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Motivations and Outline

• Non-Markovian effects in open quantum systems

• Can memory effects enhance the capacity of quantum channels?

Dephasing channels with memory: quantum capacity maximized by separable
input states

1) Markov chain model: explicit computation of the quantum capacity

2) Bosonic bath of oscillators



Non-Markovian effects

• Low-frequency noise noise in solid-state devices (for instance, 1/f noise)

• Fluctuating birefringe in optical fibers

• Quantum information transmission across spin chains

• Sending atoms through a resonant cavity



Capacity of a classical channel

M’
Encoding DecodingClassical channel

Input Output ReceiverSource

M X Y

MUTUAL INFORMATION I(X : Y ) = H(X) +H(Y ) −H(X,Y )

H(X) = −∑

x px log2 px Shannon information of the random variable X

CAPACITY: maximum rate at which classical information can be reliably trans-
mitted down the channel

C = max
px

H(X : Y )



Quantum channels

QUANTUM SOURCE: quantum states chosen from the ensemble {ρ0, ..., ρk}
with a priori probabilities {p1, ..., pk} are sent through the channel

QUANTUM CHANNEL described by a linear, completely positive, trace preserving
(CPT) map E :

ρ′ = E(ρ), ρ =

k
∑

x=1

pxρx

Use quantum states to reliably transmit classical information (classical capacity)
or quantum information (quantum capacity)



Entanglement fidelity

How to measure the reliability in the transmission of quantum information?

It is not sufficient to verify that the input state ρ is transmitted with high fidelity
Ex: send a member of a Bell pair through a completely dephasing channel

|ψ〉12 =
1√
2
(|01〉 + |10〉), ρ = Tr2(|ψ〉12〈ψ|) =

(

1
2 0
0 1

2

)

E
(

ρ00 ρ01

ρ10 ρ11

)

=

(

ρ00 0
0 ρ11

)

E(ρ) = ρ, but (E ⊗ I)(|ψ〉12〈ψ|) =
1

2
(|01〉〈01| + |10〉〈10|)

Entanglement is lost



Fe = Fe(ρ, E) = F
(

|ψRQ〉, ρRQ′)

= 〈ψRQ| ρRQ′ |ψRQ〉
= 〈ψRQ| (EQ ⊗ IR)

(

|ψRQ〉〈ψRQ|
)

|ψRQ〉

The ENTANGLEMENT FIDELITY Fe is independent of the purification R of the
quantum system Q



Entropy exchange

Se = Se(ρ, E) = S(ρE′
), S(ρ) = −Tr(ρ log2 ρ) von Neumann entropy

The ENTROPY EXCHANGE Se is the entropy of the final state ρE′
of a “mock”

environment, initially in a pure state |0E〉



Coherent information

Analogous to mutual information but for quantum information

Ic
(

ρ, E
)

= S
(

E(ρ)
)

− Se(ρ, E)

The COHERENT INFORMATION Ic = S(ρQ
′
) − S(ρRQ′

) can never be positive
for classical systems

Ic deals with the entanglement transmission through the channel
Ex: if the channel is noiseless, Ic = 0 is ρ pure, Ic is maximum if ρ is maximally
mixed



Quantum data-processing inequality:

Ic(ρ, E1) ≥ I(ρ,E2 ◦ E1)

We cannot increase the coherent information acting on the output

In contrast to mutual information, Ic in general is not subadditive
Using entangled input states ρ12 6= ρ1 ⊗ ρ2 [ρ1 = Tr2(ρ12), ρ2 = Tr1(ρ12))] we
can obtain

Ic(ρ12, E ⊗ E) > Ic(ρ1, E) + Ic(ρ2, E)



Quantum capacity

The QUANTUM CAPACITY Q measures the maximum number of qubits (per
channel use) that can be reliably trasmitted down a noisy channel

For memoryless channels

Q = lim
n→∞

Qn

n
, Qn = max

ρ
Ic(En, ρ)

Ic(En, ρ) = S[En(ρ)] − S[Ẽn(ρ)], En = E⊗n

ρ′ = En(ρ) = TrE[Un(ρ⊗ |0〉E〈0|)U †
n], ρ′E = Ẽn(ρ) = TrS[Un(ρ⊗ |0〉E〈0|)U †

n]

The regularization n→ ∞ is necessary since Ic in general fails to be subadditive



Degradable channels

Degradable channels: the final state ρ′E of the environment can be reconstructed
from the final sate ρ′ of the system

In this case Ic = S(ρQ
′E′

) − S(ρE′
) = S(Q′|E′) is subadditive

Q = Q1 (“single-letter” formula)



Dephasing channels

Single-use dephasing channel:

E
(

ρ00 ρ01

ρ10 ρ11

)

=

(

ρ00 gρ01

gρ10 ρ11

)

, g dephasing factor

Generalized n-uses dephasing channel

Un|i〉|0〉E = |i〉|φi〉E, |i〉 = |i1, ..., in〉 preferential basis

ρ′ = En(ρ) =
∑

α

AαρA
†
α, Aα = E〈α|Un|0〉E diagonal Kraus operators

(Aα)ij = E〈α|φi〉Eδij



Degradability of the generalized dephasing channel

ρ =
∑

i,j

cij|i〉〈j| generic input state

The final environmental state depends only on the populations of ρ

ρ′E = Ẽn(ρ) =
∑

i

|ci|2|φi〉E〈φi|

Since the dephasing channel En does not affect populations,

Ẽn = Ẽn ◦ En
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Maximization of the coherent information

The coherent information Ic(En, ρ) of a generalized dephasing channel is maxi-
mized by SEPARABLE input states DIAGONAL in the preferential basis {|i〉}

ρk =
ρk−1 + σ

(k)
z ρk−1σ

(k)
z

2
, (k = 1, ..., n)

• the Kraus operators commute with σ
(k)
z

• the coherent information is concave for degradable channels

Ic(En, ρn) ≥ Ic(En, ρn−1) ≥ · · · ≥ Ic(En, ρ0)

A. D’Arrigo, G.Benenti, G.Falci



Forgetful channels

Memory effects vanish exponentially fast with time

DOUBLE-BLOCKING strategy:

• consider blocks of n+ l uses of the channel

• do the actual coding and decoding for the first n uses

• let n→ ∞

• quantum capacity Q = limn→∞
Qn

n
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A phenomenological noise model

ρ′ = En(ρ) =
∑

i1,...,in=0,z

Ai1...inρA
†
i1...in

, Ai1...in =
√
pi1...inσ

(1)
i1

⊗ · · · ⊗ σ
(n)
in
,

pi1...in probability that the the ordered sequence σ
(1)
i1
, ..., σ

(n)
in

of Pauli operators
(I or σz) is applied to the n qubits crossing the channel

• Dephasing probability stationary: pik=z = pz [pik=0 = p0 = 1 − pz] for all k
(pik =

∑

i1,...,ik−1,ik+1,...,in
pi1...in)

• Forgetful channel: |pik′ik
− pik′

pik| decays exponentially with |k′ − k|

A. D’Arrigo, G.Benenti, G.Falci
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The maximum of coherent information in this model is obtained for the maximally
mixed input state ρI ≡ 1

2nI
⊗n

ρk =
ρk−1 + σ

(k)
x ρk−1σ

(k)
x

2
, (k = 1, ..., n)

Starting from a diagonal ρ0 we can prove

Ic(En, ρn = ρI) ≥ Ic(En, ρ0)

A. D’Arrigo, G.Benenti, G.Falci
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Markov-chain model

pi1,...,in = pi1pi2|i1 · · · pin|in−1, pik|ik−1
= (1 − µ)pik + µδik,ik−1

µ measures the partial memory of the channel
µ = 0 memoryless channel
µ = 1 perfect memory

µ might depend on the time interval τ between two consecutive channel uses,
compared with the memory time scale τc

A. D’Arrigo, G.Benenti, G.Falci
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Quantum capacity of a Markov chain

S[En(ρI)] = S(ρI) = n

Se = −
∑

i1,...,in

pi1...in log2 pi1...in ≡ H(X1, ...,Xn)

H(X1, ...,Xn) Shannon entropy of the collection of random variables X1, ...,Xn

(characterized by the joint probabilities pi1...in)

For a stationary Markov chain

lim
n→∞

1

n
H(X1, ...,Xn) = H(X2|X1) = p0H(q0)+pzH(qz), qi ≡ p(i|i) = (1−µ)pi+µ

A. D’Arrigo, G.Benenti, G.Falci
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Q = 1 − p0H(q0) − pzH(qz)

Q = 1 −H(p0) memoryless limit

Q = 1 with perfect memory
(noiseless channel)
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Convergence of Qn/n to Q

Qn = n− (n− 1)[p0H(q0) + pzH(qz)] −H(p0)
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ǫn ≡ Q− Qn

n
growing function of µ

ǫn(µ = 0) = 0

ǫn(µ = 1) = H(p0)/n

ǫn(µ) ≈ 1
2 ln 2

µ2

n
for µ≪ 1

A. D’Arrigo, G.Benenti, G.Falci
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Bosonic bath environment

H(t) = HE − 1

2
XEF (t) +HC, HE =

∑

α

ωαb
†
αbα,

XE =
∑

α

(b†α + bα), F (t) = λ
n

∑

j=1

σ(j)
z fj(t), HC =

∑

α

λ2

4ωα

n
∑

j=1

σ(j)
z

f(t)
2

f(t)
1 0

t tt1 2

τp

τp

τ

1

1

0

A. D’Arrigo, G.Benenti, G.Falci
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ρ(t) = TrE[U(t)(ρ⊗ ρE)U †(t)], U(t) = Te−
i
h̄

R t
0 dsH(s)

U(t|i) = 〈i|U(t)|i〉 conditional evolution operator for the environment alone

(ρ′)ij = (ρ)ij

∑

α

E〈α|U(t|i)ρEU
†(t|j)|α〉E

Multimode environment of oscillators initially at thermal equilibrium,
ρE = exp(−βHE):

∑

α

E〈α|U(t|i)ρEU
†(t|j)|α〉E =e

{

−λ2 R ∞
0

dω
π S(ω)

1−cos(ωτp)

ω2

∣

∣

Pn
k=1(ik−jk)eiω(k−1)τ

∣

∣

2}

A. D’Arrigo, G.Benenti, G.Falci
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Assume that the bath correlation function

C(t) ≡ 1

2
〈XE(t)XE(0) +XE(0)XE(t)〉

decays exponentially with time (forgetful channel)

This is the case, e.g., for a Lorentian power spectrum

S(ω) =
2τc

[1 + (ωτc)2]

A. D’Arrigo, G.Benenti, G.Falci
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Decoherence-protected subspace

In the limit of perfect memory (τc → ∞) there exists for any n a decoherence-free
subspace corresponding to a qubit train with an equal number of |0〉 and |1〉
states

Since the dimension d of this subspace is such that log2 d ≈ n − 1
2 log2 n, then

the channel is asymptotically noiseless (Q = 1)

If n̄ ≫ 1 qubits can be sent within the memory time scale τc and the quantum
information is encoded in the decoherence-protected subspace, then

1 − log2 n̄/(2n̄) lower bound for Qn̄/n̄

A. D’Arrigo, G.Benenti, G.Falci
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Lower bound for Qn/n
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Numerial data suggest that Ic/n converges for n → ∞: it is possible to increase
the transmission rate if quantum information is encoded in long blocks, separated
by time intervals larger than τc

A. D’Arrigo, G.Benenti, G.Falci



Conclusions

The coherent information in a dephasing channel with memory is maximized by
separable input states

Computed the quantum capacity Q for a Markov chain noise model and provided
numerical evidence of a lower bound for Q in the case of a bosonic bath

• Find realistic coding strategies for few-qubit trains

• The results of this study could be adapted to environments with algebraically
decaying memory effects, e.g. low-frequency noise in the solid state?

• Effects of integrable/chaotic environments or of quantum phase transitions on
quantum channel capacity


