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Quantum capacity analysis of multi-level amplitude
damping channels
Stefano Chessa 1✉ & Vittorio Giovannetti1

Evaluating capacities of quantum channels is the first purpose of quantum Shannon theory,

but in most cases the task proves to be very hard. Here, we introduce the set of Multi-level

Amplitude Damping quantum channels as a generalization of the standard qubit Amplitude

Damping Channel to quantum systems of finite dimension d. In the special case of d= 3, by

exploiting degradability, data-processing inequalities, and channel isomorphism, we compute

the associated quantum and private classical capacities for a rather wide class of maps,

extending the set of models whose capacity can be computed known so far. We proceed then

to the evaluation of the entanglement assisted quantum and classical capacities.
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T
he main goal of quantum information and communication
theory is to understand how can we store, process, and
transfer information in a reliable way and, from the phy-

sical point of view, to individuate realistic platforms by means of
which performing these tasks. All this is done by exploiting the
characteristic features of quantum mechanics. Focusing on
quantum communication, every communication protocol can be
seen as a physical system (the encoded message) undergoing
some physical transformation that translates it in space or time.
Any real-world application though suffers from some kind of
noise, each of which can be in turn described as a quantum
process or equivalently as a quantum channel. Following the work
of Shannon1 and the later quantum generalizations, the ability of
a quantum channel to preserve the encoded classical or quantum
information is described by its capacities2,3. In the classical case,
we can only transfer classical information, hence we only need to
deal with the classical capacity. In the quantum framework, we
can also transfer quantum states and consequently, in addition to
the classical capacity, we count also the quantum capacity.
Moreover, the family of capacities associated with a quantum
channel can be enlarged assuming the communicating parties to
be able to perform specific tasks or to share further resources such
as, for instance, entanglement2,4–8.

One among the simplest models for quantum noise is given by
the amplitude damping channel (ADC). While the ADC has been
thoroughly studied and characterized, in terms of capacities in
various settings, for the qubit framework9–12, a general treatise for
qudit (d-dimensional) systems is still missing and likely not
possible to attain. Because of these reasons ADC for d > 2 has to
be approached case by case, and the literature regarding capacities
of fixed finite dimensions ADC is still remarkably short12–14. In
recent years though higher dimensional systems have attracted
the attention of a growing number of researchers, since they have
been shown to provide potential advantages both in terms of
computation (see e.g. refs. 15–20) and communication or error
correction (see e.g. refs. 21–24) together with the fact that more
experimental implementations have been progressively made
available (see e.g. refs. 25–32). Both near-term and long-term
applications of quantum information, whether in a computational
(e.g. distributed quantum computing) or communication (e.g.
long-distance quantum communication) framework, will neces-
sitate high-fidelity quantum state transmission to achieve reliable
and advantageous purposes. This drives the need of an extensive
characterization of communications performances in all available
noise regimes and most general noise models. In addition to these
considerations, new results on the quantum capacity of finite
dimensional channels can also be applied to higher dimensional
maps via the partially coherent direct sum (PCDS) channels
approach33, placing in a wider context the efforts dedicated to the
analysis of non-qubit channels. Among non-qubit systems, three-
dimensional systems (qutrit) have received particular attention
because of their relative accessibility both theoretically and
experimentally (see e.g. refs. 34–43).

Considering this, in this paper we focus on the model for
quantum noise given by the ADC in the multi-level setting, that
we will denote as multi-level amplitude damping (MAD) channel.
In particular, we perform a systematic analysis of the MAD on the
qutrit space: while we will not approach the issue of the classical
capacity of the channel, we will focus on the quantum capacity,
private classical capacity, and entanglement-assisted capacities,
trying to understand in which conditions these quantities can be
known. We find that the quantum and private classical capacities
are exactly computable in large regions of the damping para-
meters space, even when the qutrit MAD are not degradable.
When an exact value is missing, we are still able to provide upper
bounds exploiting composition rules and data-processing

inequalities. Finally we compute the quantum and classical
entanglement-assisted capacities.

Results and discussion
MAD channels and composition rules. The transformations we
focus on in the present work are special instances of the multi-
level versions of the qubit ADC9, hereafter indicated as MAD
channels in brief, which effectively describe the decaying of
energy levels of a d-dimensional quantum system A. In its most
general form, given ij if gi¼0;���;d�1 an orthonormal basis of the

Hilbert space HA associated with A (hereafter dubbed the com-
putational basis of the problem), a MAD channel D is a com-
pletely positive trace preserving (CPTP) mapping2,4–8 acting on
the set LðHAÞ of linear operators of the system, defined by the
following set of d(d− 1)/2+ 1 Kraus operators

K̂ ij �
ffiffiffiffiffi

γji
p

ij i jh j; 8i; j s:t: 0≤ i≤ d � 1;

K̂0 � 0j i 0h j þ
X

1≤ j≤ d�1

ffiffiffiffiffiffiffiffiffiffiffiffi

1� ξj

q

jj i jh j ; ð1Þ

with γji real quantities describing the decay rate from the j-th to
the i-th level that fulfill the conditions

0≤ γji ≤ 1; 8i; j s:t: 0≤ i<j≤ d � 1;

ξj �
P

0≤ i < j γji ≤ 1; 8j ¼ 1; � � � ; d � 1:

(

ð2Þ

Accordingly, given ρ̂ 2 SðHAÞ a generic density matrix of the
system A, the MAD channel D will transform it into the output
state defined as

Dðρ̂Þ ¼ K̂0ρ̂K̂
y
0 þ

X

0≤ i < j≤ d�1

K̂ ijρ̂K̂
y
ij ;

¼ K̂0ρ̂K̂
y
0 þ

X

0≤ i < j≤ d�1

γji ij i ih j jh jρ̂ jj i:
ð3Þ

By construction, D always admits the ground state 0j i as a fixed
point, i.e. Dð 0j i 0h jÞ ¼ 0j i 0h j, even though, depending on the
specific values of the coefficients γji, other input states may fulfill
the same property as well. Limit cases are γji= 0 ∀ i, j, where all
levels are untouched and D reduces to the noiseless identity
channel Id which preserves all the input states of A. On the
opposite extreme are those examples in which for some j we have
ξj= 1, corresponding to the scenario where the j-th level becomes
totally depopulated at the end of the transformation. The maps in
Eq. (3) provide also a natural playground to describe PCDS
channels33. Last but not the least, an important and easy to verify
property of the maps in Eq. (3) is that they are covariant under

the group formed by the unitary transformations Û which are
diagonal in the computational basis ij if gi¼0;���;d�1, i.e.

DðÛ ρ̂Û
yÞ ¼ ÛDðρ̂ÞÛy

; ð4Þ

for all inputs ρ̂.
For what concerns the present work, we shall restrict our

analysis to the special set of MAD channels as in Eq. (3)
associated with a qutrit system (d= 3) whose decay processes,
pictured in the top panel of Fig. 1, are fully characterized by only
three rate parameters γji that for the ease of notation we rename
with the cartesian components of a 3D vector γ!� ðγ1; γ2; γ3Þ.
Accordingly, expressed in terms of the matrix representation
induced by the computational basis 0j i; 1j i; 2j if g, the Kraus

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00524-4

2 COMMUNICATIONS PHYSICS |            (2021) 4:22 | https://doi.org/10.1038/s42005-021-00524-4 | www.nature.com/commsphys

www.nature.com/commsphys


operators in Eq. (1) write explicitly as

K̂0 ¼
1 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

0

B

@

1

C

A
; K̂01 ¼

0
ffiffiffiffiffi

γ1
p

0

0 0 0

0 0 0

0

B

@

1

C

A
;

K̂12 ¼
0 0 0

0 0
ffiffiffiffiffi

γ2
p

0 0 0

0

B

@

1

C

A
; K̂03 ¼

0 0
ffiffiffiffiffi

γ3
p

0 0 0

0 0 0

0

B

@

1

C

A
;

ð5Þ

with CPTP conditions from Eq. (2) given by

0≤ γj ≤ 1; 8j ¼ 1; 2; 3;

γ2 þ γ3 ≤ 1;

�

ð6Þ

which produce the volume visualized in the bottom panel of
Fig. 1.

The resulting mapping as in Eq. (3) for the channel Dðγ1;γ2;γ3Þ
reduces, hence, to the following expression

D γ!ðρ̂Þ ¼
ρ00 þ γ1ρ11 þ γ3ρ22

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ02
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ�01 ð1� γ1Þρ11 þ γ2ρ22
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ�02
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ�12 ð1� γ2 � γ3Þρ22

0

B

B

@

1

C

C

A

;

ð7Þ
while the associated complementary CPTP transformation2,4–6

computed as in Eq. (67) of “Methods”, for generic choices of the
system parameters, transforms A into a four-dimensional state
via the mapping

~D γ!ðρ̂Þ ¼

ρ00 þ ð1� γ1Þρ11 þ ð1� γ2 � γ3Þρ22
ffiffiffiffiffi

γ1
p

ρ01
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ffiffiffiffiffi

γ2
p

ρ12
ffiffiffiffiffi

γ3
p

ρ02
ffiffiffiffiffi

γ1
p

ρ�01 γ1ρ11 0
ffiffiffiffiffi

γ1
p ffiffiffiffiffi

γ3
p

ρ12
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ffiffiffiffiffi

γ2
p

ρ�12 0 γ2ρ22 0
ffiffiffiffiffi

γ3
p

ρ�02
ffiffiffiffiffi

γ1
p ffiffiffiffiffi

γ3
p

ρ�12 0 γ3ρ22

0

B

B

B

B

@

1

C

C

C

C

A

;

ð8Þ

where for i, j∈ 0, 1, 2, ρij � ih jρ̂ jj i are the matrix entries of the

input density operator ρ̂ 2 SðHAÞ.

Quantum and private classical capacities for qutrit MAD. The
quantum capacity Q(Φ) of a quantum channel Φ is a measure of
how faithfully quantum states can be transmitted from the input
to the output of the associated CPTP map by exploiting proper
encoding and decoding procedures that act on multiple trans-
mission stages2,4–8. The private classical capacity Cp instead
quantifies the amount of classical information transmittable per
channel use under the extra requirement that the entire signaling
process allows the communicating parties to be protected by
eavesdropping by an adversary agent that is controlling the
communication line. The explicit evaluation of these important
functionals is one of the most elusive task of quantum informa-
tion theory, as testified by the limited number of examples which
allow for an explicit solution. A closed expression for the quan-
tum capacity is provided by the formula44–46

QðΦÞ ¼ lim
n!1

QðnÞðΦÞ=n; ð9Þ

QðnÞðΦÞ � max
ρ̂ðnÞ2SðH�nÞ

JðΦ�n; ρ̂ðnÞÞ; ð10Þ

where the maximization in Eq. (10) is performed over the set of
density matrices of n channel uses, and J is the coherent infor-
mation

JðΦ�n; ρ̂ðnÞÞ � SðΦ�nðρ̂ðnÞÞÞ � Sð~Φ�nðρ̂ðnÞÞÞ; ð11Þ
with Sðρ̂Þ � �Tr½ρ̂ log 2ρ̂� the von Neumann entropy of the state

ρ̂, and ~Φ the complementary channel of Φ, see “Methods”—
Complementary channels and degradability. For the private
classical capacity instead, we have46,47:

CpðΦÞ ¼ lim
n!1

CðnÞ
p ðΦÞ=n; ð12Þ

CðnÞ
p ðΦÞ � max

En

ðχðΦ�n; EnÞ � χð~Φ�n
; EnÞÞ; ð13Þ

where the maximization is now performed over all quantum

ensembles En � pi; ρ̂
ðnÞ
i

n o

of n channel uses, and where

χðΦ�n; EnÞ � S Φ�n
X

i

piρ̂
ðnÞ
i

 ! !

�
X

i

piS Φ�n ρ̂
ðnÞ
i

� �� �

ð14Þ
is the Holevo information functional. The difficulties related to
the evaluation of the above formulas are well known and ulti-
mately the reason underlying our efforts here. An exception to
this predicament is given by degradable48 and antidegradable49

channels. Degradable channels are those for which exists a CPTP

map N s.t. ~Φ ¼ N �Φ, while antidegradable channels are those
for which exists a CPTP map M s.t. Φ ¼ M� ~Φ; for more
details, see “Methods”—Complementary channels and degrad-
ability. For degradable channels, Q and Cp result to be additive, so
the regularization over n in Eq. (9) is not needed, leading to the
following single-letter formula50

CpðΦÞ ¼ QðΦÞ ¼ Qð1ÞðΦÞ: ð15Þ
For antidegradable channels instead, due to a no-cloning

argument Q= 0 while, from expression in Eq. (13), positivity of
private classical capacities and data processing, we have Cp= 0.
So no maximizations are needed.

Building up from these premises, here we present a thoughtful
characterization of the quantum capacity QðD

γ!Þ and the private

classical capacity CpðD γ!Þ of the qutrit MAD channel D γ!

Fig. 1 Qutrit MAD and parameters region. a Schematic representation of

the action of the Multi-level Amplitude Damping (MAD) channel D
γ!

on a

three-level system: arrows indicate the damping processes connecting

different energy levels (black lines), γij are the associated damping

parameters. b The admitted region of the damping parameters space: the

transformation is Completely Positive and Trace Preserving (CPTP) if and

only if the rate vector γ! belongs to the yellow region defined in Eq. (6).
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defined in Eq. (7). We stress that while failing to provide the
explicit solution for all rate vectors γ! in the allowed domain
defined by Eq. (6), in what follows we manage to deliver the exact
values of QðD γ!Þ and CpðD γ!Þ for a quite a large class of qutrit
MAD channels by making use of degradability properties48, data-
processing (or bottleneck) inequalities51,52, and channel iso-
morphism. In particular, we anticipate here that, for those D γ!
which are provably degradable, we shall exploit the covariance
property in Eq. (4) to further simplify the single-letter formula in
Eq. (15) as

QðD γ!Þ ¼ CpðD γ!Þ ¼ max
ρ̂diag

SðD γ!ðρ̂diagÞÞ � Sð~D γ!ðρ̂diagÞÞ
� �

;

ð16Þ

where the maximization is performed on input states of A which
are diagonal in the computational basis of the problem, i.e. the

density matrices of the form ρ̂diag ¼
P2

i¼0 pi ij i ih j with p0, p1, p2∈

[0, 1] being usually called “populations” and fulfilling the
normalization constraint p0+ p1+ p2= 1, see “Methods”, Eq.
(82), and below for details. Notably, when applicable, Eq. (16)
relies on an optimization of a functional of only d− 1 real
variables in the case of a qudit MAD and consequently just two
real variables in the case of a qutrit MAD (namely the
populations p0 and p1), which can be easily carried out (at least
numerically).

To begin with, observe that, as anticipated in Eq. (8), the

complementary map ~D γ! of a generic qutrit MAD channel D γ!
sends the input states of A into a four-dimensional “environment
state”. In the end, this is a consequence of the fact that the
(minimal) number of Kraus operators we need to express Eq. (7)
is 4. Unfortunately, this number also ensures us that the channel
is not degradable: it has been indeed shown53 that a necessary
condition for any CPTP map with output dimension 3 to be
degradable is that its associated Choi rank, and consequently the
minimal number of Kraus operators we need to express such
transformation, is at most 3. This brings us to consider some
simplification in the problem, e.g. by fixing some of the values of
the damping parameters. One approach is represented by the
selective suppression of one (or two) of the decaying channels, i.e.
imposing one (or two) of the parameters γi equal to 0 or to their
maximum allowed value, choices that as we shall see, will
effectively allow us to reduce the number of degrees of freedom of
the problem.

Single-decay qutrit MAD channels. We consider here instances of
the qutrit MAD channel in which only one of the three damping
parameters γi is explicitly different from zero, i.e. the maps
Dðγ1;0;0Þ, Dð0;γ2;0Þ, and Dð0;0;γ3Þ associated, respectively, with the

edges DA, DF, and DE of Fig. 1. It is easy to verify that these three
sets of transformations can be mapped into each other via unitary
conjugations that simply permute the energy levels of the system:
for instance Dð0;0;γ3¼γÞ can be transformed into Dðγ1¼γ;0;0Þ by

simply swapping levels 1j i and 2j i. Accordingly, the capacities of
these three sets must coincide, since each channel can be obtained
from the other, i.e.

QðDðγ;0;0ÞÞ ¼ QðDð0;γ;0ÞÞ ¼ QðDð0;0γÞÞ; 8γ 2 ½0; 1�; ð17Þ

(similarly for Cp). By virtue of this fact, without loss of generality,
in the following we report the analysis only for Dðγ1;0;0Þ, being the
results trivially extendable to the remaining two. For this purpose,
we observe that from Eq. (5) it follows that Dðγ1;0;0Þ possesses only

two non-zero Kraus operators, i.e.

K̂0 ¼
1 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

0

0 0 1

0

B

@

1

C

A
K̂01 ¼

0
ffiffiffiffiffi

γ1
p

0

0 0 0

0 0 0

0

B

@

1

C

A
: ð18Þ

Transformation in Eq. (7) is then given by

Dðγ1;0;0Þðρ̂Þ ¼
ρ00 þ γ1ρ11

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ01 ρ02
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ�01 ð1� γ1Þρ11
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ12

ρ�02
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ�12 ρ22

0

B

@

1

C

A
;

ð19Þ
and the complementary channel ~Dðγ1;0;0Þ that can be expressed as

a mapping that connects the system A to a two-dimensional
environmental system E, i.e.

~Dðγ1;0;0Þðρ̂Þ ¼
1� γ1ρ11

ffiffiffiffiffi

γ1
p

ρ01
ffiffiffiffiffi

γ1
p

ρ�01 γ1ρ11

 !

: ð20Þ

By the study of degradability and the techniques discussed in
“Methods” and in Supplementary Note 1, we are able to evaluate
Q and Cp for every γ. The results are summarized in the plot in
Fig. 2.

Fig. 2 Quantum capacity for the single-decay. a Profile of the quantum and

the private classical capacity for the channel Dðγ1 ;0;0Þ
w.r.t. the damping

parameter γ1. For γ1≤ 1/2, the channel is degradable and the reported value

follows from the numerical maximization. For γ > 1/2, instead, the channel is

neither degradable nor antidegradable: here the associated capacity value is

equal to 1. Notice that the reported values respect the monotonicity

property given by Eq. (48). b Populations p0, p1, and p2 of those states that

maximize the quantum capacity formula for the channel Dðγ1 ;0;0Þ
w.r.t. the

damping parameter γ1.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00524-4

4 COMMUNICATIONS PHYSICS |            (2021) 4:22 | https://doi.org/10.1038/s42005-021-00524-4 | www.nature.com/commsphys

www.nature.com/commsphys


Complete damping of the first excited state (γ1= 1). Assume next
that our qutrit MAD channel of Eq. (7) is characterized by the
maximum value of γ1 allowed by CPTP constraint of Eq. (6), i.e.
γ1= 1, region represented by the ABC triangle of Fig. 1. This map
corresponds to the case where the initial population of the first
excited level 1j i gets completely lost in favor of the ground state
0j i of the model so that Eqs. (7) and (8) rewrite as

Dð1;γ2;γ3Þðρ̂Þ ¼
1� ð1� γ3Þρ22 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ02
0 γ2ρ22 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ�02 0 ð1� γ2 � γ3Þρ22

0

B

@

1

C

A
;

ð21Þ

~Dð1;γ2;γ3Þðρ̂Þ ¼

ρ00 þ ð1� γ2 � γ3Þρ22 ρ01 0
ffiffiffiffiffi

γ3
p

ρ02
ρ�01 ρ11 0

ffiffiffiffiffi

γ3
p

ρ12
0 0 γ2ρ22 0
ffiffiffiffiffi

γ3
p

ρ�02
ffiffiffiffiffi

γ3
p

ρ�12 0 γ3ρ22

0

B

B

B

@

1

C

C

C

A

;

ð22Þ
for γ2, γ3∈ [0, 1] such that γ2+ γ3 ≤ 1. The above expressions
make it explicit that, at variance with the case discussed in the
previous section and in agreement with the conclusions of ref. 53,
the map Dð1;γ2;γ3Þ is not degradable. Indeed we notice that while

~Dð1;γ2;γ3Þðρ̂Þ preserves information about the components ρ11, ρ01,

ρ10, ρ12, ρ21 of the input state ρ̂, no trace of those terms is left in
Dð1;γ2;γ3Þðρ̂Þ: accordingly it is technically impossible to identify a

linear (not mentioning CPTP) map N which applied to

Dð1;γ2;γ3Þðρ̂Þ would reproduce ~Dð1;γ2;γ3Þðρ̂Þ for all ρ̂. Despite this

fact, it turns out that also for Dð1;γ2;γ3Þ, the capacity can still be

expressed as the single letter expression in Eq. (16). For the
technical details, we refer the reader to Supplementary Note 2,
where we apply techniques expressed in “Methods”. We report
the results in Fig. 3.

Double-decay qutrit MAD channel with γ2= 0. Here we consider
the value of the capacity for γ! belonging to the square surface
ABED of Fig. 1, identified by the condition γ2= 0. From Eq. (5),
we have that the Kraus operators for the MAD channel Dðγ1;0;γ3Þ
are three:

K̂0 ¼
1 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ3
p

0

B

@

1

C

A
; K̂01 ¼

0
ffiffiffiffiffi

γ1
p

0

0 0 0

0 0 0

0

B

@

1

C

A
;

K̂03 ¼
0 0

ffiffiffiffiffi

γ3
p

0 0 0

0 0 0

0

B

@

1

C

A

ð23Þ
while Eqs. (7) and (8) become

Dðγ1;0;γ3Þðρ̂Þ ¼
ρ00 þ γ1ρ11 þ γ3ρ22

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ01
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ3
p

ρ02
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ�01 ð1� γ1Þρ11
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ3
p

ρ12
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ð24Þ

~Dðγ1;0;γ3Þðρ̂Þ ¼
1� γ1ρ11 � γ3ρ22

ffiffiffiffiffi

γ1
p

ρ01
ffiffiffiffiffi

γ3
p

ρ02
ffiffiffiffiffi

γ1
p

ρ�01 γ1ρ11
ffiffiffiffiffi

γ1
p ffiffiffiffiffi

γ3
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ffiffiffiffiffi
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ffiffiffiffiffi

γ1
p ffiffiffiffiffi

γ3
p
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@
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A
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ð25Þ
As evident from Fig. 2 and from the formal structure of

Eq. (24), for γ2= 0 the model exhibits a symmetry under the

Fig. 3 Quantum and private classical capacity of the channel Dð1;γ2 ;γ3Þ
.

a Values for quantum (Q) and private classical (Cp) capacities (here

they are identical) of the Multi-level Amplitude Damping channel Dð1;γ2 ;γ3Þ

w.r.t. γ2 and γ3—the associated parameter region corresponds to the ABC

triangle of Fig. 1. The gray region represent points where Dð1;γ2 ;γ3Þ
is not

Completely Positive and Trace Preserving (CPTP); the points above the red

line (γ3= (1− γ2)/2) have zero capacity, QðDð1;γ2 ;γ3Þ
Þ ¼ 0. For γ2= 0, the

value of QðDð1;γ2 ;γ3Þ
Þ and CpðDð1;γ2 ;γ3Þ

Þ coincides with the quantum capacity

of a qubit Amplitude Damping channel of transmissivity γ3 (ref.
9) (plot b):

this should be compared with the value of QðDð1;γ2 ;γ3Þ
Þ and the private

classical capacity CpðDð1;γ2 ;γ3Þ
Þ on the other border (i.e. γ3= 0), which we

report in c. Notice finally that the reported values respect the monotonicity

requirement of Eq. (52).
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exchange of γ1 and γ3. Indeed, indicating with V̂ the unitary gate
that swaps levels 2j i and 3j i we have that

Dðγ3;0;γ1Þðρ̂Þ ¼ V̂Dðγ1;0;γ3ÞðV̂ ρ̂V̂
yÞV̂y

; ð26Þ

which by data-processing inequality implies

QðDðγ1;0;γ3ÞÞ ¼ QðDðγ3;0;γ1ÞÞ; ð27Þ

with an analogous identity applying in the case of the private
classical capacity. As reported in Supplementary Note 3, applying
techniques in “Methods”, we produce results showed in Figs. 4
and 5.

The qutrit MAD channel on the γ2+ γ3= 1 plane. Let us now
consider the regime with γ2+ γ3= 1 where rate vectors γ! belong
to the rectangular area BEFC of Fig. 1.

Under this condition, the map in Eq. (7) still admits four Kraus
operators and becomes

Dðγ1;γ2;1�γ2Þðρ̂Þ ¼
ρ00 þ γ1ρ11 þ ð1� γ2Þρ22

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ01 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ1
p

ρ�01 ð1� γ1Þρ11 þ γ2ρ22 0

0 0 0

0

B

@

1

C

A
:

ð28Þ

We notice that the level 2j i gets completely depopulated and that
the channel can be expressed as

Dðγ1;γ2;1�γ2Þ ¼ C � Dγ1
; ð29Þ

where Dγ1
is a standard qubit ADC channel connecting level 1j i

to level 0j i with damping rate γ1, while now C is a CPTP
transformation sending the qutrit A to the qubit system spanned
by vectors 0j i; 1j i and completely erasing the level 2j i, moving its
population in part to 1j i and in part to 0j i, i.e.

Cðρ̂Þ ¼ ρ00 þ ð1� γ2Þρ22 ρ01
ρ10 ρ11 þ γ2ρ22

� �

: ð30Þ

Accordingly, the quantum capacity of Dγ1
computed in ref. 9 is an

explicit upper bound for QðDðγ1;γ2;1�γ2ÞÞ and CpðDðγ1;γ2;1�γ2ÞÞ
(remember that for the qubit ADC Q and Cp coincide). On the
other hand, QðDγ1

Þ is also a lower bound for QðDðγ1;γ2;1�γ2ÞÞ and
CpðDðγ1;γ2;1�γ2ÞÞ as its rate can be achieved by simply using input

states of A that live on the subspace 0j i; 1j if g. Consequently, we
can conclude that the following identity holds true

QðDðγ1;γ2;1�γ2ÞÞ ¼ CpðDðγ1;γ2;1�γ2ÞÞ ¼ QðDγ1
Þ; ð31Þ

as shown in Fig. 6.

Double-decay qutrit MAD channel with γ1= 0. Here we consider
the triangular surface DEF of Fig. 1. From Eq. (1), we have that

Fig. 4 Quantum and private classical capacities of the channel Dðγ1 ;0;γ3Þ
.

Quantum (Q) and private classical (Cp) capacities (here they coincide) for

the channel Dðγ1 ;0;γ3Þ
w.r.t. the damping parameters γ1 and γ3. The damping

parameters region (γ1, 0, γ3) coincides with the square surface ABED of

Fig. 1. Notice that in the region γ1, γ3≤ 1/2 the channel is degradable as in

Eq. (70), while for γ1, γ3 > 1/2 the channel is antidegradable as in Eq. (71), in

the remaining regions are neither degradable nor antidegradable.

Fig. 5 Parameter values corresponding to zero quantum capacity. From

antidegradability, Eq. (71), that implies that the quantum capacity Q= 0,

bottleneck inequality that implies QðM �N Þ � QðN Þ;QðMÞ and

composition rules, as shown in Supplementary Note 3, all points included in

the green region of the plot have zero quantum (and private classical)

capacity.

Fig. 6 Quantum capacity of the channel Dðγ1 ;γ2 ;1�γ2Þ
. Evaluation of the

quantum capacity QðDðγ1 ;γ2 ;1�γ2Þ
Þ w.r.t. the damping parameter γ1, which is

equal to the qubit ADC quantum capacity with damping parameter γ1

(ref. 9). The parameters region (γ1, γ2, 1− γ2) corresponds to the

rectangular region BEFC of Fig. 1): as shown in Eq. (31), the capacity exhibits

no dependence upon the damping parameter γ2 in this case.
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the Kraus operators for the MAD channel Dð0;γ2;γ3Þ are three:

K̂0 ¼
1 0 0

0 0 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

0

B

@

1

C

A
K̂12 ¼

0 0 0

0 0
ffiffiffiffiffi

γ2
p

0 0 0

0

B

@

1

C

A

K̂03 ¼
0 0

ffiffiffiffiffi

γ3
p

0 0 0

0 0 0

0

B

@

1

C

A
:

ð32Þ
The actions of Dð0;γ2;γ3Þ and its complementary counterpart

~Dð0;γ2;γ3Þ on a generic density matrix ρ̂ can hence be described as

Dð0;γ2;γ3Þðρ̂Þ ¼
ρ00 þ γ3ρ22 ρ01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ02

ρ�01 ρ11 þ γ2ρ22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ�02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2 � γ3
p

ρ�12 ð1� γ2 � γ3Þρ22

0

B

@

1

C

A
;

ð33Þ

~Dð0;γ2;γ3Þðρ̂Þ ¼
1� ðγ2 þ γ3Þρ22

ffiffiffiffiffi

γ2
p

ρ12
ffiffiffiffiffi

γ3
p

ρ02
ffiffiffiffiffi

γ2
p

ρ�12 γ2ρ22 0
ffiffiffiffiffi

γ3
p

ρ�02 0 γ3ρ22

0

B

@

1

C

A
; ð34Þ

(notice that in this case, differently of what happens with
Dðγ1;0;γ3Þ, the complementary channel is not an element of the

MAD set). By close inspection of Eq. (33), and as intuitively
suggested by Fig. 1, also these channels exhibit a symmetry

analogous to the one reported in Eq. (26), but this time with V̂
being the swap operation exchanging levels 0j i and 1j i, which
gives us

QðDð0;γ2;γ3ÞÞ ¼ QðDð0;γ3;γ2ÞÞ; ð35Þ
and an analogous identity for the private classical capacity.
Furthermore, as in the case of the single-decay qutrit MAD
channel Dð0;γ2;0Þ, we notice that Dð0;γ2;γ3Þ has a noiseless subspace,

given here by 0j i; 1j if g, and we can establish the following lower
bound:

CpðDð0;γ2;γ3ÞÞ ≥QðDð0;γ2;γ3ÞÞ≥ log 2ð2Þ ¼ 1: ð36Þ
In particular, this tells us that Dð0;γ2;γ3Þ cannot be antidegradable
(the same conclusion can be obtained by noticing that53 the map
~Dðγ2;0;γ3Þ has a kernel that cannot be included into the kernel set

of Dðγ2;0;γ3Þ—e.g. the former contains 0j i 1h j while the latter

does not).
Following the usual approach—see Supplementary Note 4—we

find that Dð0;γ2;γ3Þ is invertible for γ2+ γ3 < 1, and that ~Dð0;γ2;γ3Þ �
D�1

ð0;γ2;γ3Þ is CPTP for γ2 þ γ3 ≤
1
2
, which defines hence the

degradability region for the map. So, invoking Eq. (16) and
the procedures described in “Methods”, we compute there the
quantum capacity.

Via numerical inspection, we are also able to evaluate the
magnitude of Q on the border of the degradability region,
designated by γ2 þ γ3 ¼ 1

2
, showing that here it equals the

lower bound in Eq. (36). This, in addition to the monotonicity in
Eq. (52), allows us to conclude that Q assumes the value 1 over
all the region above the degradability borderline (red curve
of Fig. 7), i.e.

QðDð0;γ2;γ3ÞÞ ¼ CpðDð0;γ2;γ3ÞÞ ¼ 1;

8γ2 þ γ3 ≥ 1=2:
ð37Þ

Double-decay qutrit MAD channel with γ3= 0. Here we consider
the square region CADF of Fig. 1 identified by γ3= 0. From
Eq. (1), we have that the Kraus operators for Dðγ1;γ2;0Þ are three:
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1 0 0
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A
;

ð38Þ
while the actions of Dðγ1;γ2;0Þ and ~Dðγ1;γ2;0Þ on a generic density

matrix ρ̂ are:

Dðγ1;γ2;0Þðρ̂Þ ¼
ρ00 þ γ1ρ11

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð39Þ

~Dðγ1;γ2;0Þðρ̂Þ ¼
1� γ1ρ11 � γ2ρ22
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ð40Þ
At variance with the previous sections, we have that whileDðγ1;γ2;0Þ
is invertible for γ1, γ2 < 1, for no range of these values the appli-

cation ~Dðγ1;γ2;0Þ � D
�1
ðγ1;γ2;0Þ produces a CPTP map. We can hence

conclude that the map is never degradable. About antidegrad-

ability, here also we have that kerf~Dðγ1;γ2;0Þg⊈ kerfDðγ1;γ2;0Þg, so
Dðγ1;γ2;0Þ is also not antidegradable53. As a matter of fact, the only

cases for which we can produce explicit values of QðDðγ1;γ2;0ÞÞ are
the limiting cases where either γ1 or γ2 equals 0 (in these cases, the
map is a single-rate MAD channel discussed in “Results”—(Single-
decay qutrit MAD channels), or 1 where instead findings of

Fig. 7 Quantum and private classical capacity of the channel Dð0;γ2 ;γ3Þ
.

Evaluation of the quantum (Q) and private classical (Cp) capacities, here

they coincide, for Dð0;γ2 ;γ3Þ
w.r.t. the damping parameters γ2 and γ3. The

parameters region (0, γ2, γ3) corresponds to the triangular surface DEF of

Fig. 1. The DEG (degradable) zone below the red curve, γ2 þ γ3 ¼
1
2
, is the

degradability region for the channel: here we compute QðDð0;γ2 ;γ3Þ
Þ solving

numerically the maximization of Supplementary Eq. (40). Above the red

curve, the channel capacity assumes constant value from Eq. (36). Notice

that the quantum capacity exhibits the symmetry as in Eq. (35) and the

monotonicity conditions from Eq. (52). The gray zone indicates the non-

accessible region, since it violates constraints in Eq. (6).
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“Results”—(Complete damping of the first excited state (γ1= 1))
or Results—(The qutrit MAD channel on the γ2+ γ3= 1 plane)
can be applied. For the remaining cases, we resort in presenting a
lower bound for QðDðγ1;γ2;0ÞÞ and CpðDðγ1;γ2;0ÞÞ.

A straightforward approach is to exploit the right-hand-side of
Eq. (16) and run them also outside the degradability region, in
synthesis evaluating the maximum of the coherent information of
Dðγ1;γ2;0Þ on the diagonal sources. Notice that since the map is not

degradable, the coherent information is not necessarily concave
and the restriction to diagonal sources does not even guarantee
that the computed expression corresponds to the true

Qð1ÞðDðγ1;γ2;0ÞÞ functional. Clearly the task can be refined as

much as needed, e.g. by choosing less specific families of states or

by computing QðiÞðDðγ1;γ2;0ÞÞ for i > 1, but these aspects are

beyond the focus of this work and will be considered in future
research. The results we obtain are reported in Fig. 8.

Entanglement-assisted quantum capacity of qutrit MAD
channels. For the sake of completeness, the present section is
devoted to studying the entanglement-assisted quantum capacity
QEðDÞ of MAD CPTP maps which quantifies the amount of
quantum information transmittable per channel use assuming the
communicating parties to share an arbitrary amount of entan-
glement. A closed expression for it has been provided in ref. 54,55

and results in an expression which, in contrast to the quantum
capacity formula, does not need a regularization w.r.t. to the
number of channel uses, i.e.

QEðΦÞ ¼
1

2
max

ρ̂2SðHÞ
IðΦ; ρ̂Þ; ð41Þ

where now

IðΦ; ρ̂Þ � Sðρ̂Þ þ JðΦ; ρ̂Þ
¼ Sðρ̂Þ þ SðΦðρ̂ÞÞ � Sð~Φðρ̂ÞÞ;

ð42Þ

is the quantum mutual information functional. The discussion in
“Methods” about covariance of the channel and the concavity—in
this case of the quantum mutual information—apply also here,
and we can reduce the maximization in Eq. (41) to

QEðDÞ ¼ 1

2
max
ρ̂diag

Sðρ̂diagÞ þ SðDðρ̂diagÞÞ � Sð~Dðρ̂diagÞÞ
n o

; ð43Þ

where ρ̂diag are input density matrices which are diagonal in the

computational basis of the system, see Supplementary Note 5.
The evaluations of QE of the for the single and double-decay
qutrit MAD channels are reported in Figs. 9 and 10. Notice that
also the three-rate qutrit MAD channels QE can be computed but
not easily visualized, hence it is not reported.

Conclusion. We introduce a finite dimensional generalization of
the qubit ADC model which represents one of the most studied
examples of quantum noise in quantum information theory. In
this context, the quantum (and classical private) capacity of a
large class of quantum channels (namely the qutrit MAD chan-
nels) has been explicitly computed, vastly extending the set of
models whose capacity is known: this effort in particular includes
some non-trivial examples of quantum maps which are explicitly
non-degradable (neither antidegradable)—see e.g. the results of
“Methods”—(Double-decay qutrit MAD channel with γ3= 0).
Having also shown the covariance w.r.t. diagonalizing unitaries of
the MAD, follows that, when degradable, the computational
complexity associated with the quantum capacity evaluation
grows only linearly with the dimension. Besides allowing gen-
eralizations to higher dimensional systems (see e.g. ref. 33), the
analysis here presented naturally spawns further research, e.g.
extending it to include other capacity measures, such as the
classical capacity or the two-way quantum capacity52,56. We
finally conclude by noticing that the MAD channel scheme dis-
cussed in the present paper can be also easily adapted to include
generalizations of the (qubit) generalized ADC scheme52, by
allowing reverse damping processes which promote excitations
from lower to higher levels that could mimic, e.g., thermalization
events.

Fig. 8 Lower bound for the quantum and private classical capacities of

the channel Dðγ1 ;γ2 ;0Þ
. Numerical evaluation of a lower bound for the

quantum capacity Q and the private classical capacity Cp, here they

coincide, w.r.t. the damping parameters γ1, γ2. It is obtained by maximizing

the single-use coherent information of the channel over all possible

diagonal inputs. The parameters region (γ1, γ2, 0) corresponds to the CADF

square of Fig. 1. Notice that reported plot does not fulfill the monotonicity

constraint in Eq. (52), hence explicitly proving that the function we present

is certainly not the real capacity of the system.

Fig. 9 Entanglement-assisted quantum capacity for the single-decay

channel. Profile of the entanglement-assisted quantum capacity QE (blue)

of the channel Dðγ1 ;0;0Þ
w.r.t. the damping parameter γ1 (results should be

compared with those of Fig. 2 where we present the quantum capacity

QðDðγ1 ;0;0Þ
Þ (dashed gray)). Notice that also in this case the expression

fulfills the monotonicity constraint in Eq. (48).
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Methods
Composition rules, data-processing, bottleneck inequalities. It is relatively easy
to verify that the set of qutrit MAD channels in Eq. (7) is closed under con-

catenation. Specifically we notice that given D
γ0
! and D

γ00
! with γ00

!¼ ðγ001 ; γ002 ; γ003Þ

and γ0
!¼ ðγ01; γ02; γ03Þ two rate vectors fulfilling the conditions in Eq. (6), we have

D
γ0
! � D

γ00
! ¼ D

γ!; ð44Þ

with γ!¼ ðγ1; γ2; γ3Þ a new rate vector of components

γ1 ¼ γ001 þ γ01 � γ01γ
00
1 ;

γ2 ¼ γ002ð1� γ01 � γ02Þ þ γ02ð1� γ003Þ;
γ3 ¼ γ003 þ γ002ðγ01 � γ03Þ þ γ03ð1� γ003Þ:

8

>

<

>

:

ð45Þ

which also satisfies Eq. (6). The importance of Eq. (44) for the problem we are
facing stems from channel data-processing inequalities (or bottleneck)
inequalities7,51,52, according to which, any information capacity functional Γ (ref. 2)
such as the quantum capacity Q, the classical capacity C, the private classical
capacity Cp, the entanglement-assisted classical capacity CE etc., computed for a
CPTP map Φ ¼ Φ0 �Φ00 obtained by concatenating channel Φ0 with channel Φ″,
must fulfill the following relation

ΓðΦÞ≤ min Γ Φ0ð Þ; Γ Φ00ð Þf g: ð46Þ
Applied to Eq. (44), the above inequality can be used to predict monotonic

behaviors for the capacity ΓðD
γ!Þ as a function of the rate vector γ!, that allows us

to provide useful lower and upper bounds which in some case permit to extend the
capacity formula to domain where other techniques (e.g. degradability analysis)
fail. In particular, we notice that for single-decay MAD channels where only one
component of the rate vector is different from zero (say γ1), we get

Dðγ01 ;0;0Þ � Dðγ001 ;0;0Þ ¼ Dðγ001 ;0;0Þ � Dðγ01 ;0;0Þ ¼ Dðγ1 ;0;0Þ; ð47Þ
with γ1 as in the first identity of Eq. (45). Accordingly, we can conclude that all the
capacities ΓðDðγ1 ;0;0ÞÞ should be non-increasing functionals of the parameter γ1, i.e.

ΓðDðγ1 ;0;0ÞÞ≥ ΓðDðγ0 ;0;0ÞÞ; 8γ1 ≤ γ0; ð48Þ
(the same expressions and conclusions apply also for Dð0;γ2 ;0Þ and Dð0;0;γ3Þ).
Composing two single-decay MAD channels characterized by rate vectors pointing
along different cartesian axis in general can create maps with a resulting vector rate
with a component in the third direction. Specifically from Eq. (44) it follows that,

for an arbitrary choice of the rate vector γ!¼ ðγ1; γ2; γ3Þ in the allowed CPTP
domain, the MAD channel Dðγ1 ;γ2 ;γ3Þ can be expressed as

Dðγ1 ;γ2 ;γ3Þ ¼ Dð0;0;�γ3Þ � Dð0;γ2 ;0Þ � Dðγ1 ;0;0Þ ð49Þ

¼ Dð0;�γ2 ;0Þ � Dð0;0;γ3Þ � Dðγ1 ;0;0Þ; ð50Þ
with

�γ3 �
γ3

1� γ2
; �γ2 �

γ2
1� γ3

; ð51Þ

which because of the constraint in Eq. (6) are properly defined rates. As a direct
consequence of Eqs. (46) and (47), it then follows that the capacities ΓðDðγ1 ;γ2 ;γ3ÞÞ
must be non-increasing functionals of all the cartesian components of rate

vector γ!, i.e.

ΓðDðγ1 ;γ2 ;γ3ÞÞ≥ ΓðDðγ01 ;γ02 ;γ03ÞÞ; 8γ0i ≥ γi; ð52Þ
and must be restricted by the upper bound

ΓðDðγ1 ;γ2 ;γ3ÞÞ≤ min ΓðDðγ1 ;0;0ÞÞ;Dð0;�γ2 ;0Þ
�

;Dð0;0;�γ3Þ
�n o

: ð53Þ

As a further refinement notice that, setting γ2= 0 in Eqs. (49) and (50), we get

Dðγ1 ;0;γ3Þ ¼ Dðγ1 ;0;0Þ � Dð0;0;γ3Þ ¼ Dð0;0;γ3Þ � Dðγ1 ;0;0Þ; ð54Þ
which replaced back into Eq. (50) gives us

Dðγ1 ;γ2 ;γ3Þ ¼ Dð0;�γ2 ;0Þ � Dðγ1 ;0;γ3Þ; ð55Þ
which allows us to replace Eq. (53) with the stronger requirement

ΓðDðγ1 ;γ2 ;γ3ÞÞ≤ min ΓðDð0;�γ2 ;0ÞÞ; ΓðDðγ1 ;0;γ3ÞÞ
n o

: ð56Þ

Similarly by setting γ1= 0, we get

Dð0;γ2 ;γ3Þ ¼ Dð0;0;�γ3Þ � Dð0;γ2 ;0Þ ¼ Dð0;�γ2 ;0Þ � Dð0;0;γ3Þ; ð57Þ
that yields

Dðγ1 ;γ2 ;γ3Þ ¼ Dð0;γ2 ;γ3Þ � Dðγ1 ;0;0Þ; ð58Þ
and

ΓðDðγ1 ;γ2 ;γ3ÞÞ≤ min ΓðDð0;γ2 ;γ3ÞÞ; ΓðDðγ1 ;0;0ÞÞ
n o

: ð59Þ

Finally setting γ3= 0 in Eq. (49), we get

Dðγ1 ;γ2 ;0Þ ¼ Dð0;γ2 ;0Þ � Dðγ1 ;0;0Þ; ð60Þ

Fig. 10 Entanglement-assisted quantum capacity for double-decay

channels. a Entanglement-assisted quantum capacity QE of the channel

Dðγ1 ;γ2 ;0Þ
w.r.t. the damping parameter γ1, γ2, the parameters region (γ1, γ2, 0)

corresponds to the CADF square region of Fig. 1. b Entanglement-assisted

quantum capacity QE of the channel Dðγ1 ;0;γ3Þ
w.r.t. the damping parameter

γ1, γ3, the parameters region (γ1, 0, γ3) corresponds to the ABED region of

Fig. 1. c Entanglement-assisted quantum capacity QE of the channel Dð0;γ2 ;γ3Þ

w.r.t. the damping parameter γ2, γ3, the parameters region (0, γ2, γ3)

corresponds to the DEF region of Fig. 1.
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that leads to

Dðγ1 ;γ2 ;γ3Þ ¼ Dð0;0;�γ3Þ � Dðγ1 ;γ2 ;0Þ; ð61Þ
and

ΓðDðγ1 ;γ2 ;γ3ÞÞ≤ min ΓðDðγ1 ;γ2 ;0ÞÞ;Dð0;0;�γ3Þ

n o

: ð62Þ

Complementary channels and degradability. A CPTP map Φ : LðHAÞ !
LðHBÞ can be seen as the evolution induced by an isometry V̂ : HA ! HB �HE

involving an environment E, called Stinespring dilation57,58. Specifically for all
input states ρA 2 SA we can write

Φðρ̂AÞ ¼ TrE½V̂ ρ̂AV̂
y�: ð63Þ

If instead we trace out the degrees of freedom in B, we obtain the

complementary (or conjugate) channel ~Φ : LðHAÞ ! LðHEÞ, i.e.
~Φðρ̂AÞ ¼ TrB½V̂ ρ̂AV̂

y�: ð64Þ
Being M̂k the Kraus operators generating Φ and kj iE a basis for the

environment, the operator V̂ can be written as:

V̂ ¼
X

k

M̂k � kj iE; ð65Þ

and being

V̂ ρ̂AV̂
y ¼

X

i;j

M̂iρ̂AM̂j

y � ij i jh jE; ð66Þ

it is straightforward to verify that Eq. (64) can be equivalently expressed as

~Φðρ̂AÞ ¼
X

i;j

TrB½M̂iρ̂AM̂j

y� ij i jh jE: ð67Þ

A fact that it is worth mentioning, as it will play a fundamental role in our
analysis, is that59 for a channel Φ that is covariant under a unitary representation
of some group G, i.e.

ΦðÛ A

g ρ̂Û
A y
g Þ ¼ Û

B

g Φðρ̂ÞÛ B y
g ; 8ρ̂ 2 SðHÞ; 8g 2 G; ð68Þ

then also the complementary channel ~Φ is covariant under the same
transformations, i.e.

~ΦðÛ A

g ρ̂Û
A y
g Þ ¼ Û

E

g
~Φðρ̂ÞÛ E y

g ; 8ρ̂ 2 SðHÞ; 8g 2 G; ð69Þ

where for X=A, B, E, Û
X

g is the unitary operator that represents the element g of

the group G in the output space X.
We finally recall the definition of degradable and anti-degradable channels48. A

quantum channel Φ is said degradable if a CPTP map N : LðHBÞ ! LðHEÞ exists
s.t.

~Φ ¼ N �Φ; ð70Þ
while it is said antidegradable if it exists a CPTP map M : LðHEÞ ! LðHBÞ s.t.

Φ ¼ M� ~Φ; ð71Þ
(the symbol “∘” representing channel concatenation). Notice that in case Φ is
mathematically invertible, a simple direct way to determine whether it is
degradable or not is to formally invert Eq. (70) constructing the super-operator
~Φ �Φ�1 and check whether such object is CPTP (e.g. by studying the positivity of
its Choi matrix)60,61, i.e. explicitly

Φ invertible ) Φ degradable iff ~Φ � Φ�1 is CPTP: ð72Þ
Concretely this can be done by using the fact that since quantum channels are

linear maps connecting vector spaces of linear operators, they can in turn being
represented as matrices acting on vector spaces. This through the following
vectorization isomorphism:

ρ̂A ¼
X

ij

ρij ij iA jh j �! ρj ii ¼
X

ij

ρij ij iA � jj iA 2 H�2
A

Φðρ̂AÞ�! M̂Φ ρj ii;
ð73Þ

where now M̂Φ is a d2B ´ d
2
A matrix connecting H�2

A and H�2
B (dA and dB being,

respectively, the dimensions of HA and HB), which given a Kraus set M̂k

	 


k
for Φ

it can be explicitly expressed as

M̂Φ ¼
X

k

M̂k � M̂�
k : ð74Þ

Following Eq. (70), we have, hence, that for a degradable channel the following

identity must apply

M̂ ~Φ ¼ M̂N M̂Φ; ð75Þ
with M̂N the matrix representation of the CPTP connecting channel N , implying

that the super-operator ~Φ �Φ�1 is now represented by matrix M̂ ~ΦM̂
�1

Φ .

Covariance of the channel. Besides allowing for the single-letter simplification in
Eq. (15), another important consequence of the degradability property of Eq. (70)
is the fact that, for channels fulfilling such condition, the coherent information in
Eq. (11) is known to be concave62 with respect to the input state ρ̂, i.e.

J Φ;
X

k

pkρ̂k

 !

≥

X

k

pkJðΦ; ρ̂kÞ; ð76Þ

for all statistical ensemble of input states pk; ρ̂k
	 


. This last inequality allows for

some further drastic simplification in particular when the channel Φ is covariant
under a group of unitary transformations as in Eq. (68). Indeed, thanks to ref. 59

and the invariance of the von Neumann entropy under unitary operations, we can
now observe that

JðΦ; Û
A

g ρ̂Û
A y
g Þ ¼ S ΦðÛ A

g ρ̂Û
A y
g Þ

�

� Sð~ΦðÛ A

g ρ̂Û
A y
g ÞÞ

¼ SðÛ B

g Φðρ̂ÞÛ B y
g Þ � SðÛ E

g
~Φðρ̂ÞÛ E y

g Þ
¼ JðΦ; ρ̂Þ;

ð77Þ

for all input states and for all elements g of the group. Given then a generic input
state ρ̂ of the system, construct the following ensemble of density matrices
fdμðgÞ; ρ̂gg with dμ(g) some properly defined probability distribution on G and

with ρ̂g � Û
A

g ρ̂Û
A y
g . Defining then

ΛG½ρ̂� �
Z

dμg ρ̂g ¼
Z

dμg Û
A

g ρ̂Û
A y
g ; ð78Þ

the average state of fdμðgÞ; ρ̂gg we notice that if Φ is degradable the following

inequality holds true:

JðΦ;ΛG½ρ̂�Þ ≥
Z

dμg JðΦ; Û
A

g ρ̂Û
A y
g Þ ¼ JðΦ; ρ̂Þ; ð79Þ

where in the last passage we used the invariance in Eq. (77). Accordingly, we can
now restrict the maximization in Eq. (9) to only those input states ρ̂G which result
from the averaging operation of Eq. (78), i.e.

QðΦÞ ¼ Qð1ÞðΦÞ ¼ max
ρ̂G

JðΦ; ρ̂GÞ: ð80Þ

For the special case of the MAD channels D introduced in “Methods”—(MAD
channels and composition rules), thanks to Eq. (4) we can identify the group G
with the set of unitary operations which are diagonal in the computational basis
ij if gi¼0;���;d�1 . Taking dμg a flat measure, Eq. (78) allows us to identify ΛG½ρ̂� with

the density matrices of A which are diagonal as well, i.e.

ΛG½ρ̂� ¼ diag½ρ̂�; ð81Þ
and therefore to derive from Eq. (80) the following compact expression:

QðDÞ ¼ Qð1ÞðDÞ ¼ max
ρ̂diag

JðD; ρ̂diagÞ; ð82Þ

which for dC= 3 reduces to Eq. (16) of the main text. For completeness, we
report also an alternative, possibly more explicit way to derive Eq. (82). This is
obtained by observing that a special instance of the unitaries which are diagonal
in the computational basis of a MAD channel and hence fulfill the identity in Eq.
(4), is provided by the subgroup ODðdÞ formed by the operators represented by
the diagonal d × d matrices for which all the non-zero (and diagonal) elements

are ±1. Clearly the identity operator 1̂ is an element of ODðdÞ and the group is
finite with 2d elements. Given then an arbitrary input state ρ̂ of A, construct then

the ensemble pk; ρ̂k
	 


formed by the density matrices ρ̂k � Ôkρ̂Ô
y
k , with Ôk being

the k-th element of ODðdÞ, and by a flat probability set pk= 1/2d. It can be

shown63 that the average state of pk; ρ̂k
	 


is diagonal in the computational basis,

i.e.

1

2d

X

2d�1

k¼0

Ôkρ̂Ô
y
k ¼ diag ðρ̂Þ ; ð83Þ

from which Eq. (82) can once more be derived as a consequence of Eq. (80) for
all degradable D.

Data availability
Data used to produce the figures shown in the manuscript are available from the

corresponding author upon request.
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