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Quantum capacitance mediated carbon nanotube
optomechanics
Stefan Blien1, Patrick Steger1, Niklas Hüttner 1, Richard Graaf1 & Andreas K. Hüttel 1,2✉

Cavity optomechanics allows the characterization of a vibration mode, its cooling and

quantum manipulation using electromagnetic fields. Regarding nanomechanical as well as

electronic properties, single wall carbon nanotubes are a prototypical experimental system.

At cryogenic temperatures, as high quality factor vibrational resonators, they display strong

interaction between motion and single-electron tunneling. Here, we demonstrate large

optomechanical coupling of a suspended carbon nanotube quantum dot and a microwave

cavity, amplified by several orders of magnitude via the nonlinearity of Coulomb blockade.

From an optomechanically induced transparency (OMIT) experiment, we obtain a single

photon coupling of up to g0 = 2π ⋅ 95 Hz. This indicates that normal mode splitting and full

optomechanical control of the carbon nanotube vibration in the quantum limit is reachable in

the near future. Mechanical manipulation and characterization via the microwave field can be

complemented by the manifold physics of quantum-confined single electron devices.
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T
he technically challenging integration of suspended single-
wall cabon nanotubes into complex qantum devices has
recently made significant advances1–6, as has also the

integration of nanotube quantum dots into coplanar microwave
cavities7–9. Both regarding their nanomechanical10,11 as well as
their electronic properties12,13, carbon nanotubes are a proto-
typical experimental system. However, small vibrational deflec-
tion and length have made their optomechanical coupling to
microwave fields14 so far impossible.

In this work, we demonstrate large optomechanical coupling of
a suspended carbon nanotube quantum dot and a microwave
cavity. The nanotube is deposited onto source and drain elec-
trodes close to the coplanar waveguide cavity; a finger-like
extension of the cavity center conductor, passing below the sus-
pended nanotube, serves as capacitively coupling gate. We find
that the optomechanical coupling of the transversal nanotube
vibration and the cavity mode is amplified by several orders of
magnitude via the inherent nonlinearity of Coulomb blockade.
With this, full optomechanical control of the carbon nanotube
vibration in the quantum limit15 is reachable in the near future. A
unique experimental system becomes accessible, where the
nanomechanically active part directly incorporates a quantum-
confined electron system16.

Results
Device precharacterization. Our device, depicted in Fig. 1a,
combines a half-wavelength coplanar microwave cavity with a
suspended carbon nanotube quantum dot. Near the coupling
capacitor, the center conductor of the niobium-based cavity is
connected to a thin gate electrode, buried between source and
drain contacts of the carbon nanotube, see the sketch of Fig. 1b.
At the cavity center, i.e., the location of the voltage node of its
fundamental mode, a bias connection allows additional applica-
tion of a dc voltage Vg to the gate. The device is mounted at the
base temperature stage (T ≃ 10mK) of a dilution refrigerator; for
details see Supplementary Note 4 and Supplementary Fig. 4.

At cryogenic temperatures, electronic transport through
the carbon nanotube is dominated by Coulomb blockade, with
the typical behavior of a small band gap nanotube12. Near the
electronic band gap, sharp Coulomb oscillations of conductance
can be resolved; measurements are shown in Fig. 1c and
Supplementary Fig. 3. A well-known method to detect the
transversal vibration resonance of a suspended nanotube
quantum dot is to apply a rf signal and measure the time-
averaged dc current17–19. On resonance, the oscillating geometric
capacitance, effectively broadening the Coulomb oscillations,
leads to an easily recognizable change in current. This was used to
identify the transversal vibration resonances of the device; Fig. 1d
plots the resonance frequencies over a wide gate voltage range.
Two coupled vibration modes are observed (see also Supplemen-
tary Note 5), one of which clearly displays electrostatic
softening20,21. At low gate voltages, ∣Vg∣ ≤ 1.2 V, where subse-
quent experiments are carried out, the resonance which we will
utilize in the following is at ωm ≃ 2π ⋅ 502.5 MHz, with typical
quality factors around or exceeding Qm ~ 104 observed in time-
averaged dc current detection17.

The combined suspended nanotube—cavity device forms a
dispersively coupled optomechanical system14. The cavity has a
resonance frequency of ωc= 2π ⋅ 5.74 GHz with a decay rate of κc
= 2π ⋅ 11.6 MHz, dominated by internal losses. Nevertheless, due
to the large mechanical resonance frequency ωm of the carbon
nanotube, the coupled system is far in the resolved sideband
regime ωm≫ κc, the most promising parameter region for a large
number of optomechanical protocols including ground state
cooling and quantum control.

Optomechanically induced transparency (OMIT). To probe for
optomechanical coupling, we perform an OMIT type experi-
ment22, cf. Fig. 2a, b: a strong, red-detuned drive field (ωd≃ ωc−

ωm) pumps the microwave cavity; the transmission of a weak,
superimposed probe signal ωp near ωc is detected. A distinct,
sharp OMIT absorption feature within the transmission
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Fig. 1 Integrating a suspended carbon nanotube into a microwave cavity. a Optical micrograph showing a niobium-based λ/2 coplanar waveguide cavity

for transmission measurement, with carbon nanotube deposition areas and dc contact structures (see the red dashed squares) near the coupling

capacitors. For fabrication redundancy, two deposition areas exist on the device, but only one is used here. Bond wires visible as dark lines connect different

segments of the ground plane to avoid spurious resonances. b Simplified sketch of the nanotube deposition area, including source and drain electrodes, a

carbon nanotube deposited on them, and the buried gate connected to the cavity center conductor. c dc transport characterization of the carbon nanotube

at Tbase ≃ 10 mK. The plot of the absolute value of currrent Ij j as function of gate voltage Vg and bias voltage Vsd displays the typical diamond-shaped

Coulomb blockade regions of suppressed conductance12,40,41. d Using rf excitation with an antenna and dc measurement17,18, two transversal vibration

modes can be traced across a large gate voltage range; the figure plots the detected resonance frequencies. The corresponding raw data as well as a fit can

be found in Supplementary Figs. 6 and 7.
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resonance of the cavity becomes visible in the measurements of
Fig. 2c–e. It occurs due to destructive interference of the probe
field with optomechanically upconverted photons of the drive
field, when the two-photon resonance condition ωp− ωd= ωm is
fulfilled22, and shifts in frequency as expected when ωd is detuned
from the precise red sideband condition, see Fig. 2d, e. Fitting the
OMIT feature allows to extract the optomechanical coupling
parameter g ¼ ffiffiffiffiffi

nc
p ð∂ωc=∂xÞxzpf , describing the cavity detuning

per displacement of the mechanical harmonic oscillator14,22,
see Supplementary Note 9 for details. Surprisingly, from Fig. 2c,
one obtains a single-photon coupling on the order of g0 ¼
g=

ffiffiffiffiffi

nc
p � 2π � 100 Hz.
Such a value of g0 strongly exceeds expectations from the

device geometry23. For a mechanical oscillator dispersively
coupled to a coplanar waveguide resonator, the coupling is given
by

g0 ¼
ωc

2Cc

∂Cc

∂x
xzpf ; ð1Þ

where Cc is the total capacitance of the cavity, x is the mechan-
ical displacement, and xzpf the mechanical zero-point fluctua-
tion length scale. Assuming a metallic wire over a metallic
plane and inserting device parameters23, the coupling calculated
from the change in geometric gate capacitance Cg(x) becomes
∂Cg/∂x ~10−12 Fm−1. This leads to g�0 ¼ 2π � 2:9 mHz, more
than four orders of magnitude smaller than the measured g0. To

explain this discrepancy, we need to focus on the properties of the
carbon nanotube as a quantum dot, with a strongly varying
quantum capacitance CCNT(x) as the displacement-dependent
component of Cc dominating g0.

Figure 2f depicts OMIT measurements for similar parameters
as in Fig. 2c–e, however, we now keep the drive frequency ωd

constant and vary the gate voltage Vg across a Coulomb
oscillation of conductance. The mechanical resonance frequency
ωm shifts to lower frequencies in the vicinity of the charge
degeneracy point. This electrostatic softening is a well-known
characteristic of suspended carbon nanotube quantum dots18,24.
More interestingly, the resulting gate-dependent coupling g(Vg)
(along with g0(Vg)) is plotted in Fig. 2g. It is maximal at the edges
of the finite conductance peak, whereas at its center and on the
outer edges, the coupling vanishes; the enhancement of g0 is
intrinsically related to Coulomb blockade.

Mechanism of enhanced coupling. Figure 3 explores the nature
of this enhanced coupling mechanism. We treat the nanotube as a
single quantum dot; see Supplementary Note 3 for a discussion of
the validity of this assumption. Further, we assume a full
separation of time scales ωm≪ ωc≪ Γ, where Γ describes the
tunnel rates of the quantum dot. We can then introduce the
quantum capacitance25,26

CCNT ¼ e
Cg

Cdot

∂hNi
∂Vg

; ð2Þ
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Fig. 2 Optomechanically induced transparency (OMIT) in the Coulomb blockade regime. a Frequency scheme and b detection setup of an OMIT

measurement. A strong drive signal at ωd=ωc−ωm pumps the microwave cavity; the cavity transmission near the cavity resonance ωc is characterized

using a superimposed weak probe signal ωp from a vector network analyzer (VNA). Device parameters are: ωc≃ 2π ⋅ 5.74 GHz, κc= 2π ⋅ 11.6MHz, ωm≃

2π ⋅ 502.5 MHz. c–e Probe signal power transmission jS21ðωpÞj2 for three different choices of cavity drive frequency ωd, at ωd=ωc−ωm (c) and slightly

detuned (d, e). The gate voltage Vg=−1.1855 V is fixed on the flank of a sharp Coulomb oscillation of conductance; Vsd= 0. f Probe signal transmission as

in c–e, now for a fixed cavity drive frequency ωd= 2π ⋅ 5.23989 GHz and varied gate voltage Vg across a Coulomb oscillation. The depth of the OMIT

feature allows the evaluation of the optomechanical coupling g(Vg) at each gate voltage value. g Optomechanical coupling g(Vg) (left axis) and

corresponding single photon coupling g0ðVgÞ ¼ gðVgÞ=
ffiffiffiffiffi

nc
p

(right axis), extracted from the data of f; nc= 67,500. Error bars indicate the standard error of

the fit result.
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where Nh iðVgÞ is the number of charge carriers (here holes) on

the quantum dot averaged over the tunneling events, and Cdot is
the total quantum dot capacitance; see Supplementary Note 12
for a derivation. In a quantum dot, each Coulomb oscillation
corresponds to the addition of one electron or hole. The charge
occupation Nh iðVgÞ resembles a step function, with the sharpness

of the step given for zero bias voltage by lifetime and temperature
broadening. This is plotted in Fig. 3a, for the limit of kBT≪ Γ.
The quantum capacitance CCNT(Vg) becomes a Lorentzian, as
plotted in Fig. 3b.

Any motion δx modulates the geometric capacitance Cg(x).
It thus shifts the position of the Coulomb oscillations in
gate voltage, acting equivalent to an effective modulation of
the gate voltage δVg. With this, the optomechanical coupling g,
scaling with ∂CCNT=∂xj j, becomes proportional to the derivative
∂CCNT/∂Vg and thus the second derivative of Nh iðVgÞ, as is

illustrated in Fig. 3c. The functional dependence has been fitted to
the data points of Fig. 2g, here again shown in the background.

The three key situations depending on the gate voltage are
sketched in Fig. 3d–f: away from the conductance peak, the
charge on the nanotube is constant, and only geometric
capacitances change, see Fig. 3d. On the flank of the conductance

resonance, a small change δx (∝δCg) strongly modulates CCNT,
see Fig. 3e. At the center of the conductance resonance, the charge
adapts to x, but the derivative ∂CCNT/∂Vg and with it g ∝ |∂CCNT/
∂x| is approximately zero.

The detailed derivation and the full expressions and values
for Fig. 3 can be found in the Supplementary Information, Sup-
plementary Note 12, and Supplementary Table 1. The parameter
entering the optomechanical coupling in Eq. (1), the derivative of
the quantum capacitance ∂CCNT/∂x, is found to be

∂CCNT

∂x
¼ η

∂Cg

∂x
¼ e

∂
2 Nh i
∂V2

g

Vg

Cdot

∂Cg

∂x
; ð3Þ

indicating that for significant optomechanical coupling a sharp
Coulomb oscillation (i.e., low temperature and low intrinsic line
width Γ, leading to large values of ∂2 Nh i=∂V2

g) and a large Vg

are required. From device data, we obtain an amplification factor
η ~ 104. The experimental gate voltage dependence g0(Vg) is
qualitatively reproduced very well. To obtain the quantitative
agreement of Fig. 3c, we have introduced an additional scaling
prefactor as free fit parameter, resulting in g

exp
0 =gth0 ¼ 5:77. Given

the uncertainties of input parameters, this is a good agreement;
see Supplementary Note 15 for a discussion of error sources.

Discussion
In literature, many approaches have been pursued to enhance
optomechanical coupling26–35. Resonant coupling, with ωm= ωc,
has been demonstrated successfully for a carbon nanotube
quantum dot26, but does not provide access to the wide set of
experimental protocols developed for the usual case of dispersive
coupling and the “good cavity limit” ωm≫ κc. The mechanism
presented here is most closely related to those where a super-
conducting charge qubit was coherently introduced between
mechanical resonator and cavity27. However, the impact of single
electron tunneling and shot noise on the optomechanical system
shall require careful analysis.

Given the sizeable coupling in the good cavity limit κc≪ ωm,
many experimental techniques for future experiments are at
hand. First steps are demonstrated in Fig. 4 in a two-tone spec-
troscopy experiment: a mechanical drive signal ωa is applied
simultaneously to a cavity pump signal at ωd= ωc− ωa; the
plotted cavity output power at ωc clearly shows the optmechanical
upconversion (anti-Stokes scattering) at mechanical resonance
ωa= ωm. In Fig. 4a, the dc bias across the nanotube is set to zero,
and the antenna drive kept at a minimum. In Fig. 4b, both
antenna drive and bias voltage have been increased. A back-
ground signal independent of device parameters emerges; at the
same time, the upconverted signal displays a phase shift and
destructive interference with the background for parts of the gate
voltage range, meriting further measurements and analysis.

Future improvements of the optomechanical coupling via drive
power and device geometry and of the detection sensitivity via the
output amplifier chain shall allow detection of the thermal
motion of the carbon nanotube and subsequently motion
amplitude calibration.

The observation of strong optomechanical coupling and the
corresponding normal mode splitting requires a coupling g
exceeding both mechanichal linewidth κm and cavity line
width κc. Clean carbon nanotubes have reached mechanical
quality factors up to36 Qm ~ 106, allowing for two orders of
magnitude improvement and a line width of κm ~ 2π · 500 Hz.
Regarding microwave resonators we have reached up to Qc= 105

in our setup so far, corresponding to κc= 2π · 57 kHz. This means
that strong coupling should be reachable already at moderate
increase of our so far rather low cavity photon number nc.
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Regarding the cooperativity C= 0.0042 of our experiment (cf.
Supplementary Table 1), already an improvement of the nano-
tube Qm by a factor 100 brings it into the same order of mag-
nitude as the thermal mode occupation nm= 0.4, with significant
further and independent room for improvement via the cavity
photon number nc.

With this, a wide range of physical phenomena becomes
experimentally accessible, ranging from side-band cooling of the
vibration mode and potentially its quantum control37 all the way
to real-time observation of its interaction with single electron
tunneling phenomena38.

Data availability
The datasets generated during and/or analyzed during this study are available from the
corresponding author on reasonable request.
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