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Abstract: We study a holographic construction of quantum rotating BTZ black holes that
incorporates the exact backreaction from strongly coupled quantum conformal fields. It is
based on an exact four-dimensional solution for a black hole localized on a brane in AdS4,
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corrections, while the Bekenstein-Hawking-Wald entropy does not. This result, which
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1 Introduction

Despite the lack of a precise definition of a quantum black hole within a complete quantum
theory of gravity, one can still gain insight through semi-classical approximations. One
sensible approach is to treat gravity classically while fully accounting for the backreaction
of all other quantum fields. This is the study of the ‘semi-classical Einstein equations’

Gµν(gαβ) = 8πG〈Tµν(gαβ)〉 , (1.1)

where Gµν is the gravitational Einstein tensor (possibly with a cosmological constant) for a
spacetime metric gαβ , and 〈Tµν〉 is the renormalized stress tensor of the (non-gravitational)
quantum matter fields in that spacetime. Quantum fluctuations of the metric can be
comparatively suppressed by including a large number of matter degrees of freedom.
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Ideally, one would simultaneously solve for both the coupled system of the metric gαβ
and the correlation functions of quantum field operators. However, this problem is often
intractable. Instead, the backreaction effects are typically assumed to be small and the
problem is approached perturbatively. Nevertheless, there are non-perturbative approaches
available in special cases. The complete backreaction problem (1.1) has been solved in
some two-dimensional models [1–3], while in more dimensions it can be tackled through a
holographic reformulation. In this article, we shall use the holographic approach to exactly
solve a variant of (1.1) to find the quantum form of the three-dimensional BTZ black
hole [4, 5] — quBTZ, for short.

The AdS4/CFT3 duality maps the quantum theory of three-dimensional conformal
fields to a problem of gravitational dynamics in a four-dimensional AdS bulk spacetime.
In the large N expansion of the CFT, the leading order (planar-diagram limit) is dual
to classical gravitational bulk physics. One variation of this duality enables the study
of the CFT in a dynamical spacetime by introducing a brane in the bulk. This setup is
similar to a Randall-Sundrum construction [6], but is more precisely described as a Karch-
Randall model with AdS3 branes [7]. The problem (1.1) is now in the form of an effective
gravitational theory

Gµν(gαβ) = 8πG〈Tµν(gαβ)〉planar , (1.2)

where Gµν includes higher-curvature corrections, which can be reduced via holography
to solving the classical gravitational equations of a braneworld model in one more dimen-
sion [8, 9]. Good recent discussions of this duality and its subtleties can be found in [10, 11].
One may include non-planar CFT corrections to (1.2) by computing bulk quantum effects,
in a perturbative expansion that resembles but is not the same as the more conventional
perturbative backreaction approach to (1.1).1

Ref. [12] used these ideas, and the exact construction in [13] of black holes localized
on a brane in AdS4, to present a holographic solution to (1.2) for the static, non-rotating
quantum BTZ black hole. However, the analysis of the solutions in [12] was incomplete,2

and neither [12] nor [13] discussed how backreaction effects are extracted nor took proper
account of the higher-curvature corrections in the effective three-dimensional theory. Mo-
tivated by this and by later developments, we are led to revisit and reassess the quantum
properties of the BTZ black hole.

The renormalized quantum stress tensor. One of our aims is to extend, relate,
and compare different calculations of the renormalized stress tensor of conformal fields in
the rotating BTZ black hole and its backreaction. The majority of previous works [15–
21] study free conformal fields, but [22] used holography to obtain the stress tensor of
a strongly coupled CFT in the rotating BTZ geometry (without backreaction), using a
bulk construction apparently very different than the one in [12, 13]. In this article we
extend the static construction in [12] to the richer general solution of (1.2) for the rotating

1It is in fact the conventional perturbative backreaction problem in the four-dimensional bulk, but not
in the three-dimensional boundary dual.

2In [12] the quBTZ black hole was one among other solutions used for a different purpose than our main
motivation here. See also [14].
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quantum BTZ black hole. Then we compare the results to previous calculations of the
quantum stress tensor, both for holographic and free CFTs. We show that the holographic
bulk solution in [22] arises as a limit of ours, and we present the correct result for the
stress tensor in the presence of rotation.3 The comparison between the holographic and
free CFT calculations reveals similarities that are not a direct consequence of conformal
symmetry, but also significant qualitative differences. In general the holographic result is
considerably simpler.

Quantum CFT backreaction and higher-curvature corrections. The holographic
interpretation of the bulk geometry as a solution to (1.2) incorporates in an exact manner
two kinds of quantum modifications of the BTZ black hole. Recall that the effective
three-dimensional theory comes with a cutoff. The quantum CFT degrees of freedom with
energies above the cutoff give rise to the ‘induced gravity’ on the brane, which includes the
higher-curvature corrections to the gravitational theory in the left-hand side of (1.2), and
these modify the BTZ solution. The low-energy degrees of freedom of the quantum CFT,
instead, directly backreact on the geometry by entering in the right-hand side of (1.2).

Both the low- and high-energy quantum effects are incorporated in the bulk construc-
tion in an exact manner (in the planar limit), but for small backreaction their imprints on
the geometry can be easily separated as being, respectively, of linear and quadratic order in
the strength of the backreaction. The small backreaction parameter is cG3/L3, where c is
the central charge of the CFT and G3 and L3 are the effective three-dimensional Newton’s
constant and AdS3 radius. The low-energy, direct backreaction effects are proportional to
the number of quantum degrees of freedom, c, and hence are linear in cG3/L3. On the
other hand, the curvature corrections appear at quadratic order in cG3/L3, since the cutoff
length of the effective theory is proportional to cG3 and the leading curvature corrections
are quadratic in length. Therefore, at linear order, we can cleanly extract the leading CFT
backreaction effects while ignoring higher-curvature modifications. At higher orders, the
effects mix, but the corrections can be systematically studied in a manner that is much
simpler than in the conventional approach. We find that the higher-order backreaction in
our solutions has an intriguing simplicity. The most remarkable exact results appear in
the study of quantum thermodynamics.

Quantum entropy and the first law. A main goal of our work, largely unexplored in
this context, is to investigate the entropy of the quantum black hole and its thermodynamic
properties. In a solution to (1.1), we expect that this is a ‘generalized entropy’ consisting
of two terms, namely

Sgen = A

4G + Sout , (1.3)

where A is the area of the horizon of the black hole and Sout is the entanglement entropy
of the quantum fields in the region outside the black hole, after absorbing the leading
(divergent) contribution ∝ A in a renormalization of G. More generally, with higher-
curvature gravitational terms in (1.2), the Bekenstein-Hawking entropy A/4G is replaced

3We have communicated with the authors of [22], who agree with our conclusions.
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by the Wald entropy [23]. By the arguments above, the quantum CFT entropy Sout is
proportional to c and hence distinct from the leading curvature corrections in the Wald
entropy, which are quadratic in the small parameter cG3/L3

The holographic approach directly computes Sgen from the horizon area in the bulk
geometry,

Sgen = Abulk
4Gbulk

, (1.4)

which in general is different than the Bekenstein-Hawking-Wald entropy for the brane black
hole, since A and G (and the Wald correction terms) are quantities defined and measured on
the brane. The difference between the two entropies is interpreted holographically as Sout.
This is in fact an application to braneworld holography of the Ryu-Takayanagi formula for
the entanglement entropy of quantum fields [24], first considered in this context in [25]. In
this interpretation, the horizon in the bulk is an RT minimal surface and therefore all of
Sgen, and not only Sout, must be regarded as entanglement entropy. The reason is that
gravity on the brane — not only the higher-curvature terms, but also the Einstein-Hilbert
term in the action — is induced by integrating the ultraviolet degrees of freedom of the
CFT. Therefore, the Bekenstein-Hawking-Wald entropy must be seen as fully induced
by the entanglement across the horizon of very short wavelength quantum fluctuations.
Hence, in the braneworld the entanglement entropies of the quantum degrees of freedom
above and below the cutoff show up as the two distinct terms in (1.3). These same ideas
imply that, within this set up, the bulk RT surface can be used to find the quantum
extremal surface [26] for a system on the brane, an idea that recently has been used to
good effect in [27, 28].

We will show that the entropy of the quantum black hole, Sgen (1.4), does behave like
a thermodynamic entropy, in that it satisfies the first law of quantum black holes

TdSgen = dM − ΩdJ (1.5)

where M , J , T and Ω are magnitudes of the black hole that are all measured on the brane.
In constrast, the Bekenstein-Hawking-Wald entropy does not satisfy the first law when
the CFT backreaction is included. Proofs that it does [23] assume that the entropy of
matter and radiation is negligible compared to the gravitational black hole entropy, but
our construction includes both of them.

This is a non-trivial test of the holographic interpretation of braneworlds, since it is
not obvious that (1.5) must hold, given that the quantities on the left and right side of
it belong in different worlds. The correct entropy for the first law is given by the bulk
horizon area Abulk, but the mass and spin are defined and measured as magnitudes on the
brane. As we will see, the presence of higher-curvature corrections and the global structure
of the rotating bulk solution make the calculation of all the magnitudes delicate, so their
apparent conspiracy to yield (1.5) is remarkable.

Even more impressively, we find that (1.5) holds exactly to all orders in the backreac-
tion and higher-curvature corrections. In order to understand what this means, note that
Sgen is defined as an exact magnitude of the bulk solution (up to quantum bulk corrections),
independently of the effective three-dimensional theory. On the other hand, M and J are
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three-dimensional magnitudes, and their definition in terms of the 3D metric coefficients
receives corrections order by order in the curvature expansion of the effective theory. We
will prove that (1.5) holds not only when we account for quadratic curvature corrections;
beyond this order, with a simple and natural all-order resummation for the exact values of
M and J , the first law (1.5) is exactly satisfied.

One may surmise that the explanation of this exact result is that (1.5) is nothing but
the classical ‘first law in the bulk’ for our four-dimensional solution. However, finding this
bulk law is not without difficulties. On the one hand, the black hole is accelerating in the
bulk and the bulk asymptotics is non-standard due to the presence of the brane. On the
other hand, even after these ambiguities are fixed, it is not obvious that the bulk-defined M
and J should exactly agree with the three-dimensional ones that enter in (1.5), furthermore
including higher-curvature corrections. We will return to this point in the final section.4

With this result, the holographic interpretation of (1.3) and (1.4), and more gener-
ally the holographic dual interpretation (1.2) for the braneworld theory, are shown to be
consistent with basic thermodynamics.

The outline of the paper is as follows. In the next section, we describe the bulk
construction of the holographic quantum BTZ black hole in the static case. We discuss the
effective three-dimensional theory, including the leading higher-curvature corrections. We
obtain the CFT stress tensor, study its properties in comparison with other calculations,
and investigate the quantum entropy and the first law. In section 3 we extend the study
to the rather more complex rotating quantum black hole. Section 4 ends with a discussion
of remaining issues and further open ideas. Appendix A is a glossary of symbols. In
appendix B, we prove that the holographic construction in [22] is recovered as a limit of
the one in this paper, and in appendix C we give the holographic renormalized stress tensor
in another form.

2 Holographic dual of static quBTZ

As explained in [12, 14], the holographic method of solving (1.2) for a quantum-corrected
black hole is through a classical bulk dual with a black hole localized on a braneworld.
Refs. [13, 29] presented exact solutions for black holes on three-dimensional branes based
on the AdS4 C-metric. Our approach will be based on these same solutions, now holo-
graphically interpreted.

We will begin with the simpler case of static, non-rotating solutions. Although parts
of the technical analysis were done in [12, 13], we will sometimes present a different in-
terpretation of results and provide a more detailed investigation. Two important aspects
that were not discussed earlier are the effects of the strength of backreaction, and the
higher-curvature corrections in the effective theory.

2.1 The AdS C-metric

The AdS4 C-metric, which is a central element of our construction, is part of the Plebański-
Demiański family of type D metrics [30], a remarkably versatile class of exact solutions that

4Ref. [13], and also [29], did a calculation equivalent to proving (1.5) for the static black hole. It was
interpreteted as defining M as a ‘bulk mass’, but the identification as the three-dimensional mass in [13]
was not consistent beyond the leading order of the effective theory.
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have found many different applications. The C-metric has been presented in a variety of
coordinates and parametrizations, and we will choose one that is particularly well suited
for studying the black hole on the brane, i.e., the holographic quantum black hole. We
write the metric in the form

ds2 = `2

(`+ xr)2

(
−H(r)dt2 + dr2

H(r) + r2
(
dx2

G(x) +G(x)dφ2
))

, (2.1)

where

H(r) = r2

`23
+ κ− µ`

r
, (2.2)

G(x) = 1− κx2 − µx3 . (2.3)

Here, κ, µ, ` and `3 are parameters whose meaning we will soon clarify.5

The metric (2.1) is a solution to the Einstein equations

Rab = −3
( 1
`2

+ 1
`23

)
gab , (2.4)

so the AdS4 radius is

`4 =
( 1
`2

+ 1
`23

)−1/2
. (2.5)

We will see presently that the length scale `3 is the AdS3 radius on the brane. It is possible
to eliminate ` and use `3 and `4 as parameters, but as we shall see, ` is directly related to
the brane tension and the strength of backreaction in the dual theory. For this reason, we
will mostly work with ` and `3. While solutions with imaginary ` are in principle valid,6

we will take it to be real and (without loss of generality) non-negative,

0 ≤ ` <∞ , (2.6)

so that `3 > `4.
The other parameters in the solution are dimensionless: a discrete one,

κ = ±1, 0 , (2.7)

and the non-negative real number µ. We will be mostly interested in the case κ = −1, since
this is needed to have BTZ on the brane, but we will carry out the study with arbitrary
κ to include other interesting quantum black holes. Solutions with κ = 0 need not be
considered separately since they are recovered in the limit µ → ∞ of the other two cases.
We will eventually see from later results that µ > 0 accounts for the holographic quantum
corrections to the black hole.

In our investigation of the induced three-dimensional physics, we will typically be
interested in keeping `3 fixed and then study the solutions for different values of µ and `
(i.e the dimensionless quantity `/`3). Then `4 is a derived scale, as befits the notion that
the bulk emerges from boundary physics.

5Compared to [13], (2.1) is obtained by making λ = (`/`3)2, A = 1/`, k = −κ, 2mA = µ, y = −`/r, and
rescaling t→ t/`.

6Imaginary ` would be appropriate for deSitter branes.
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Figure 1. Bulk geometry in a slice at constant t and φ. Left: C-metric coordinates (x, r) in the
spatial Poincaré disk of empty global AdS4 (µ = 0, κ = +1). Lines of constant x ∈ [−1, 1] are
blue arcs; lines of constant r ∈ [−∞,−`] ∪ [0,∞] are red arcs (full circles for 0 < r ≤ `). The
asymptotic boundary (black circle) is at xr = −`. The φ axis of rotation is x = ±1. Right: sketch
of braneworld construction with a black hole in it. The bulk is cut off at a brane at x = 0 and
only the (gray) region 0 ≤ x ≤ x1 is retained; the root x = x1 of G(x) is now the φ axis. A second
copy of this region, not shown, is glued at the brane to make a Z2-symmetric two-sided braneworld.
A bulk black hole with event horizon at r = r+ is attached to the brane. Dual three-dimensional
fields satisfy transparent boundary conditions at the junction between the dynamical brane (thick
blue) and the non-dynamical AdS4 boundary (black).

2.2 Karch-Randall-Sundrum braneworld holography

Let us first get some intuition for the metric by setting µ = 0 and noting that if we change
coordinates (x, r)→ (σ, r̂) with

cosh σ = `3
`4

√
1 + r2x2

`23∣∣1 + rx
`

∣∣ , r̂ = r

√√√√ 1− κx2

1 + r2x2

`23

, (2.8)

then the geometry becomes more explicitly pure AdS4,

ds2 = `24dσ
2 + `24

`23
cosh2 σ

 dr̂2

r̂2

`23
+ κ
−
(
r̂2

`23
+ κ

)
dt2 + r̂2dφ2

 , (2.9)

in a foliation by constant σ slices that are AdS3 with radius `4 cosh σ. Each value of κ
gives slices with a recognizable form of AdS3: global, Poincaré, or BTZ, for κ = +1, 0,−1
respectively. If we cut the κ = +1 geometry with a brane at constant σ = σb (with AdS3
radius `4 cosh σb) and discard the region σ > σb, the construction gives the ground state of
the Karch-Randall set up.

When µ 6= 0 the geometry is more complicated, but the C-metrics have the nice feature
that the surface x = 0 is always totally umbilic. That is, that the extrinsic curvature Kab

and induced metric hab satisfy
Kab = −1

`
hab . (2.10)
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The x = 0 surface is therefore where we put the brane (figure 1). We cut the bulk geometry
at x = 0 and keep a range of positive x to be specified later. It is easiest to understand
the properties of this brane when µ = 0, since then it corresponds to the surface σ = σb
in (2.9) with

cosh σb = `3
`4

=

√
1 + `23

`2
. (2.11)

The brane geometry is AdS3 with curvature radius `3. We take the brane to be two-sided,
with Z2 orbifold boundary conditions on it (our main results extend to one-sided branes
changing only factors of 2). As a result, the metric is continuous across the brane, but its
derivative is discontinuous on account of the brane stress tensor, which is

Sab = − 2
8πG4

(Kab − habK) = − 1
2πG4`

hab . (2.12)

From here, we see that the brane tension is

τ = 1
2πG4`

. (2.13)

In the limit ` → ∞, with `3 → `4, the brane becomes tensionless: this is an equatorial
section, σ = 0, of the AdS4 bulk. In the opposite limit ` → 0, the brane is located
increasingly closer to the AdS4 asymptotic boundary at σ →∞.7

Karch and Randall showed that when the brane tension is non-zero and finite (0 < ` <

∞ in our case), there is a massive graviton bound state localized on the brane [7]. That is,
gravity on the brane is not of the ordinary kind, but a massive gravity theory. However,
when ` is very small and the brane is very close to the boundary, the graviton is almost
massless. This will be the regime of most interest, but our bulk construction applies to all
values of `.

The effective three-dimensional theory can be obtained by solving the bulk Einstein
equations in the ‘excluded region’ between the AdS4 boundary and the location of the brane,
in an expansion for small `; holographically, this means integrating out the ultraviolet CFT
degrees of freedom down to the cutoff energy 1/`, which induces the gravitational dynamics
on the brane. Ref. [31] derived in this way the effective field equations, but it is simpler to
obtain the three-dimensional effective action using the results in [32] (see also [11]). The
result is

I = `4
8πG4

∫
d3x
√
−h
[ 4
`24

(
1− `4

`

)
+R+ `24

(3
8R

2 −RabRab
)

+ . . .

]
+ ICFT , (2.14)

where the three-dimensional metric and curvatures are those induced on the brane, and
ICFT is holographically defined by the bulk. The quadratic curvature terms are the same
as in the ‘new massive gravity’ theory of [33], a feature that deserves further attention but
which we will not pursue here. The dots indicate additional higher-curvature terms, which
are proportional to increasing powers of `4, or equivalently, powers of ` when ` is much
smaller than `3.

7Since in this limit `4 → `, we must rescale the entire metric by `2 in order to keep its size finite. We
return to this point below, and more specifically in appendix B.
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We now write this action as

I = 1
16πG3

∫
d3x
√
−h
[ 2
L2

3
+R+ `2

(3
8R

2 −RabRab
)

+ . . .

]
+ ICFT , (2.15)

where we have identified the effective three-dimensional Newton’s constant as

G3 = 1
2`4

G4 , (2.16)

and the three-dimensional cosmological constant term as

1
L2

3
= 2
`24

(
1− `4

`

)
= 1
`23

(
1 + `2

4`23

)
. (2.17)

In the last step we have used (2.5) expanded to quadratic order in `. The difference between
L3 and the curvature radius of the brane `3 is that the latter receives a contribution from
the higher-curvature terms.

Let us now see what the parameter ` corresponds to in the three-dimensional theory.
The number of microscopic degrees of freedom of the holographic dual CFT is measured
by what, with a slight abuse of terminology, we will call the “central charge” c, and which
for convenience we choose to normalize as

c = `24
G4

. (2.18)

If the CFT is an ABJM theory with parameters N and k (for the rank of the gauge group
and the Chern-Simons level), then [35]

c = 3(2Nk)3/2

k
, (2.19)

but we will not need to be this specific about the CFT.
We can now use (2.18) together with (2.5) to express the parameter ` in terms of

magnitudes of the dual 3D theory,

`

1 + (`/`3)2 = 2 cG3 . (2.20)

This is an exact relation. We can write it in terms of L3 in a perturbative expansion
using (2.17). In the limit where ` is small,

` = 2 cG3
(
1 +O (cG3/L3)2

)
. (2.21)

We see that if we keep c and L3 finite, then when ` → 0 and the brane approaches
the AdS4 boundary, the gravitational coupling G3 must vanish too. Gravity on the brane
becomes weaker, and therefore when ` → 0 there is no backreaction of the CFT. In this
model, the gravitational strength on the brane and the graviton mass are controlled by the
same parameter (σb, or `/`3). One may separate them by introducing an explicit Einstein-
Hilbert term on the brane à la DGP [34], but in that case there is no known solution with
a black hole localized on the brane.
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At the opposite end, when `→∞ the graviton mass becomes as large as possible, and
gravity on the brane is completely four-dimensional; the tensionless brane has no effect on
bulk propagation, other than imposing a Z2 projection.

With (2.21), the effective action (2.15) can be written in terms of only the parameters
G3, L3 and c of the three-dimensional theory. Higher order corrections in the action
are suppressed when the curvature scales on the brane, typically ∼ L3, are longer than
` ' `4 ' cG3. Therefore ` is the cutoff length scale of the effective theory.

On the other hand, the three-dimensional Planck length (temporarily restoring ~) is

L
(3)
Planck = ~G3 . (2.22)

From (2.21) we have
` ∼ c ~G3 ∼ c L(3)

Planck � L
(3)
Planck , (2.23)

since in holography the classical bulk requires large central charges, c� 1. The reason that
the cutoff length ` is much larger than the three-dimensional Planck length is that the huge
number ∼ c of CFT degrees of freedom enhance their contribution to loop corrections [36].

There is no contradiction between requiring c� 1 and performing a small ` expansion.
The latter is actually an expansion in

`

`3
∼ c ~G3

L3
� 1 , (2.24)

as is required for the validity of the effective three-dimensional description, while the limit
of large central charge is

c ∼ `

~G3
� 1 , (2.25)

which, using (2.16), is equivalent to the semiclassical bulk limit L(4)
Planck/`4 � 1. So both

limits (2.24) and (2.25) are simultaneously consistent if we consider solutions with `� `3
and we neglect quantum bulk corrections.

With the understanding of (2.24), we see that the leading CFT contributions, which
enter as proportional to c in the action ICFT in (2.15), are of linear order in `/`3. This
distinguishes them from higher-curvature corrections, which are ∝ (`/`3)2 or higher.

2.3 Global aspects of the bulk

We can get a quick idea of how the bulk black hole appears localized on the brane by taking
the tensionless limit `→∞. Rescaling

µ = 2m
`
, r = `3

`
ρ (2.26)

and keeping m, ρ and `4 finite, the bulk metric (2.1) becomes

ds2 = −
(
ρ2

`24
+ κ− 2m

ρ

)
dt2 + dρ2

ρ2

`24
+ κ− 2m

ρ

+ ρ2
(

dx2

1− κx2 +
(
1− κx2

)
dφ2

)
, (2.27)

which is the metric of AdS4 black holes. The brane at x = 0 slices them through an
extremal section (an ‘equator’) of zero extrinsic curvature.
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At the opposite end, when `→ 0 the solution becomes

ds2 → `2

r2x2

−(r2

`23
+ κ

)
dt2 + dr2

r2

`23
+ κ

+ r2
(
dx2

G(x) +G(x)dφ2
) . (2.28)

The brane is now at the asymptotic boundary of AdS4 at x → 0. When κ = −1 the
boundary geometry, where G(0) = 1, has a black hole (BTZ, as we will see) on it with
horizon at r = `3. This limiting solution is indeed the same as the construction in [22],
which is based on the fact that (2.28) is a double Wick rotation of the Schwarzschild-AdS4
solution, as we explain in appendix B.

More generally, whether the solutions (2.1) have black holes, and of what kind, depends
on the character of the roots of H and G. For instance, it is apparent from (2.1) that the
roots of H(r) are Killing horizons of ∂/∂t. We want that a positive root r+ exists for the
black hole horizon, but also that there are no acceleration (non-compact) horizons. In the
(x, φ) sector, the real roots of G(x) are symmetry axes (fixed-point sets) of ∂φ, and their
properties determine the geometry and topology of the horizons. Since H and G are cubic
functions, the analysis of these roots tends to be involved, but below we will deal with this
by switching to more efficient parametrizations.

The question of regularity at symmetry axes of ∂φ is a central point in the analysis of
all the C-metrics. As argued in [13], in order to have a finite black hole in the bulk (instead
of, say, an infinite black string) we must be in a regime of parameters where there is at
least one positive root of G(x), the smallest of which we will call x1. Then we restrict x to
the range

0 ≤ x ≤ x1 . (2.29)

It is now much more convenient to use x1 as a primary parameter, and consider µ as a
derived one, with

µ = 1− κx2
1

x3
1

. (2.30)

We get the desired parameter range by, first, assuming that x1 > 0, and furthermore taking

x1 ∈ (0, 1] for κ = +1 , (2.31)

and
x1 ∈ (0,∞) for κ = −1, 0 . (2.32)

Note that µ is a monotonically decreasing function of x1, with µ →∞ when x1 → 0, and
µ→ 0 at the upper limit of x1.

In order to avoid a conical singularity at x = x1 we must identify

φ ∼ φ+ 2π∆ (2.33)

with
∆ = 2

|G′(x1)| = 2x1
3− κx2

1
. (2.34)
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Then, sections of constant t and r with x varying in (2.29) are topological disks with x

playing the role of radial coordinate. We may more conveniently think of them as caps,
and x as roughly equivalent to the cosine of the polar angle along the cap (see figure 1). In
a two-sided brane, we glue two of these caps along their rim at x = 0, to form a lens shape.
Notice that G′(x1) < 0 in the range of x1 considered, and that ∆ is independent of `.

2.4 quBTZ: metric, mass, and stress tensor

The metric induced on the brane at x = 0 is

ds2 = −H(r)dt2 + dr2

H(r) + r2dφ2 (2.35)

with H(r) given in (2.2). This metric is asymptotic to AdS3 at r →∞, but the coordinates
are not canonically normalized since φ does not have periodicity 2π but 2π∆. In order to
fix this, we rescale

t = ∆ t̄ , φ = ∆ φ̄ , r = r̄

∆ , (2.36)

so that now φ̄ ∼ φ̄+ 2π and the metric takes the form

ds2 = −
(
r̄2

`23
− 8G3M −

`F (M)
r̄

)
dt̄2 + dr̄2

r̄2

`23
− 8G3M − `F (M)

r̄

+ r̄2dφ̄2 , (2.37)

where G3 is a ‘renormalized Newton’s constant’ which we will soon describe, and F (M) is
a function we give later in (2.41).

The identification of the three-dimensional mass M here, which is given by

M = − κ

8G3

`

`4
∆2 = − 1

2G3

`

`4

κx2
1

(3− κx2
1)2 , (2.38)

requires some care. In Einstein-AdS gravity the mass is obtained by identifying the sub-
leading, constant term in gt̄t̄ as 8G3M . However, the higher curvature terms in the effective
theory (2.15) modify this definition by adding corrections beginning at order `2. These can
be computed from, e.g. [40], with the result that the correct mass is obtained from the
same term in gt̄t̄ but using a ‘renormalized’ Newton’s constant,

G3 =
(

1− `2

2L2
3

+O
(
`

L3

)4)
G3

=
1− `2

2`23
2`4

G4 +O
(
`

L3

)4
. (2.39)

But instead of this expansion, we will use

G3 = `4
`
G3 = 1

2`G4 , (2.40)

which is equivalent to (2.39) up to at least O (`/L3)4.
We will work under the assumption that (2.38) and (2.40) are valid to all orders in `:

our analysis of the first law will strongly point to this conclusion. In further support of
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this, [13] derived (2.40) exactly by integrating the bulk volume in the action with a natural
infrared bulk cutoff at r →∞. The justification for this procedure here, however, is unclear,
and we interpret (2.40) very differently: as a remarkably simple, all-order resummation of
the higher-curvature corrections to the mass — since what we are correcting is how the
constant G3M that appears in the metric relates to the physical G3M .

It should be possible to work out successive higher-curvature corrections to the effective
action (2.15), and then to the mass, and verify that (2.40) correctly reproduces all these
corrections, but this approach very quickly becomes extremely cumbersome. In the final
section we discuss another possible, more direct manner of deriving (2.40).

In our subsequent discussion, it will often be more convenient to fix the ‘renormalized’
quantities G3 and `3 that appear in the exact metric, rather than the ‘bare’ parameters in
the effective action, G3 and L3.

We see in (2.38) that µ, or x1, is a parameter that controls the mass of the solution.
We have also introduced

F (M) = µ∆3 = 8 1− κx2
1

(3− κx2
1)3 , (2.41)

which depends on G3M through x1, but is otherwise independent of `/`3 so it does not
change as we vary the strength of the backreaction for fixed G3M . Actually, all physical
magnitudes depend on κx2

1 and not on κ or x1 separately.
According to the holographic dictionary, the metric induced on the brane solves the

semiclassical equations (1.2). We can therefore identify the holographic CFT stress ten-
sor as the right-hand side of the gravitational equations derived from the action (2.15),
which are

8πG3〈Tab〉 = Rab −
1
2hab

(
R+ 2

L2
3

)
+`2

[
4RacRbc −

9
4RRab −∇

2Rab + 1
4∇a∇bR

+1
2hab

(13
8 R

2 − 3RcdRcd + 1
2∇

2R

)]
+ . . . (2.42)

We decompose this stress tensor as

〈T ab〉 = 〈T ab〉0 + `2〈T ab〉2 + . . . (2.43)

where
8πG3〈T ab〉0 = Rab −

1
2δ

a
b

(
R+ 2

`23

)
, (2.44)

and

8πG3〈T ab〉2 = 4RacRbc −
9
4RR

a
b −∇2Rab + 1

4∇
a∇bR

+1
2δ

a
b

(13
8 R

2 − 3RcdRcd + 1
2∇

2R− 1
2`43

)
. (2.45)

Note that in 〈T ab〉0 we have absorbed the O
(
`2
)
difference between L3 and `3, which is

compensated by adding a constant to 〈T ab〉2. By doing this, each term in the expan-
sion (2.43) separately vanishes in the ground state for arbitrary ` (they are also separately
conserved).
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Computing these terms for the exact metric (2.37) in (t̄, r̄, φ̄) coordinates we find

〈T ab〉0 = `

16πG3

F (M)
r̄3 diag{1, 1,−2} (2.46)

and

〈T ab〉2 = `

16πG3

F (M)
r̄3

( 1
2`23

diag{1,−11, 10} − 24G3M

r̄2 diag{3, 1,−4}

+ `F (M)
2r̄3 diag{−29,−17, 43, }

)
. (2.47)

The last term gives a non-zero trace,

〈T aa〉2 = 1
16πG3

(3
8R

2 −RabRab −
3

2`43

)
= − 3`2

32πG3

F (M)2

r̄6 . (2.48)

The reason is that the conformal symmetry is broken in the effective theory by the cutoff `.
We can now use (2.20) to eliminate ` and express the results solely in terms of 3D

magnitudes. This is simpler for small `, (2.21), where we find

〈T ab〉 = c

8π
F (M)
r̄3 diag{1, 1,−2}

(
1 +O (cG3/`3)2

)
. (2.49)

Since the backreaction vanishes when ` → 0, the metric (2.37) in this limit is inter-
preted as a classical solution, and indeed these geometries solve the classical Einstein-AdS
equations and are locally AdS3. In this limit of small backreaction, the corrections to the
classical geometry are proportional to cG3, as expected. However, we emphasize that the
CFT is consistently solved simultaneously with the 3D gravitational equations, and there-
fore yields the exact backreaction of the light CFT degrees of freedom for finite `, and also of
heavy ones through the non-perturbative resummation of all higher-curvature corrections.

Since we recover the classical BTZ black hole for ` = 0 and κ = −1, when ` > 0 we
refer to (2.37) as the quantum BTZ black hole, or quBTZ. This interpretation was initially
given in [12]. In contrast with the classical BTZ solution, whose curvature is constant, the
curvature of quBTZ varies and in fact blows up at a singularity at r̄ = 0, a feature that is
inherited from the curvature singularity that (2.1) has at r = 0.

Interestingly, since `/`3 does not enter directly in F (M), it depends on backreaction
only through the rescaling between G3 and G3. Then, the dependence of the stress tensor
on the black hole mass M at low orders in ` is simple. There is no term in 〈T ab〉 that is
∝ `2, and all the subsequent dependence on `, starting at `3, is due to the higher-curvature
corrections. This intriguing result, we will see, extends to rotating solutions.

2.5 Branches of holographic quantum black holes

An important feature of the holographic construction, already observed in [12, 13], is that
the range of masses covered by (2.38) is finite,

− 1
8G3
≤M ≤ 1

24G3
. (2.50)
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In the following analysis the only dependence on ` enters through rescaling from G3 to G3.
We will then consider that we work with fixed G3.

Negative masses are obtained when κ = +1, with the minimum reached for x1 = 1
(µ = 0), and zero mass for x1 → 0 (µ→∞). We refer to these solutions as

Branch 1a: κ = +1, 0 < x1 < 1 . (2.51)

In the range of positive masses, with κ = −1, we can have two solutions with the same
M but different values of x1. Then we have two branches of solutions over the same mass
range, which we denote as

Branch 1b: κ = −1, 0 < x1 <
√

3 , (2.52)
Branch 2: κ = −1,

√
3 < x1 <∞ . (2.53)

The two branches meet at the upper mass bound where x1 =
√

3. For M = 0 we have
two distinct solutions: one of them in branch 1 with x1 → ∞ (µ → 0), and the other in
branch 2 with x1 = 0 (µ =∞). Since physical magnitudes depend only on the combination
κx2

1 the branches 1a and 1b join smoothly at x1 = 0, and we may characterize the branches
more concisely as

Branch 1: −1 < −κx2
1 < 3 , (2.54)

Branch 2: 3 < −κx2
1 <∞ . (2.55)

The value x1 = 0 in branch 1 is the same as the κ = 0 solutions, so we shall not discuss
this last case separately.

We also add a Branch 3 of ‘BTZ black strings’. For all M ≥ 0 we can have an exact
bulk solution which is the geometry (2.9) with κ = −1 and with the appropriate periodic
identification of φ to yield a mass M on the brane. It is a black string since each section
at constant σ has a BTZ black hole in it.8 Then, this exact solution gives an uncorrected
BTZ black hole on the brane, and vanishing CFT stress energy tensor.

In figure 2 we plot the function F (M) for all branches. Our discussion here and in
the next subsection will loosely follow [12] (to which we refer for other details), with some
relevant additions.

The lower mass limit −1/(8G3) in branch 1a is the mass of global AdS3, reached for
κ = +1, x1 = 1, where the renormalized stress tensor vanishes. Above this ground state,
the solutions with negative masses correspond, in the limit ` → 0 of (2.37), to conical
singularities in AdS3. The CFT stress-energy tensor in these horizonless backgrounds is a
Casimir effect. When ` > 0 the geometries are interpreted as quantum-corrected conical
singularities. As first discussed in [12], the backreaction of this quantum Casimir stress
tensor dresses the singularity with a horizon, in a sort of ‘quantum cosmic censorship’ (see
also [20, 21]). This quantum dressing is also present for conical singularities in branes that
are asymptotically locally flat.

8Following [13] we assume an infrared bulk cutoff at r →∞.
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Figure 2. The holographic stress-energy function F (M) (2.41) for the three branches 1a, 1b and
2, of quantum black hole solutions. We also include a branch 3 of bulk BTZ black strings, which
give BTZ on the brane with F = 0 for all M ≥ 0.

The upper mass bound in branches 1b and 2 is intriguing. One might want to attribute
it to the peculiar infrared behavior of the massive gravity theory, but this cannot be the
full explanation, since the bound is independent of `/`3 and therefore applies also for `→ 0
where the 3D graviton mass vanishes and there is no gravitational dynamics. The bound
seems to say that there is an upper limit, not on all quantum corrected BTZ black holes,
but rather on those for which the CFT is captured by these localized bulk black holes.
It is therefore not a feature of braneworld gravity, but a consequence of holographically
representing the CFT by four-dimensional bulk gravity. Intuitively, the bulk black hole
cannot extend into the bulk beyond the ‘throat’ at the minimal AdS3 slice of AdS4, which
puts an infrared limit on the validity of the effective 3D description. If this interpretation
is correct, then an upper mass limit for non-trivial holographic quantum effects in AdS
black holes is also expected in higher dimensions.

In the absence of any other known bulk solution, the only option for masses above the
range (2.50) is branch 3: the BTZ black string. The holographic CFT in BTZ black holes
with M > 1/(24G3) is then in an unexcited state. This is a generic feature of the leading
planar limit of holographic CFTs when the bulk is of ‘black string type’.

In the range 0 < M < 1/(24G3), there are three bulk solutions (branch 1b, 2 and 3)
that correspond to different states of the CFT. Which one is preferred may depend on
which has bigger quantum entropy. This was discussed extensively in [13], and will be
more briefly revisited below.

It is natural to regard branch 1b as a continuation of branch 1a black holes. These, we
have argued, must be considered as black holes formed from the backreaction of Casimir
stress-energy. Then, we expect that the large stress-energy of the state M = 0 in 1b should
be dominated by Casimir energy. In contrast, branch 2 solutions start at M = 0 with
zero stress energy. In this case, it might perhaps be more appropriate to regard the stress
tensor for M > 0 as only due to the quantum Hawking radiation in equilibrium with a
finite-temperature black hole, with (we speculate) the larger Casimir energy having been
subtracted from the state.
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2.6 Validity of the solutions

One might worry that the range of masses (2.50), where M ∼ 1/G3, is always ‘Planckian’
and hence quantum gravitational effects should be important and invalidate the semiclas-
sical description. However, this is not the case. In contrast to four (or higher) dimensions,
in three dimensions the relation M ∼ 1/G3 does not involve ~ and hence black holes with
these masses need not be subject to large quantum fluctuations. Indeed, there is no such
thing as a quantum Planck mass or energy in three dimensions. Instead one should refer
to the quantum Planck length L(3)

Planck in (2.21) (or to the Planck time).
Cutoff effects will be small in our black holes if their horizon radius is � `. In this

case, (2.23) implies that they will also be good semiclassical solutions, much larger than
L

(3)
Planck. It is easy to see from (2.37) that the typical radius of quBTZ black holes in branches

1b and 2 is ∼ `3. Then, these are valid solutions in the regime `3 � ` in which the effective
theory applies. The branch 1a quantum-dressed cones have horizon radii ∼ (`23`)1/3. When
`3 � ` this size is � `, and hence also safely within the regime of applicability of the
effective theory.

2.7 Comparing calculations of 〈T a
b〉

The renormalized stress-energy tensor for a free conformal scalar field in the BTZ black
hole, and in negative-mass conical geometries, has been computed in [15, 17, 18, 20, 21].
The stress tensor depends on the boundary conditions for the quantum field at the asymp-
totic AdS3 boundary. The holographic calculation naturally selects transparent condi-
tions, where the fields propagate smoothly between the brane and the non-dynamical AdS4
boundary (see figure 1). In fact, the transparent boundary is responsible for the mass of
the 3D graviton [7, 10]. In the following we will only compare to free-field calculations
made with these boundary conditions.

The renormalized 〈T ab〉 for the free conformal scalar takes the same form as (2.49),
where now, if we (arbitrarily) put c = 1, the function F (M) is given by

F (M) = (8G3M)3/2

2
√

2

∞∑
n=1

cosh 2nπ
√

8G3M + 3(
cosh 2nπ

√
8G3M − 1

)3/2 (2.56)

for BTZ black holes with M > 0, and by

F (M) = (−8G3M)3/2

4
√

2

N−1∑
n=1

cos 2nπ
√
−8G3M + 3(

1− cos 2nπ
√
−8G3M

)3/2 (2.57)

for conical singularities with
√
−8G3M = 1/N , where N ∈ Z+ [21]. Note that for the

BTZ black hole neither the radial dependence ∝ 1/r3 of the stress tensor, nor the precise
tensorial structure diag{1, 1,−2} are uniquely preordained by conformal symmetry. A
more complicated radial dependence, and other structures such as diag{−2, 1, 1} (which is
the form for a thermal plasma) or diag{1, 0,−1} are allowed, and indeed are present when
asymptotic boundary conditions other than transparency are imposed [18].9 Ref. [18]

9The structure diag{1, 0,−1} appears in the Cotton tensor of (2.37). This suggests that for non-
transparent boundaries the effective gravitational action on the brane also includes Lorentz-Chern-Simons
terms, yielding more general massive gravities [37, 38].

– 17 –



J
H
E
P
1
1
(
2
0
2
0
)
1
3
7

Figure 3. The stress-energy function F (M), (2.56) and (2.57), for a free conformal scalar.

verified that the Green’s function of the quantum field is in the Hartle-Hawking state and
satisfies the KMS condition at the black hole temperature. Therefore, even if the stress
tensor does not have the structure diag{−2, 1, 1}, it does have thermal character.

The sums in (2.56) and (2.57) come from solving the free field theory using the method
of images. It is interesting that at strong coupling, where this method would not be
applicable, the holographic approach yields simpler, ‘resummed’ expressions. When we
add rotation the simplification will be even more dramatic.

We plot F (M) for free fields in figure 3 (for negative mass we interpolate between
discrete values). We see that the shape is qualitatively similar to figure 2 in the negative
mass regime, and less so for positive masses. Quantitative comparisons cannot be made
unambiguously since the number and type of fields, and their interactions, are very different
in each case, but if we match the slopes of the curves at the AdS3 vacuum, 8G3M = −1,
then at larger mass the free field F is greater than that of the holographic CFT. For
free scalars the stress tensor extends smoothly to arbitrarily large M , and although it
decreases with increasing M , it is never zero. Contrastingly, the stress tensor in the planar
holographic calculation completely shuts off above M = 1/(24G3).

The studies of backreaction of the free CFT have been limited to the perturbative
regime of small linearized corrections. Since the stress tensor for the free and holographic
CFTs has the same radial dependence and the same tensorial structure in both cases,
differing only in F (M), the metric corrections obtained in [17–19] have the same form as
our solutions expanded to linear order in small `. They only differ in the mass dependence
of the coefficients.

Finally, the holographic calculation of the renormalized stress tensor in the BTZ back-
ground in [22] yields (2.49) with the same F (M), since we have shown that the construction
in [22] is the limit `→ 0 of the one in this paper.

2.8 Quantum black hole horizons

Now we turn to investigating the black hole event horizon. This lies at a positive real root
r = r+ of H(r). Then the circle radius of the horizon on the brane is r̄+ = ∆ r+.
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We assume that `/`3 and µ lie in ranges where such a root exists. Again, it will be
more convenient to switch to another parametrization, based on the roots themselves, that
deals with this automatically. Following [13] we introduce the real, non-negative parameter

z = `3
r+x1

, (2.58)

and instead of `, a dimensionless parameter

ν = `

`3
. (2.59)

We can now eliminate x1, or µ, and r+ using that

x2
1 = −1

κ

1− νz3

z2(1 + νz) , (2.60)

r2
+ = −`23κ

1 + νz

1− νz3 , (2.61)

µx1 = −κ 1 + z2

1− νz3 . (2.62)

With ν and z as parameters the mass is

M = 1
2G3

z2(1− νz3)(1 + νz)
(1 + 3z2 + 2νz3)2 , (2.63)

with
G3 = G3√

1 + ν2
, (2.64)

and the coefficient of the stress tensor is

F (M) = 8z
4(1 + z2)(1 + νz)2

(1 + 3z2 + 2νz3)3 . (2.65)

In this form it is not apparent that F depends only on G3M and not separately on ν, but
of course it is still true since ∂νF − ∂zF ∂ν(G3M)/∂z(G3M) = 0. In this parametrization κ
is not present in the expressions for physical quantities. It corresponds to

κ = sign(νz3 − 1) , (2.66)

so we cover the entire range of branches 1 and 2 of bulk black holes of finite size by letting

0 ≤ ν, z <∞ . (2.67)

The temperature of the horizon, relative to the canonical timelike Killing vector on
the brane, ∂/∂t̄, is

T = ∆H ′(r+)
4π

= 1
2π`3

z(2 + 3νz + νz3)
1 + 3z2 + 2νz3 . (2.68)
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Figure 4. Temperature of the quantum black holes and the classical BTZ black hole for given
mass M .

The expressions are implicit but a plot (figure 4) shows that the quantum black holes in
both branches have higher temperature than the classical one with the same mass. Observe
that branch 1a black holes (with M < 0 in figure 4) have negative specific heat ∂M/∂T .
We interpret this in the same manner as in Schwarzschild or small AdS black holes: these
black holes are too small and too hot to reach equilibrium with their Hawking radiation in
the AdS3 box, and will evaporate completely. For positive masses, there are two branches
of quBTZ black holes, and branch 1b are the hotter of the two and branch 2 the colder.
The specific heat of branch 2 is always positive, while that of branch 1b is more intricate.
We find that for any fixed ν, the specific heat diverges for two black holes in branch
1b: the M = 0 black hole and another one at a certain finite mass M1(ν) (involving an
unilluminating cubic root). Since, generically, energy fluctuations in a thermal state are
given by

〈δE2〉 = T 2∂E

∂T
, (2.69)

we expect that these black holes will be susceptible to large thermodynamic fluctuations
and presumably be unstable.

Intriguingly, the largest black holes in branch 1b, with masses in M1 < M < 1/(24G3),
also have negative specific heat. This could be an indication that these black holes can
evaporate by radiating through the transparent interface to the non-dynamical region of
the boundary, as in [3]. Perhaps this is also related to the large thermal fluctuations of the
massless quBTZ in 1b.

2.9 Quantum entropy and the first law

For the entropy associated to the bulk horizon, holographically interpreted as the quantum-
corrected, generalized entropy, we obtain

Sgen = 2
4G4

∫ 2π∆

0
dφ

∫ x1

0
dx r2

+
`2

(`+ r+x)2 = 2π`23
G4

νz

1 + 3z2 + 2νz3

= π`3
G3

z
√

1 + ν2

1 + 3z2 + 2νz3 . (2.70)
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In the last line we have converted to 3D units, so the result can be compared with the
‘classical’ Bekenstein-Hawking entropy from the area of the horizon on the brane (which
includes backreaction)

Scl = 1
4G3

2πr+∆

= 1 + νz√
1 + ν2

Sgen . (2.71)

In the theory (2.15) with quadratic curvature terms, one should actually consider the Wald
entropy. Following [39], it is given by

SW = 1
4G3

∫
dx
√
q

(
1 + `2

(3
4R− g

ab
⊥Rab

)
+O (`/`3)4

)
, (2.72)

where the integral is over the horizon with induced metric qab, R and Rab are the three-
dimensional spacetime curvatures evaluated on the horizon, and gab⊥ = gab − qab is the
metric in directions orthogonal to the horizon. Evaluated on the quBTZ geometry (2.37),
we find that

SW =
(

1− `2
(

1
2`23

+ `µ

r3
+

)
+O (`/`3)4

)
Scl (2.73)

=
(

1− ν2

2 − ν
3 z(1 + z2)

1 + νz
+O

(
ν4
))

Scl , (2.74)

Properly, our results for effective three-dimensional magnitudes should always be ex-
panded for small ν, but it is sensible to consider Sgen as exactly valid to all orders in ν,
since it is defined as a bulk magnitude that is exact up to quantum bulk corrections.

In the limit ν → 0 we recover the correct BTZ result in the absence of any backreaction,

Sgen, Scl, SW
ν→0−−−→ SBTZ = π2`23

G3
T = π`3

√
2M
G3

. (2.75)

For non-zero ν the three entropies Scl, SW and Sgen differ, but the leading contributions
to the entropy from the CFT must be proportional to c, or equivalently, since

c ' ν `3
2G3

, (2.76)

they must be linear in ν. This distinguishes them from the higher-curvature corrections,
which at their lowest order are ∝ ν2. Neglecting the latter, the contribution to the quantum
entropy from the entanglement entropy of the CFT fields outside the horizon is10

Sout = Sgen − SW = −νzSBTZ +O
(
ν2
)
. (2.77)

The fact that this is negative does not mean that the entanglement entropy of the CFT
is negative. This Sout corresponds to the finite part of the entanglement entropy after

10The terms including up to ν3 here are reliably computed in our approximation, but we will not
need them.
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the leading piece has been absorbed in a renormalization of G3,11 so Sout need not have
a definite sign. The same negative sign is also present in branes that are asymptotic to
Minkowski3 [25].

The effect of the leading contribution to entanglement entropy can be gleaned from the
change in the classical Bekenstein-Hawking entropy due to quantum backreaction effects,

S
(0)
ent = Scl(ν,M)− SBTZ(M) = ν

z(1 + z2)
1 + 3z2 SBTZ(M) +O

(
ν2
)
. (2.78)

This quantity, linear in ν, is finite, and moreover it is positive. It is a CFT effect on
the Bekenstein-Hawking entropy different than the Wald corrections induced by higher-
curvature terms.

In general Sout will be dominated by the entanglement across the horizon in quantum
states of the CFT with large Casimir effects. However, as we have argued above, for the
M = 0 BTZ black hole these Casimir effects appear to be small and we expect that instead
thermal effects dominate. Indeed, we find evidence of this: to leading order in ν and for
small z we obtain

Sout ' −2πc(π`3T )2 . (2.79)

The dependence ∝ T 2 is that of a thermal conformal gas in 2 + 1 dimensions. In contrast,
if we consider solutions with z � 1 (but with νz � 1), which are close to the global AdS3
vacuum, we get a non-thermal result

Sout ' −
2π
3 c . (2.80)

Let us now examine the results for Sgen and Scl more generally, without necessarily
restricting to very small ν nor small z. Figure 5 shows the entropy of these solutions as
a function of the mass M for ν = 1/3. As ν becomes smaller, the entropy curves for
0 ≤ M ≤ 1/(24G3) approach that of the BTZ solution, and for M < 0 they go to zero.
Conversely, the differences between curves become larger as ν grows.

In the range −1/(8G3) < M < 0 we find the quantum-dressed cone solutions of branch
1a. Since their horizon is due to the backreaction of the Casimir energy in the conical
spacetime, their entropy should naturally be interpreted as entanglement entropy of the
quantum fields across this horizon [25]. In the regime of positive masses, 0 ≤M ≤ 1/(24G3),
branch 1b solutions have higher entropy than branch 2, which presumably should again be
interpreted as mostly due to the entanglement of fields in the state dominated by the
Casimir effect. But the duplicity of branches of quBTZ black holes is intriguing. In
particular, it would seem that the M = 0 BTZ solution could develop, through quantum
backreaction, a significant non-zero temperature and entropy, dominating entropically over
other branches. But, as we saw above, the divergent specific heat of this solution (which
is also very large for the solutions with small non-zero M) hints at an instability.

11Actually, since gravity on the brane is induced, the bare Newton constant is zero. Do not confuse
this renormalization of G3 with the higher-curvature effects on the mass that G3 accounts for in (2.39)
and (2.40).
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Figure 5. Quantum and classical entropies of quantum black holes with given mass. The entropy
of black holes in branch 3 is SBTZ.

More generally, the different dominance in entropy between the branches of quantum
black holes and BTZ black strings presumably indicates which phase is preferred (in a
microcanonical ensemble). Conventional turning-point arguments indicate that branch 2
solutions should be locally unstable.

One can visually conclude from figure 5 that Scl cannot satisfy the first law since it has
zero and infinite derivatives for certain masses, but we expect that this law works instead
for Sgen. Taking the results forM , T and Sgen in (2.63), (2.68) and (2.70), and using (2.64),
it is straightforward to verify that

∂zM − T∂zSgen = 0 (2.81)

for all (fixed) values of ν, so that the first law

dM = TdSgen (2.82)

is satisfied by the quantum-corrected entropy, and not by the classical Bekenstein-Hawking-
Wald entropy.

With only the leading curvature correction in the effective theory (2.15), we should
be limited to claiming this result only to cubic order in ν. However, (2.82) holds for the
quBTZ solutions exactly in ν when the effects of higher-curvature terms in the mass are
resummed with (2.40), or its equivalent (2.64). We find this result remarkable, and we will
see that it extends to rotating solutions without needing to modify the resummation.

3 Rotating quBTZ

Now we study the extension of the static AdS C-metric (2.1) to a stationary solution,

ds2 = `2

(`+ xr)2

[
− H(r)

Σ(x, r)
(
dt+ ax2dφ

)2
+ Σ(x, r)

H(r) dr2

+r2
(Σ(x, r)
G(x) dx2 + G(x)

Σ(x, r)

(
dφ− a

r2dt

)2 )]
, (3.1)
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where12

H(r) = r2

`23
+ κ− µ`

r
+ a2

r2 , (3.2)

G(x) = 1− κx2 − µx3 + a2

`23
x4 , (3.3)

Σ(x, r) = 1 + a2x2

r2 . (3.4)

The new parameter a, with dimension of length, introduces rotational effects in the space-
time and, without loss of generality, we will take it to be non-negative.

All the other parameters are interpreted as before. The equations for the brane tension,
backreaction, and CFT central charge, (2.10), (2.13), (2.20), apply in the same form, and
we can place again the brane at x = 0. The bulk geometry shares many of the features of
the Kerr solution, such as a ring singularity at points where r2Σ = 0, i.e., where

r = x = 0 . (3.5)

In fact, it is straightforward to show that in the tensionless limit ` → ∞, making the
changes (2.26) plus a → a`3/`, the metric becomes the same as the Kerr-AdS4 solution.
On the other hand, in the zero-backreaction limit `→ 0, where the brane is pushed to the
asymptotic boundary of AdS4, the geometry induced at this boundary at x = 0 is readily
seen to have, for κ = −1, a rotating BTZ black hole in it. In this limit we recover the
construction in [22], which derived the metric as a double Wick rotation of Kerr-AdS4.
The details are given in appendix B.

The global structure of the rotating solution is more subtle than in the static case.
The main features were identified in [13], but the calculation of the effects on the physical
magnitudes was left mostly undone, as was also the dual holographic interpretation.

3.1 Geometry, M , J , and 〈T a
b〉 of quBTZ

We assume that we work in a parameter range where there exists at least one positive
root of G(x), the smallest of which we call x = x1 (again, this will be dealt with using an
appropriate parametrization). We will then use x1 as the primary parameter instead of µ,
which is given by

µ = 1− κx2
1 + ã2

x3
1

. (3.6)

For convenience we have also introduced another dimensionless parameter for the rotation,

ã = ax2
1

`3
. (3.7)

We will retain (two copies of) the bulk region where 0 ≤ x ≤ x1. The locus x = x1 is
a fixed-point set of the Killing vector

∂

∂φ
− ã`3

∂

∂t
. (3.8)

12In addition to the changes mentioned in footnote 5, relative to [13] we have made
√
λa→ a/`3.
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This has two consequences. First, as before, in order to avoid a conical singularity we must
identify φ ∼ φ+ 2π∆, with

∆ = 2
|G′(x1)| = 2x1

3− κx2
1 − ã2 . (3.9)

Second, and very importantly, now the identification along orbits of (3.8) must be made on
spatial surfaces at constant t + `3ãφ. This is a consequence of bulk regularity that would
not be visible if we only looked at the ‘naive brane metric’

ds2 = −H(r)dt2 + dr2

H(r) + r2
(
dφ− a

r2dt

)2
, (3.10)

which is induced on the brane at x = 0 in the coordinates of (3.1). Apparently, this would
give M = −κ∆2/(8G3) and J = a∆2/(4G3). However, this is not the globally appropriate
form of the rotating quBTZ black hole, since along an orbit of (3.8) φ→ φ+ 2π∆ does not
return to the same point in spacetime but to another one at a different t. This introduces
a rotation of frames that persists even at r →∞, but we can change to an asymptotically
non-rotating frame by shifting φ→ φ+ Ct with an appropriately chosen constant C.

Taking all into account, we find that in order to go to canonical coordinates t̄ and φ̄
on the asymptotically AdS3 brane we must change

t = ∆
(
t̄− ã`3φ̄

)
,

φ = ∆
(
φ̄− ã

`3
t̄

)
. (3.11)

Conversely, the Killing vectors transform as

∂

∂t
= 1

∆(1− ã2)

(
∂

∂t̄
+ ã

`3

∂

∂φ̄

)
,

∂

∂φ
= 1

∆(1− ã2)

(
∂

∂φ̄
+ ã`3

∂

∂t̄

)
. (3.12)

In addition, we also redefine

r2 = r̄2 − r2
s

(1− ã2)∆2 (3.13)

with

rs = `3
ã∆
x1

√
2− κx2

1 = `3
2ã
√

2− κx2
1

3− κx2
1 − ã2 . (3.14)

The metric of the rotating quBTZ black hole now has points identified along orbits of
∂/∂φ̄, with (t̄, φ̄) ∼ (t̄, φ̄+ 2π), and the geometry is asymptotically AdS3,

ds2 = −
(
r̄2

`23
− 8G3M −

`µ∆2

r

)
dt̄2 +

(
r̄2 + `23

`µã2∆2

r

)
dφ̄2

−8G3J

(
1 + `

x1r

)
dt̄dφ̄

+
(
r̄2

`23
− 8G3M + (4G3J)2

r̄2 − `µ(1− ã2)2∆4 r

r̄2

)−1

dr̄2 , (3.15)
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where r is now a function of r̄, shorthand for (3.13). The ‘renormalized’ three-dimensional
Newton’s constant G3 was defined in (2.40). We have

M = − κ

8G3
∆2
(

1 + ã2 − 4ã2

κx2
1

)

= 1
2G3

−κx2
1 + ã2(4− κx2

1)(
3− κx2

1 − ã2)2 (3.16)

and

J = `3
4G3

ãµx1∆2

= `3
G3

ã(1− κx2
1 + ã2)(

3− κx2
1 − ã2)2 (3.17)

(note that these depend on ã and κx2
1, and not on κ, x1, or a/`3 separately).

In this manner it is apparent that in the limit `→ 0, in which the quantum backreaction
vanishes, the metric (3.15) for κ = −1 is the same as the classical rotating BTZ solution
with massM and angular momentum J (and for κ = +1 we obtain rotating conical defects).
The terms ∝ ` decay faster at r̄ →∞ than the asymptotic terms from which the mass and
angular momentum are read, so these are indeed given by (3.16) and (3.17) for all `. For
BTZ black holes it is useful to know that

8G3

(
M ± J

`3

)
= 4(1− ã2)(−κx2

1 ± 2ã2)(
3− κx2

1 − ã2)2 . (3.18)

The ` = 0 limit also clarifies the transformations (3.11) and (3.13) made above, since
these transformations act on a BTZ black hole to yield another BTZ black hole with
different M and J . The specific choice (3.11) is selected by the identification of points
imposed by bulk regularity. It turns out that the same transformations work to bring the
metric into the correct form independently of `. That is, the geometry involves the same
global aspects in the (x, φ) sector regardless of the strength of the backreaction.

Since the curvature singularity (3.5) lies entirely on the brane, the rotating quBTZ
metric (3.15) possesses a ring singularity at r = 0, that is, at r̄ = rs, (3.14), which was not
present in the classical rotating BTZ geometry.

Like in the Kerr and rotating BTZ solutions, there exist regions of the spacetime
with closed timelike curves, and avoiding naked ones requires parameter restrictions. For
instance, in the following we will impose ã ≤ 1 so that in (3.12) and (3.13) we have
1− ã2 ≥ 0. Other parameter constraints come from requiring that ∆ > 0. This is satisfied
as long as −κx2

1 > ã2 − 3, which henceforth we will also assume (for κ = −1 and ã2 ≤ 1 it
always holds). However, the detailed study of these and related constraints is beyond the
scope of this article. The black hole horizons and their properties will be examined later.

In order to obtain the holographic stress tensor, it is simpler to start with its form
(as read from the 3D gravitational equation (2.42)) in the coordinates (t, r, φ) of the ‘naive
metric’ (3.10). We only give the results for the leading order piece 〈T ab〉0, which we obtain
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from (2.44), yielding

〈T tt〉0 = 〈T rr〉0 = −1
2〈T

φ
φ〉0 = 1

16πG3

`µ

r3 ,

〈T φt〉0 = 1
16πG3

3`µa
r5 , (3.19)

and then change to (t̄, r̄, φ̄) to find

8πG3〈T t̄ t̄〉0 = `µ

2(1− ã2) r3

(
1 + 2ã2 + 3ã2`23

x2
1r

2

)
, (3.20)

8πG3〈T φ̄φ̄〉0 = − `µ

2(1− ã2) r3

(
2 + ã2 + 3ã2`23

x2
1r

2

)
, (3.21)

8πG3〈T t̄φ̄〉0 = −`3
3`µã

2(1− ã2) r3

(
1 + ã2`23

x2
1r

2

)
, (3.22)

8πG3〈T φ̄t̄〉0 = 1
`3

3`µã
2(1− ã2) r3

(
1 + `23

x2
1r

2

)
, (3.23)

8πG3〈T r̄ r̄〉0 = `µ

2r3 . (3.24)

Here again r stands for (3.13). Using (2.20) or (2.21) we can express the metric and the
stress tensor in terms of only 3D magnitudes, namely, c, `3, G3, M and J .13

Recall now that we are using `, `3, κx2
1 and ã as parameters, in terms of which all

other quantities are obtained using (3.6) and (3.9). We regard `3 as fixing the scale of the
geometry, while `/`3 measures the strength of the backreaction through (2.20). We see
that M and J in (3.16) and (3.17) depend on κx2

1 and ã but not on `. Moreover, ` enters
in (3.20)–(3.24) only as an overall prefactor. This implies, again, that the dependence of
〈T ab〉0 on G3M and G3J is unaffected by the strength of the backreaction; in other words,
〈T ab〉0 depends on backreaction only through G3 (2.39).

For this solution the dependence of the stress tensor on M and J cannot be char-
acterized by a single function as in the static case, but for our purposes it will suffice to
consider the asymptotic leading term at large r̄ in the energy density. After replacing (3.13)
in (3.20), we define

F (M,J) = µ∆3√1− ã2

2
(
1 + 2ã2

)
= 8
√

1− ã2(1 + 2ã2)(1− κx2
1 + ã2)(

3− κx2
1 − ã2)3 . (3.25)

Essentially the same function, up to simple factors, controls the large r̄ asymptotics of all
other components of the stress tensor. It vanishes for κx2

1 = 1 + ã2, which is equivalent
to µ = 0 and corresponds to the empty global AdS3 solution. It also vanishes for ã2 = 1,
which, as (3.18) shows, are solutions with M ± J/`3 = 0. We will examine these next.

13In appendix C we give the stress tensor in terms of other parameters more closely related to the BTZ
geometry.
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Figure 6. Left: the asymptotic energy density function F (M,J) (3.25) for a fixed value of J
representative of 0 < J < `3/(4G3) (we only show M ≥ 0 but branch 1a solutions extend to
M < 0). Branches 1a and 1b have large quantum effects that enable them to exist with M ≤ J/`3.
Branch 3 are rotating BTZ black strings. For J ≥ `3/(4G3) branch 2 disappears and all the
solutions have masses below the classical BTZ extremal limit M = J/`3. Right: in gray, the range
of masses and angular momenta for which the quBTZ solutions exist above the classical extremal
bound (lower dashed line). The upper solid curve is the bound on the masses implied by the
holographic construction (3.27). For each point in the gray region there are solutions in branches
1b and 2. Branch 1 solutions also exist below the classical extremal line, but whether they are free
of pathologies or not depends on the strength of the backreaction, and is not fully investigated in
this article.

3.2 Branches of solutions and bounds on M and J

Like in the static case, for certain values of (M,J) there exist different branches of solutions.
We are mostly interested in the regime of non-negative masses, but much of the analysis
can be made without this restriction. We consider J ≥ 0 without loss of generality.

A plot of F (M,J) at constant J > 0 (not larger than a value that we discuss below),
see figure 6 (left), reveals the existence of branches of solutions analogous to the ones we
found in the static case. Branches 1a and 1b are distinguished by the sign of κ but otherwise
smoothly continue into each other. We observe a maximum value of M for fixed J , where
branches 1b and 2 meet, and a minimum M along branch 2.

We can easily determine these special values by extremizing M for fixed J . We find
two classes of solutions, both of them with κ = −1. The first are minima and correspond to

ã = 1 , M = J

`3
= 1
G3(2 + x2

1)
. (3.26)

This is the classical extremality bound for BTZ. As we noticed above, the stress-energy
tensor vanishes identically in these solutions. Thus they must be regarded as the rotating
extensions of the static M = 0 solution where branch 2 reaches its minimum mass.

The second class of extrema are maxima and occur for

x2
1 + ã2 = 3 , M = 1

8G3

(12
x4

1
− 1

)
, J = `3

G3

√
3− x2

1

x4
1

. (3.27)
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When ã = 0 and x1 =
√

3, this reproduces the static upper bound M = 1/(24G3). These
are the solutions where branches 1b and 2 meet at the maximum M for fixed J . Adding
rotation increases the maximum mass, but for x1 =

√
2 the extremal bound (3.26) is

reached. This corresponds to
M = J

`3
= 1

4G3
. (3.28)

For M and J above these values, solutions still exist but branch 2 disappears. All
these branch 1 solutions have M ≤ J/`3, and the branch ends at the extremal solution
with F = 0.

The region between (3.26) and (3.27), with branch 1b and branch 2 solutions that
satisfy the classical extremal bound M ≥ J/`3, is depicted in figure 6 (right).

For any value of J , whenever −κx2
1 < 2ã2 the classical extremal bound is violated

by branch 1 black holes (see (3.18)). Whether these black holes are non-pathological —
without naked singularities nor naked closed timelike curves — relies on the existence and
location of horizons. Unlike the study so far, these depend on the backreaction parameter
`. Although we will make a few more observations in the next subsection, a complete study
of the regions of the plane (J,M) where physically sensible black holes exist is beyond the
scope of this article. Nevertheless, we anticipate that, since the static black holes with
−1/(8G3) < M < 0 in branch 1a are free from any pathologies, it is natural to expect that
in some ranges the rotating black holes with M < J/`3 will also be valid, made possible
by the presence of significant quantum backreaction effects. One of these effects, as we
will see, is to make the branch 1b solution with M = J/`3 have non-zero entropy and
temperature.

Rotating BTZ black strings (branch 3) exist in the bulk for all values of M and J satis-
fying M ≥ J/`3. These solutions are natural candidates for the holographic description of
the (unexcited) CFT on the rotating BTZ backgrounds in the cases where the quBTZ black
hole does not exist or is subdominant. Like all black strings in Karch-Randall braneworlds,
they require an infrared regulator.

3.3 Comparison to other calculations

The renormalized stress tensor for a free CFT in the classical rotating BTZ geometry takes
the form [15, 21]

8πG3〈T t̄ t̄〉 =
∞∑
n=1

1
r3
n

(
An + Ãn

r2
n

)
, (3.29)

8πG3〈T φ̄φ̄〉 = −
∞∑
n=1

1
r3
n

(
Bn + Ãn

r2
n

)
, (3.30)

8πG3〈T t̄φ̄〉 = −`3
∞∑
n=1

1
r3
n

(
En + Ẽn

r2
n

)
, (3.31)

8πG3〈T φ̄t̄〉 = 1
`3

∞∑
n=1

1
r3
n

(
En + F̃n

r2
n

)
, (3.32)

8πG3〈T r̄ r̄〉 =
∞∑
n=1

Cn
r3
n

, (3.33)
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where
rn =

√
Dnr̄2 + D̃n , (3.34)

and the coefficients An, Ãn, Bn, . . . (with An − Bn + Cn = 0 for tracelessness) are fairly
complicated functions of M and J which can be found in [21]. The sums are again a
consequence of the construction with the method of images.

The first thing to observe is that, except for the specific form of the coefficients, each
individual summand has a dependence on r̄ with precisely the same structure as in the
holographic result (3.20)–(3.24). This coincidence is remarkable since it is not directly
implied by conformal symmetry. One curious feature is that both results can be formally
obtained by an SL(2,R) transformation from a simple ‘naive’ geometry where 〈T tφ〉 = 0.
For the free field, this is the static BTZ solution with 8G3M = 1 [15].

Nevertheless, and crucially, the dependence on r̄ of the total sum is much more com-
plicated than that of individual summands. In the static case, the sum over images only
entered in the overall coefficient F (M), while the radial dependence remained 1/r̄3 in both
approaches. However, when rotation is present, the holographic CFT has a much sim-
pler radial dependence than the free conformal field. In this instance it does not make
much sense to compare the individual coefficients An etc. to the coefficients in the holo-
graphic result (although some aspects of the dependence on M and J can be compared,
see appendix C). This difference in the stress tensors also implies that the backreaction
corrections to the metric for the free field will depend on r̄ in a much more complicated
manner than in the holographic calculation.

One consequence of this more complex radial dependence is that, while the holographic
stress tensor is manifestly non-singular everywhere outside the ring singularity at (3.14),
and in particular at the inner Cauchy horizon of BTZ, in the case of the free field this is a
much more delicate matter. While the infinite sum leads to a divergent pile up behind the
Cauchy horizon [21], there is no divergence when it is approached from the outside [42, 43].
We will return to this point in the final discussion.

The holographic stress tensor of the CFT in a non-dynamical BTZ background can be
obtained with the construction in [22]. As shown in appendix B, the bulk metric employed
there is recovered as the limit ` → 0 of our construction. Since we have found that the
stress-energy tensor (3.20)–(3.24) depends on ` only through an overall prefactor `/G3 ∝ c,
these expressions also yield the correct stress-energy tensor for the holographic construction
in [22].

3.4 Quantum black hole thermodynamics

We now turn to the analysis of the black hole horizon and its thermodynamics. We will
assume that we are in a parameter range where there exists a positive root r+ of H(r),
which is a horizon of the Killing vector

k = ∂

∂t
+ a

r2
+

∂

∂φ
. (3.35)

It is easy to see that when a 6= 0 this horizon is in general accompanied by an inner horizon
at r = r− < r+, as is expected of rotating black holes. For the most part we will only
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consider the outer event horizon, even though much of the analysis formally applies to the
inner one too.

Once again, we resort to a different parametrization. In addition to z and ν in (2.58)
and (2.59), we introduce a new parameter α for the rotation, defined as

α = ax1√
−κ `3

= ã√
−κx1

. (3.36)

The factor
√
−κ is included since it eliminates κ from all physical magnitudes below. Since

we are primarily interested in the case κ = −1, this is inconsequential. For κ = +1 it
should imply that α2 < 0. These are the branch 1a negative mass quantum-dressed cones,
where rotation can give rise to naked CTCs. Although it should be interesting to explore
this sector of the solutions more carefully, we will not pursue it here.

We can now express all physical magnitudes in terms of the dimensionless parameters
ν, z, α, plus the scales `3 and G3 (or G3), using that

x2
1 = −1

κ

1− νz3

z2 (1 + νz − α2z(z − ν)) , (3.37)

r2
+ = −`23κ

1 + νz − α2z(z − ν)
1− νz3 , (3.38)

µx1 = −κ(1 + z2)
(
1 + α2(1− z2)

)
1− νz3 . (3.39)

Our calculations can be formally carried out for any values of the parameters, but they
only apply to black holes as long as r2

+ is positive and real. If we require, as we did in
the absence of rotation, that sign(νz3− 1) = κ, then we see that the rotation parameter is
bounded above,

α2 ≤ 1 + νz

z(z − ν) , (3.40)

which can be thought of as the analogue of the Kerr bound. In the case κ = −1 with
α2 > 0 and ν < z < ν−1/3, this bound also implies that 1 + α2(1− z2) > 0, so µ > 0. On
the other hand, the classical extremal limit (3.26) corresponds to α2 = 1/(−κx2

1), that is,

α2 = z2(1 + νz)
1− 2νz3 + z4 . (3.41)

Recall, however, that these solutions lie in branch 2, but there are branch 1b solutions with
the same values of M = J/`3.

After some algebra we find that (3.16) and (3.17) now take the form

M = 1
2G3

(1− νz3)
(
z2(1 + νz) + α2 (1 + 4z2 + 4(1 + α2)νz3 − (1 + 4α2)z4))

(1 + 3z2 + 2νz3 − α2(1− 4νz3 + 3z4))2 , (3.42)

and

J = `3
G3

αz(1 + z2)(1 + α2(1− z2))
√

(1− νz3)(1 + νz − α2z(z − ν))
(1 + 3z2 + 2νz3 − α2(1− 4νz3 + 3z4))2 . (3.43)
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The horizon is generated by the orbits of the Killing vector (3.35), but, using (3.12),
the canonically normalized generator is instead

k̄ = ∆(1− ã2)
1 + a2x2

1
r2

+

k = ∂

∂t̄
+ Ω ∂

∂φ̄
(3.44)

where the horizon angular velocity is

Ω = a

`23

`23 + r2
+x

2
1

r2
+ + a2x2

1

= 1
`3

α(1 + z2)
√

(1− νz3)(1 + νz − α2z(z − ν))
z(1 + νz) (1 + α2(1− z2)) . (3.45)

Relative to k̄, the horizon temperature is

T = ∆(1− ã2)
1 + a2x2

1
r2

+

H ′(r+)
4π

= 1
2π`3

(
z2(1 + νz)− α2(1− 2νz3 + z4)

) (
2 + 3(1 + α2)νz − 4α2z2 + νz3 + α2νz5)

z(1 + νz) (1 + α2(1− z2)) (1 + 3z2 + 2νz3 − α2(1− 4νz3 + 3z4)) .

(3.46)

The conditions under which this T is non-negative are complicated. The temperature
vanishes for extremal solutions with α as in (3.41), due to the vanishing factor 1−ã2 (instead
of because H ′ = 0). This was expected, since the stress tensor in these solutions vanishes
and does not backreact. In contrast, the temperature is non-zero for branch 1b solutions
with M = J/`3 (just like it is for the branch 1b static M = 0 black hole), and continues to
be positive along that branch for a range of M < J/`3. By itself, the bound (3.40) does
not seem to guarantee that T is not negative, even for κ = −1 and ν < z < ν−1/3. Further
parameter restrictions may be necessary, but we will not undertake their analysis here.

Finally, the area of the bulk horizon at r = r+, in units of 4G4, yields the holographic
quantum entropy. Taking into account the change in (3.11), we find

Sgen = 1
2G4

∫ 2π

0
dφ̄

∫ x1

0
dx

r2
+`

2

(`+ r+x)2 ∆
(

1 + a2x2
1

r2
+

)

= π

G4
∆
`x1

(
r2

+ + a2x2
1
)

`+ r+x1

= π`3
G3

z
(
1 + α2(1− z2)

)√
1 + ν2

1 + 3z2 + 2νz3 − α2(1− 4νz3 + 3z4) . (3.47)

These thermodynamic expressions are fairly complicated, but one can verify by explicit
calculation that, if the higher-curvature corrections to M and J are exactly resummed
using (2.64), then

∂zM − T∂zSgen − Ω∂zJ = 0 ,
∂αM − T∂αSgen − Ω∂αJ = 0 , (3.48)
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which amounts to proving that the quantum entropy Sgen correctly satisfies the first law

dM − TdSgen − ΩdJ = 0 (3.49)

for all ν, that is, for all values of the brane tension and strength of backreaction. Indeed,
it is formally satisfied for all values of the parameters, regardless of whether the solutions
are physically sensible or not.

For its part, the Bekenstein-Hawking entropy of the horizon on the brane is

Scl = 2πr+
4G3

∆
(

1 + a2x2
1

r2
+

)

= 1 + νz√
1 + ν2

Sgen . (3.50)

In the limit ν → 0 in which the backreaction disappears, we correctly recover the classical
BTZ result,

Sgen|ν=0 = Scl|ν=0 = SBTZ = π`3√
2G3

(√
M + J

`3
+
√
M − J

`3

)
. (3.51)

The Wald entropy corrections are straightforward to compute but they are not particularly
illuminating so we omit them. The part of the quantum entropy due to entanglement of
CFT fields again satisfies (2.77) to leading order in the backreaction.

4 Discussion and outlook

Our study of holographic quBTZ has refined and extended the early analysis in [12] in
several important ways. Our main results are the metric of quBTZ (3.15), its renormalized
CFT stress tensor (3.20)–(3.24), and its quantum entropy (3.47) which satisfies the first
law (1.5). For our goal of obtaining these and other physical magnitudes of the solutions
we have not needed to know the parameter ranges for which the rotating geometries are
free of pathologies, but it should be interesting to understand them better.

We have also properly identified the effects of backreaction, and accounted for the
leading higher-curvature corrections to the three-dimensional effective theory (2.15). These
terms are the same as in the new massive gravity of [33], a feature which to our knowledge
has not been noticed before, and which can likely be connected to the perturbative analysis
of braneworld massive gravity [7].

Another aspect that deserves further investigation is the dynamical and thermodynam-
ical stability of quBTZ black holes. We have found intriguing features in the duplicity of
branches of quantum black holes with the same mass but with very different temperature,
entropy, and specific heat. The latter, and in particular its sign, may indicate how the black
hole exchanges radiation with the CFT in the non-dynamical part of the AdS4 boundary.

One important conclusion is that (barring the existence of other bulk solutions for
localized black holes) holographic quantum effects in BTZ are important only up to a
maximum mass, not larger than 1/(24G3) in the static case and than J/`3 = 1/(4G3) with
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rotation. In this range of masses the quantum effects are captured in an exact, analytic
manner by the AdS C-metric braneworld solutions. For larger masses, the only known
phases correspond to bulk BTZ black strings (with an infrared regulator), which imply
the complete suppression of quantum effects on BTZ black holes with these masses. This
may seem surprising, but it is not uncommon that the holographic description of CFTs in
black hole backgrounds gives results at odds with the expectations from weakly coupled
fields [41]. As we have argued, this upper mass limit is likely a feature also of holographic
quantum effects in AdS black holes in higher dimensions.

To finish, we discuss a few other remaining issues and possibilities for further
investigation.

Quantum bulk backreaction and strong cosmic censorship. In our study the bulk
is treated classically, which corresponds to the leading order limit of the CFT in an ex-
pansion for large central charge c. Quantum bulk physics then gives corrections in inverse
powers of c. Our classical bulk is qualitatively very similar to the Kerr-AdS4 black hole,
and so we expect that perturbative bulk quantum corrections will be qualitatively like in
Kerr-AdS4. That is, the bulk black hole geometry will receive small corrections almost
everywhere, in particular at the outer event horizon, but the effects of the bulk quantum
stress tensor will become large, indeed divergent, when the inner Cauchy horizon is ap-
proached from the outside [43]. This reasoning has been employed in [44] in order to argue
that strong cosmic censorship is upheld in the BTZ black hole. The question has acquired
interest recently, after it has been shown in [42, 43, 45, 46] that leading order perturbative
quantum effects do not spoil the regularity of the Cauchy horizon of BTZ. However, [44]
argues that this smoothness will not survive effects at the next perturbative order. In
our holographic construction, the inner horizon of rotating quBTZ is smooth, but bulk
quantum effects will act on it as they do for Kerr black holes. That is, they will enforce
strong cosmic censorship in the bulk black hole, and consequently, also in the quBTZ black
hole on the brane.14 Let us emphasize that the presentation of this argument in [44] is
unaffected by the fact that it did not account for the global effects on rotating quBTZ
discussed in section 3.1.

Classical holographic proofs for quantum entropies. We have proven through a
direct calculation that the first law of quantum black holes holds for the specific quBTZ
solutions, but it seems very likely that a general holographic proof of (1.5) should be
possible using only classical theorems in the bulk, without any explicit solutions. Such a
derivation should indeed apply in generic braneworld holography, including asymptotically
flat Randall-Sundrum branes, where it has also been verified in explicit solutions [29].
In Karch-Randall constructions with AdS branes, it should illuminate the simple exact
resummation that we have found for the higher-curvature corrections to the mass and
angular momentum.

14It seems unlikely to us that the presence of the brane can alter this conclusion. In the most extreme limit
of a tensionless brane, it simply acts as a Z2 projection on bulk fields. The divergence of the stress tensor
present in that case should not disappear when the bulk solution becomes less symmetric with tensional
branes. We acknowledge discussions with Jorge Santos on this point.
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As we have mentioned, this holographic quantum first law is not manifestly the same
as a ‘bulk first law’ since M and J must be defined with reference to the brane geometry
and to the effective three-dimensional theory. In flat-bulk (ADD) braneworlds, the bulk
mass and spin agree with their brane counterparts [47], and the same result should apply
in Randall-Sundrum asymptotically flat braneworlds, owing to the fact that they recover
the lower dimensional gravitational field of a point mass, without any modifications from
higher-curvature corrections. Similar reasoning may work in Karch-Randall braneworlds,
with due care of higher-curvature effects on mass and spin. Then one should prove that
these M and J , with the non-standard asymptotics of the bulk, satisfy a first law for the
bulk entropy. This seems doable.15

More broadly, other theorems for quantum entropies of solutions of the equations (1.1)
can be readily proven using holography. For instance, the second law for Sgen, proven in [49]
in the perturbative expansion in ~, is in the holographic set up an immediate consequence
of the bulk second law; in fact, it is not a perturbative but an exact statement within the
planar limit of the CFT. It is also interesting to consider the bulk view of how Scl will not
in general satisfy a second law. For instance, if a black hole localized on the brane begins
to slip away from the brane, the area of the brane horizon, and hence Scl, will decrease,
while the classical bulk evolution guarantees that Sgen will grow.16

Along these same lines, one can also envisage holographic proofs of theorems for quan-
tum extremal surfaces by adapting theorems of classical extremal surfaces. For instance,
the classical theorem that the apparent horizon lies inside the event horizon will, under
suitable conditions, imply that quantum extremal surfaces on the brane are covered by
event horizons.

Extended thermodynamics of quantum BTZ. In (3.48) we are only considering
variations in the parameters z and α while keeping ν and `3 fixed. Indeed the first law
in the form (3.49) does not hold for other variations. However, one may consider, in the
spirit of ‘extended black hole thermodynamics’ [51], identifying new ‘work’ terms so that
a more general first law holds. This would then be an extended thermodynamics for the
quantum BTZ black hole. Presumably it should reduce in the limit of zero backreaction
to the classical form in [52].

Charge. The AdS C-metric has an extension to include electric or magnetic charge of
the bulk black hole [30]. The metric induced on a Karch-Randall brane is not that of the
charged BTZ black hole in Einstein-Maxwell theory [53], but it is nevertheless another
valid solution, with a bulk structure similar to that of the Reissner-Nordstrom black hole.
Much of the analysis in this paper can be extended to these solutions, which should yield
another class of holographic quantum black holes.

15The analysis of the thermodynamics of the AdS C-metric in [48], although potentially related, does not
immediately apply since it does not include the brane, and it is not obvious that the bulk mass and spin
defined there are the same as the mass and spin defined on the brane that enter in (1.5).

16Then the radiation entropy Sout will grow. This is intriguingly suggestive of a classical bulk dual of
Hawking evaporation [12, 14], but so far this picture has resisted attempts at being further substantiated
(see [50]). RE thanks Nemanja Kaloper and Takahiro Tanaka for very many conversations on this topic.
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Entanglement islands. Finally, let us mention that since the backreaction of the quan-
tum fields is captured here in an explicit, analytic solution, the holographic construction of
quBTZ black holes can be used to study detailed aspects of entanglement islands, following
the ideas in [27].

In the future we hope to report on at least some of these problems.
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A Glossary of main symbols

Physical quantities:

`4: AdS4 radius in the bulk (2.5)
`3: AdS3 radius on the brane (L3 + higher curvature corrections) (2.9)
`: brane position (2.8)

inverse of brane tension (2.13)
strength of backreaction (2.21)
cutoff length of 3D effective theory (2.15) (2.23)

L3: cosmological constant in 3D effective theory (2.17)
G3: Newton’s constant in 3D effective theory (2.16)
G3: ‘renormalized’ 3D Newton constant (accounting for higher cur-

vature corrections to the mass)
(2.39) (2.40)

c: central charge of CFT3 (2.18) (2.20)
Sgen: generalized entropy of quantum black hole (horizon area in bulk) (1.3) (1.4)
Sout: entanglement entropy of quantum fields outside black hole (1.3)
Scl: Bekenstein-Hawking entropy (horizon area on brane) (2.71)
SW : Bekenstein-Hawking-Wald entropy (2.72)
SBTZ: entropy of BTZ black hole with mass M and spin J (2.75)

Auxiliary parameters:

κ: small (κ = +1) or large (κ = −1) AdS3 quantum black hole (2.51) (2.52)
µ: quantum corrections parameter (2.41)
x1: smallest positive root of G(x), axis of ∂φ (2.29) (2.30) (3.6)

black hole mass parameter (2.38) (3.16)
∆: periodicity of φ (2.34) (3.9)
r+: largest positive root of H(r), horizon position
z: black hole mass parameter (2.58)
ν: backreaction parameter (2.59)
a, ã, α: rotation and spin parameters (3.1) (3.7) (3.36)
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B Limit of no backreaction

Here we show that taking the limit ` → 0 in the AdS C-metric we recover a double
Wick rotation of the Kerr-AdS4 solution. This was the construction employed in [22] to
obtain a four-dimensional bulk solution with a BTZ black hole at its asymptotic boundary.
As explained in the main text, in this limit the brane tension becomes infinite and the
brane moves towards the asymptotic AdS4 boundary, where there appears a non-dynamical,
classical BTZ geometry. The holographic stress tensor is that of the dual CFT in this fixed
background.

Sending `→ 0 in (3.1) we find

ds2 = `2

x2r2

[
− H(r)

Σ(x, r)
(
dt+ ax2dφ

)2
+ Σ(x, r)

H(r) dr2

+r2
(

Σ(x, r)
G(x) dx2 + G(x)

Σ(x, r)

(
dφ− a

r2dt

)2
)]

, (B.1)

where
H(r) = r2

`23
+ κ+ a2

r2 , (B.2)

while G(x) and Σ(x, r) remain unchanged. The bulk cosmological constant `4 = ` appears
as an overall prefactor which we rescale so as to keep it finite. We can easily recognize
that when κ = −1 the metric induced at the boundary at x → 0, where G = Σ = 1, is
conformally equivalent to a rotating BTZ black hole (the bulk global structure is explained
in section 3.1).

Now let us perform a double Wick rotation of (B.1) by transforming coordinates

t = i`3

√
1 + â2

1− â2 Φ̂ , φ = i

√
1 + â2

1− â2

(
âΦ̂− T̂

)
,

r = `3
â√

1 + â2
1
X̂
, x =

√
1 + â2 1

R̂
, (B.3)

and parameters
a = `3

â

1 + â2 , µ = µ̂

(1 + â2)3/2 . (B.4)

We also set κ = −1. The metric (B.1) then takes the form

ds2 = `24

[
− ∆R

ξ2Ξ2

(
dT̂ − â2−X̂2

â
dΦ̂
)2

+ ∆X

ξ2Ξ2

(
dT̂ − â2+R̂2

â
dΦ̂
)2

+ ξ2
(
dX̂2

∆X
+ dR̂2

∆R

)]
, (B.5)

where

∆R = (â2 + R̂2)(1 + R̂2)− µ̂R̂ , ∆X = (â2 − X̂2)(1− X̂2) ,

ξ =
√
X̂2 + R̂2 , Ξ = 1− â2 . (B.6)
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This is the Kerr-AdS4 solution in a coordinate system where R̂ and X̂ are treated on nearly
equal footing. It is still a two-parameter family given by µ̂ and â, and has an overall scale
`4. We can bring it to a more conventional form by further changing

T̂ =
(

1− a2

`24

)
T

`4
, Φ̂ = Φ ,

R̂ = ρ

`4
, X̂ = a

`4
cos Θ , (B.7)

with
µ̂ = 2m

`4
, â = a

`4
. (B.8)

Then (B.5) becomes

ds2 = − ∆ρ

ζ2

(
dT − a

Ξ sin2 Θ dΦ
)2

+ ∆Θ sin2 Θ
ζ2

(
adT − a2 + ρ2

Ξ dΦ
)2

+ ζ2

∆Θ
dΘ2 + ζ2

∆ρ
dρ2 , (B.9)

with metric functions

∆ρ(ρ) =
(
a2 + ρ2

)(ρ2

`24
+ 1

)
− 2mρ , ∆Θ(Θ) = 1− a2

`24
cos2 Θ ,

ζ(ρ,Θ) =
√
ρ2 + a2 cos2 Θ , Ξ = 1− a2

`24
, (B.10)

and
m = 1

2ρ+
(ρ2

+ + a2)
(

1 +
ρ2

+
`24

)
. (B.11)

This form of the Kerr-AdS4 metric was the starting point in [22], which we have then
proven is a limit of the construction in this paper.

C Stress tensor in BTZ parameters

The holographic stress tensor can be usefully rewritten in what we refer to as ‘BTZ pa-
rameters’ r±, defined in terms of M and J as

r± = `3
2

(√
8G3

(
M + J

`3

)
±
√

8G3

(
M − J

`3

))
, (C.1)

or equivalently

8G3M =
r2
+ + r2

−
`23

, (C.2)

8G3J = 2r+r−
`3

. (C.3)

These correspond to the radii of the outer and inner horizons in the BTZ black hole,
which is the zero backreaction limit ` → 0 of quBTZ (3.15). When ` 6= 0 the quantum
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backreaction to the metric displaces these horizons away from their classical position (in
terms of G3M and G3J), and in that case r± are merely a convenient reparametrization of
G3M and G3J and not horizon radii.

In principle it is possible to express the dependence of the stress tensor on M and J
in terms of only (r+, r−), but since it involves these in roots of cubics, there are limits to
how much the final expressions can be simplified. We deal with this by introducing (yet
another) two new auxiliary parameters, ξ and α̃, most simply defined as

− κx2
1 =

(
1 + α̃2

)
ξ,

ax2
1

`3
= α̃ ξ (C.4)

and which, using (3.16) and (3.17), are related to r± by

r+ = `3
2
√
ξ
(
1 + α̃2ξ

)
3 + ξ + α̃2(1− ξ)ξ , (C.5)

r− = `3
2α̃
√
ξ (1 + ξ)

3 + ξ + α̃2(1− ξ)ξ . (C.6)

In (3.20)–(3.24) the stress tensor is written in terms of r, which is related to the BTZ radial
coordinate r̄ as in (3.13). Making all the changes, the stress tensor takes the form

8πG3〈T t̄ t̄〉 = g(r±)
[
(r2

+ + 2r2
−)(r̄2 − r2

−)

− 3α̃ r−r+
(
2r̄2 − r2

− − r2
+

)
+ α̃2

(
r̄2 − r2

+

) (
r2
− + 2r2

+

) ]
, (C.7)

8πG3〈T φ̄φ̄〉 = −g(r±)
[
(2r2

+ + r2
−)(r̄2 − r2

−)

− 3α̃ r−r+
(
2r̄2 − r2

− − r2
+

)
+ α̃2

(
r̄2 − r2

+

) (
2r2
− + r2

+

) ]
, (C.8)

8πG3〈T t̄φ̄〉 = −3`3g(r±)r−r+

[
r̄2 − r2

+ +
α̃
(
2r2
−r2

+ − r̄2 (r2
− + r2

+
))

r−r+
+ α̃2

(
r̄2 − r2

+

) ]
, (C.9)

8πG3〈T φ̄t̄〉 = 3g(r±)r−r+
`3

[
r̄2 − r2

− +
α̃
(
r4
− + r4

+ − r̄2 (r2
− + r2

+
))

r−r+
+ α̃2

(
r̄2 − r2

+

) ]
, (C.10)

8πG3〈T r̄ r̄〉 = g(r±)
(
r2
+ − r2

−

) (
r̄2 − r2

− − α̃2
(
r̄2 − r2

+

))
, (C.11)

where

g(r±) = `

2`33
1 +

(
1 + α̃2) ξ + α̃2ξ2

ξ3/2

√
r2
+ − r2

−(
r̄2 − r2

− − α̃2(r̄2 − r2
+)
)5/2 . (C.12)

The complicated, implicit dependence on (r+, r−) of this last function is a reflection of how
the bulk geometry holographically solves for the properties of the CFT. The rest of the
stress tensor depends on (r+, r−) in a cleaner way, and in this form it is possible to compare
this dependence to that of the coefficients in (3.29)–(3.33) for free fields [21]. We leave this
exercise to the interested reader.

Observe that the value of r̄ at the ring singularity (3.14) that the metric (3.15) has
when ` 6= 0, is given by

r2
s =

r2
− − α̃2r2

+
1− α̃2 , (C.13)

and this is the only place where the stress tensor becomes singular.
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