ. Furthermore, the curves ωrel(λ,N) do not intersect. Comparing

to the exact curve for N = 2, and noticing the non-monotonic behavior for coupling parameters λ ≥ 3, the

figure also demonstrates the limitations of the Hartree-Fock method. To go beyond those intermediate coupling

regimes, more sophisticated methods are required to incorporate correlation effects.
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Figure 29 shows first results for relatively large particle numbers. It turns out that the breathing frequencies

become more ideal with growing N . In the next subsection, a more detailed analysis of this phenomenon is

provided.

Fig. 28 Comparison of different sum rule formulas. For small particle numbers, the improved sum rule formula sr∗(1,−1)
captures the correct behavior, while the original formula sr(1,−1) fails to do so. The results were obtained with HF calcula-

tions.

Fig. 29 Dependence of the breathing frequency on the coupling parameter for different particle numbers. The results were

obtained in HF calculations with the estimator sr∗(1,−1). Around λ ∼ 3, the results become inaccurate due to an increase

of neglected correlation effects.

7.1.3 Large systems

So far, the results have been restricted to rather small systems. It could be observed that beyond the minimum,

the breathing frequencies increase with the particle number. To answer the question, how this trend carries on

for larger systems, extensive Hartree-Fock and Thomas-Fermi calculations were performed. Figure 30 shows the

breathing frequencies for up to 620 particles with the selected coupling strength λ = 0.1. Both the Hartree-Fock

and the Thomas-Fermi ground-state calculations were connected with the sum rule formulas. For computational

convenience, the Thomas-Fermi results were used in combination with the formula sr∗(3, 1) instead of sr∗(1,−1).
The figure confirms the trend that the frequencies increase monotonically with N , but it is still impossible to see

the limiting behavior. As a test for the theories, it is also important to compare HF and TF. It turns out that it
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takes several hundred particles until the difference between both theories is veiled by the resolution of the image.

Especially the non-monotonic behavior for small systems cannot be reproduced by the TF theory.

Fig. 30 Investigation of the breathing frequency for up to

620 particles with the coupling strength λ = 0.1. The values

were obtained with the time-independent Hartree-Fock and

Thomas-Fermi methods combined with the sum rules. In the

limit of large particle numbers, both methods yield the same

results.

Fig. 31 Dependence of the breathing frequencies on the coupling parameter and the particle number [125]. The results were

obtained in HF calculations for N ≤ 100 (with sr∗(1,−1)) and TF calculations for larger particle numbers (with sr∗(3, 1)).
The transition between both results is relatively smooth, but it is still visible. To achieve a smooth color gradient, the frequency

data were post-processed with an interpolation in the (λ,N)-plane.

For a schematic overview of the breathing frequency, Fig. 31 pictures ωrel in the (λ,N)-plane. In the figure,

the results from HF and TF are joint, which explains a small step around 100 particles. However, both results

provide a clear picture of the physical situation. Whenever one fixes an arbitrary coupling parameter, one can

increase the particle number to reach the ideal quantum limit. At the same time, if one fixes the particle number,

one reaches the classical limit by increasing λ. Furthermore, as indicated by equal colors in the figure, there exist

characterizing lines with equal breathing frequencies in the (λ,N)-plane. At last, it is mentioned that one can

give a proof for the large-N behavior in terms of the Thomas-Fermi approximation. According to Sec. 6.2, one

has to find a self-consistent solution for the density

n(r) =
1

√

3Ck(1, 0)

{

μ− 1

2
r2 − w(r)

}1/2

. (196)
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Inserting the semicircle-shaped density of the non-interacting system, one finds that for each coupling parameter,

one can always increase N to a very large value to ensure that the density-dependent expression w(r) can be

neglected. Hence, the system becomes effectively non-interacting, and the breathing frequency attains the ideal

value ωrel = 2Ω.

7.1.4 Influence of the screening parameter

It is still an unanswered question how important the influence of the screening parameter κ is for the observed

phenomena. To answer that question, the screening was varied in Hartree-Fock calculations with different system

parameters. The results for the coupling parameter λ = 0.1 and screening parameters from κ = 0.6 to 0.001
are shown in Fig. 32. One finds that the breathing frequencies are nearly converged for κ = 0.1. Furthermore,

the described non-monotonic behavior does not change for smaller values of κ. Especially the minimum for six

particles attains the fixed position N = 6. Although there are still some small differences between the results

for κ = 0.1 and the results for κ = 0.01, the value κ = 0.1 was preferred for numerical reasons and a better

comparability with the results from previous publications.

Fig. 32 Dependence of the breathing frequencies on the screening parameter κ for the coupling parameter λ = 0.1. The

results were obtained with the Hartree-Fock method combined with the sum rule formulas sr∗(1,−1). The results are nearly

converged for κ ≤ 0.1. Especially the position of the frequency minimum (N = 6) does not change for smaller values.

In the derivation of formula (101) based on the operator equation,

ωrel ≤
{

(2 + α) + (2− α)
〈T̂rel〉
〈V̂rel〉

}1/2

= sr∗(3, 1) , (197)

it was required that the interaction potential is a pure power law. So far, it has always been assumed that there is

no need for a correction due to the small screening parameter. In Ref. [37], a correction is proposed for systems

with a screened potential. The derivation is based on the above operator equation with the result

ωrel =

{

4− 〈Ûα〉
2〈V̂rel〉

}1/2

with the two-body operator Ûα :=
∑

i<j

F̂α
ij · r̂ij , (198)

and Fα
ij(r) :=

∑

i<j

[

2− α− (α+ 2)κ2

r2ij + κ2

]

αλrij
(

r2ij + κ2
)α/2+1

. (199)

In Fig. 33, formula (198) is plotted together with the original formula (101) for three and five particles. The

results were obtained in CI calculations, i. e., the input quantities for the formulas are exact. From the figure and

several other numerical tests (not shown) one can conclude that the application of the corrections is not necessary.

In fact, the figure shows that the frequencies even become slightly more inaccurate.
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Fig. 33 Configuration interaction results for three and five particles with Coulomb interaction (α = 1), concerning the

necessity to use the corrected formula in Eq. (198) (obtained by McDonald et al. [37]) instead of formula (197). In all

numerical tests, the corrections suggested by Eq. (198) even lead to slightly more inaccurate results.

7.1.5 Time-independent perturbation theory

As mentioned in Sec. 4.3.1, the extension of the working CI code to an implementation of time-independent

perturbation theory (PT) was immediately possible. To finish the presentation for the charged particles, one last

graph with PT results is shown in Fig. 34. The figure confirms again the non-monotonic behavior for a very small

coupling parameter. The quantitative frequency values are justified by Hartree-Fock results. A new insight from

this picture is the fact that PT can be used to exactly recover the center-of-mass frequency ωcm. However, the

main reason to apply perturbation theory is the following: As has been stated, the only input for the calculations

are the matrix elements WIJ of the interaction operator, constructed by the many-particle states of the non-

interacting oscillator system. Hence, it is possible to locate the numerical origin of the observed phenomena in

basic quantities which can be analyzed without extensive computations.

Fig. 34 Breathing frequencies as obtained with time-

independent perturbation theory (PT) in comparison

with the Hartree-Fock values.

7.2 Fermions with dipole interaction

The breathing mode of two dipolar fermions in 1D was investigated with a time-dependent solution of the

Schrödinger equation in Ref. [42]. The authors mentioned that the steepness of the dipole potential w(r) ∼ r−3

imposes big numerical challenges. Using the equilibrium methods, the numerical handling of the dipole system

is significantly simplified. But still it turns out that the numerical description is only satisfying for very small

coupling parameters. In Fig. 35, the λ-dependent Hartree-Fock results are shown in comparison with the exact

results from Sec. 2.4.1 and the corresponding frequencies from time-independent perturbation theory. Although
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the numerical treatment of a two-particle system should not pose any problems, one notices that already for small

couplings, the HF and PT results strongly deviate from the exact results. The results were obtained with large

single-particle basis sets and seem to be converged. In contrast to Coulomb interaction, here screening has a

major influence. This can be seen in Fig. 36, where the N -dependent breathing frequencies are plotted for several

different screening parameters κ. For large κ, one can see a similar non-monotonic behavior as in Coulomb

systems. For κ = 0.1, the frequencies have a maximum for N = 4 particles. However, the behavior changes

drastically for smaller κ. At the same time, a higher numerical effort is required to describe the steep potential.

In summary, one can state that the present methods are not well suited to describe finite dipole systems in 1D. A

promising alternative is to perform quantum Monte Carlo simulations. For example, path integral Monte Carlo

simulations in continuous space will allow one to perform the calculations with the pure (unscreened) dipole po-

tential. Furthermore, one can make use of the Bose-Fermi mapping to overcome the fermion sign problem [124].

Beyond that, sufficiently large systems have successfully been described, using the local density approximation

and reptation quantum Monte Carlo techniques [118].

Fig. 35 Different estimators for the λ-dependent breathing frequencies of two spin-polarized dipoles (κ = 0.01). Already

for small couplings 0.01 ≤ λ ≤ 0.1, Hartree-Fock (HF) and time-independent perturbation theory (PT) fail to describe the

frequencies accurately.

Fig. 36 N -dependent breathing frequencies of dipolar fermions (λ = 0.01) for different screening parameters. The results

were obtained with the Hartree-Fock approximation by computing the sum rule sr∗(1,−1), using up to nb ∼ 2500 FEDVR

basis functions.

7.3 Discussion of the 1D results

Above we presented results for 1D fermionic systems, and we give now some conclusions for Coulomb systems11.

First of all, we confirmed that the breathing mode can be accurately described with equilibrium methods. After

several numerical tests with independent methods, we can draw the following conclusions [125]:

11 Dipole systems are numerically more challenging and, therefore, yet less thoroughly investigated.
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1. The breathing frequency attains a minimum for six particles if the coupling parameter λ is fixed. This is

an effect of the finite size of the system. The minimum is unexpected, since in 1D systems, there is no

particular “shell” geometry (“magic” configurations) as in 2D or 3D that could be responsible, So far, no

simple physical reason for the special particle number N = 6 is known.

2. In the limit N → ∞, at fixed λ, the breathing frequency approaches the ideal quantum value 2Ω.

3. In the limit λ → ∞, at fixed N , the classical breathing frequency,
√
3Ω, is obtained. While this has been

obtained from Hartree-Fock simulations which are restricted to intermediate coupling parameters, λ ≤ 2,

we expect this trend to hold also for larger values of λ.

For the physical interpretation of these trends, we can employ the sum rule formula

ωrel ≤
{

3 +
〈T̂rel〉
〈V̂rel〉

}1/2

, (200)

which shows that the breathing frequency depends on the ratio of the mean kinetic and mean (relative) potential

energy. In the classical limit, kinetic energy vanishes (in the ground state), and the frequency approaches
√
3Ω.

On the other hand, in the ideal quantum limit, kinetic and potential energy approach one another and the frequency

equals 2Ω. Hence, the breathing frequency is a sensitive measure of the nonideality of the system.

Fig. 37 Comparison of the localization parameter and the breathing frequency for trapped Coulomb systems in one dimension

[125]. The values were obtained with the Thomas-Fermi approximation. The dotted lines (with the same definition) represent

equal values of χ and ωrel.

Another important consequence from the investigation of the ground state is the fact that the sole knowledge

of the coupling parameter λ is not sufficient to decide whether quantum or classical effects dominate. Instead,

the particle number has be taken into account as well. For a summarizing characterization of the ground-state
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properties, one can introduce a localization parameter for the trap. This is inspired by the degeneracy parameter

χ of a macroscopic homogeneous electron gas, see Sec. 2.1.1. It turned out that the characteristics of the system

can be described in terms of the mean extension of the system which is estimated from

σ =

{
∫

n(r)r2dr

}1/2

=
{

2〈V̂ 〉
}1/2

, (201)

which, for a non-interaction system, has the value σideal =
{

1
2N

2
}1/2

. With this, one can define the localization

parameter

χ =
σideal

σ
, (202)

which measures how much the extension of the system deviates from that of an ideal non-interacting system

which has the value χideal = 1. In the transition to classical systems, χ decreases to zero. In Fig. 37, the values

of the breathing frequency and the localization parameter are compared for large systems in the (λ,N)-plane.

Apparently, both quantities show the same behavior. To illustrate this, straight lines indicating equal values of

each quantity are plotted additionally. These lines have the same definitions

N = (1.3× 104)λ2.45 . (203)

Interestingly, χ characterizes not only the behavior of large systems, but it also qualitatively captures the observed

finite-size effects. In Fig. 38, χ is shown for small systems with selected coupling strengths. In all cases, χ attains

a minimum for N = 7 particles, indicating a maximum of classical effects. The position of the minimum slightly

differs from the minimum N = 6 for the breathing frequency. A similar effect has already been observed for the

non-improved sum rule formulas, where the inclusion of the center-of-mass contributions shifted the minimum

to seven particles.

Fig. 38 Localization parameter χ for small systems.

For all coupling parameters λ, a minimum occurs for

seven particles.

Quantum-classical crossover. Another simple explanation of the observed characteristics can be attempted as

follows. Let us compare an ideal (spin-polarized) quantum system to a classicl Wigner-crystallized Coulomb

system. Thomas-Fermi theory predicts that the total energy of such a classical system is [117]

Ec =
3

10
N (3λN lnN)

2/3
. (204)

Here, both the classical and the quantum equations are expressed in oscillator units. To justify the formula, a

comparison with the results from exact classical Monte Carlo simulations12 is provided in Fig. 39. Since the

12 The results were kindly provided by Hauke Thomsen [126]. The simulations were performed with the Metropolis algorithm and

parallel tempering. An explanation of the method can be found in Ref. [127].
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results are in good agreement, Eq. (204) is assumed to be sufficiently accurate for the classical description in the

following. For comparison, the total energy of a non-interacting quantum system is

Eq =
1

2
N2 . (205)

As discussed in Ref. [117], both quantities can be used as estimators for the total energies in strongly and weakly

coupled systems. For a fixed particle number, it is expected that the systems demand a full quantum mechanical

description in the coupling regime, where both estimators are equal. Defining λ̃(N) as the coupling parameter

with Eq = Ec, one can estimate that λ̃ roughly marks the transition between quantum-like and classical behavior.

It is given by

λ̃ =
1

3

(

5

3

)3/2
N1/2

lnN
. (206)

In Fig. 7.3, this function is shown revealing that λ̃ reaches a minimum for N = 7 particles. Moreover, with

increasing particle number, the value λ̃ is shifted to larger values. Agreeing with the findings from the previous

discussion, even this simple theory explains the trend of increasing quantum-like behavior in large systems.

Fig. 39 N -dependent total energy Ec of a classical system with

λ = 1. The results from classical Monte Carlo simulations are in

good agreement with the Thomas-Fermi prediction in Eq. (204).

Fig. 40 N -dependent coupling parameters λ̃, for which

the ideal quantum estimator Eq and the classical estima-

tor Ec are equal. The minimum occurs for N = 7.

8 Results for the Breathing Brequency of 2D Systems

Having investigated 1D systems in detail, the analysis will now be extended to 2D. Especially for quantum dots,

this is a more realistic setting [14]. However, the computational demands of 2D systems drastically increase.

Roughly estimating, a 2D calculation requires n2
b single-particle basis functions if a corresponding 1D problem

requires nb basis functions. This is due to the fact that a basis function in 2D usually has two quantum numbers

for each spatial direction. As is reported in Ref. [37], accurate time-dependent calculations can take several days

for just a single frequency. Aside from that, one is usually restricted to particle numbers N < 10.

With the sum rules at hand, the problems of time-dependent calculations can be circumvented. This section is

devoted to the presentation of equilibrium results for Fermi particles with Coulomb interaction and Bose particles

with dipole interaction.

8.1 Fermions with Coulomb interaction

For the Coulomb-interacting fermions, time-independent Hartree-Fock calculations were performed. Utilizing

the spherical harmonic oscillator functions as a single-particle basis, a pure Coulomb potential could be em-

ployed. The calculations were performed with at least nb = 78 single-particle basis functions. Further, it is
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remarked that the 2D oscillator basis is only suitable for coupling parameters λ ≤ 1. This problem even oc-

curred in some numerical tests with exact CI for two particles. To access larger coupling parameters, a possible

alternative is the numerical solution on a 2D grid.

Fig. 41 N -dependent breathing frequencies for two-dimensional systems with Coulomb interaction [125]. The spin config-

urations follow Hund’s rules. The minima for N = 2, 6, 12, 20 correspond to configurations with closed shells.

Table 2 Occupation of the first single-particle orbitals, according to Hund’s rules. N+ and N− are the numbers of particles

with “spin up” and “spin down”. Closed shells are indicated by boxes.

N N+ N− configuration N N+ N− configuration

1 1 0 ↑ 7 4 3 ↑↓ ↑↓ ↑↓ ↑
2 1 1 ↑↓ 8 5 3 ↑↓ ↑↓ ↑↓ ↑ ↑
3 2 1 ↑↓ ↑ 9 6 3 ↑↓ ↑↓ ↑↓ ↑ ↑ ↑
4 3 1 ↑↓ ↑ ↑ 10 6 4 ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑
5 3 2 ↑↓ ↑↓ ↑ 11 6 5 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑
6 3 3 ↑↓ ↑↓ ↑↓ 12 6 6 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

In Fig. 41, the N -dependent breathing frequencies are shown for the selected coupling parameters λ = 0.1
and 0.5. For the Hartree-Fock calculation, it was assumed that the energy shells are filled according to Hund’s

rules [128]. A detailed listing of the configurations is given in Table 2. Other than in 1D systems, the breathing

frequencies are strongly non-monotonic. This can be explained by the successive filling of the energy shells.

Similarly to atomic systems, configurations with completely filled shells are more stable than configurations

with open shells. A configuration with closed shells is characterized by a relatively strong contribution of the

interaction energy. The energy eigenvalues of the 2D single-particle harmonic oscillator are given by 1, 2, 2, 3, 3,

3, . . . . Each corresponding orbital can be occupied by two particles. With the sum rule formulas, it is immediately

clear that the frequency has local minima for 2, 6, 12 and 20 particles. These numbers are also known as “magic

numbers”. From the numerical point of view, one can see again how the improved sum rule formulas provide a

qualitatively different picture for very small particle numbers than the original formulas. Especially the minimum
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for two particles is not captured by the non-improved formulas. For N = 2 and λ = 0.5, the estimator sr∗(3, 1)—
calculated with the sum rules in Eq. (107)—gives a smaller value than sr∗(1,−1). This contradicts the theory,

and it seems to be a numerical issue. So far, however, the problem could not be resolved. For all larger particle

numbers, sr∗(1,−1) ≤ sr∗(3, 1) is fulfilled, agreeing with the theoretical prediction.

For comparison, spin-polarized systems have also been investigated. Results for the coupling parameter λ =
0.3 and up to 15 particles are shown in Fig. 42. Due to the spin polarization, the single-particle orbitals can only

be occupied once. Since the i-th shell is closed if it is occupied by i particles, the minima appear for N = 3, 6

and 10 particles.

Fig. 42 N -dependent breathing frequencies for two-dimensional spin-polarized systems with Coulomb interaction. The

minima appear for N = 3, 6, 10 particles.

Fig. 43 N -dependent breathing frequencies for different coupling parameters in Thomas-Fermi approximation (with

sr∗(3, 1)) and Hartree-Fock approximation (with sr∗(1,−1)) [125]. For large N , the classical value
√
3Ω is reached.

Just like for 1D systems, it is again of interest to consider the transition to large systems. For that purpose,

Thomas-Fermi calculations were performed, according to the explanation in Sec. 6.3. The frequencies were

estimated with the formula sr∗(3, 1). The Hartree-Fock results are compared to the Thomas-Fermi results in

Fig. 43. First, it can be noted that the TF results follow the trend of the HF results, but the non-monotonic

behavior is not captured. Nevertheless, the deviations between both results are on small scales. Second, the

figure reveals a limiting behavior that is contrary to that of 1D systems. For both plotted coupling strengths,

the frequencies reach the classical value
√
3Ω in the limit of very large particle numbers. As the variational

procedure for the 2D case is exceptionally simple, the whole (λ,N)-plane can be covered numerically within just

a few seconds of computing time. An overview of ωrel(λ,N) is provided in Fig. 44. The figure reveals that for

a fixed coupling parameter λ, the frequencies always transition into the classical values with increasing particle

numbers. This is a fundamental difference to the 1D case.

Finally, the ansatz for the density in the TF approximation shall be justified. It is known that the ansatz

is correct for a non-interacting system. The good agreement between the breathing frequencies in HF and TF
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approximation (Fig. 43) confirms that the ansatz is also well suited for weakly interacting systems. To show

that the correct energies of the classical limit can be captured with the ansatz, the λ-dependent total energies are

shown for different particle numbers in Fig. 45. The corresponding values of the non-interacting system and the

classical13 system are indicated by straight lines. These lines represent rough approximations for the energies

of weakly and strongly interacting systems, respectively. A similar illustration for 1D systems can be found in

Ref. [117]. The figure reveals that both the ideal quantum limit and the classical limit are correctly included in

the TF approximation. However, as the TF density is continuous, the density of the classical point charges can

only be approximated with sufficient accuracy if the particle number is large.

Fig. 44 Dependence of the breathing frequencies on the coupling parameter and the particle number in two-dimensional

systems with Coulomb interaction [125]. The results were obtained in TF calculations with the sum rule formula sr∗(3, 1).

Fig. 45 Total energies of a 2D Coulomb system,

depending on N and λ [125]. The Thomas-Fermi

(TF) results are compared to the results from classi-

cal Monte Carlo simulations and the analytical values

of an ideal Fermi gas.

8.2 Bosons with dipole interaction

The exact description of bosonic systems is a major strength of quantum Monte Carlo methods. As collective

oscillations are also relevant for Bose gases, this section is devoted to the investigation of dipolar bosons with the

path integral Monte Carlo (PIMC) method. Especially for strongly coupled systems, the PIMC calculations have

good statistics. The dipole potential is chosen, because Coulomb interacting bosons are quite rare in nature.

In Fig. 46, the frequencies ωrel are shown for up to 95 particles. The estimator for the breathing frequencies

is sr∗(3, 1), as this quantity has the best statistics in the simulations. For all investigated coupling parameters,

the overall trend is an increase of the frequency with the particle number. It can be expected that the classical

frequency, 5Ω, will be reached in the limit N → ∞.

13 Just like for the 1D systems, these values were produced with Metropolis Monte Carlo simulations.

www.cpp-journal.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



90 J.W. Abraham and M. Bonitz: Quantum breathing mode of trapped particles

Fig. 46 N -dependent breathing frequencies for two-dimensional dipolar bosons, as obtained in path integral Monte Carlo

simulations with different coupling parameters. The results were obtained with the inverse temperature β = 30.

Fig. 47 λ-dependent breathing frequencies for two and three two-dimensional dipolar bosons. The curves intersect near

λ = 7.

Fig. 48 Radial densities for weakly (left) and strongly coupled (right) dipolar bosons. With increasing coupling parameter,

the densities are not centered at the origin anymore, and they represent the shell structures of crystallized systems.

Covering a broad range of coupling parameters, it is observed that with increasing λ, a non-monotonic be-

havior of the frequency evolves. The most noticeable example is the step from two to three particles: While the

frequencies always increase for small λ, the frequencies decrease for large λ. This behavior can also be seen in

Fig. 47, showing the λ-dependent frequencies for two and three particles. Around λ = 7, the frequencies for
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N = 2 reach those for N = 3. However, the difference between the curves becomes small. Nevertheless, since

there are no deviations from this trend, it is unlikely that the behavior is due to statistical errors. In the limit

λ → ∞, the curves for all particle numbers will of course converge to the joint limit
√
5Ω. The λ-dependent

increase of the non-monotonic behavior is associated with a crystallization of the system. For weak couplings,

bosonic systems at low temperatures are characterized by high occupation numbers of the lowest single-particle

orbital. It is not expected that certain particle numbers are outstanding. In the transition to the strongly coupled

regime, however, the densities start to obtain the discrete shapes of classical point masses. Apparently, this pro-

cess is mapped to the behavior of the breathing frequency. For further illustration, in Fig. 48, the radial densities

of strongly coupled (λ = 100) systems can be compared to those of weakly coupled (λ = 0.5) systems. It is

demonstrated for small particle numbers, how the system abandons its origin-centered density and obtains a shell

configuration.

8.3 Discussion of the 2D results

In this section we have presented results for two-dimensional systems. On the one hand, for weakly interacting

fermions with Coulomb interaction, it could be observed how the orbital structure of the non-interacting system

manifests itself in the breathing frequencies (“magic numbers”). On the other hand, for strongly coupled dipolar

bosons, the behavior of the breathing frequency was associated with crystallization.

The important result of this section is that the limiting behavior of the breathing frequency differs radically

from that of 1D systems. In both cases, λ → ∞ and N → ∞, the frequency converges to its classical limit. So

far, this could only be shown for the fermionic system, but the results for the bosonic case confirm this trend.

To explain the observed behavior, we use again the localization parameter χ = σideal/σ. Defining the exten-

sion σ, as in Sec. 7.3

σ =

{
∫

n(r)r2dr

}1/2

, (207)

we obtain the value of for an ideal system in 2D

σideal =

{

2

3
N3/2

}1/2

, (208)

which differs from the 1D case (σideal = N/
√
2). In Fig. 49, the breathing frequency and the localization

parameter χ are compared for a system of fermions with Coulomb interaction. Both quantities have a similar

behavior, which is shown again by two straight lines with the same definition,

N = 100λ−4 . (209)

Quantum-classical crossover. To complete this analysis, an estimator for intermediate couplings is determined

for the 2D system. The energy of a non-interacting quantum systems is given by Eq = 2
3N

3/2 , whereas, for a

purely classical system, one finds Ec = Kλ2/3N5/3 . This value can be obtained if one sets the kinetic energy

to zero and minimizes the remaining terms in Eq. (186). The constant K is given by

K =

(

256
√
2

315π

)2/3

+
512

√
2

315π

(

256
√
2

105π

)−1/3

.

Consequently, the estimator for intermediate couplings which we define from equal values of the quantum kinetic

and classical interaction energy, i.e. Ec = Eq, is given by

λ̃ =

(

2

3K

)3/2

N−1/4 .

It is reasonable to use the parameter λ̃ to subdivide 2D systems into ones with dominantly quantum behavior

(λ < λ̃) and ones with dominantly classical behavior (λ > λ̃). In contrast to 1D systems, λ̃ indicates that, in
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2D, the classical regime is shifted to smaller coupling parameters if the particle number N is increased. Hence,

by means of this simple estimator, it is confirmed that the breathing frequencies tend to the classical value in the

limit N → ∞.

Fig. 49 Localization parameter and the breathing frequency for trapped Coulomb systems in two dimensions [125]. The

values were obtained with the Thomas-Fermi approximation. The dotted lines (with the same definition) represent equal

values of χ and ωrel.

9 Summary and Outlook

The present work gave an overview on recents results for the quantum breathing mode of trapped systems. While

the breathing mode has been studied in great detail for classical systems, the corresponding understanding for

quantum systems is far less complete. Recent theoretical advances have brought important physical insight.

The first surprising results is that, in contrast to strongly correlated classical systems, an interacting quantum

system in a harmonic trap possesses two breathing frequencies, ωrel and ωcm. The former is related to the relative

collective “breathing” motion of all particles and is similar to its classical counterpart, but the frequencies are

essentially modified due to quantum effects. The latter mode is a pure quantum effect which was observed by

Bauch et al. [56] and exists already in the absence of interactions and even for a single quantum particle in a

harmonic trap. This motion is a consequence of the finite extension of the wave function of a quantum particle

and is associated with the radial expansion and contraction of this wave function. In an N -particle system all

particles exhibit this “individual” radial “breathing”. This purely quantum mode has the universal frequency 2Ω,

i.e., it is independent of the coupling strength, spin, interaction potential and the number of particles. The relative

amplitude (oscillator strength) of this mode, compared to the relative breathing mode, decreases with N .

Our second result was to demonstrate how previous time-dependent simulation results that are computationally

very expensive and, thus, limited to small particle numbers, can be extended to large systems by application of

time-dependent perturbation theory. This theory allows for a systematic description of the normal modes, and

especially an approximation of the breathing frequency ωrel with the help of quantum mechanical sum rules. A

thorough study of the two-particle system gave insight into the quality of approximate methods. Especially the
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improvement of the conventional sum rule formulas for ωrel by correcting for the center of mass mode is a simple,

but important achievement for the accurate description of the breathing frequency of small systems.

Third, for the investigation of many-body systems, different physical settings were chosen. The focus was

mainly on 1D fermions with Coulomb interaction. For this system, the results from time-dependent Hartree-Fock

calculations could be reproduced with various time-independent approaches. It was shown that the breathing

frequencies have a minimum for six particles, which is independent of the coupling parameter. Further, Thomas-

Fermi theory was employed to show that the breathing frequency converges to its ideal value 2Ω if one fixes the

coupling parameter λ and performs the limit N → ∞. To compare with other types of interaction, 1D dipolar

fermions were considered afterwards. It turned out that the numerical handling of the dipole potential is quite

more challenging than the treatment of the Coulomb potential. The dependence on the screening parameter in

the dipole case is to be clarified in future works.

Fourth, we presented results for 2D systems, in the final part of this review. Since the inclusion of just one

more spatial dimension is already a numerical challenge, only time-independent calculations were performed.

Fermionic systems with Coulomb interaction were studied with unrestricted Hartree-Fock calculations. At this,

it was shown that the breathing frequency provides a diagnostic tool for the shell structure of the orbitals. The

observed frequency minima follow similar characteristics as, for example, the addition energies which are mea-

sured in experiments with quantum dots [13]. Finally, to demonstrate the capabilities of the sum rules, the

analysis was extended to dipolar Bose particles. Compared to the typical sizes of Bose-Einstein condensates

(e. g., N = 25000 [129]), the systems in this work are relatively small. Nevertheless, the frequencies are nearly

exact and provide a starting point for the extension to larger systems.

Our fifth main point was to highlight the surprisingly different asympotic behavior of the breathing frequency

for large N and large λ in 1D and 2D Coulomb systems. While the strong coupling limit, λ → ∞ at N = const ,
yields always the classical value of ωrel, the limit N → ∞ at λ = const is different in different dimensions.

While in 1D, ωrel → 2Ω, i.e. ωrel approaches its ideal quantum limit, in all considered 2D systems ωrel was

found to converge to its strongly coupled classical asymptotic [125], i.e., to
√
3Ω, for Coulomb interaction and√

5Ω, for dipole interaction. A physical explanation of this behavior was given from an analysis of the degree of

localization of the particles which is governed by the competition of interparticle repulsion and potential (trap)

energy. To measure the degree of localization, we introduced a localization parameter that indicates how much

the spatial extension of the entire particle “cloud” deviates from the extension of a non-interacting system, i.e.,

χ = σ/σideal. It was demonstrated that the breathing frequency and χ exhibit very similar behaviors: in 1D (2D),

both quantities are constant along lines N ∼ λ2.45 (N ∼ λ−4).

These scalings have been obtained from mean field type (Hartree-Fock and Thomas-Fermi) models, and it

remains an interesting question for future investigation, what is the effect of correlations. While, for bosons, path

integral Monte Carlo methods are well suited to answer this question, for strongly degenerate fermions they are

hampered by the fermion sign problem. Here, possible approaches include multiconfiguration Hartree-Fock and

restricted active space methods, e.g. [40,83,130,131], nonequilibrium Green functions [82,132], diffusion Monte

Carlo [133] or path integral Monte Carlo in configuration space [134].

To summarize our main conclusion, the behavior of strongly correlated quantum systems in traps is rather

complex as it depends on many parameters: the coupling parameter, the form of the interaction potential, the

spin statistics and system dimensionality [56]. Moreover, as we have shown also the precise particle number

is important (except for the maroscopic limit). The frequency of the radial “breathing-type” excitation of these

systems is sensitive to all these properties and, thus, provides a useful tool for the diagnostics of trapped quantum

systems. The idea of using the breathing frequency as a novel type of spectroscopy for these systems was

demonstrated on the example of the mean kinetic, potential and interaction energy [37]. These quantitites are

not directly accessible in experiments, yet all of them can be reconstructed directly from a measurement of the

breathing frequency, as we showed in Sec. 3.3. With all contributions of the total energy at hand all ground state

properties are known. It is expected that a similar approach is possible at finite temperature since from the energy

the free energy (or the grand potential) and, hence, all thermodynamic properties can be computed.
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A Appendix

A.1 Perturbation theory

Some parts of this work refer to time-independent as well as time-dependent perturbation theory. We, therefore,

recall the basic ideas and results and set up the notation used in the main text.

A.1.1 Time-independent perturbation theory

The time-independent perturbation theory aims at solving the eigenvalue problem

Ĥ|Ψi〉 = Ei|Ψi〉 , (210)

where the Hamiltonian Ĥ = Ĥ0 + ηΛ̂ consists of an unperturbed part Ĥ0 and a perturbation ηΛ̂. The oper-

ator Λ̂ remains unspecified, and η is a sufficiently small real parameter. It is assumed that Ĥ0 is diagonalized

by the eigenfunctions |Ψ(0)
k 〉 with the non-degenerate eigenvalues E

(0)
k . The basic idea is to expand the i-th

eigenfunction of Ĥ and its eigenvalue in the perturbation series

|Ψi〉 = |Ψ(0)
i 〉+

∞
∑

k=1

ηk|Ψ(k)
i 〉 and Ei = E

(0)
i +

∞
∑

k=1

ηkE
(k)
i .

Inserting these series into Eq. (210) yields a hierarchy of equations which determine the corrections in each order.

Skipping the details of further calculations, the result for the correction of the energy in first order reads

E
(1)
i = 〈Ψ(0)

i |Λ̂|Ψ(0)
i 〉 .

The corresponding correction of the wave function is given by

|Ψ(1)
i 〉 =

∑

k �=i

〈Ψ(0)
k |Λ̂|Ψ(0)

i 〉
E

(0)
i − E

(0)
k

|Ψ(0)
k 〉 .

It is obvious that this equation cannot hold if the energy E
(0)
i is degenerate. In the following, the case of an n-fold

degenerate eigenvalue E(0) is regarded. The wave functions with this eigenvalue are denoted by |1〉, . . . , |n〉. In

order to obtain the corrections in first order, the subspace spanned by these vectors has to be diagonalized,

according to the eigenvalue problem Λc = E(1)c or, equivalently,

n
∑

α=1

〈β|Λ̂|α〉 cα = E(1)cβ , β = 1, . . . , n .

The first-order energy corrections for each of the states |1〉, . . . , |n〉 are thus given by the n eigenvalues

E
(1)
[1] , . . . , E

(1)
[n] .

A.1.2 Time-dependent perturbation theory

The starting point of time-dependent perturbation theory is the TDSE

i�
d

dt
|Ψ(t)〉 =

(

Ĥ0 + ηΛ̂(t)
)

|Ψ(t)〉 . (211)
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The operators have the same properties as in the previous case of stationary perturbation theory, except for

the fact that Λ̂ is now explicitly time-dependent. Using the complete basis
{

|Ψ(0)
k 〉

}

, which is formed by the

eigenfunctions of the stationary Hamiltonian Ĥ0, one can apply the expansion

|Ψ(t)〉 =
∑

k

ck(t) exp

{

− iE
(0)
k t

�

}

|Ψ(0)
k 〉 .

Inserting this expansion into Eq. (211) and multiplying with 〈Ψ(0)
i | from the left, one arrives at

i�
d

dt
ci(t) = η

∑

k

ck(t) exp

{

i

�

(

E
(0)
i − E

(0)
k

)

t

}

〈Ψ(0)
i |Λ̂(t)|Ψ(0)

k 〉 . (212)

This equation is still equivalent to the TDSE in Eq. (211). For sufficiently small η, one can make an expansion

similar to those of the time-independent theory,

ci(t) =

∞
∑

j=0

ηjc
(j)
i (t) . (213)

It is now assumed that the system is at the initial time t = t0 in the state |Ψ(t0)〉 = |Ψ(0)
n 〉. Without loss of

generality, one can set t0 = 0. The expansion coefficients obey the initial conditions with the choices c
(0)
i (0) =

δin and c
(j)
i (0) = 0 for all j ≥ 1. Inserting Eq. (213) into Eq. (212) and respecting the initial conditions, one

obtains c
(0)
i (t) = δin, and for the first-order correction of the expansion coefficients

c
(1)
i (t) = − i

�

∫ t

0

dt′ exp

{

i

�

(

E
(0)
i − E(0)

n

)

t′
}

〈Ψ(0)
i |Λ̂(t′)|Ψ(0)

n 〉 .

A.2 Calculation of the cubic energy-weighted moment

The goal is to calculate the commutator in the expression

m3 =
1

2
〈0|[[Q̂, Ĥ0], [Ĥ0, [Ĥ0, Q̂]]]|0〉 = −1

2
〈0|[[Ĥ0, Q̂], [Ĥ0, [Ĥ0, Q̂]]]|0〉

for the observable Q̂ =
∑N

i=1 r̂
2
i that is related to the breathing mode and for the generic Hamiltonian Ĥ0 =

T̂ + V̂ + Ŵ . One can start by evaluating

[Ĥ0, Q̂] = [T̂ , Q̂] = −i
N
∑

i=1

{p̂ir̂i + r̂ip̂i} .

Now the commutator [Ĥ0, [Ĥ0, Q̂]] is evaluated for T̂ , V̂ and Ŵ separately, starting with

−i
N
∑

i=1

[T̂ , p̂ir̂i + r̂ip̂i] = −2
N
∑

i=1

p̂2
i .

One concludes that

−i

N
∑

i=1

[p̂ir̂i + r̂ip̂i,−2p̂2
i ] = −8p̂2

i , and, hence, − 1

2
〈0|[[Ĥ0, Q̂], [T̂ , [Ĥ0, Q̂]]]|0〉 = 8〈T̂ 〉 .

Similarly, one derives

−i

N
∑

i=1

[V̂ , p̂ir̂i + r̂ip̂i] = 2

N
∑

i=1

r̂2i and − i

N
∑

i=1

[p̂ir̂i + r̂ip̂i, 2r̂
2
i ] = −8r̂2i .
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Consequently,

−1

2
〈0|[[Ĥ0, Q̂], [V̂ , [Ĥ0, Q̂]]]|0〉 = 8〈V̂ 〉,

is valid. The evaluation for the operator Ŵ is more complicated. Defining

U(ri) :=
∑

k �=i

λ

|ri − rk|α
, and Gij := λ(ri − rj)

1

|ri − rj |α+2
,

we switch to the coordinate representation and evaluate

−i

N
∑

i=1

[W (r),piri + ripi] = −i

N
∑

i=1

[U(ri),piri + ripi]

= 2

N
∑

i=1

∂U(ri)

∂ri
ri = −2α

N
∑

i=1

∑

j �=i

Gij · ri

= −2α
∑

i<j

Gij · (ri − rj) = −2αŴ .

(214)

With this, one obtains

−i

N
∑

i=1

[p̂ir̂i + r̂ip̂i,−2αŴ ] = −4α2Ŵ

and

−1

2
〈0|[[Ĥ0, Q̂], [Ŵ , [Ĥ0, Q̂]]]|0〉 = 2α2〈Ŵ 〉 .

Adding up the terms, one arrives at the desired result,

m3 = 8〈T̂ 〉+ 8〈V̂ 〉+ 2α2〈Ŵ 〉 . (215)
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