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The next-nearest-neighbor hopping term t ′ determines a magnitude, and, hence, the importance of several
phenomena in graphene that include self-doping due to broken bonds and the Klein tunneling, which in the
presence of t ′, is no longer perfect. Theoretical estimates for t ′ vary widely, whereas a few existing measurements
by using polarization-resolved magnetospectroscopy have found surprisingly large t ′, close to or even exceeding
the highest theoretical values. Here, we report dedicated measurements of the density of states in graphene by
using high-quality capacitance devices. The density of states exhibits a pronounced electron-hole asymmetry that
increases linearly with energy. This behavior yields t ′ ≈ − 0.3 eV ± 15%, in agreement with the high end of
theory estimates. We discuss the role of electron-electron interactions in determining t ′ and overview phenomena,
which can be influenced by such a large value of t ′.

DOI: 10.1103/PhysRevB.88.165427 PACS number(s): 72.80.Vp

The conduction and valence bands of graphene are well
described by a tight-binding model based on the carbon
pz orbitals. The nearest-neighbor term, t ≈ 3 eV gives a
reasonable description of the Dirac cones at low energies,1

with a Fermi velocity vF = (3ta)/(2h̄), where a ≈ 1.4 Å is the
distance between nearest-neighbor carbon atoms. The bands
calculated by assuming only the nearest-neighbor hopping are
electron-hole (e-h) symmetric. By also including next-nearest-
neighbor hopping, the Hamiltonian and the dispersion relation
near the Dirac energy are

H = t
∑

i,j∈n.n.

c+
i cj + t ′

∑
i,j∈n.n.n.

c+
i cj + h.c.

ε�k ≈ −3t ′ ± h̄vF |�k| + 9

4
t ′|�k|2a2 + · · · (1)

The position of the Dirac point is shifted by −3t ′. The
breakdown of e-h symmetry does not significantly change
the electronic properties of the system at long wavelengths.
However, the asymmetry results in a finite dispersion of edge
states and changes the midgap states near a vacancy into a
resonance. Also, in the presence of the asymmetry, extended
defects can lead to self-doping.2–4

Theoretical estimates of the value of t ′ vary.5–7 Detailed
calculations suggest that t ′ depends on interaction effects.6

Experimentally, the parameter has been studied by using
polarization-resolved magnetospectroscopy that reveals a dif-
ference in the energy separation between Landau levels for
electron and hole bands. The first such experiment8 performed
several years ago inferred t ′ ≈ 0.9 eV, but this high value
could not be justified theoretically. However, the early devices
were of low quality (graphene on silicon oxide with carrier
mobility ≈10 000 cm2 V−1 s−1). The recent experiment9 in
high magnetic fields of ∼20 T and using high-quality graphene

on graphite has found |t ′| ≈ 0.4 eV, which is consistent with
theories, but still lies on the high side of the expected range.

I. QUANTUM CAPACITANCE MEASUREMENTS
AND DETERMINATION OF t ′

In this paper, to determine t ′, we have employed capacitance
measurements of graphene encapsulated in hexagonal boron
nitride (hBN). Our devices are schematically shown in the
inset of Fig. 1. They are designed similarly to the graphene
capacitors reported in Ref. 9 but exhibit higher quality and
homogeneity, which are essential for the measurements’
accuracy. Briefly, graphene is deposited on top of atomically
flat hBN, and then another hBN crystal of a small thickness
(15–25 nm) is deposited on top. An evaporated gold film
completes the capacitor and serves as one of its electrode. The
second electrode is graphene. The differential capacitance C

of such devices is measured as a function of voltage bias V

between the two electrodes by using a capacitance bridge.10 C

exhibits a typical value of 0.1–0.3 pF for our devices with an
active area S ≈ 100–200 μm2. Measurements in magnetic
fields reveal the onset of Landau quantization at ≈0.1 T,
which yields a quantum mobility of ≈100 000 cm2 V−1 s−1.
Comparison of this value with quantum mobility measured
on similar encapsulated devices, but with smaller S ≈
10 μm2, indicates that quantum oscillations in large graphene
capacitors underestimate their mobility by a factor of a
few. The disagreement can be explained because quantum
oscillations are smeared not only by scattering but also by
charge inhomogeneity that increases with increasing S.

The measured C consists of geometrical and quantum
capacitance contributions.10,11 The former capacitance CG is
independent on V and can be subtracted as a single fitting
parameter that has a value close to the saturation value

165427-11098-0121/2013/88(16)/165427(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.165427


A. KRETININ et al. PHYSICAL REVIEW B 88, 165427 (2013)

00. 10. 20. 3
0

0.02

0.04

e-
h 

as
ym

m
et

ry
 

Energy (eV)
-4- 2024
0

2

4

6

8

Q
ua

nt
um

 c
ap

ac
ita

nc
e 

(p
F

)

Carrier density (1012 cm -2)

150 m2

2 K

(a) (b)

FIG. 1. (Color online) Asymmetry in the DoS of monolayer graphene. (a) Quantum capacitance as a function of n (positive and negative
n refer to electrons and holes, respectively). Dots are the experimental data. The red curve mirrors the average behavior of CQ at positive n to
highlights the e-h asymmetry. Inset: devices’ schematic. The top electrode and the gold contact to graphene are shown in yellow; hBN is in
violet. (b) Asymmetry in the DoS. Blue circles are the experimental data averaged over consecutive energy intervals of 30 meV for the device
in (a). The blue line is the best linear fit. Three red dots are measurements for four similar devices averaged over 100 meV and averaged over
those devices. The bars show statistical errors. Our experimental accuracy is found to be highest around ε = 0.2 eV because the asymmetry
decreases with decreasing ε, whereas the accuracy of measuring CQ also decreases with increasing ε because the geometrical capacitance start
dominating C at high n.

of C(V ) at high V .9 The resulting quantum capacitance
CQ = Se2dn/dμ can then be replotted as a function of carrier
concentration n rather than V, where e is the electron charge,
μ the chemical potential, and, for noninteracting electrons,
dn
dμ

= N (εF ) is the density of states (DoS) at the Fermi energy.
Let us emphasize that for graphene devices with a thin gate
dielectric, the usual approximation n ∝ V is no longer valid
because C becomes a function V and changes by a factor
of 2 for our typical devices at liquid-helium temperature. To
this end, we have determined n by numerically integrating
the experimentally measured C(V ) over V . For further details
about our experimental devices, procedures, and data analysis,
we refer to the earlier reports.10,11

Figure 1(a) shows CQ(n) for one of our devices. The
quantum capacitance varies as 4Se2√|n|/hvF , that is, ap-
proximately ∝|εF | (h is Planck’s constant), yielding the Fermi
velocity vF (n) of about 1 × 106 m/s. For |n| below a few 1011

cm−2, vF shows a pronounced peak, increasing by a factor of 2,
in good agreement with the previous measurements of many-
body renormalization of the Dirac spectrum.10,12 In this paper,
we focus on e-h asymmetry, which is practically indiscernible
within our experimental accuracy in the previously studied
regime of low n but becomes notable at higher n. The red curve
in Fig. 1(a) emphasizes this asymmetry. It is clear that the DoS
for electrons N+ is notably higher than that for holes N−, and
the difference increases with n. Figure 1(b) plots this difference
�N = N+ − N−, normalized to the average DoS, 〈N〉 =
(N+ + N−)/2. It is instructive to present �N as a function
of the electron and hole energy ε rather than n. In the first
approximation, ε can be calculated as εF = h̄vF

√
n|/π , which

assumes a constant vF . We can also avoid this assumption by
using the expression εF = eV − e2nS/CG.9 Both approaches
yield behavior that is practically indistinguishable over our
range of n and presented in Fig. 1(b). It shows that, within

the experimental error, five capacitor devices studied in our
paper exhibit the same values of �N, proving reliability of the
results.

One can also see that the data in Fig. 1(b) can be fit by
the linear dependence �N/N = α × ε expected theoretically
(see below). According to the tight-binding model, α is given
by ≈6t ′/t2. If we assume t ≈ 3 eV, Fig. 1(b) yields |t ′/t | ≈ 0.1
or t ′≈− 0.3 eV, with statistical accuracy of ± 10%. However,
t itself has not been accurately defined (|t | ≈ 2.7 eV has also
been suggested in the literature), and this reduces the accuracy
of determining t ′ to ±15%. This value is three times lower than
t ′ suggested in the early graphene work8 and somewhat lower
than ≈0.4 eV reported recently8 (no accuracy was specified in
the latter work).

A. General features of the bands near the Dirac point

The symmetry of the Brillouin zone of the honeycomb
lattice severely constrains the form of the dispersion relation
of the graphene π band near the K and K ′ points. In the
following, we neglect the spin-orbit coupling. Then, the band
dispersion at long wavelengths is isotropic and contains a linear
and a quadratic contribution

εk ≈ ε0 ± a|k| + bk2 + · · · (2)

This dispersion can be identified term by term with the
tight-binding expansion in Eq. (1). The periodicity of the π

bands also implies that a set of localized Wannier functions
can be defined, from which the dispersion relation in Eq. (2)
can be extracted using effective tight-binding parameters.
If the π bands do not overlap with other bands with the
same symmetries, the Wannier functions are exponentially
localized, and the tight-binding parameters decay with the
distance between sites. Hence, one can rigorously identify the
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parameters in Eq. (2) with effective tight-binding parameters,
although they do not need be directly related to the atomic pz

orbitals. As far as the low energy, long wavelength properties
are concerned, an effective tight-binding model contains the
same information as a band Hamiltonian with the dispersion
in Eq. (2).

In an interacting system, the quasiparticles near the
chemical potential are still well defined, and their dispersion
relation is given by Eq. (2). The effect of the interactions
can be included into a self-energy correction. The self-energy
for graphene must be consistent with Eq. (2), except for
logarithmic corrections (see the following).

The self-energy of an interacting system also has an imagi-
nary part, which describes the finite lifetime of quasiparticles
away from the chemical potential. In principle, quasiparticles
are no longer well defined at energies sufficiently far from
the chemical potential, and interaction effects can prevent
a precise definition of Wannier functions, which require a
knowledge of the π bands at high energies. Even if this is
the case, the equivalence between Eqs. (1) and (2) implies that
the bands of graphene near the Dirac energy can be described
by a tight-binding model.

Hence, when interactions are taken into account, a tight-
binding description of the electronic Hamiltonian of graphene
can be considered an effective model, which approximates
accurately the properties of the system at low energies and long
wavelengths. The range of validity of the model is of the order
of the bandwidth of the π band, that is, a few electron volts.

B. Effect of interactions on e-h symmetry

The long-range part of the Coulomb interaction modifies the
quasiparticle dispersion near the Dirac energy.12,13 This effect
can be formulated as the generation by the interaction of a self-
energy, which has a contribution that depends logarithmically
on the ratio between the high momentum cutoff of the model
and the quasiparticle momentum13

δεk ≈ δ1εk + δ2εk + · · ·
≈ ± e2

4ε0
k log

(
�

k

)
+ O

(
k2

�

)
+ · · · (3)

where k is the momentum, � ≈ a−1 the high k cutoff in the
model, ε0 the dielectric constant of the environment, and the
signs in the first term refer to the conduction and valence
bands. A k-independent constant, proportional to e2�/ε0, has
been omitted in Eq. (3). In renormalization group language, the
terms left out in Eq. (2) are irrelevant, and they can be neglected
in the limit k/� → 0. In a condensed matter model, however,
the ratio k/� is typically finite, and irrelevant terms give a
finite, nonsingular contribution. If we describe the interactions
in terms of the bare Coulomb potential, vq = (2πe2)/(ε0q) and
estimate the self-energy by using the first-order perturbation
theory, on dimensional grounds, we obtain12

δ2εk = c
e2k2

ε0�
≈ t̄(ka)2, (4)

as the only available parameters are e2/ε0, �, and k. In Eq. (4)
c is a numerical coefficient, and t̄ is a parameter with dimension
of energy.

Alternatively, we can use the Hartree-Fock approximation
to estimate the self-energy. By using the Coulomb potential
described previously and the wave functions derived from the
Dirac approximation to the electronic bands, the self-energy
can be written as14

δεHF
k = − e2

4πε0

∫ �

0
k′dk′

∫ 2π

0
dθ

1 ± cos θ√
k2 + k′2 − 2kk′ cos θ

,

(5)

where the two signs in the integral correspond to the valence
and conduction bands. This expression can be expanded in
powers of �:

δεHF
k ≈ −e2�

2ε0
± e2

4ε0
k log

(
�

k

)
− e2k2

8πε0�
+ · · · (6)

The leading k-dependent term gives the logarithmic correction
to the self-energy as per Eq. (3), whereas the next term has the
same form as Eq. (3).

Both approaches mentioned previously suggest that a self-
energy term, which depends quadratically on momentum k,
can arise from electron-electron interactions, namely, from
high-k exchange processes. It is determined by the short-range
features of the interaction and the continuum approach used
previously, that this cannot be expected to be numerically
accurate. Unlike the logarithmic correction to the Fermi
velocity, this term is not affected by the screening properties
of the environment. Using the above formulas, we can
estimate an effective next-nearest-neighbor hopping term t ′
as ≈e2/(18ε0�a2). For e2/vF ≈ 2 and ε0 ≈ 2, we obtain
t ′ ≈ −|t |/12. This estimate is close to the value of t ′ found
experimentally.

C. Influence of a large t ′ on graphene’s properties

1. Defect states near the neutrality point

In neutral graphene, there can exist localized states that
appear due to defects such as edges,15–19 vacancies,3 and
other confinement effects.4,20 For t ′ = 0, the wave functions
associated with these states are finite only on one of the
graphene sublattices; therefore, the states appear exactly at
zero energy. These wave functions are also solutions of the
local tight-binding equations when t ′ �= 0 (see Appendix A).
However, a finite value of t ′ modifies the boundary conditions
and shifts the localized states from the Dirac point so that they
become resonances with a finite decay width.

For the case of a vacancy, its state is shifted from zero energy
ε by a value of the order of �ε ∝ 3t ′/[log(R/a)]3/2, where R

is a long-distance cutoff comparable to the size of a graphene
device (see Appendix A). In practice, charge accumulation at
the sites nearest to the vacancy shifts the resonance back to zero
ε, so the site graphene remains neutral away from the vacancy.
The smallness of the shift induced by t ′ is consistent with the
experimental observation of sharp vacancy resonances.21

For a generic graphene edge of length L, which also gives
rise to localized states, we expect that their number is a
fraction of L/a, and their decay lengths range between L

and a. Therefore, �ε due to a finite value of t ′ should vary
between t ′(a/L) and t ′. The additional DoS associated with
graphene edges then changes from a delta function at zero ε to
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D(ε) ∼ (L/a)/t ′ within the energy interval 0 � ε � t ′. The
resonant states at vacancy or edge sites result in uncompen-
sated spins, which should also exhibit e-h asymmetry. To
compensate the spins requires a shift of the chemical potential
of at least ∼t ′, in agreement with the recent experiment.22

Self-doping at the edges is expected to result in charge
accumulation,2 which reduces the tendency towards the for-
mation of uncompensated spins.4,19

2. Thermal self-doping

At a finite temperature T , the broken e-h symmetry due
to t ′ induces different amounts of electrons and holes and,
therefore, induces some doping at finite temperatures. The
DoS is given by

D(ε) ≈ 8ε

9πt2a2
− 8t ′ε2

3πt3a2
+ · · · (7)

and, after some algebra, one can find the thermally induced
DoS

n(T ) ≈ 8Z(3)t ′

πt4a2
(kBT )3 ≈ 3.06

t ′(kBT )3

t4a2
, (8)

where Z(3) is Riemann’s Zeta function. For T = 300 K,
we expect thermally induced electron doping at a level of
≈1.2 × 109 cm−2, which can probably be observed in dedi-
cated experiments.

3. Changes in Landau level structure

In low magnetic fields, where a continuum model is
valid, the correction to the wave functions of the Landau
levels in monolayer graphene induced by t ′ can be calculated
analytically; see Appendix B. Their energies are shifted by a
term proportional to the magnetic field

εn ≈

⎧⎪⎨
⎪⎩

9a2t ′
4
2

B

n = 0

9a2t ′
2
2

B

n ±
√

2nv2
F


2
B

+ (
9a2t ′
4
2

B

)2
n �= 0

, (9)

where 
−1
B = √|eB|/h̄ is the magnetic length (see Refs. 8

and 23). The energies εn are measured with respect to the
energy of the Dirac point. Note that the energy of the n = 0
Landau level acquires a dependence on the magnetic field.
This state is localized in a single sublattice, as for t ′ = 0.

The situation is more complicated in bilayer graphene,
where the low-energy spectrum consists of four inequivalent
Dirac points within each valley, which appear due to trigonal
warping. At zero interlayer bias and very low B such that

B  a(t2/t⊥t3), numerous Landau levels emerge from this set
of Dirac cones, where t⊥ ≈ 0.4 eV is the interlayer hopping
and t3 gives the magnitude of trigonal warping.24 There is
one isotropic Dirac cone at k = 0 and three anisotropic cones
at k = 2t⊥t3/(3t2a). In the absence of next-nearest-neighbor
hopping, the four Dirac cones lead to eight n = 0 Landau
levels per valley. A finite value of t ′ changes the degeneracy
of the four Dirac points into a singlet and a triplet. The
energy difference between them is t ′(t⊥t3/t2)2. The Fermi
velocity of the bilayer Dirac cones is of the order of t ′a;
therefore, the energy splitting induced by t ′ can be resolved
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FIG. 2. (Color online) Dispersion of edge states for zero Landau
level in bilayer graphene. B = 25 T; t ′ = 0.4 eV. The momentum of
the state has been converted into the position of the guiding center.

if 
B  a(t2t ′/t⊥t2
3 )2. For realistic parameters, this regime is

reached in B of the order of a few millitesla.
On the other hand, the trigonal warping can be neglected

at sufficiently high magnetic fields, 
B � a(t2/t⊥t3). In this
case, there appears an eightfold degenerate Landau level near
zero energy.24,25 The degenerate set involves wave functions
that correspond to the n = 1 Landau level of the electron gas,
and a finite t ′ shifts their energy so that the eight levels are
split into two quadruplets. The energy difference between the
two subsets, to the lowest order in t ′ or B, is

�ε0 ≈ 81t ′t2a2

8t2
⊥
4

B

. (10)

This effect increases as B2. The splitting of the bulk Landau
levels gives an avoided crossing at the edge of a sample, as
shown in Fig. 2.

The splitting between n = 0 Landau levels induced by
t ′ is, however, much smaller than the splitting induced by
electron-electron interactions. The latter is of the order of
e2/(ε0
B).26–30

4. Influence of e-h asymmetry on Klein tunneling

The next-nearest-neighbor term t ′ changes the boundary
conditions at interfaces, and the transmission through a
ballistic p-n junction at the normal incidence becomes less
than unity.31 In a continuum model, the matching conditions at
the p-n junction require the presence of evanescent waves with
an inverse decay length λ ≈ t/(t ′a) ≈ 10a−1. This estimate
implies that calculations of Klein tunneling in the presence of
t ′ require numerical calculations using a discrete model.

The full calculation shown in Fig. 3 necessitates the
inclusion of two evanescent waves in the classical forbidden
region, a situation reminiscent of Klein tunneling through p-n
junctions in bilayer graphene.31,32 One can see that the effect
of a finite t ′ is relatively small for realistic values of t ′ and even
in the case of high barriers. The new evanescent waves have
decay lengths much shorter than the lattice spacing and cannot
induce major changes, either in the abrupt31 or adiabatic33

barrier limit.

5. Optical absorption in the presence of e-h asymmetry

Light absorption is determined by optical conductivity of
graphene, which depends on the velocity-velocity correlations
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FIG. 3. (Color online) Transmission through a p-n junction in monolayer graphene as a function of incident angle. The chemical potentials
on the left and right sides are − 0.8 and 0.8 eV (see the insets). The red and blue (dashed) curves correspond to t ′ = 0.01 eV (effectively, zero
t ′) and t ′ = 0.3 eV. Left: abrupt barrier with a width of 2 Å. Right: smooth, 100-nm-wide barrier. The barrier shapes used in the modeling are
shown in the insets.

at finite frequencies and small wave vectors k.34 A finite t ′
modifies the velocity operator that in the continuum limit
becomes

v̂F (�k) ≡ vF �σ + 9t ′a2

2
�k
(

1 0

0 1

)
, (11)

where the velocity is expressed as an operator in the sublattice
basis. The conductivity for �k → 0 becomes

σ = e2

h

2

π

v2
F

ω

∫
kdkδ

(
ω − εc

k + εv
k

)
= e2

h

2

π

v2
F

ω

∫
kdkδ(ω − 2vF k) = e2

h̄
, (12)

where εc
k and εv

k refer to the conduction and valence band.
The contribution from t ′ to each quasiparticle energy vanishes
when the difference is computed in Eq. (12); therefore, t ′
does not induce any change in the optical conductivity at any
frequency for the asymmetric conical spectrum. This result
explains the excellent agreement between the experimentally
found σ ≈ e2

h̄
at visible frequencies and the simple theory

that did not take into account the e-h asymmetry.35 Similarly,
t ′ does not change the energy difference between the saddle

points of the pz bands located at the M points of the Brillouin
zone, although optical transitions between these states can be
influenced by interactions within the e-h pair created by the
photon.36,37

6. Plasmons

Changes in the Fermi velocity due to t ′ lead to changes in
the plasmon dispersion described by

hωp(q) =
√

2e2hvF (kF )kF q

ε0
, (13)

where vF (kF ) ≈ 3ta/(2h) ± 9t ′a2kF /(2h) and the different
signs correspond to electrons and holes. Accordingly, the
dependence of ωp on n changes, and the plasmon frequencies
become somewhat different for electrons and holes at the same
density n.

7. Electronic susceptibility, magnetic impurities, and
Ruderman-Kittel-Kasuya-Yosida interactions

For brevity, we consider here charge and spin susceptibili-
ties at the neutrality point. For t ′ �= 0, the charge susceptibility
is

χρ(q) = q

π2vF

∫ 2π

0
dθ

∫ �/q

0

(
1 − k2 − 1/4√

(k2 + 1/4)2 − k2 cos θ2

)

× kdk√
k2 + 1/4 + k cos θ +

√
k2 + 1/4 − k cos θ + (9t ′a2kq cos θ )/(4vF )

. (14)

For t ′ = 0, this expression gives χρ(q) = q/(4vF ). From
Eq. (13), it is clear that the deviations induced by t ′ become im-
portant for q � vF /t ′a2, which is larger than �. A numerical
integration of Eq. (14), setting � = ∞, is shown in Fig. 4.

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions
between fixed magnetic moments at different sites in the
graphene lattice can be obtained from the Fourier transform
of the charge susceptibility.38,39 The factor in parenthesis
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FIG. 4. (Color online) Static charge susceptibility of graphene for
t ′ = 0 (red, dashed) and for t ′ = 0.4 eV (blue, full).

in Eq. (1) has to be replaced by 1 for the interaction
between moments at sites in the same sublattice, and by
−(k2 − 1/4)/

√
(k2 + 1/4)2 − k2 cos θ2 for sites in different

sublattices. As for t ′ = 0, the RKKY interaction is ferromag-
netic for spins in the same sublattice and antiferromagnetic
for sites in different sublattices. In both cases, the interaction
decays as R−3, where R is the distance between spins.

Finally, the formation of magnetic moments and the Kondo
effect is sensitive to the hybridization between magnetic
impurities and the graphene bands. This hybridization depends
essentially on high-energy features of the band structure, such
as the position of the van Hove singularities,39 which are
affected by the value of t ′. As a result, the concentration
dependence of the Kondo temperature should exhibit a strong
e-h asymmetry, even for relatively small t ′, as follows from
calculations for Co on graphene.40

8. Multilayer graphene

Bilayer and Bernal-stacked graphene exhibit parabolic
bands at low energies with a dispersion relation εk ≈
(hvF k)2/t⊥. The parameter t ′ induces another quadratic term
in Eq. (1), however, which has a smaller magnitude. For the
case of rhombohedral or ABC-stacked graphene, the simplest
approximation gives a low-energy band with the dispersion re-
lation εk ≈ (hvF k)N/tN−1

⊥ , where N is the number of layers.41

The inclusion of the interlayer hopping term γ4 ≈ 0.04 eV
modifies this dispersion,42 which becomes, to the lowest
order, εk ≈ 3hvF γ4ak2/t⊥. For the found large t ′ ≈ 0.3 eV,
the contribution arising from Eq. (1) is comparable to the
leading effect of interlayer coupling.

9. Effects of strain on next-nearest-neighbor hopping

Lattice deformations modify the tight-binding parameters
and the hybridization between orbitals, leading to changes in
the electronic structure.43 The t ′ term leads to the appearance
of a scalar potential if the graphene layer is curved.44 In-plane
strains change the interatomic distances and can also modify
the value of t ′. As a result, a different scalar potential is induced

V (�r) = −3t ′β ′[uxx(�r) + uyy(�r)], (15)

where β ′ = a′
t ′

∂t ′
∂a′ , a′ is the distance between next-nearest-

neighbor atoms, and uij is the strain tensor. There is a
significant uncertainty regarding the scalar potential induced
by strains.45–47 For t < 0, we find a prefactor in Eq. (13) of

approximately 4 eV, which is consistent with the calculations
in Ref. 46.

10. Other effects of finite t ′

When studying localization phenomena in graphene with
different kinds of disorder, the chiral symmetry intimately
related to the e-h symmetry leads to important consequences
determining the choice of the universality class.48 Even
relatively weak violation of these symmetries may in principle
lead to important consequences, especially in the regime of
low conductivity, that is, in the vicinity of the neutrality
point.39 Furthermore, the e-h symmetry or its absence can
be crucial for nonlinear optics phenomena in graphene such
as second-harmonic generation in the presence of valley
polarization.49

II. CONCLUSION

Capacitance measurements reported here yield the next-
nearest-neighbor hopping in graphene t ′ ≈ −0.3 eV, which is
close to the upper bound of theoretical estimates.50 The sign
and value of t ′ are consistent with estimates for the contribution
from electron-electron interactions to the quasiparticle self-
energy, expanding beyond the lowest-order approximation.

The t ′ term breaks the symmetry between electrons and
holes as seen directly in the measured DoS in graphene.
However, this asymmetry leads to relatively weak effects in
the optical properties of graphene, its electronic transport, and
plasmonics. The effect of t ′ on other low-energy phenomena,
such as spin transport, is also expected to be negligible.
Nonetheless, the additional hopping can induce nontrivial self-
doping effects. In particular, resonances near lattice defects
become shifted from zero energy, giving rise to bands of
quasilocalized states with an energy width of t ′. The hopping
term is also expected to modify strongly the band structure
of graphene multilayers with rhombohedral stacking. The
dependence of t ′ on lattice deformations is consistent with
estimates for the changes in chemical potential induced by
strain.

Finally, let us note that e-h symmetry breaking terms,
similar to t ′ considered here, can be expected near secondary
Dirac points induced by superlattices51–53 and in artificially
engineered Dirac systems.54,55
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APPENDIX A

1. Structure of the wave function of localized states
at the Dirac energy

In the absence of nearest-neighbor hopping, t ′ = 0, the
localized states that might exist in graphene at the Dirac energy
have amplitude in one sublattice only.
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A1
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A4

A5 A6

A0

FIG. 5. (Color online) Notation used for the amplitudes of states
at the Dirac energy.

For t ′ �= 0, localized states can still be defined at the Dirac
energy, εD = −3t ′, which are also defined in one sublattice
only. Following the notation in Fig. 5, the amplitudes at the
sites in the blue sublattice satisfy, for t ′ = 0,

t(A0 + A1 + A2) = 0,

t(A0 + A3 + A4) = 0, (A1)

t(A0 + A5 + A6) = 0,

so

t ′(A1 + A2 + A3 + A4 + A5 + A6) = −3t ′A0, (A2)

which is the new tight-binding equation induced when t ′ �= 0
and the energy is that of the Dirac point, εD = −3t ′.

2. Resonance near a vacancy

Equation (A1) is not satisfied in the neighborhood of a
vacancy. Instead, we obtain (see notations in Fig. 6):

A1 = A2 = A3 = A

3 (A3)
A1 + A2 + A3 = A �= 0,

and, as a result,

t ′(B1 + B2 + B3 + A2 + A3 + B9) = 0. (A4)

This equation is the tight-binding equation associated with
a shift of the energy at site A1 by �εA1 = 9t ′/A. Similar
equations can be written for sites A2 and A3. The constant
A fixes the normalization of the wave function, |A|2 ∝
1/ log(R/a), where R is a long distance cutoff comparable
to the dimensions of the graphene flake and a is a length of
order of the interatomic distance.

The previous analysis shows that a quasilocalized state near
a vacancy at the Dirac energy can be defined, for t ′ �= 0, if
the three sites around the vacancy are shifted by an energy
�ε ∝ 9t ′/

√
log(R/a), the case when �ε = 0 can be seen as a

weak perturbation. Then, for �ε = 0, we expect a resonance

A1A2

A3

B1

B2B3B4

B5

B6

B7 B8

B9

A

FIG. 6. (Color online) Notation used for the amplitudes at the
sites around a vacancy.

shifted from the Dirac energy by �ε ∝ 3t ′|A|2/√log(R/a) ∝
3t ′/[log(R/a)]3/2.

A similar analysis can be extended to localized states near
a zigzag edge, and one obtains the results presented in Ref. 14.

APPENDIX B

1. Influence of t ′ on the Landau levels in monolayer graphene

In the continuum limit, we can use a basis of Landau levels
defined in a given sublattice:

�An ≡
( |n〉

0

)
(B1)

�Bn ≡
(

0

|n〉
)

.

The Hamiltonian for a given corner of the Brillouin zone is

H =
⎛
⎝ 9a2t ′

2
2
B

(
b†b + 1

2

) √
2vF


B
b

√
2vF


B
b† 9a2t ′

2
2
B

(
b†b + 1

2

)
⎞
⎠ , (B2)

where b†|n〉 = √
n + 1|n + 1〉. The wave function for a given

Landau level of energy εn and n �= 0 can be written as

�n ≡ αn

( |n − 1〉
0

)
+ βn

(
0

|n〉
)

, (B3)

with⎛
⎝ 9a2t ′

2
2
B

(
n − 1

2

) √
2vF


B

√
n

√
2vF


B

√
n 9a2t ′

2
2
B

(
n + 1

2

)
⎞
⎠ (

αn

βn

)
= εn

(
αn

βn

)
. (B4)

Expressions for εn are given in Eq. (8). Note that, for t ′ = 0
and n �= 0, we have αn = ±βn = ±1/

√
2. The wave function

for the Landau level with n = 0 is

�0 ≡
(

0
|0〉

)
. (B5)
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This expression is unchanged by t ′. The velocity operator,
needed for the calculation of the strength of optical transitions,
becomes

v̂x ≡ vF

(
0 1
1 0

)
+ 9

√
2t ′a2

2h̄
B

(
b†+b

2 0

0 b†+b
2

)
, (B6)

v̂y ≡ vF

(
0 −i

i 0

)
+ 9

√
2t ′a2

2h̄
B

(
b†−b

2i
0

0 b†−b
2i

)
. (B7)

The strength of optical transitions between states n

and n′ = ±(n + 1) is proportional to factors of order
|±vF αnβ

∗
n′ + 9

√
2t ′a2

2h̄
B
(αnαn′

√
n′ ± βnβn′

√
n′ + 1)|2.
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