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Quantum capacity is properly defined without encodings
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We show that no source encoding is needed in the definition of the capacity of a quantum channel for
carrying quantum information. This allows us to use the coherent information maximized over all sources and
block sizes, but not encodings, to bound the quantum capacity. We perform an explicit calculation of this
maximum coherent information for the quantum erasure channel and apply the bound in order find the erasure
channel’s capacity without relying on an unproven assumption as in an earlier paper.
@S1050-2947~98!00911-1#

PACS number~s!: 03.67.Hk, 03.65.Bz, 89.70.1c
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I. INTRODUCTION

In recent years the field of quantum information theo
has emerged. One of the central issues in this field is
concept of quantum channel capacity. Several papers h
discussed the capacity of noisy quantum channels to c
quantum information@1–6#. Unfortunately, defining and cal
culating the quantum capacity has turned out to be diffic
because of the specific~and sometimes odd! features of
quantum information. Various types of capacities of qua
tum channels have also been defined, such as the capac
a quantum channel to carry classical information@7,8#, the
capacities of quantum channels to carry quantum informa
with the assistance of classical side channels@4#, and a ca-
pacity based on a quantum analog of the Shannon mu
information@9#. Here we will concentrate on just one type
quantum capacity.

Barnum, Nielsen, and Schumacher@5# have given a defi-
nition of quantum capacityQE(x) of a channelx in terms of
the entanglement fidelity and the von Neumann entro
S(r)[2Tr r log2 r of the source’s density matrixr. The
entanglement fidelity of a density matrixr relative to a linear
trace-preserving completely positive mapE @10# is defined as

Fe~r,E!5^hu~I^E!~ uh&^hu!uh&, ~1!

whereuh& is any purification ofr. A purification @11# of any
density matrixr in a Hilbert spaceH is any pure stateuh& in
a tensor product spaceHA^HB such that TrAuh&^hu5r. In
Eq. ~1! the identity operates on the purification spaceHA and
E operates onHB . Note thatFe(r,E) is independent of the
choice of purification@1#.

Definition 1.The entanglement capacityQE of a channel
x is

*Electronic address: hbarnum@hampshire.edu
†Electronic address: smolin@watson.ibm.com
‡Electronic address: terhal@phys.uva.nl
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QE~x![supH q:; e.0,' E,D,r,N:
S~r!

N
5q,

Fe~r,D+x ^ N+E!.12eJ . ~2!

That is, roughly,QE is the highest entropy per use of th
channel that can be sent reliably using block coding. H
the density operatorr is on a block ofN copies of the input
Hilbert space and the encoding and decoding operationE
andD ~which are linear trace-preserving completely positi
maps! act on such block density operators. The definiti
requires that arbitrarily high entanglement fidelities may
achieved, possibly by going to larger and larger block sizeN.
It does not require, however, that arbitrarily high fidelity b
achievable for some fixed block sizeN. It is immediately
apparent from the definition that one may bound this cap
ity below by some constantr ~for rate! by exhibiting a se-
quence ~in N! of source density operators and codin
schemes such that the entropy of the source operators go
r and the entanglement fidelity of the operators under
total operation goes to 1 with largeN. We will say such a
sequence of triplets~r,E,D! achieves the rate r.

The definition ofQE uses the entropy of the sourcer as a
measure of the information that is sent through the chan
rather than the entropy of the output signal (D+x ^ N+E)(r).
One might argue that since capacity is about sending entr
to the channel output one should consider a definitionQout in
which the entropy of the output signal appears in place of
entropy of the inputr as inQE . However, in general, as th
decoding processD need not be unitary~and indeed it canno
be if it is to extract the noise from the output signal! it can
map the signal onto an arbitrarily large Hilbert space and
output entropy can become unboundedly large. This imp
that Qout is not a good measure of the total amount of info
mation that is sent through the channel. The problem is
for any pure state there exist density matrices of high fide
relative to that pure state that have arbitrarily high entro
Consider the density matrix r5(12e)uc&^cu
1(e/n)( i 51

n u i &^ i u with the ui&’s an orthonormal set of vec
3496 ©1998 The American Physical Society
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PRA 58 3497QUANTUM CAPACITY IS PROPERLY DEFINED . . .
tors orthogonal touc&. This density matrix has entrop
H2(e)1e log2 n and fidelity 12e relative to uc& for any e
and anyn. @H2(e)52e log2(e)2(12e)log2(12e8) is the
binary entropy function.#

Another quantity that has been of interest is the cohe
information @1,3#.

Definition 2.The coherent information of a density matr
r and a linear trace-preserving completely positive mapE is

I c~r,E!5S„E~r!…2Senv~r,E!, ~3!

whereSenv(r,E) is the final entropy of an initially pure en
vironment implementingx @10#.

Barnum, Nielsen, and Schumacher@5# have shown that

QE<I max[sup
N

max
r,E

I c~r,x ^ N+E!
N

. ~4!

It has been conjectured@1,3,5# that this bound is an equality
Notice that the definition ofQE includes a supremum ove

encodings. This is required to give a most general definit
of a channel capacity, but it is surprising from a physic
point of view. Any unitary encoding of a source is equivale
to using a different source and since the supremum also
cludes the source, the unitary encoding could be left out.
coherent information, due to the failure of the pipelining i
equality, can increase by using nonunitary encoding~see
@5#!, which suggests the necessity of the supremum o
nonunitary encodings in the capacity definition. However
nonunitary encoding intuitively corresponds to adding no
to the signal, which seems unlikely to improve the quality
the output signal. This illustrates the complexity of the iss
In this paper we resolve this matter by showing that
supremum over encodings can be omitted from the defini
of capacity, though we do not know if the maximization ov
encodings can be omitted fromI max.

Another issue is the continuity of the quantum chan
capacity in the parameters of channelx. It is not known
whetherQE or QP is continuous. It was stated in@6# that the
capacity of the erasure channel isQ5max$0,122p%. This
result was derived by bounding the capacity both from be
and from above with max$0,122p%. The derivation of the
upper bound, however, assumed the capacity to be con
ous as a function ofp, which has not been proved. We wi
use the results in this paper to prove the capacity in an a
native way, thus resolving the continuity question for t
erasure channel. A similar proof of the capacity of the e
sure channel was carried out independently by Cerf@12# us-
ing a different definition of the quantum channel capacity

In this paper we prove the following.
~i! The maximization over encodingsE in the definition of

QE is not necessary. In other words, we find that

QE5QE
no encoding, ~5!

whereQE
no encodingis defined exactly as isQE , except without

the encoding mapE over encodings. See Sec. II.
~ii ! The quantum capacityQE is bounded from above by

the maximum coherent information withoutsource encoding
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QE< lim
N→`

max
r

I c~r,x ^ N!

N
. ~6!

See Sec. III.
~iii ! The quantum capacity of the erasure channel@6# is

given byQE5QP5max$122p,0% as in @6#. See Sec. III.

II. QE IS WELL DEFINED WITHOUT SOURCE
ENCODING

Consider a situation where the sequence of triplets~r,D,E!
achievesQE and theE’s may be nonunitary. We will show
that there exists another sequence of triplet (r8,T+D,I) that
achieves the capacityQE , whereT is an additional decoding
step. We thus replace the nonunitaryencodingby a not-
necessarily-unitarydecoding. We will do this by showing
that for any triplet~r,D,E! with a given entropy and with a
given entanglement fidelity when used with the channelx,
there exists another triplet (r8,T +D,I) whose entropy and
entanglement fidelity are both close to those of the origi
triplet.

A. Preliminaries

We will need the following two lemmas.
Lemma 1.Given two bipartite pure statesuc& and uf& in a

Hilbert spaceH5HA^HB with z^cuf& z2>12e, then

zS~TrAuc&^cu!2S~TrAuf&^fu!z<2Ae log2 d11 ~7!

for all e, 1
36 whered is the dimension ofHB .

Proof.We will use an inequality from Fannes@13# involv-
ing theL1 norm. TheL1 norm of an operatorA, indicated by
iAi, is defined by

iAi[TruAu[TrAA†A. ~8!

We also define the functionh(x)52x log2 x and letr1 ,r2
be density matrices inHB . We than have from@13# ~when
ir12r2i, 1

3 )

uS~r1!2S~r2!u<ir12r2i log2 d1h~ ir12r2i !. ~9!

For our purposes, we may note that forx, 1
3 , h(x)

, log2 3/3,1 and we use the weaker inequality

uS~r1!2S~r2!u< log2 dir12r2i11. ~10!

For two commuting density matricesr1 and r2 we have
ir12r2i5( i ul i

(1)2l i
(2)u, with l i

(1,2) the eigenvalues of
density matricesr1 ,r2 respectively. Since the entropy differ
ence is invariant under independent unitary rotations of e
density matrix,

uS~r1!2S~r2!u< log2 d(
i

ul i
~1!2l i

~2!u11, ~11!

where we have rearranged the eigenvalues in order of siz
is known @14# that

(
i

ul i
~1!2l i

~2!u<2A12B~l~1!,l~2!!, ~12!
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whereB is the Bhattacharyya-Wootters overlap@15#, defined
by

B~l~1!,l~2!![S (
i

Al i
~1!l i

~2!D 2

. ~13!

The fidelity between two density matricesr1 ,r2 can be de-
fined as the maximum inner product between all purificatio
uz1&,uz2& of r1 andr2 :

F~r1 ,r2!5 max
uz1&,uz2&

z^z1uz2& z2. ~14!

Since, given the eigenvalues of two density operators,
fidelity is maximized by choosing their eigenvectors to
the same~assigned to eigenvalues in order of size!

B~l~1!,l~2!!>F~r1 ,r2!. ~15!

Hence

uS~r1!2S~r2!u<2A12F~r1 ,r2! log2 d11 ~16!

when

2A12F~r1 ,r2!, 1
3 ~17!

and by the definition ofF(r1 ,r2) ~which includes a maxi-
mization! we have that

uS~r1!2S~r2!u<2A12 z^cuf& z2 log2 d11, ~18!

where uc& and uf& are purifications ofr1 and r2 , i.e.,
TrAuc&^cu5r1 and TrAuf&^fu5r2 . This holds whenever
F(r1 ,r2).12 1

36 , which is certainly true wheneve
z^cuf& z2.12 1

36 . j
Lemma 2.Given a bipartite pure stateuf& and density

matrix r in Hilbert spaceH5HA^HB with ^furuf&>1
2e ande, 1

72 , then

zS~TrAuf&^fu!2S~TrAr!z<2A2e log2 dimHB12,
~19!

and similarly for systemB, and thus

uS~TrAr!2S~TrBr!u<4A2e log2 max$dimHA ,dimHB%

14. ~20!

Proof. We can write

r5~12e8!ufmax&^fmaxu1e8r8, ~21!

with e8<e. This is obtained by diagonalizingr and noting
that the largest eigenvalue of a density matrix is always
smaller than the largest diagonal element of the matrix@16#.
ufmax& is the eigenvector ofr corresponding to its larges
eigenvalue.

Here is the plan for the proof. We will first boun
zS(TrAr)2S(TrAufmax&^fmaxu)z. Then we will argue that
ufmax& has high fidelity with respect touf& and use Lemma 1
to bound zS(TrAuf&^fu)2S(TrAufmax&^fmaxu)z, which will
finally give us a bound onzS(TrAuf&^fu)2S(TrAr) z.

Recall the property of the entropy@17#
s

e

o

(
i

l iS~r i !<SS (
i

l ir i D<(
i

l iS~r i !2(
i

l i log2 l i ,

~22!

with ( il i51 and r i density matrices. Taking the partia
trace of Eq.~21! and using Eq.~22! one can derive that

e8S~TrAr8!2e8S~TrAufmax&^fmaxu!

<S~TrAr!2S~TrAufmax&^fmaxu!

<e8S~TrAr8!2e8S~TrAufmax&^fmaxu!1H2~e8! ~23!

and thus

zS~TrAr!2S~TrAufmax&^fmaxu!z<e log2 dim HB11.
~24!

To prove thatuf& andufmax& have high fidelity we use Eq
~21! and ^furuf&>12e to write

^furuf&5~12e8!z^fufmax& z21e8^fur8uf&>12e.
~25!

The inner product̂ fur8uf& is no bigger than one ande8
<e, so we can rearrange things to get

z^fufmax& z2>122e. ~26!

Thus, by Lemma 1 we can bound

zS~TrAuf&^fu!2S~TrAufmax&^fmaxu!z<A2e log2 dimHB

11. ~27!

Therefore we find, with Eq.~24! and ~27!,

zS~TrAuf&^fu!2S~TrAr!z<2A2e log2 dimHB12.
~28!

Finally, using TrAuf&^fu5TrBuf&^fu for all pure states and
Eq. ~19!, we immediately have Eq.~20!. j

B. The main theorem

Theorem 1.Supposer is a density operator on a Hilber
spaceHA and E,D linear trace-preserving completely pos
tive operations such that

Fe~r,D+x ^ N+E!>12e. ~29!

Then there exist a density operatorr8 and a linear trace-
preserving completely positive operationT such that

Fe~r8,T +D +x ^ N!>122e ~30!

and

uS~r!2S~r8!u<2A2e log2 dimHA12. ~31!

The proof consists of two parts. First we show if the
exists a sourcer that has high entanglement fidelity usin
some encodingE and decodingD, we can always find an-
other sourcer8 that has a high entanglement fidelity as we
but has additional decoding instead of encoding. Second
show that this new sourcer8 has very nearly the same vo
Neumann entropy asr.
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Let uf& be a purification ofr in Hilbert spaceHA^HB .
See Fig. 1. Any linear trace-preserving completely posit
map, including nonunitary operations, can be written a
unitary operator that operates on the original system al
with an ancillary system~often referred to as an environ
ment!, as in Fig. 1. Thus, for the case of the nonunita
encoder, some quantum systemE that is in general entangle
with the AB8 system will remain in the encoder. Since th
system is not to be sent through the channel it may be m
sured in an orthogonal basis giving resulti with probability
pi and leaving theAB8 system in a pure stateuc i&. After the
channel operates on theB8 system and the decodin
process is performed, one is left withr i

out5@IA

^ (D +x ^ N)B#(uc i&^c i u). @To simplify the notation we will
hereafter write IA^ (D +x ^ N)B as D +x ^ N.# The whole
encoding-channel-decoding process results in a high
tanglement fidelity so that

Fe~r,D +x ^ N+E!5(
i

pi^fu~D +x ^ N!~ uc i&^c i u!uf&>12e.

~32!

For at least one value ofi it must be that

^fu~D +x ^ N!~ uc i&^c i u!uf&>12e. ~33!

Thus the unitary encoder that simply takesuf& and rotates it
to uc i& is sufficient to achieve a high entanglement fideli
Hereafter thei subscript will be dropped fromuc i& andr i

out.
We are now, however, left in the odd situation in whi

the unitary encoder operates on both theB and A systems.
We have thus so far only traded nonunitarity for this o
form of unitarity. This situation is shown in Fig. 2. We wi
show that instead of usinguf& as input, we can use the un
encodeduc& as input if we do an additional decoding ste
The following lemma will be of use.

Lemma 3.Given a density matrixr in Hilbert spaceHA
^HB , then there exists a purificationuC& of TrB r into Hil-
bert spaceHA^HB^HC with dimHC5dimHA11 and

^Cu~r ^ u0C&^0Cu!uC&5lmax
2 , ~34!

FIG. 1. General encoding-channel-decoding system.UE is the
unitary operation of the encoder~the associated environmentE
makes the whole action of the encoder nonunitary in general!.

FIG. 2. Channel with unitary encoder acting on both theA andB
systems.
e
a
g

a-

n-
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wherelmax is the largest eigenvalue ofr.
Proof. We can writer ^ u0C&^0Cu as

r ^ u0C&^0Cu5lmaxufmax&^fmaxu ^ u0C&^0Cu

1~12lmax!r8^ u0C&^0Cu, ~35!

whereufmax& is the eigenvector ofr corresponding tolmax.
Take

uC&5Almaxufmax& ^ u0C&

1A12lmax (
i 51

dimHA

Am i u i A& ^ u0B& ^ u i C&, ~36!

where u i A& and m i are the eigenvectors and eigenvalues
TrB r and^0Cu i C&50. Thus^Cu(r ^ u0C&^0Cu)uC&5lmax

2 .j
Since ^furoutuf&>12e we have@as in Eq.~21!# lmax

>12e. Take uC& also purifying TrB(rout) as in the lemma.
Then

^Cu~rout
^ u0C&^0Cu!uC&>~12e!2>122e. ~37!

Sinceuc& purifies TrB(rout), so doesuc0&[uc& ^ u0C&. As
uC& anduc0& both purify TrB(r) ^ u0C&^0Cu, they are related
by a unitary transformationU5IA^ UBC acting only onHB
andHC @18#,

UuC&5uc0&. ~38!

Substituting this into Eq.~37! and writing r0
out[rout

^ u0C&^0Cu, we obtain

^c0uUr0U†uc0&>122e. ~39!

We will now rid ourselves of theC system. As

^cuTrCUr0
outU†uc&5^c ^ 0CuUr0U†uc ^ 0C&

1(
iÞ0

^c ^ i CuUr0U†uc ^ i C&, ~40!

with ^c ^ i CuUr0
outU†uc ^ i C&>0 sinceUr0

outU† is a density
matrix, we can rewrite Eq.~39! as

^cuTrCUr0
outU†uc&>122e. ~41!

Let us defineT(rout) be the linear trace-preserving com
pletely positive map implemented by appending au0C& state
to rout, rotating usingU, and then tracing out theC system.
What we have done is replaceduf& with uc& and added the
decoding stageT and still achieved high entanglement fide
ity. In other words, writingr8[TrAuc&^cu, we have

Fe~r8,T +D +x ^ N!>122e. ~42!

Achieving a high entanglement fidelity alone is not suf
cient. It is also necessary to show thatr8[TrAuc&^cu) has
entropy close enough to that ofr[TrAuf&^fu) to achieve
the same capacity. Using Eqs.~33! and ~19! we know that

uS~TrBuf&^fu!2S~TrBrout!u<2A2e log2 dimHA12
~43!
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for e, 1
72 . Since TrBrout5TrBuc&^cu, S(TrBuc&^cu)

5S(TrAuc&^cu)5S(r8), and S(TrBuf&^fu)
5S(TrAuf&^fu)5S(r) we have

uS~r!2S~r8!u<2A2e log2 dimHA12. ~44!

This proves the theorem. The application to channel capa
is straightforward. As we can always purify a density mat
in a Hilbert space of dimensiond into a Hilbert space of
dimensiond2, the dimension dimHA can be set to (dimx)N,
where dimx is the dimension on whichx acts. Since the
definition of quantum capacityQE @Eq. ~2!# has anN in the
denominator, it is clear that Eq.~44! is strong enough to
makeQE5QE

no encoding.

III. A CORRECT PROOF OF THE CAPACITY
OF THE ERASURE CHANNEL

In this section we will provide a correct upper bound
the capacity of the erasure channel that is ‘‘proved’’ inc
rectly in @6# by making use of the unproven assumption th
the quantum channel capacity is continuous. By providin
correct upper bound the entire capacity is restored, as
upper bound coincides with the correct lower bound given
@6#. We work here withQE rather than the definition of ca
pacity in terms of a protected subspace employed in@6#, but
these two definitions of capacity have been shown to
equivalent @19,20#. Cerf independently provided a simila
correct upper bound@12# using a slightly different definition
of capacity, which we expect is also equivalent.

Barnum, Nielsen, and Schumacher@5# have shown that

QE
no encoding<I max

no encoding[ lim
N→`

max
r

I c~r,x ^ N!

N
. ~45!

Together with the results of Sec. II thatQE5QE
no encoding, we

now have

QE< lim
N→`

max
r

I c~r,x ^ N!

N
. ~46!

A quantum erasure channel with erasure probabilityp
maps an input quantum bit~qubit! r to (12p)r1pu3&^3u,
where u3& is an orthogonal direction to theu1&,u2& space in
which r resides. In@6# it was shown correctly thatQP50 for
p> 1

2 . Thus we will consider here only channels withp
, 1

2 .
Recall the definition of the coherent information

I c~r,x ^ N!5S„x ^ N~r!…2Senv~r,x ^ N!. ~47!

For the erasure channel we can write

I c~r,x ^ N!5 (
k50

N

pk~12p!N2k(
i 51

~k
N

!

@S~r i !2S~r ī !#,

~48!

where i designates a particular set ofN2k qubits andī the
complement of the seti. r i is defined asr i5Tr ī r. This
ity

-
t
a
he
n

e

expression is obtained by noticing that the density matrix
the receiver is block diagonal, where the block labeled w
~i,k! is of the form

pk~12p!N2kr i . ~49!

Thus the entropy of the block~i,k! is pk(12p)N2kS(r i).
The total entropy of such a block diagonal density mat
S„x ^ N(r)… is equal to the sum of the entropy of the bloc
plus the entropy of choosing among the blocks. The exp
sion Senv(r,x ^ N) will be the same asS„x ^ N(r)…, but with i
and ī interchanged~what is not erased the environment ge
and vice versa!. Subtracting the two entropies will result i
Eq. ~48!.

We split the sum overk into two termsI 1 andI 2 , which
we will bound separately,

I 15 (
k50

bN/2c
pk~12p!N2k(

i 51

~k
N

!

@S~r i !2S~r ī !# ~50!

and

I 25 (
k5 bN/2c11

n

pk~12p!N2k(
i 51

~k
N

!

@S~r i !2S~r ī !#. ~51!

Each term inI 2 can be at most

S~r i !2S~r ī !<N2k. ~52!

To boundI 1 we will rewrite the sum over the setsi in such
a way that we can use the subadditivity property of the v
Neumann entropy. The idea is to pairwise match terms in
~50!. We matchS(r i) with a term S(r j̄ ) and S(r ī ) with
S(r j ) where we take the set of~qubits! j such thatj̄ , i and
ī , j . For these matching sets, we can use subadditivity,

S~r i !2S~r j̄ !<N22k,
~53!

S~r j !2S~r ī !<N22k.

The way to do the pairwise matching is the following. Pi
N22k qubits out of the total set ofN qubits. These are the
qubits that two matching sets will have in common. Th
pick a subset ofk qubits out of the remaining 2k. Together
with the N22k qubits, these will form seti. The setj is
made from the remainingk qubits and theN22k overlap
qubits. In this way each set is matched to another one. H
ever, we have counted the sets multiple times. Each se
counted 2( k

N2k) times. Dividing by this number will thus
give us the original sum. Thus we have derived that

I 1< (
k50

bN/2c
pk~12p!N2kS N

k D ~N22k!. ~54!

We will take I 1 and I 2 together and use

(
k50

N S N
k D pk~12p!N2kk5Np ~55!

to get
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I c~r,x ^ N!<N~12p!2 (
k50

bN/2c S N
k D pk~12p!N2kk. ~56!

We will use a property of binomial distributions

lim
N→`

1

N (
k50

bN/2c S N
k D pk~12p!N2kk5p for p, 1

2 . ~57!

This implies

lim
N→`

max
p

I c~r,x ^ N!

N
<122p ~58!

~note that this bound is achieved by takingr5I/2N) and
therefore@with Eq. ~46!#

QP<QE<122p. ~59!

In @6# a constructive lower bound onQP has been estab
lished,

QP>122p. ~60!

Together with our upper bound we prove the capacity of
erasure channel

QE5QP5max$122p,0%. ~61!

IV. DISCUSSION AND OPEN PROBLEMS

An important open question is the conjecture of the equ
ity of I max and the channel capacity. The conjecture would
.

. A

ev

e
te
n

e

l-
e

flawed if I maxÞImax
no encodingsince we have shown that the latt

upper bounds the capacity.
Equation~61! for the capacity of the erasure channel is

continuous function ofp, but a resolution of the problem o
the continuity of capacity for general channels is to be
sired. If the channel capacity turns out not to be continuo
this would once again show a curious characteristic of qu
tum information. On the other hand, if the capacity we
proven continuous, the quite general method for bound
the quantum capacity introduced in@4# and applied incor-
rectly in @6# would be restored. For example, the quantu
cloning results in@21# could be used to improve the boun
on the capacity of the quantum depolarizing channel.

In @4# it was shown that the quantum capacities with a
without a classical forward side channel are equal in the c
of perfect error correction (e50). A proof similar to the one
in Sec. II can be used to show that this is true forQE even in
the case of an asymptotically perfect correction as in
definition of quantum capacity.
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