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1 Introduction
Quantumcalculus is themodern name for the investigation of calculuswithout limits. The
quantum calculus or q-calculus began with FH Jackson in the early twentieth century, but
this kind of calculus had already been worked out by Euler and Jacobi. Recently it arose
interest due to high demand of mathematics that models quantum computing. q-calculus
appeared as a connection between mathematics and physics. It has a lot of applications
in different mathematical areas such as number theory, combinatorics, orthogonal poly-
nomials, basic hyper-geometric functions and other sciences quantum theory, mechanics
and the theory of relativity. The book by Kac and Cheung [] covers many of the funda-
mental aspects of quantum calculus. It has been shown that quantum calculus is a subfield
of the more general mathematical field of time scales calculus. Time scales provide a uni-
fied framework for studying dynamic equations on both discrete and continuous domains.
The text by Bohner and Peterson [] collected much of the core theory in the calculus of
time scales. In studying quantum calculus, we are concerned with a specific time scale,
called the q-time scale, defined as follows: T := qN := {qt : t ∈N}, where q > .
In recent years, the topic of q-calculus has attracted the attention of several researchers,

and a variety of new results can be found in the papers [–] and the references cited
therein.
In this paper we initiate the study of quantum calculus on finite intervals. We define

the qk-derivative of a function f : Jk := [tk , tk+] → R and prove its basic properties such
as the derivative of a sum, of a product or a quotient of two functions. Also, we de-
fine the qk-integral and prove its basic properties. As an application, we prove existence
and uniqueness results for initial value problems for first- and second-order impulsive
q-difference equations.
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The classical q-calculus cannot be used in problems with impulses because if an im-
pulse point tk for some k ∈ N appears between the points t and qt, then the definition of
q-derivative does not work. However, this situation does not occur in impulsive problems
on q-time scale because the points t and qt = ρ(t) are consecutive points. In quantum cal-
culus on finite intervals, the points t and qkt + ( – qk)tk are considered only in an interval
[tk , tk+]. Therefore, qk-calculus can be applied to systems with impulses at fixed times.
The rest of the paper is organized as follows. In Section  we recall some basic concepts

of q-calculus. In Section we give the newnotions of qk-derivative and qk-integral on finite
intervals and prove its basic properties. In Section  we apply the results of Section  to
impulsive qk-difference equations and prove existence and uniqueness results. Examples
illustrating the abstract results are also presented.

2 Preliminaries
Let us recall some basic concepts of q-calculus [, ].

Definition . Let f be a function defined on a q-geometric set I , i.e., qt ∈ I for all t ∈ I .
For  < q < , we define the q-derivative as

Dqf (t) =
f (t) – f (qt)
( – q)t

, t ∈ I \ {}, Dqf () = lim
t→

Dqf (t).

Note that

lim
q→

Dqf (t) = lim
q→

f (qt) – f (t)
(q – )t

=
df (t)
dt

if f is differentiable. The higher-order q-derivatives are given by

D
qf (t) = f (t), Dn

qf (t) =DqDn–
q f (t), n ∈N.

It is obvious that the q-derivative of a function is a linear operator. That is, for any con-
stants a and b, we have

Dq
{
af (t) + bg(t)

}
= aDq

{
f (t)

}
+ bDq

{
g(t)

}
.

The standard rules for differentiation of products and quotients apply in quantum cal-
culus. Thus by Definition . we can easily prove that

Dq
{
f (t)g(t)

}
= f (qt)Dqg(t) + g(t)Dqf (t)

= f (t)Dqg(t) + g(qt)Dqf (t), (.)

Dq

{
f (t)
g(t)

}
=
g(t)Dqf (t) – f (t)Dqg(t)

g(qt)g(t)
. (.)

For t ≥ , we set Jt = {tqn : n ∈ N∪{}}∪{} and define the definite q-integral of a function
f : Jt →R by

Iqf (t) =
∫ t


f (s)dqs =

∞∑
n=

t( – q)qnf
(
tqn

)

provided that the series converges.
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For a,b ∈ Jt , we set

∫ b

a
f (s)dqs = Iqf (b) – Iqf (a) = ( – q)

∞∑
n=

qn
[
bf

(
bqn

)
– af

(
aqn

)]
.

Note that for a,b ∈ Jt , we have a = tqn , b = tqn for some n,n ∈ N, thus the definite
integral

∫ b
a f (s)dqs is just a finite sum, so no question about convergence is raised.

We note that

DqIqf (t) = f (t),

while if f is continuous at t = , then

IqDqf (t) = f (t) – f ().

In q-calculus, the integration by parts formula is

∫ t


f (x)Dqg(x)dqx =

[
f (x)g(x)

]t
 –

∫ t


Dqf (x)g(qx)dqx.

Further, reversing the order of integration is given by

∫ t



∫ s


f (r)dqr dqs =

∫ t



∫ t

qr
f (r)dqsdqr.

In the limit q → , the above results correspond to their counterparts in standard calculus.

3 Quantum calculus on finite intervals
In this section we extend the notions of q-derivative and q-integral of the previous section
on finite intervals. For a fixed k ∈ N∪{}, let Jk := [tk , tk+] ⊂R be an interval and  < qk < 
be a constant. We define the qk-derivative of a function f : Jk → R at a point t ∈ Jk as
follows.

Definition . Assume that f : Jk → R is a continuous function, and let t ∈ Jk . Then the
expression

Dqk f (t) =
f (t) – f (qkt + ( – qk)tk)

( – qk)(t – tk)
, t �= tk ,

Dqk f (tk) = lim
t→tk

Dqk f (t),
(.)

is called the qk-derivative of a function f at t.

We say that f is qk-differentiable on Jk provided Dqk f (t) exists for all t ∈ Jk . Note that if
tk =  and qk = q in (.), then Dqk f =Dqf , where Dq is the q-derivative of the function f (t)
defined in Definition ..
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Example . Let f (t) = t for t ∈ [, ] and qk = 
 . Now, we consider

Dqk f (t) =
t – (qkt + ( – qk)tk)

( – qk)(t – tk)

=
( + qk)t – qktkt – ( – qk)tk

t – tk

=
t – t – 
(t – )

, t ∈ (, ]

and limt→tk Dqk f (t) = , if t = . In particular, D 

f () =  can be interpreted as a difference

quotient f ()–f ()
– .

Example . In classical q-calculus, we have Dqtn = [n]qtn–, where [n]q = –qn
–q . However,

qk-calculus gives Dqk (t – tk)n = [n]qk (t – tk)n–. Indeed, f (t) = (t – tk)n, t ∈ Jk , then

Dqk f (t) =
(t – tk)n – (qkt + ( – qk)tk – tk)n

( – qk)(t – tk)

=
(t – tk)n – qnk (t – tk)n

( – qk)(t – tk)

= [n]qk (t – tk)n–,

where [n]qk =
–qnk
–qk

.

Theorem . Assume that f , g : Jk →R are qk-differentiable on Jk . Then:
(i) The sum f + g : Jk →R is qk-differentiable on Jk with

Dqk
(
f (t) + g(t)

)
=Dqk f (t) +Dqk g(t).

(ii) For any constant α, αf : Jk →R is qk-differentiable on Jk with

Dqk (αf )(t) = αDqk f (t).

(iii) The product fg : Jk →R is qk-differentiable on Jk with

Dqk (fg)(t) = f (t)Dqk g(t) + g
(
qkt + ( – qk)tk

)
Dqk f (t)

= g(t)Dqk f (t) + f
(
qkt + ( – qk)tk

)
Dqk g(t).

(iv) If g(t)g(qkt + ( – qk)tk) �= , then f
g is qk-differentiable on Jk with

Dqk

(
f
g

)
(t) =

g(t)Dqk f (t) – f (t)Dqk g(t)
g(t)g(qkt + ( – qk)tk)

.

Proof The proofs of (i)-(ii) are easy and omitted.
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(iii) From Definition ., we have

Dqk (fg)(t) =
f (t)g(t) – f (qkt + ( – qk)tk)g(qkt + ( – qk)tk)

( – qk)(t – tk)

=
{
f (t)g(t) – f (t)g

(
qkt + ( – qk)tk

)
+ f (t)g

(
qkt + ( – qk)tk

)
– f

(
qkt + ( – qk)tk

)
g
(
qkt + ( – qk)tk

)}
/( – qk)(t – tk)

= f (t)
(
g(t) – g(qkt + ( – qk)tk)

( – qk)(t – tk)

)

+ g
(
qkt + ( – qk)tk

)( f (t) – f (qkt + ( – qk)tk)
( – qk)(t – tk)

)

= f (t)Dqk g(t) + g
(
qkt + ( – qk)tk

)
Dqk f (t).

The proof of the second equation in part (iii) is of a similar manner by interchanging the
functions f and g .
(iv) For the qk-derivative of a quotient, we can find that

Dqk

(
f
g

)
(t) =

f (t)
g(t) –

f (qkt+(–qk )tk )
g(qkt+(–qk )tk )

( – qk)(t – tk)

=
f (t)g(qkt + ( – qk)tk) – g(t)f (qkt + ( – qk)tk)

g(t)g(qkt + ( – qk)tk)( – qk)(t – tk)

=
{
g(t)

(
f (t) – f (qkt + ( – qk)tk)

( – qk)(t – tk)

)

– f (t)
(
g(t) – g(qkt + ( – qk)tk)

( – qk)(t – tk)

)}/
g(t)g

(
qkt + ( – qk)tk

)

=
g(t)Dqk f (t) – f (t)Dqk g(t)
g(t)g(qkt + ( – qk)tk)

. �

Remark . In Example . we recall that in q-difference, if f (t) = tn, then Dqtn = [n]tn–.
We cannot have a simple formula for qk-difference. Using the derivative of a product, we
have for some n:

Dqk t = ,

Dqk t
 =Dqk (t · t) = ( + qk)t + ( – qk)tk ,

Dqk t
 =Dqk

(
t · t) = (

 + qk + qk
)
t +

(
 + qk – qk

)
ttk + ( – qk)tk ,

Dqk t
 =Dqk

(
t · t)

=
(
 + qk + qk + qk

)
t +

(
 + qk + qk – qk

)
tkt

+
(
 + qk – qk + qk

)
tk t + ( – qk)tk .

In addition, we should define the higher qk-derivative of functions.

Definition . Let f : Jk → R be a continuous function. We call the second-order
qk-derivativeD

qk f providedDqk f is qk-differentiable on Jk withD
qk f =Dqk (Dqk f ) : Jk →R.

Similarly, we define the higher-order qk-derivative Dn
qk : Jk →R.

http://www.advancesindifferenceequations.com/content/2013/1/282
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For example, if f : Jk →R, then we have

D
qk f (t) = Dqk

(
Dqk f (t)

)
=
Dqk f (t) –Dqk f (qkt + ( – qk)tk)

( – qk)(t – tk)

=
f (t)–f (qkt+(–qk )tk )

(–qk )(t–tk )
– f (qkt+(–qk )tk )–f (qk t+(–q


k )tk )

(–qk )(t–tk )

( – qk)(t – tk)

=
f (t) – f (qkt + ( – qk)tk) + f (qkt + ( – qk)tk)

( – qk)(t – tk)
, t �= tk ,

and D
qk f (tk) = limt→tk D


qk f (t).

To construct the qk-antiderivative F(t), we define a shifting operator by

EqkF(t) = F
(
qkt + ( – qk)tk

)
.

It is easy to prove by using mathematical induction that

En
qkF(t) = Eqk

(
En–
qk F

)
(t) = F

(
qnk t +

(
 – qnk

)
tk

)
,

where n ∈N and E
qk F(t) = F(t).

Then we have by Definition . that

F(t) – F(qkt + ( – qk)tk)
( – qk)(t – tk)

=
 – Eqk

( – qk)(t – tk)
F(t) = f (t).

Therefore, the qk-antiderivative can be expressed as

F(t) =


 – Eqk

(
( – qk)(t – tk)f (t)

)
.

Using the geometric series expansion, we obtain

F(t) = ( – qk)
∞∑
n=

En
qk (t – tk)f (t)

= ( – qk)
∞∑
n=

(
qnk t +

(
 – qnk

)
tk – tk

)
f
(
qnk t +

(
 – qnk

)
tk

)

= ( – qk)(t – tk)
∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)
. (.)

It is clear that the above calculus is valid only if the series in the right-hand side of (.) is
convergent.

Definition . Assume that f : Jk → R is a continuous function. Then the qk-integral is
defined by

∫ t

tk
f (s)dqk s = ( – qk)(t – tk)

∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)
(.)

http://www.advancesindifferenceequations.com/content/2013/1/282
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for t ∈ Jk . Moreover, if a ∈ (tk , t), then the definite qk-integral is defined by

∫ t

a
f (s)dqk s =

∫ t

tk
f (s)dqk s –

∫ a

tk
f (s)dqk s

= ( – qk)(t – tk)
∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)

– ( – qk)(a – tk)
∞∑
n=

qnk f
(
qnka +

(
 – qnk

)
tk

)
.

Note that if tk =  and qk = q, then (.) reduces to q-integral of a function f (t), defined
by

∫ t
 f (s)dqs = ( – q)t

∑∞
n= qnf (qnt) for t ∈ [,∞) (see Section ).

Example . Let f (t) = t for t ∈ Jk , then we have

∫ t

tk
f (s)dqk s =

∫ t

tk
s dqk s

= ( – qk)(t – tk)
∞∑
n=

qnk
(
qnk t +

(
 – qnk

)
tk

)

=
(t – tk)(t + qktk)

 + qk
.

Theorem . For t ∈ Jk , the following formulas hold:
(i) Dqk

∫ t
tk
f (s)dqk s = f (t);

(ii)
∫ t
tk
Dqk f (s)dqk s = f (t);

(iii)
∫ t
a Dqk f (s)dqk s = f (t) – f (a) for a ∈ (tk , t).

Proof (i) Using Definitions . and ., we get

Dqk

∫ t

tk
f (s)dqk s = Dqk

[
( – qk)(t – tk)

∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)]

=
( – qk)

( – qk)(t – tk)

[
(t – tk)

∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)
–

(
qkt + ( – qk)tk – tk

)
×

∞∑
n=

qnk f
(
qnk

(
qkt + ( – qk)tk

)
+

(
 – qnk

)
tk

)]

=


(t – tk)

[
(t – tk)

∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)

– qk(t – tk)
∞∑
n=

qnk f
(
qn+k t +

(
 – qn+k

)
tk

)]

=
∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)
–

∞∑
n=

qn+k f
(
qn+k t +

(
 – qn+k

)
tk

)
= f (t).

http://www.advancesindifferenceequations.com/content/2013/1/282
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(ii) By computing directly, we have

∫ t

tk
Dqk f (s)dqk s =

∫ t

tk

f (s) – f (qks + ( – qk)tk)
( – qk)(s – tk)

dqk s

= ( – qk)(t – tk)
∞∑
n=

qnk

× f (qnk t + ( – qnk )tk) – f (qk(qnk t + ( – qnk )tk) + ( – qk)tk)
( – qk)(qnk t + ( – qnk )tk – tk)

= (t – tk)
∞∑
n=

qnk
f (qnk t + ( – qnk )tk) – f (qn+k t + ( – qn+k )tk)

qnk (t – tk)

=
∞∑
n=

f
(
qnk t +

(
 – qnk

)
tk

)
– f

(
qn+k t +

(
 – qn+k

)
tk

)
= f (t).

(iii) The part (ii) of this theorem implies that

∫ t

a
Dqk f (s)dqk s =

∫ t

tk
Dqk f (s)dqk s –

∫ a

tk
Dqk f (s)dqk s

= f (t) – f (a). �

Theorem . Assume that f , g : Jk →R are continuous functions, α ∈R. Then, for t ∈ Jk ,
(i)

∫ t
tk
[f (s) + g(s)]dqk s =

∫ t
tk
f (s)dqk s +

∫ t
tk
g(s)dqk s;

(ii)
∫ t
tk
(αf )(s)dqk s = α

∫ t
tk
f (s)dqk s;

(iii)
∫ t
tk
f (s)Dqk g(s)dqk s = (fg)(t) –

∫ t
tk
g(qks + ( – qk)tk)Dqk f (s)dqk s.

Proof The results of (i)-(ii) follow from Definition ..
(iii) From Theorem . part (iii), we have

f (t)Dqk g(t) =Dqk (fg)(t) – g
(
qkt + ( – qk)tk

)
Dqk f (t).

Taking qk-integral for the above equation and applying Theorem . part (ii), we get the
result in (iii) as required. �

Theorem . (Reversing the order of qk-integration) Let f ∈ C(Jk ,R), then the following
formula holds:

∫ t

tk

∫ s

tk
f (r)dqk r dqk s =

∫ t

tk

∫ t

qkr+(–qk )tk
f (r)dqk s dqk r.

Proof By Definition ., we have

∫ t

tk

∫ s

tk
f (r)dqk r dqk s =

∫ t

tk
( – qk)(s – tk)

∞∑
n=

[
qnk f

(
qnks +

(
 – qnk

)
tk

)]
dqk s

= ( – qk)
∞∑
n=

qnk

[∫ t

tk
(s – tk)f

(
qnks +

(
 – qnk

)
tk

)
dqk s

]

http://www.advancesindifferenceequations.com/content/2013/1/282
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= ( – qk)
∞∑
n=

∫ t

tk

[(
qnks +

(
 – qnk

)
tk

)
f
(
qnks +

(
 – qnk

)
tk

)
– tkf

(
qnks +

(
 – qnk

)
tk

)]
dqk s.

Since

∫ tqnk+(–q
n
k )tk

tk
f (u)du = ( – qk)qnk (t – tk)

∞∑
m=

qmk f
(
tqn+mk +

(
 – qn+mk

)
tk

)
,

then we get that

∫ t

tk

∫ s

tk
f (r)dqk r dqk s = ( – qk)(t – tk)

∞∑
n=

∞∑
m=

qmk f
(
qn+mk t +

(
 – qn+m

)
tk

)
× [

qn+mt +
(
 – qn+mk

)
tk – tk

]
= ( – qk)(t – tk)

∞∑
n=

∞∑
m=

qn+mk f
(
qn+mk t +

(
 – qn+m

)
tk

)
.

Now, we consider

∞∑
n=

∞∑
m=

qn+mk f
(
qn+mk t +

(
 – qn+m

)
tk

)

=
∞∑
n=

[
qnk f

(
qnk t +

(
 – qnk

)
tk

)
+ qn+k f

(
qn+k t +

(
 – qn+k

)
tk

)

+ qn+k f
(
qn+k t +

(
 – qn+k

)
tk

)
+ qn+k f

(
qn+k t +

(
 – qn+k

)
tk

)
+ · · · ]

= f (t) + qkf
(
qkt + ( – qk)tk

)
+ qk f

(
qkt +

(
 – qk

)
tk

)
+ · · ·

+ qkf
(
qkt + ( – qk)tk

)
+ qkf

(
qkt +

(
 – qk

)
tk

)
+ qkf

(
qkt +

(
 – qk

)
tk

)
+ · · ·

+ qkf
(
qkt +

(
 – qk

)
tk

)
+ qk f

(
qkt +

(
 – qk

)
tk

)
+ qk f

(
qk t +

(
 – qk

)
tk

)
+ · · ·

= f (t) + qk( + qk)f
(
qkt + ( – qk)tk

)
+ qk

(
 + qk + qk

)
f
(
qkt +

(
 – qk

)
tk

)
+ · · ·

=
∞∑
n=

qnk

(
 – qn+k
 – qk

)
f
(
qnk t +

(
 – qnk

)
tk

)
.

It follows that
∫ t

tk

∫ s

tk
f (r)dqk r dqk s = ( – qk)(t – tk)

∞∑
n=

qnk
(
 – qn+k

)
f
(
qnk t +

(
 – qnk

)
tk

)

= ( – qk)(t – tk)
∞∑
n=

qnk
(
 – qn+k

)
(t – tk)f

(
qnk t +

(
 – qnk

)
tk

)

=
∫ t

tk

(
t – qr – ( – qk)tk

)
f (r)dqk r

=
∫ t

tk

∫ t

qkr+(–qk )tk
f (r)dqk s dqk r.

This completes the proof. �
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4 Impulsive qk-difference equations
Let J = [,T], J = [t, t], Jk = (tk , tk+] for k = , , . . . ,m. Let PC(J ,R) = {x : J → R : x(t) is
continuous everywhere except for some tk at which x(t+k ) and x(t–k ) exist and x(t–k ) = x(tk),
k = , , . . . ,m}. PC(J ,R) is a Banach space with the norms ‖x‖PC = sup{|x(t)|; t ∈ J}.

4.1 First-order impulsive qk-difference equations
In this subsection, we study the existence and uniqueness of solutions for the following
initial value problem for first-order impulsive qk-difference equation:

Dqkx(t) = f
(
t,x(t)

)
, t ∈ J , t �= tk ,

�x(tk) = Ik
(
x(tk)

)
, k = , , . . . ,m,

x() = x,

(.)

where x ∈ R,  = t < t < t < · · · < tk < · · · < tm < tm+ = T , f : J × R → R is a con-
tinuous function, Ik ∈ C(R,R), �x(tk) = x(t+k ) – x(tk), k = , , . . . ,m and  < qk <  for
k = , , , . . . ,m.

Lemma . If x ∈ PC(J ,R) is a solution of (.), then for any t ∈ Jk , k = , , , . . . ,m,

x(t) = x +
∑
<tk<t

∫ tk

tk–
f
(
s,x(s)

)
dqk–s

+
∑
<tk<t

Ik
(
x(tk)

)
+

∫ t

tk
f
(
s,x(s)

)
dqk s, (.)

with
∑

<(·) = , is a solution of (.). The converse is also true.

Proof For t ∈ J, q-integrating (.), it follows

x(t) = x +
∫ t


f
(
s,x(s)

)
dqs,

which leads to

x(t) = x +
∫ t


f
(
s,x(s)

)
dqs.

For t ∈ J, taking q-integral to (.), we have

x(t) = x
(
t+

)
+

∫ t

t
f
(
s,x(s)

)
dqs.

Since x(t+ ) = x(t) + I(x(t)), then we have

x(t) = x +
∫ t


f
(
s,x(s)

)
dqs +

∫ t

t
f
(
s,x(s)

)
dqs + I

(
x(t)

)
.
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Again q-integrating (.) from t to t, where t ∈ J, then

x(t) = x
(
t+

)
+

∫ t

t
f
(
s,x(s)

)
dqs

= x +
∫ t


f
(
s,x(s)

)
dqs +

∫ t

t
f
(
s,x(s)

)
dqs +

∫ t

t
f
(
s,x(s)

)
dqs

+ I
(
x(t)

)
+ I

(
x(t)

)
.

Repeating the above procession, for t ∈ J , we obtain (.).
On the other hand, assume that x(t) is a solution of (.). Applying the qk-derivative on

(.) for t ∈ Jk , k = , , , . . . ,m, it follows that

Dqkx(t) = f
(
t,x(t)

)
.

It is easy to verify that �x(tk) = Ik(x(tk)), k = , , . . . ,m and x() = x. This completes the
proof. �

Theorem . Assume that the following assumptions hold:

(H) f : J ×R →R is a continuous function and satisfies

∣∣f (t,x) – f (t, y)
∣∣ ≤ L|x – y|, L > ,∀t ∈ J ,x, y ∈R;

(H) Ik :R →R, k = , , . . . ,m, are continuous functions and satisfy

∣∣Ik(x) – Ik(y)
∣∣ ≤M|x – y|, M > ,∀x, y ∈R.

If

LT +mM ≤ δ < ,

then the nonlinear impulsive qk-difference initial value problem (.) has a unique solution
on J .

Proof We define an operatorA : PC(J ,R) → PC(J ,R) by

(Ax)(t) = x +
∑
<tk<t

∫ tk

tk–
f
(
s,x(s)

)
dqk–s

+
∑
<tk<t

Ik
(
x(tk)

)
+

∫ t

tk
f
(
s,x(s)

)
dqk s,

with
∑

<(·) = . Assume that supt∈J |f (t, )| = N and max{|Ik()| : k = , , . . . ,m} = N;
we choose a constant r such that

r ≥ 
 – ε

[|x| +NT +mN
]
,
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where δ ≤ ε < . Now, we will show that ABr ⊂ Br , where a ball Br = {x ∈ PC(J ,R) :
‖x‖ ≤ r}. For any x ∈ Br and for each t ∈ J , we have

∣∣(Ax)(t)
∣∣ ≤ |x| +

∑
<tk<t

∫ tk

tk–

∣∣f (s,x(s))∣∣dqk–s
+

∑
<tk<t

∣∣Ik(x(tk))∣∣ +
∫ t

tk

∣∣f (s,x(s))∣∣dqk s
≤ |x| +

∑
<tk<T

∫ tk

tk–

(∣∣f (s,x(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)dqk–s

+
∑

<tk<T

(∣∣Ik(x(tk)) – Ik()
∣∣ + ∣∣Ik()∣∣)

+
∫ T

tm

(∣∣f (s,x(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)dqms

≤ |x| + (Lr +N)
∑

<tk<T

∫ tk

tk–
dqk–s

+
∑

<tk<T

(Mr +N) + (Lr +N)
∫ T

tm
dqms

≤ |x| + (Lr +N)T +m(Mr +N)

≤ (δ +  – ε)r ≤ r.

This implies that ABr ⊂ Br .
For x, y ∈ PC(J ,R) and for each t ∈ J , we have

∣∣(Ax)(t) – (Ay)(t)
∣∣ ≤

∑
<tk<t

∫ tk

tk–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣dqk–s
+

∑
<tk<t

∣∣Ik(x(tk)) – Ik
(
y(tk)

)∣∣

+
∫ t

tk

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣dqk s
≤

∑
<tk<T

∫ tk

tk–

(
L
∣∣x(s) – y(s)

∣∣)dqk–s
+

∑
<tk<T

M
∣∣x(tk) – y(tk)

∣∣

+
∫ T

tm

(
L
∣∣x(s) – y(s)

∣∣)dqms
≤ (LT +mM)‖x – y‖.

It follows that

‖Ax –Ay‖ ≤ (LT +mM)‖x – y‖.
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As LT +mM < , by the Banach contraction mapping principle,A is a contraction. There-
fore, A has a fixed point which is a unique solution of (.) on J . �

Example . Consider the following first-order impulsive qk-difference initial value prob-
lem:

D 
+k

x(t) =
e–t|x(t)|

(t +
√
)( + |x(t)|) , t ∈ J = [, ], t �= tk =

k


,

�x(tk) =
|x(tk)|

 + |x(tk)| , k = , , . . . , ,

x() = .

(.)

Here qk = /( + k), k = , , , . . . , , m = , T = , f (t,x) = (e–t|x|)/((t + √
)( + |x|)) and

Ik(x) = |x|/( + |x|). Since |f (t,x) – f (t, y)| ≤ (/)|x – y| and |Ik(x) – Ik(y)| ≤ (/)|x – y|,
then (H), (H) are satisfied with L = (/),M = (/). We can show that

LT +mM =


+




=



< .

Hence, by Theorem ., the initial value problem (.) has a unique solution on [, ].

4.2 Second-order impulsive qk-difference equations
In this subsection, we investigate the second-order initial value problem of impulsive
qk-difference equation of the form

D
qk x(t) = f

(
t,x(t)

)
, t ∈ J , t �= tk ,

�x(tk) = Ik
(
x(tk)

)
, k = , , . . . ,m,

Dqkx
(
t+k

)
–Dqk–x(tk) = I∗k

(
x(tk)

)
, k = , , . . . ,m,

x() = α, Dqx() = β ,

(.)

where α,β ∈ R,  = t < t < t < · · · < tk < · · · < tm < tm+ = T , f : J ×R →R is a continuous
function, Ik , I∗k ∈ C(R,R), �x(tk) = x(t+k ) – x(tk) for k = , , . . . ,m and  < qk <  for k =
, , , . . . ,m.

Lemma . The unique solution of problem (.) is given by

x(t) = α + βt +
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
f
(
s,x(s)

)
dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))]

–
∑
<tk<t

tk
(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
f
(
s,x(s)

)
dqk s, (.)

with
∑

<(·) = .
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Proof For t ∈ J, taking q-integral for the first equation of (.), we get

Dqx(t) =Dqx() +
∫ t


f
(
s,x(s)

)
dqs = β +

∫ t


f
(
s,x(s)

)
dqs, (.)

which yields

Dqx(t) = β +
∫ t


f
(
s,x(s)

)
dqs. (.)

For t ∈ J, we obtain, by q-integrating (.),

x(t) = α + βt +
∫ t



∫ s


f
(
σ ,x(σ )

)
dqσ dqs,

which, on changing the order of q-integral, takes the form

x(t) = α + βt +
∫ t


(t – qs)f

(
s,x(s)

)
dqs. (.)

In particular, for t = t,

x(t) = α + βt +
∫ t


(t – qs)f

(
s,x(s)

)
dqs. (.)

For t ∈ J = (t, t], q-integrating (.), we have

Dqx(t) =Dqx
(
t+

)
+

∫ t

t
f
(
s,x(s)

)
dqs.

Using the third condition of (.) with (.) yields that

Dqx(t) = β +
∫ t


f
(
s,x(s)

)
dqs + I∗

(
x(t)

)
+

∫ t

t
f
(
s,x(s)

)
dqs. (.)

For t ∈ J, taking q-integral for (.) and changing the order of q-integral, we obtain

x(t) = x
(
t+

)
+

[
β +

∫ t


f
(
s,x(s)

)
dqs + I∗

(
x(t)

)]
(t – t)

+
∫ t

t

(
t – qs – ( – q)t

)
f
(
s,x(s)

)
dqs. (.)

Applying the second equation of (.) with (.) and (.), we get

x(t) = α + βt +
∫ t


(t – qs)f

(
s,x(s)

)
dqs + I

(
x(t)

)

+
[
β +

∫ t


f
(
s,x(s)

)
dqs + I∗

(
x(t)

)]
(t – t)

+
∫ t

t

(
t – qs – ( – q)t

)
f
(
s,x(s)

)
dqs
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= α + βt +
∫ t


(t – qs)f

(
s,x(s)

)
dqs + I

(
x(t)

)

+
[∫ t


f
(
s,x(s)

)
dqs + I∗

(
x(t)

)]
(t – t)

+
∫ t

t

(
t – qs – ( – q)t

)
f
(
s,x(s)

)
dqs.

Repeating the above process, for t ∈ J , we obtain (.) as required. �

Next, we prove the existence and uniqueness of a solution to the initial value problem
(.). We shall use the Banach fixed point theorem to accomplish this.

Theorem . Assume that (H) and (H) hold. In addition, we suppose that:

(H) I∗k :R →R, k = , , . . . ,m, are continuous functions and satisfy

∣∣I∗k (x) – I∗k (y)
∣∣ ≤M∗|x – y|, M∗ > ,∀x, y ∈R.

If

θ := L(ν + Tν + ν) +mM + (mT + ν)M∗ ≤ δ < ,

where

ν =
m+∑
k=

(tk – tk–)

 + qk–
, ν =

m∑
k=

(tk – tk–), ν =
m∑
k=

tk(tk – tk–), ν =
m∑
k=

tk ,

then the initial value problem (.) has a unique solution on J .

Proof Firstly, in view of Lemma ., we define an operator F : PC(J ,R) → PC(J ,R) as

(Fx)(t) = α + βt +
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
f
(
s,x(s)

)
dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))]

–
∑
<tk<t

tk
(∫ tk

tk–
f
(
s,x(s)

)
dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
f
(
s,x(s)

)
dqk s,

with
∑

<(·) = .
Setting supt∈J |f (t, )| = �, max{Ik() : k = , , . . . ,m} = � and max{I∗k () : k = , , . . . ,

m} = �, we will show that FBR ⊂ BR, where BR = {x ∈ PC(J ,R) : ‖x‖ ≤ R} and a constant
R satisfies

R ≥ |α| + |β|T +�(ν + Tν + ν) +m� + (mT + ν)�

 – ε
,

http://www.advancesindifferenceequations.com/content/2013/1/282


Tariboon and Ntouyas Advances in Difference Equations 2013, 2013:282 Page 16 of 19
http://www.advancesindifferenceequations.com/content/2013/1/282

where δ ≤ ε < . For x ∈ BR, taking into account Example ., we have

∣∣(Fx)(t)
∣∣

≤ |α| + |β|t

+
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)∣∣f (s,x(s))∣∣dqk–s + ∣∣Ik(x(tk))∣∣
)

+ t
[ ∑
<tk<t

(∫ tk

tk–

∣∣f (s,x(s))∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)]

+
∑
<tk<t

tk
(∫ tk

tk–

∣∣f (s,x(s))∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)

+
∫ t

tk

(
t – qks – ( – qk)tk

)∣∣f (s,x(s))∣∣dqk s
≤ |α| + |β|T

+
∑

<tk<T

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)(∣∣f (s,x(s)) – f (s, )
∣∣

+
∣∣f (s, )∣∣)dqk–s + (∣∣Ik(x(tk)) – Ik()

∣∣ + ∣∣Ik()∣∣)
)

+ T
[ ∑
<tk<T

(∫ tk

tk–

(∣∣f (s,x(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)dqk–s

+
(∣∣I∗k (x(tk)) – I∗k ()

∣∣ + ∣∣I∗k ()∣∣)
)]

+
∑

<tk<T

tk
(∫ tk

tk–

(∣∣f (s,x(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)dqk–s

+
(∣∣I∗k (x(tk)) – I∗k ()

∣∣ + ∣∣I∗k ()∣∣)
)

+
∫ T

tm

(
T – qms – ( – qm)tm

)(∣∣f (s,x(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)dqms

≤ |α| + |β|T +
m∑
k=

(
(tk – tk–)(LR +�)

( + qk–)
+ (MR +�)

)

+ T

[ m∑
k=

(
(LR +�)(tk – tk–) +

(
M∗R +�

))]

+
m∑
k=

tk
(
(LR +�)(tk – tk–) +

(
M∗R +�

))
+
(LR +�)(T – tm)

 + qm

= |α| + |β|T + (LR +�)(ν + Tν + ν)

+ (MR +�)(mT + ν) +m(MR +�)

≤ (δ +  – ε)R ≤ R.

Then we get that FBR ⊂ BR.
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For any x, y ∈ PC(J ,R), we have

∣∣(Fx)(t) – (Fy)(t)
∣∣ ≤

m∑
k=

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)

× ∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣dqk–s + ∣∣Ik(x(tk)) – Ik
(
y(tk)

)∣∣)

+ T

[ m∑
k=

(∫ tk

tk–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣dqk–s

+
∣∣I∗k (x(tk)) – I∗k

(
y(tk)

)∣∣)]

+
m∑
k=

tk
(∫ tk

tk–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣dqk–s
+

∣∣I∗k (x(tk)) – I∗k
(
y(tk)

)∣∣)

+
∫ T

tm

(
t – qms – ( – qm)tm

)∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣dqms
≤

m∑
k=

(
(tk – tk–)

( + qk–)
L +M

)
‖x – y‖

+ T

[ m∑
k=

(
L(tk – tk–) +M∗)]‖x – y‖

+
m∑
k=

tk
(
L(tk – tk–) +M∗)‖x – y‖ + L

(T – tm)

 + qm
‖x – y‖

= θ‖x – y‖,

which implies that ‖Fx – Fy‖ ≤ θ‖x – y‖. As θ < , by the Banach contraction mapping
principle, F has a fixed point which is a unique solution of (.) on J . �

Example . Consider the following second-order impulsive qk-difference initial value
problem:

D


+k
x(t) =

e– sin t|x(t)|
( + t)( + |x(t)|) , t ∈ J = [, ], t �= tk =

k


,

�x(tk) =
|x(tk)|

( + |x(tk)|) , k = , , . . . , ,

D 
+k

x
(
t+k

)
–D 

+k–
x(tk) =



tan–

(


x(tk)

)
, k = , , . . . , ,

x() = , D 

x() = .

(.)

Here qk = /( + k), k = , , , . . . , , m = , T = , f (t,x) = (e– sin t|x|)/(( + t)( + |x|)),
Ik(x) = |x|/(( + |x|)) and I∗k (x) = (/) tan–(x/). Since |f (t,x) – f (t, y)| ≤ (/)|x – y|,
|Ik(x) – Ik(y)| ≤ (/)|x – y| and |I∗k (x) – I∗k (y)| ≤ (/)|x – y|, then (H), (H) and (H)
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are satisfied with L = (/),M = (/),M∗ = (/). We find that

ν =
m+∑
k=

(tk – tk–)

 + qk–
=
,,
,

, ν =
m∑
k=

(tk – tk–) =



,

ν =
m∑
k=

tk(tk – tk–) =



, ν =
m∑
k=

tk =



.

Clearly,

L(ν + Tν + ν) +mM + (mT + ν)M∗ = . < .

Hence, by Theorem ., the initial value problem (.) has a unique solution on [, ].
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