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Abstract Electrical transport in metallic carbon nano-

tubes, especially the ones with diameters of the order of a

few nanometers can be best described using the Tomanaga

Luttinger liquid (TL) model. Recently, the TL model has

been used to create a convenient transmission line like

phenomenological model for carbon nanotubes. In this

paper, we have characterized metallic nanotubes based on

that model, quantifying the quantum capacitances of indi-

vidual metallic single walled carbon nanotubes and crys-

talline bundles of single walled tubes of different

diameters. Our calculations show that the quantum capac-

itances for both individual tubes and the bundles show a

weak dependence on the diameters of their constituent

tubes. The nanotube bundles exhibit a significantly large

quantum capacitance due to enhancement of density of

states at the Fermi level.

Introduction

Recently carbon nanotubes have acquired importance as a

material with a wide variety of potential applications in

nanoelectronics. A significant amount of interest has been

generated in metallic carbon nanotubes for their application

as an on-chip interconnect, replacing the traditional copper

wires which are nearing their performance limits. The

International Technology Roadmap for Semiconductors

(ITRS) has already placed carbon nanotubes as a potential

candidate interconnect material for technology nodes

beyond 22 nm [1]. The propagation speed of a signal on a

transmission line is related to distributed inductance and

capacitance of the system as v ¼ 1=
ffiffiffiffiffiffiffi

LC
p

. For mesoscopic

systems, the capacitance term C comprises a second

‘‘quantum’’ component apart from the Maxwellian capac-

itance. This parameter is related to the electronic structure

of the material. In this paper, we present calculations that

illustrate how the quantum capacitance of different carbon

nanotubes vary with size and chirality. This information is

necessary to construct a simulation model that will be able

to characterize nanotube performance accurately.

It has been long known that the Fermi liquid model is

not able to describe transport properties of one dimensional

metals. The presence of strong electron–electron interac-

tions prevents the formation of a sharp Fermi surface as

would be conventionally expected in a regular bulk metal.

The Tomanaga Luttinger (TL) model is used to describe

electronic transport in one dimensional systems such as a

1D electron gas as present in a carbon nanotube. The TL

model attempts to describe transport properties of a 1D

electron gas taking into account strong electron–electron

correlation, for energies in the vicinity of the Fermi level.

The model is constructed by linearizing the energy-wave-

vector dispersion of the nanotube around the Fermi wave

vector and mapping it onto an equivalent system of boson

quasiparticles [2]. Recently, the use of the concepts of

Luttinger liquid theory was suggested by authors in [3, 4]

to build a phenomenological model of microwave transport

in these nanotubes. The authors created a transmission line

model mapping a Luttinger model-based Lagrangian to a

conventional LC lossless transmission line model. This

model is used as a starting point in this paper and has four

principal components. These are the classical Maxwellian

capacitance (Ces) and inductance (Lm), a quantum compo-

nent of capacitance (Cq) and a kinetic inductance term (Lk).

The quantum capacitance is a manifestation of finite size
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quantization effects in nanotubes. The electrostatic capac-

itance Ces is related to the electron–electron interactions

within the nanotube. The kinetic inductance is nothing but

a measure of the kinetic energy of the electrons. Typically

for conductors as small as carbon nanotubes Lk is several

orders of magnitude larger than is magnetic counterpart. In

this paper we have quantified the quantum capacitance (Cq)

of a variety of carbon nanotubes including different chi-

ralities (armchair and metallic zigzag tubes) and systems of

both isolated nanotubes and their bundles. The data

obtained will be used to form a detailed transmission line

simulation model for ULSI interconnects based on carbon

nanotube technology.

This rest of this paper is organized as follows. Section 2

describes the concept of quantum capacitance and how they

will be evaluated for the carbon nanotube systems under

consideration. In Sect. 3, we describe the methodology

employed in obtaining first-principles data. Finally in Sect.

4, we discuss the results obtained from our calculations and

provide a discussion in context of VLSI interconnections.

Quantum Capacitance

Consider a capacitor connected to a battery with a bias Va

applied across it. Let us assume that both plates have a

chemical potential l0 and are in thermal equilibrium as

shown in Fig. 1a. The application of this bias causes the

conduction bands in the left and right plates to shift by

amounts qDV1 and qDV2 , respectively, as shown in

Fig. 1b. The shift in bands does not introduce any new

charges, and bulk of the capacitor plates is electrically

neutral. However, the coupling between the plates causes

charges to move from one plate to the other in accordance

with standard electrostatics. The amount of charge devel-

oped is related to the applied bias through its geometrical

capacitance Ces. In a macroscopic system, the plates are

assumed to have infinite density of states and the small

redistribution of charge between the plates does not cause

any perceivable change in the chemical potential in the

capacitor plates.

This is, however, not true for a mesoscopic capacitor,

where the density of states is usually small. The redistri-

bution of even a small amount of charge between the plates

causes a significant change in the Fermi levels in the plates.

As a result, we see that the potential in the plates deviates

from its equilibrium value by an amount Dli where the

index i = (1, 2) represents the left and the right plate,

respectively, as shown in Fig. 1c. The amount of charge

developed on plate i is then given by

DQi ¼ qniðEÞ Dli � qDVið Þ ð1Þ

where ni(E) represents the density of states in plate i. It

may be noted that DQ1 ¼ DQ2 since the charge removed

from one plate is put on the other plate. Using (1) and the

fact that DVa ¼ DV1 þ DV2 we can find the experimentally

observed electrochemical capacitance [5] defined by Cl �
qDQ=Dl where

1

Cl
¼ 1

Ces
þ 1

Cq
ð2Þ

where Ces is the electrostatic capacitance defined by Ces ¼
DQ=DVa and the quantum capacitance Cq given by

1

Cq
¼ 1

q2

1

n1ðEÞ
þ 1

n2ðEÞ

� �

ð3Þ

The concept of quantum capacitance was first suggested

by Luryi [6] to explain finite size quantization effects

observed in a 2D electron gas (2DEG). Typically the

process of adding an extra electron to a conducting channel

above the Fermi level involves the expenditure of an

insignificant amount of energy. However, in mesoscopic

systems like a 2DEG or a carbon nanotube, the effects of

quantization of energy states similar to the appearance of

discrete states in a 1D quantum well problem results in a

non-zero expenditure of energy when a particle is added to

(a) (b) (c)

Fig. 1 Energetics of a capacitive element. a The conduction bands

(shown by the shaded region) under equilibrium, b In a macroscopic

capacitor on application of a bias, the bands shift by an amount qDVi ,

where i = 1, 2 represent the left and right plates, respectively. c In a

mesoscopic capacitor, the charge redistribution due to coulombic

coupling causes the bulk to lose its charge neutrality. The chemical

potential changes by an amount Dli from its equilibrium value l0
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the lowest vacant state above the Fermi sea of electrons.

Hence, not surprisingly quantum capacitance appears in the

RF circuit model derived by authors in [4]. We can extract

this parameter easily from the bandstructure information

that we have generated though first-principles calculations.

If we ignore electrostatic interaction, [7] i.e., there is no

charge redistribution due to coulomb coupling, the

effective capacitance is given by

C ¼ Cq ¼ q
oQ

ol
¼ oQ

oVa
ð4Þ

The free charge density in a semiconductor can be

written as

Q¼ q

Z

þ1

0

nðEÞ f EþEg

2
þqVa

� �

� f EþEg

2
�qVa

� �� �

dE

ð5Þ

where n(E) is the density of states, Va is the applied voltage

and f(E) is the Fermi–Dirac distribution. The Fermi level Ef

is assumed to be mid gap when Va = 0. To generalize this

for metals, we just set the energy gap Eg = 0. For this

study we are only interested in low lying excitations in the

first (metallic) sub-band limiting our integration in (5)

before the first Van Hove singularity is encountered in the

1D density of states (approximately the order of 1 eV

around Ef) . Since the density of states encountered in the

single walled nanotube is a constant in this range, due to

the linear Energy-wavevector relationship, (which is

incidentally core to the TL model) the value of Cq is

independent of applied bias and is given by

Cq ¼ 2gq2

hvf
ð6Þ

where the Fermi velocity is given by vf ¼ �h�1oE=ok and g
is the number of bands contributing at a given energy. The

band structure of single-walled metallic carbon nanotubes

exhibit linear energy-wave vector dispersion in the vicinity

of the Fermi level. Hence, it becomes convenient to com-

pute quantum capacitance using (6), since oE=ok is a

constant. When considering more complex systems like

carbon nanotube bundles, this is no longer true and the

Fermi velocity becomes energy dependent. It is much

convenient to extract the quantum capacitance using Eqs.

(4) and (5). The quantum capacitance calculations for the

nanotubes bundles are at E = Ef.

Computational Methodology

The calculations presented in this paper are strongly

dependant on the electronic structure, the nanotube systems

under consideration. The bandstructure was calculated

through ab-initio computations calculated using the plane

wave codes implemented in PWscf 3.2 distribution [8] on a

2.8 GHz Intel Core 2 CPU based machine with 1GB of

physical memory.

This section describes a brief account of the employed

methodology and the simulation parameters used in our

work. The electronic structure calculations were preceded

with an optimization of the carbon nanotube unit cell

geometries. First, the approximate coordinates of the carbon

atoms in the nanotube unit cell were calculated using simple

formulae available in published literature [9]. The unit cells

were then subjected to a Broyden-Fletcher-Goldfarb-Shanno

(BFGS) nonlinear optimization procedure and relaxed to

their most stable geometry. The optimization procedure

essentially involved varying the unit cell dimensions in such

a way so as to find a minimum of the total energy, which was

calculated self-consistently. To ensure that the supercell of

the individual tube used was big enough to ignore intercell

interaction, the relaxation runs were performed with a hex-

agonal and a cubic lattice similar to the methodology

employed in [10].

Calculations pertinent to SWNT bundles require that an

equilibrium intertube spacing be found in order to capture

quantum coupling effects properly. This was done by first

relaxing all the individual unit cells using the method

described earlier. We use the relaxed unit cell and adjust

the lattice parameter such that total energy of the system is

minimized. SWNT lattices are experimentally known to be

hexagonal hence only such lattice geometries were con-

sidered for them. Our calculations used the Von Barth-Car

ultrasoft pseudopotentials (USPP) [11] with Perdew Zun-

ger [12] exchange and correlation (local density approxi-

mation (LDA) paradigm). The use of USPPs reduces the

overall computation workload significantly, and we were

able to obtain numerical convergence with a relatively

small energy cutoff when compared to those required by

norm conserving pseudopotentials (NCPPs). The simula-

tion parameters for the relaxation runs are tabulated below

(see Table 1). A small Gaussian smearing was also applied

to ensure that the integration of the SCF energy over the

Brillouin zone converged. This is necessary as the systems

are expected to be metallic. SCF Convergence threshold

was set to 1 9 10-6 Ry. Brillouin zone integration for the

relaxation runs was carried out on a 4 9 4 9 4 k-point

Monkhorst pack (MP) grid [13] comprised of 32 k-points

Table 1 Simulation parameters used in relaxation calculations

Pseudopotential Von Barth Car USPP-PZ

Kinetic energy cutoff 40 Ry.

Charge density cutoff 160 Ry.

Charge mixing b 0.3

Smearing Gaussian (0.02 Ry.)
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within the first Brillouin zone taking into account sym-

metry operations. All the nanotube bundles considered in

this study relaxed to a mean intertube separation of 3.2 Å.

Our studies have included a variety of nanotube systems

with diameters ranging from 5 to 12 nm. We have per-

formed calculations for single walled tubes and bundles

that constitute of these individual tubes. The calculations

for SCF were done with a denser K-point mesh compared

to that used for the structural relaxation runs. For the

nanotube bundles, an 8 9 8 9 8 MP grid and a 50–80 Ry.

kinetic energy cutoff was found sufficient for numerical

convergence of total energy. Other than that, all other

simulation parameters were similar to that in Table 1. Band

structure calculations for the single walled tubes were

performed using 20 linearly spaced k-points along the z-

direction of the tube i.e. 0� k~z\p=a0 for armchair tubes

and 0� k~z\p=
ffiffiffi

3
p

a0 for zigzag tubes, for armchair tubes

and for zigzag tubes, where a0 = 2.47 Å is the lattice

constant of Graphene.

Results and Discussion

Single Walled Carbon Nanotubes

In this section we pay attention to results drawn for an

isolated single walled carbon nanotube. Quantum capaci-

tance results are presented for four armchair and three

zigzag tubes in Table 2. The diameter of these tubes

ranging from 5 to 12 nm. The results were all derived from

dispersion relations calculated using the methodology

described in the previous section. In general, there is a very

weak variation of Cq with respect to chirality of the tube.

Zigzag tubes exhibited much higher quantum capacitance

compared to the armchair varieties. The reason for this can

be explained on the basis of the number of states contrib-

uting at the Dirac point. An armchair (m, m) tube has two

sub-bands crossing the Fermi energy Ef at k~z ¼ 2p=3a

(Fig. 2a) within the irreducible Brillouin zone. Hence, we

take g = 2 when calculating Cq. For zigzag (m, 0) tubes,

we take g = 4 since the conduction and valence bands

cross-meet (Fig. 2b) at k~z ¼ 0 and each of these bands are

doubly degenerate. The Cq values are presented for the

metallic conduction sub-band only where the density of

states (and hence Cq) is a constant for all single walled

nanotubes. This is a good assumption because the first Van

Hove singularity in the electronic density of states occurs at

about 0.7 eV away from the Fermi level for all tubes,

which is essentially the limits of the voltages we are

interested in operating the nanowires for most electronic

applications. Table 2 also includes values for the Luttinger

interaction parameter ‘g’ calculated for the individual tubes

in a microstrip configuration. The tube is assumed to be

immersed in a lossless dielectric of er = 3.9, 50 nm above

a perfectly conducting ground plane. The parameter g can

be calculated as

g ¼ 1 þ 2gCq

Ces

� ��1=2

ð7Þ

Here, Ces is the electrostatic capacitance of the system

under consideration. These numbers for the electrostatic

capacitance were drawn from our previous research work

on electrostatic capacitance extraction for different nano-

tube interconnect configurations [14]. We get g to range

between 0.14 and 0.33. Both zigzag tubes show a similar

‘g’ values that were considerably smaller (g = 0.14) than

those for the armchair varieties. Readers must note that ‘g’

values were calculated by linearizing the dispersion curves

near the Fermi levels. The linearizing around the Fermi

level is especially important for the smaller (4,4), (5,5)

tubes in the system for which our calculations show small

band gaps opening up as the result of tube curvature. Our

results compare well with experiments reported by authors

in [15, 16, 17, 18]. An experiment by [18], however, sug-

gests a much smaller observed quantum capacitance value

for one of their metallic specimens. It may be of interest to

note that ‘g’ values indicate faster plasmon propagation

speeds. The propagation velocity is related to ‘g’ as

vp = vf/g. To compare with copper (vf &1.57 9 106 m/s) a

(12,0) tube is predicted to have a plasmon velocity

vp & 6.02 9 106 m/s. This is what would make SWNT-

based interconnects extremely competitive as interconnects

for nanoscale integrated circuits.

Bundled Carbon Nanotubes

Clustering of the carbon nanotubes into crystalline ropes

induces further changes in the electronic dispersion along

the tube axis. The bundles we have considered in this paper

are perfect crystalline nanotube bundles, which are com-

prised of identical single walled nanotube constituents with

an intertube separation of 3.2 Å. The most prominent

Table 2 Quantum capacitances for metallic SWNTs

Type Cq (fF/lm) Luttinger interaction

parameter ‘g’

(4,4) 0.214 0.27

(5,5) 0.221 0.25

(8,8) 0.14 0.33

(9,9) 0.207 0.28

(9,0) 0.388 0.14

(12,0) 0.366 0.14
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feature from the point of view of quantum capacitance is

that the number of states at the Fermi level is significantly

enhanced and is no longer a constant. The simple Eq. (6)

cannot be used to approximate Cq since the density of

states at the Fermi level is no longer a constant. Our cal-

culations show that there is a significant increase in the

density of states around Ef. This results in a much larger in

magnitude compared to single walled tubes. Using the

density of states information, we can approximate quantum

capacitance as

Cq ¼ q2NðEf Þ ð8Þ

where N(E) is the density of states at an energy E. The

results for SWNT bundles are presented in Table 3, which

illustrate the dependence of quantum capacitance on indi-

vidual tube chirality and the computed equilibrium spacing

between the tubes. SWNT bundles exhibit much larger

quantum capacitance per tube when compared to their

constituent nanotubes. To make the comparison with

individual tubes, we calculate a parameter C0
q, which is

nothing but the individual contribution of each tube within

a bundle. This number is nothing but the quantum capac-

itance of the unit cell divided by the mean volume occu-

pied by each constituent nanotube within the bundle. As we

can see the coupling effect is quite pronounced and results

in a much higher density of states at the Fermi level when

compared to that of an individual nanotube. This effect is

illustrated in Fig. 3, which compares the electronic density

of states of a (5,5) nanotube bundle with its constituent

tubes obtained through a plane wave calculation. The

Fermi levels for both systems have been aligned at E = 0.

As mentioned earlier, the density of states in a bundle

within the first sub-band is not a constant unlike an isolated

SWNT.

To identify the source of this enhanced quantum

capacitance, we project the density of states information

onto the s and p orbitals at each lattice site within the unit

cell (see Fig. 4). The local contributions were all summed

up to yield total contributions from each valence orbital. It

was found that all the extra contribution to the state

enhancement came out through intertube interactions

between the px and py orbitals, both of which are out of the

plane of the nanotube’s surface (circumference in the x-y

plane). This corresponds to intertube interactions between

the unhybridized pz orbitals within the Graphene sheet

model of the nanotube. These interactions manifest as

energy states localized in the intertube spacing within the
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Fig. 2 One-dimensional

bandstructure for a (8,8)

armchair carbon nanotube along

the z direction, with 0 \ kz \p/

a0 and a b (12,0) zigzag

nanotube with 0\kz\p=
ffiffiffi

3
p

a0

where a0 = 2.47 Å is the lattice

constant of Graphene. The

Fermi levels for the armchair

and zigzag tubes are at -2.06

and -2.36 eV, respectively,

shown by the dotted lines. The

marker on b indicates

degenerate bands

Table 3 Quantum capacitance for crystalline SWNT bundles

Type Intertube spacing (Å) Cq (nFlm-3) C0
q (fF tube-1lm-1)

(4,4) 3.15 1.228 15.51

(5,5) 3.2 1.175 17.2

(8,8) 3.1 0.569 11.16

(9,9) 3.05 0.376 8.34

(9,0) 3.18 0.819 16.02
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Fig. 3 Density of states comparison of a (5,5) isolated SWNT vs. a

(5,5) SWNT bundle. Note the enhanced density of states at the Fermi

level. The Fermi levels of both plots are centered on 0 eV. This

increased density of states will yield a higher quantum capacitance

per unit volume for a bundle when compared to its constituent

individual tube
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bundle (Fig. 5). The contour plot is a visualization of local

density of states (LDOS) in the vicinity of the Fermi Level

in a (5,5) SWNT bundle along the circumferential plane of

the bundle.

Conclusions

In this paper, we have characterized individual metallic

carbon nanotubes and crystalline nanotube bundles for

their quantum capacitance, to model the high-frequency

transmission line interconnects comprised of these nano-

tubes. We have seen that the quantum capacitance of

individual tubes have a very weak dependence on chirality.

Zigzag tubes owing to the presence of degenerate bands

around the Fermi level exhibit almost twice the quantum

capacitance compared to the armchair varieties. The value

of the Luttinger parameter ‘g’ was estimated between 0.14

and 0.33.

The zigzag varieties exhibit a much smaller interaction

parameter (g = 0.14). Consequently, they have an advan-

tage over armchair tubes and even bulk Copper in terms of

signal propagation delay. When put in a bundle, the elec-

tronic density of states shows a significant increase around

the Fermi level, due to electronic coupling between 2p

orbitals oriented normal to the tube surface, thus markedly

increasing the value of Cq per unit cell when compared to

the constituent nanotube. Bundled nanotubes also show a

poor Cq dependence on the chirality of its constituent tubes.
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