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Abstract—This paper gives an overview on the design, fabri-
cation, and characterization of quantum cascade detectors. They
are tailorable infrared photodetectors based on intersubband
transitions in semiconductor quantum wells that do not require
an external bias voltage due to their asymmetric conduction band
profile. They thus profit from favorable noise behavior, reduced
thermal load, and simpler readout circuits. This was demonstrated
at wavelengths from the near infrared at 2 m to THz radiation
at 87 m using different semiconductor material systems.

Index Terms—Intersubband photodetectors, quantum cascade
detector, high-speed semiconductor photodetectors.

I. INTRODUCTION

I
NTERSUBBAND (ISB) photodetectors, although first

demonstrated already in 1987 in the form of photoconduc-

tive quantum-well infrared photodetectors (QWIPs) [1], remain

a topic of high scientific and practical interest. Particularly

at the energetic extremes of infrared radiation, namely in the

low energy THz and in the high-energy near-infrared (NIR)

ranges, there are still challenges in finding the best materials

and designs for ISB photodetectors.

In the NIR, fast intraband semiconductor photodetectors are

only available for wavelengths up to about 1.6 m. On the

other tail of optical frequencies, namely for detection of THz

radiation, bolometers are widely used; however, they are not

well suited for high-speed applications. For fast light detection

at wavelengths above 1.6 m, ISB photodetectors are very

promising candidates. As unipolar devices, their fundamental
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speed limit is the ISB scattering time of electrons

ps. As an additional advantage, ISB detectors can be designed

for a wide range of wavelengths in a single material system just

by choosing adequate semiconductor layer thicknesses.

There are different working principles for ISB IR photode-

tectors; an overview is given, for example, by Schneider and

Liu [2]. By far the most common design is the photoconductive

(PC) QWIP, where the change of device resistance under illumi-

nation is determined by applying an external bias voltage across

the detector and measuring the current at the same time. There

are different types of PC QWIPs. In the widely used bound-to-

quasi-bound QWIP, the detection energy is determined by the

conduction band offset (CBO) between the quantum well (QW)

and the barrier material. The active region consists of identical

QWs separated by significantly thicker barriers to avoid cou-

pling between the different QW states. The QW thickness and

CBO (through the material composition) are chosen such that

the second quantized electron level in the QW is close to res-

onance with the barrier’s conduction band edge; this measure

ensures a good carrier extraction efficiency under application of

an appropriate bias voltage [3], but it also couples the detection

wavelength to the CBO. By use of a bound-to-miniband design

[4], the QWIP detection wavelength can be decoupled from the

CBO. Today, QWIP focal plane array (FPA) cameras sensitive

at wavelengths between 8 and 10 m have reached commer-

cial maturity and are used in military, security, surveillance, and

medical applications. As an example, Gunapala et al. [5] pre-

sented a high-performance 1024 1024 pixel dual-band QWIP

FPA based on GaAs–AlGaAs with cutoff wavelengths of 5.1

and 8.4 m.

Compared with PC ISB photodetectors, the research on

zero-bias photovoltaic (PV) ISB photodetectors has seen less

progress. Schneider et al. [6], [7] observed pronounced photo-

voltaic effects in an asymmetric multi-QW (MQW) structure.

The potential asymmetry was in this case introduced by a sheet

of delta-doping close to the active QW. By use of another PV

QWIP design, the so-called four-zone scheme [8], a 256 256

pixel FPA with a very low noise equivalent temperature dif-

ference of 5.2 mK in the 8–12- m window was demonstrated

[9]. According to Schneider [10], an optimized PV QWIP has

superior noise properties, the capability to operate at higher

photon fluxes, and an improved dynamical range in comparison

to a PC QWIP. Hofstetter et al. [11] used a quantum cascade

laser (QCL) structure as photovoltaic detector; this structure

can be viewed as a prototype for the devices presented in this

paper. Along these lines, a similar but optimized ISB detector

was presented by Gendron et al. [12]; in analogy to the func-

tioning of a QCL, this device was named quantum cascade

detector (QCD). Just like the bound-to-miniband QWIP, QCDs
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Fig. 1. Schematic conduction-band diagram of a QCD. By absorbing a photon,
ground-level electrons are excited to the active QW’s upper level. Due to the
asymmetric band profile between two active QWs, the cascade excited elec-
trons relax mostly in one direction (in this case to the right), resulting in a net
photocurrent.

offer more design freedom for a given material composition.

However, we will show below that a precise resonance condi-

tion must be fulfilled in these devices, just like in a PC QWIP.

From this point of view, the epitaxial growth of such detectors

is equally demanding as the one of a QCL or any other highly

periodic device.

This paper discusses the theory and design principles of

QCDs and presents the current state of research. The active

region of a QCD is built up of multiple periods, each con-

taining a thick, degenerately doped active QW and a nominally

undoped extraction cascade composed of thinner QWs. The

function of this cascade is to introduce an asymmetry in the

conduction band potential such that photoexcited electrons

have a preferential escape direction, resulting in a measurable

net photocurrent. This is shown schematically in Fig. 1. As

opposed to PC QWIPs, dark current is absent in PV QCDs.

This leads to several advantages: no dark current noise occurs.

The integration time in readout circuits can be extended, since

the readout capacitance is not saturated by dark current. Finally,

the thermal load of the detector is strongly reduced, which is of

interest if the available cooling is limited, for example in space

born systems or hand-held terrestrial staring systems. Although

QCD devices have made substantial progress during the last

few years [13], their potential advantage of a low Johnson noise

is still limited by a too low device resistance, especially at room

temperature. This problem must be overcome if QCDs are to

stand their ground compared to QWIPs in terms of detectivity

and operating temperature. Recent results presented in this

paper show that QCDs with competitive performance can be

achieved using improved designs based on better understanding

of the limiting factors.

We will discuss the design principles of QCDs, as well

as the choice of material system for the different detection

wavelengths of the devices. Experimental results of QCDs at

different wavelengths are reviewed and compared to alternative

photodetectors at comparable detection wavelengths. First,

QCDs based on InGaAs–InAlAs lattice matched to InP de-

tecting between 5 and 17 m are presented. As lattice-matched

InGaAs QCDs can only detect wavelengths above 4 m

due to the CBO of 520 meV, two alternative approaches are

presented for shorter wavelengths: strained InGaAs–InAlAs

and lattice-matched InGaAs–AlAsSb. A THz QCD detecting

at 84 m based on GaAs–Al Ga As is also discussed.

Finally, a broadband QCD covering the wavelength region from

4.7 to 7.4 m is shown.

Fig. 2. Transition energy between the ground and the first excited state in an
InGaAs–InAlAs QW lattice matched to InP as a function of QW thickness.

II. THEORY AND DESIGN

A. QCD Detector Theory

The design process for QCDs is discussed with respect to

the detection wavelength, the detectivity, and the responsivity.

A more comprehensive theory on ISB transitions can be found,

for example, in [14]. Conduction-band ISB devices such as

QCDs are based on photon–electron interactions between

quantized electron subbands in the conduction band of semi-

conductor heterostructures. Their spectral response is maximal

at the energy separating two quantized electron levels in a

QW. As opposed to semiconductor devices based on interband

transitions, where the operating wavelength corresponds ap-

proximately to the bandgap and is given by the semiconductor

material, the operating wavelength of ISB structures is thus

mainly a function of the QW thickness. Fig. 2 shows the tran-

sition energy between the two lowest electron levels in a

QW as function of the QW thickness obtained by numerically

solving the Schrödinger equation for the QW. The reason for

the nonmonotonous behavior of the curve towards thinner is

the upper QW level becoming resonant with the continuum.

As soon as the upper level reaches the band edge of the barrier

material, further decrease of the thickness leads to a smaller

transition energy.

The current responsivity of a QCD is defined as detector

output current per unit of input signal power and is given

by

(1)

where is the signal frequency, is the signal wave-

length, is the vacuum speed of light, is the elementary charge,

is Planck’s constant, is the absorption efficiency, and is

the photodetector gain; is the escape probability of an ex-

cited electron in the active QW, is its capture probability into

the active QW’s ground state for an electron traveling down the

QCD’s cascade, and is the number of active QW periods

of the QCD. Optimization of is thus accomplished through

absorption efficiency and photodetector gain.
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For a QCD, the absorption efficiency is linked to the two-di-

mensional (2-D) absorption coefficient of the QCD’s active

(doped) QW by

for (2)

where is calculated using Fermi’s golden rule

(3)

where is the active QW’s 2-D doping (or sheet carrier) den-

sity, is the refractive index of the QCD, and is the effective

electron mass in the QW, is the oscillator strength between

the two lowest wave functions in the active QW, and , as

a function of the position along the growth direction , and is

the half-width at half-maximum (HWHM) of the intersubband

transition’s Lorentzian absorption shape. If , the

absorption efficiency and the responsivity thus increase linearly

with the number of periods and the doping density. However,

since the detector gain is inversely proportional to the number

of periods, the current responsivity is at least in first approxima-

tion independent from the number of periods.

Another common figure of merit for photodetectors is the de-

tectivity , which is the ratio between peak

responsivity and mean noise current normalized by the

detector area and the measurement bandwidth . Its units

are cm Hz /W, also known as Jones. For a QCD and at tem-

peratures above the so-called background limited infrared per-

formance temperature and are dom-

inated by Johnson noise; at temperatures below

and are dominated by photon noise due to

blackbody background radiation. Taking into account these dif-

ferent facts, we get for the detectivity of a QCD

(4)

where is the differential device resistance around 0 V, the

device temperature, and the spectral background

photon flux density.

Fig. 3(a) shows the schematic temperature dependence of a

QCD’s detectivity: below , the detectivity is background-

limited and temperature-independent. At tem-

peratures above decreases with increasing

temperature. is presented in Fig. 3(b) for an ideal (

otherwise) photovoltaic detector as function

of the cutoff wavelength for a 300 K background and a hemi-

spheric field of view (FOV). For comparison, is shown

also for a Lorentzian-shaped spectral sensitivity with a relative

linewidth of 6%, which is a typical lineshape of a QCD. The

Lorentzian shaped spectral sensitivity leads to an improvement

of at detection wavelengths above 4 m.

(a) (b)

Fig. 3. (a) � as function of temperature. At � � � crosses the back-
ground limited � . (b) � in Jones for a 300 K blackbody temperature,
hemispherical field of view, and � � � (red) for an ideal photodetector (solid
line) and a QCD with a Lorentzian spectral sensitivity peaking at � with a
fractional linewidth of 6% (dashed line); the blue line is the photon flux spectral
density of a 300 K blackbody in �s Hz cm sr �.

Fig. 4. Schemes of different ISB device geometries. (a) 45 multipass wave-
guide. (b) Brewster angle configuration (for InGaAs–InAlAs lattice matched to
InP). (c) Grating coupler.

B. QCD Design

Sample Geometry: The quantum–mechanical polarization

selection rule [15] states that only the electric field component

perpendicular to the QW layers interacts with ISB transitions.

The sample geometry of an ISB device must thus ensure that

the internal light propagation is not perpendicular to the sample

surface. Fig. 4 shows three common ISB detector geometries.

The 45 wedge multipass geometry (a) has moderate pro-

cessing requirements and allows for robust and reproducible

sample characterization. It is thus often used to determine the

performance of ISB photodetectors. Its biggest advantage is

that there is no sensitivity on the detection wavelength. How-

ever, even when using TM polarized radiation, only 50% of the

incoming light interacts with the ISB transition. The Brewster

geometry (b) requires the least sample preparation, but has low

conversion efficiency. It can thus be used for heavily absorbing

samples only. A grating (c) has potentially the highest conver-

sion efficiency and allows for 2-D detector arrays, but involves

more sophisticated sample preparation. It is the usual geometry

for industrial packaging.

Band Structure: The crucial design aspect of ISB devices

such as QCDs is the quantum–mechanical bandstructure. It can
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Fig. 5. Calculated conduction-band profile of QCD N1037. QW A is the active
QW; QWs B–H form the extractor cascade.

be calculated using numerical solvers of the Schrödinger equa-

tion. A typical band structure of a QCD is shown in Fig. 5. QW

A is the active QW which is degenerately doped (i.e., the Fermi

level lies in the conduction band above the ground state ).

QWs B-H form the electron extraction cascade and are nomi-

nally undoped. The transport from the active QW into the cas-

cade is ensured through resonant tunneling between and the

ground state of QW B; this allows for a thick barrier between

the active QW and the extractor. By this feature, the interac-

tion between active QW and intermediate extractor levels is re-

duced, which increases the device resistance without lowering

the escape probability. To achieve an efficient electron extrac-

tion through phonon assisted scattering, the energy difference

between the individual extractor states should be close to the

longitudinal optical phonon energy (GaAs:

meV, In Ga As: meV). As will be shown

below, this design feature can be dropped if there is no require-

ment for high-speed operation.

Besides determining the QCD’s detection energy and influ-

encing the device resistance, the bandstructure has also an im-

pact on the gain (1), which is proportional to / . For a

QCD, the capture probability is close to unity. The escape

probability can be approximated by the phonon scattering

lifetimes from the upper resonant state or towards the

ground state (relaxation time, ) and towards the extractor

state C (escape time, )

(5)

where and are calculated using the electron wavefunc-

tions from the simulated conduction band diagram. A high gain

can thus be obtained by designing the bandstructure in a way

that .

Koeniguer et al. [16] presented a model based on a standard

electron–optical phonon Hamiltonian which calculates the in-

tersubband diffusion and thus the resistance of QCDs. Although

the basic assumptions of this model are very reasonable, we usu-

ally only achieved qualitative agreement with our experimental

data. In addition, the validity of the model could be verified in

selected temperature ranges only.

Fig. 6. QCD detectivity, responsivity, and resistance area product � � for
varying doping density and number of periods. The vertical scaling of the nor-
malized � � is logarithmic. The calculations are based on the values of QCD
N1021 at a temperature of 100 K; it has 30 periods and a sheet carrier doping
density of ����� �� cm in the active QW.

Doping and Number of Periods: For a QCD, the detectivity

is maximized by ensuring a high device resistance (thus a

low Johnson noise) without lowering the escape probability and

thus the efficiency. The most important design parameters are

the layer thicknesses (determining the band profile as discussed

above), the doping density of the active QW, and the number

of periods .

As long as the absorbance , so that

, the absorption and thus the responsivity are

proportional to the doping density [see (3) and (1)]. It fol-

lows from (4) that is proportional to . As the de-

vice conductance is linear in , this is also true for . This

does, however, not imply that should be as high as possible.

cannot become larger than 1 and therefore saturates for high

doping concentrations. In the example shown on the top panel

of Fig. 6, this starts to be the case at cm .

Therefore, and also saturate, whereas

decreases with a further increase of . Assuming again that

and thus is independent from the

number of periods and increases with .

As the device resistance grows linearly with , the same

is true for . For large , the aforementioned

assumption is not true anymore, and saturate, is pro-

portional to , and is proportional to . The

calculated dependencies of , and on for a

typical QCD, namely N1020 (parameters will be given below),

are shown on the bottom panel of Fig. 6. As a conclusion, we

notice that, for any doping density, an ideal number of periods

must be found.
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TABLE I
MIR QCDS

III. QCD DEVICES

Here, experimental results of QCD devices are presented. All

samples were grown by molecular beam epitaxy (MBE) in order

to achieve a high interface quality between QWs and barriers.

The samples were polished into 45 multipass waveguides; for

photocurrent measurements, mesas were processed on top of

one of the 45 facets using standard photolithography and wet

etching. Contacting was obtained through evaporated metal con-

tacts.

A. Mid-Infrared QCD

For this study, mid-infrared (MIR) is considered as radiation

encompassing wavelengths from 5 to 30 m. There are various

photodetector applications in this spectral range. Heat seeking

of hot targets such as aircraft engine exhaust plumes takes place

between 3 and 8 m. Sensitive ISB detectors with a narrow

linewidth can be an interesting choice to determine the amount

of certain molecules or atoms in gases and liquids by measuring

their characteristic absorption lines. Another potential applica-

tion for fast MIR photodetectors is heterodyne spectroscopy,

which allows distinguishing spectrally close absorption lines as

the potentially high resolution of this method requires an elec-

trical detector bandwidth in the GHz range. Thermal imaging in

the MIR is of general interest as the emission of a room tem-

perature black body peaks at 10 m. Cameras detecting around

10 m with a low-noise equivalent temperature difference are

thus commonly used in construction to detect thermal bridges,

in fire protection to pinpoint pockets of embers, in various secu-

rity and military applications such as missile detection, as well

as in medical spectroscopy. Here, the experimental results ob-

tained from QCDs sensitive at wavelengths between 4.7 and

17 m (71–260 meV) are presented. All investigated samples

consist of In Ga As QWs and In Al As barriers lat-

tice matched to InP substrates.

In Table I, the active region layer thicknesses for samples

N1020, N1021, and N1022 detecting at 10.5, 7.5, and 4.7 m

are listed. Growth started with a 6000- -thick In Ga As

lower contact layer followed by 30 repetitions of the active

Fig. 7. Responsivity of the ISB � � � transition of N1020 (left), N1021
(center), and N1022 (right) at different temperatures.

region and a 2000– -thick In Ga As upper contact layer.

From a design point of view, those samples are based on the

5- m QCD N538 [17], whose active layer is also described

in Table I; however, they have thicker barriers to increase the

device resistance. The active QW A is degenerately doped,

whereas the other QWs (forming the extractor) are undoped.

Fig. 7 shows the measured responsivity spectra of the three

samples at different temperatures; all three devices worked up

to room temperature. For N1022 and N1021, the peak detection

energy at 5 K of 268 meV, respectively, 168 meV corresponds

well to the simulated one of 266 and 165 meV; for N1020, the

observed value of 127 meV is 8% above the designed 118 meV.

Although not determined unambiguously, the origin of this

blueshift lies most probably in a QW thickness deviation: for a

4% thinner QW, the simulated A1 A2 ISB transition energy

corresponds exactly to the measured value. The observed red-

shift of detection energy with increasing temperature (N1020:

127 meV at 5 K, 123 meV at 300 K) is typical for QCDs and

caused by band filling and nonparabolicity of the electron states

[18].

Fig. 8 shows the Johnson noise-limited detectivity for all

three samples as a function of temperature obtained with (4)

using measured values for the responsivity and ; the

constant background limited detectivities are also shown.

The detectivity of N1022 becomes background limited at

K, whereas N1020 does not reach the BLIP

condition.

Fig. 9 shows the calculated conduction band diagram of

sample N973 designed for a detection energy (corresponding to

the transition) of 71.3 meV (17.4 m) [19]; its active

region is described in Table I as well. Given the low detection

energy and the In Ga As LO phonon energy of 32 meV,

the phonon stair QCD extractor would have only two steps.

Such a single QW extractor would result in strong coupling

between adjacent active QW ground states and thus a low de-

vice resistance and a high Johnson current noise. To reduce this

undesired ground state coupling, the center rung of the phonon

stair is replaced by a chirped miniband formed by several QWs

and barriers with similar thicknesses. Thus, a photoexcited
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Fig. 8. Detectivities� of N1020, N1021, and N1022 as function of tempera-
ture.� is Johnson noise-limited except for N1022 below � � �� K. The
dashed lines on top represent the background limited detectivity � for a
hemispherical FOV and a background temperature of 300 K.

Fig. 9. Calculated conduction band profile of the 17 �m QCD N973. Photoex-
cited electrons can tunnel from � through the � -� miniband to the next
period.

electron in level tunnels to the - miniband and, due to

this miniband’s asymmetry, is collected into the ground state of

the next period. This is a typical case where the design rule of

one LO-phonon energy between adjacent extractor states has

been dropped.

At 5 K, the responsivity of N973 peaks at 75.0 meV with

11 mA/W. Based on the measured responsivity and device re-

sistance, a Johnson noise limited detectivity Jones

at 5 K was calculated using (4). The photon noise limited BLIP

detectivity for a 300 K background and a hemispheric FOV is

Jones, wherefore is below the investigated

temperature range for N973.

To estimate the gain of N973, the absorption was calculated

with Fermi’s golden rule (3) using the full-width at half-max-

imum (FWHM) extracted from the responsivity measurements.

For a double pass through the active region, the calculated ab-

sorption efficiency amounts to 38%; inserting this value together

with the measured peak responsivity into (1) results in an escape

probability of 6%. This low value is probably caused by the

high barriers resulting in a low - miniband width and thus

a low tolerance for the layer thicknesses: a small deviation from

the nominal value breaks up the - miniband resulting in a

greatly reduced extraction efficiency.

High-frequency testing: The frequency response of the 5.46

m QCD, N538, was tested using a heterodyne beat setup [20].

Fig. 10. Top: Schematic of heterodyne setup using the beat between two QCLs
with slightly different emission wavelengths around 5.46 �m to measure the
QCD’s frequency response. Bottom: frequency responses of the 5.3 �m QCD
N538 operated at room temperature. Green circles correspond to a device with a
2.5-mm-long bond wire, whereas the brown diamonds correspond to a 4.5-mm-
long bond wire. The solid lines are fits using a RLC QCD model.

For this experiment, the detector was glued directly on an SMA

connector, connected to its central conductor with a short bond

wire, and tested at room temperature only. As schematically

shown in Fig. 10, the optical input signal was generated by

two collinearly overlaid CW operated DFB QCLs with identical

emission wavelengths around 5.4 m. By modifying the drive

current of one of the QCLs, its emission frequency is shifted re-

sulting in a beat signal with a repetition rate equal to the differ-

ence frequency between both QCLs. Fig. 10 shows the response

of N538 to the beat measured with a spectrum analyzer for

two different bond wire lengths. The signal has a second order

low-pass characteristic which can be described with an electrical

resistance–inductance–capacitance (RLC) circuit taking into ac-

count the parasitic capacitance of the QCD and the bond wire

inductance. With the shorter bond wire, the cutoff frequency

of N538 is 4 GHz and a signal was observed up to 23 GHz.

The excellent agreement between the simple theoretical descrip-

tion and the experiment confirms that the frequency response

is clearly limited by the sample mount; a theoretical estima-

tion of N538’s intrinsic frequency limit based on phonon-elec-

tron scattering times results in a cutoff frequency of roughly 65

GHz. This is in good agreement with heterodyne QWIP mea-

surements, where signals at frequencies up to 82 GHz were ob-

served [21].

The measured characteristics of the MIR QCDs correspond

generally very well to the nominal values, which proves the

maturity of the In Ga As–In Al As material system

as well as the robustness of the QCD design. Compared to
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commercial liquid nitrogen cooled mercury–cadmium–tel-

luride (MCT) detectors and GaAs–AlGaAs QWIPs, the

of QCDs is lower: At 5 m, MCTs have a

Jones compared with for N1022 at 75 K. At 10 m,

MCTs reach Jones, whereas N1020 reaches

Jones at 75 K. To improve MIR QCDs, the escape

probability, absorption efficiency, and device resistance should

be further increased. To obtain a higher resistance and absorp-

tion efficiency, the barrier thicknesses at the low energy end of

the extractor needs to be enlarged. By increasing the optical

overlap between the highest extractor state and the excited

state of the active QW and, additionally, the overlap between

the highest and the second highest extractor states, the escape

probability can be improved. Also, the commercial potential

in QCDs lies not necessarily in superior but in high-speed

photovoltaic operation in the infrared together with low-cost

production by using well-established semiconductor materials.

B. Near-Infrared QCDs

An industrially significant field for near infrared (NIR)

photodetectors are long-haul fiber communications, which

depend on fast optoelectronic devices sensitive at 1.5 m as

the glass fiber attenuation is minimal at this wavelength. The

second atmospheric window between 3 and 5 m is inter-

esting for eye-safe free-space optical communication links,

but also for high-precision time-of-flight measurements used

in 3-D imaging. To realize ISB photodetectors in the NIR, the

semiconductor heterostructures presented in the previous MIR

section are not appropriate: for In Ga As–In Al As

material with a CBO of 520 meV, the highest ISB energy be-

tween ground state and first excited state is around 320 meV for

a QW thickness of 34 . For the GaAs–Al Ga As system

with a CBO of up to 1 eV, the maximal is 550 meV for a

22- QW with and meV for a 39- QW with

(for , the bandgap of Al Ga As becomes

indirect). To reach higher ISB transition energies, a material

combination with a larger CBO is required. There exist several

alternative semiconductor heterostructures with large CBOs,

each of whom has its own advantages and drawbacks: strain

compensated In Ga As–In Al As builds upon

the mature lattice matched In Ga As–In Al As

system, but for a significant enhancement of the CBO,

the large introduced strain severely hampers the growth.

In Ga As–AlAs Sb is lattice matched to InP and

has a CBO of 1.6 eV; however, growth of AlAsSb is less mature,

the abruptness of its interface towards InGaAs is reduced by

interdiffusion, and the conduction band minimum of AlAsSb

is 789 meV lower in the X valley compared with the valley

[22]. InAs–AlSb has a CBO of 2.1 eV, but suffers from strain.

Group III nitrides (AlN, GaN, InN and their alloys) offer

a large range of CBOs, for example, 1.9 eV for AlN–GaN,

and have a direct band gap, but their large lattice mismatches

and the lack of lattice-matched substrates with low defect

densities makes growth difficult. Nevertheless, nitride-based

intersubband detectors at telecommunication wavelengths have

been successfully demonstrated [23], [24]. As for QCDs, NIR

devices based on strain compensated InGaAs–InAlAs and on

In Ga As–AlAs Sb were demonstrated.

TABLE II
NIR QCDS

Strained InGaAs–InAlAs: The CBO of

In Ga As–In Al As heterostructures can be

heightened from the lattice-matched value of 0.52 eV at

by increasing the In content above 53%

in the InGaAs QW and reducing it below 52% in the InAlAs

barrier. However, the modified In contents introduce strain

between the barrier and QW layers and the InP substrate;

since the strains are of opposite signs, namely tensile in the

barrier and compressive in the QW, a strain compensated

pseudomorphic active region can be obtained by choosing

appropriate layer thicknesses and material compositions. Using

strained In Ga As–In Al As with a CBO of 610

meV [25], a QCD (N1037) with a peak detection energy of

319 meV (3.88 m) is presented [26]. N1037’s active region

is described in Table II. It consists of 60% barrier material;

hence there is a small residual strain of 0.1% towards the

InP substrate. Due to the relatively thin total thickness of the

detector, this small lattice mismatch did not lead to a relaxation

of the crystal.

The measured responsivity shown in Fig. 11 amounts to

8.9 mA/W at 318 meV (3.9 m) and at 5 K. The measured tran-

sition energy corresponds well to the simulated ISB

transition energy of 319 meV, demonstrating that both growth

and simulation of 0.5% strained InGaAs–InAlAs heterostruc-

tures have a high maturity comparable to lattice-matched

InGaAs–InAlAs. The spectral lineshape of the 300 K respon-

sivity is identical to the one of the measured room temperature

absorption also shown in Fig. 11. N1037’s relative responsivity

linewidth increases from 14 meV (4.4%) at 5 K to 21 meV

(6.6%) at 300 K. The linewidth broadening comes along with a

peak absorption energy redshift of cm /K displayed

in the inset of Fig. 11. Both broadening and redshift are again

due to band filling and nonparabolicity. Inserting the measured

room temperature peak absorption per double pass of 6% and

the corresponding peak responsivity of 5.8 mA/W into (1)

results in a 30% escape probability of photoexcited electrons

from into the extractor. This is 2–3 times higher compared
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Fig. 11. Strained InGaAs QCD N1037. Top: responsivity spectra at 150 K
and 300 K, along with the absorption lineshape measured at 300 K. Inset: peak
responsivity energy extracted from a Lorentzian fit as function of temperature.
Bottom: Johnson noise-limited detectivity � and resistance area product
around 0 V� � for different temperatures.� equals the background-limited
detectivity � (FOV: �� sr, 300 K background) at � � ��� K.

with the lattice-matched In Ga As–In Al As QCDs

presented in the previous section. This behavior is consistent

with N1037’s higher tunneling transition probability from

the state and calculated using [27]

(6)

where is the remaining barrier height and the barrier

thickness. For the 4.7- m QCD N1022, % and

%, whereas for N1037, % and %.

The Johnson noise-limited detectivity of N1037 was cal-

culated with the measured and peak responsivities; it

equals Jones at 300 K and reaches the background-lim-

ited detectivity Jones (for 300 K back-

ground temperature and a hemispherical FOV) at

K. This improvement over the longer wavelength QCDs pre-

sented in the MIR section, where only N1022 with a detection

wavelength of 4.7 m reached the BLIP condition at

K is expected: at shorter wavelengths, the higher electron

states and thicker barriers of a QCD result in an increased resis-

tance R and thus a lower Johnson noise current and a

higher .

Antimony-based QCDs: To obtain ISB detectors working at

wavelengths below 3 m, the QCD design was also successfully

applied to the In Ga As–AlAs Sb material system

lattice-matched to InP substrates, which offers a CBO of 1.6

Fig. 12. Calculated conduction-band profile of AlAsSb QCD 3392. QW A is
the active QW; QWs B-H form the extractor cascade.

Fig. 13. Responsivity spectra of InGaAs–AlAsSb QCDs for different temper-
atures. Left panel: 3392 detecting around 4065 cm (2.45 �m). The shoulder
at 1.82 �m is due to the diagonal transition from the active QW’s ground state
� into the last extractor QW’s excited state � . Right panel: responsivity of
3394 detecting around 2.05 �m scaled by a factor of 6.

eV. Other advantages besides the high CBO are that the ma-

ture processing technology of the InGaAs–InAlAs system can

be used, that growth of the InGaAs QWs is well established,

and that high-quality InP substrates are available at low cost.

The difficulties lie in the growth of the AlAs Sb barrier

material and the barrier/QW interface quality. In real devices,

the resulting interface fluctuation between QWs and barriers is

a limiting factor towards high ISB transition energies [28]. Also,

in a thin In Ga As QW the upper level, , lies above the

lowest X-valley point for ISB transition energies –

meV (3.7 m) [29], wherefore inter-valley scattering is

expected to degrade the extraction efficiency and thus the overall

performance of short wavelength InGaAs QCDs. Fortunately,

inter-valley scattering was recently shown to be much

slower in thin InGaAs–AlAsSb QWs as compared with bulk In-

GaAs [30].

In Fig. 13, the responsivity spectra of samples 3392 and

3394 are depicted [31]; growth parameters are listed in Table II

and the calculated bandstructure is shown in Fig. 12. The

responsivity peaks at 605 meV (2.05 m) for 3394 and at
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Fig. 14. Measured detectivities of the InGaAs/AlAsSb QCDs. The �
values presented in the text are obtained by linearly (on the semilog scale)
extrapolating the measured � values towards lower temperatures until they
cross the temperature independent � at the temperature � .

528 meV/2.35 m for 3392. Compared with the simulated

ISB transition energies, the measured values are lower by 8%

(3392), respectively, 20% (3394). The increase of the deviation

between measured and simulated ISB transition energy for

decreasing QW thickness is consistent with the findings of

Neogi et al. [32], who investigated ISB absorption spectra

in InGaAs–AlAsSb QWs with varying thicknesses. They ob-

served an ISB transition energy of 650 meV as opposed to the

theoretically expected 920 meV for a QW thickness of 14.5

and explained this deviation with the interface roughness be-

tween InGaAs QWs and AlAsSb barriers. Interface roughness

is also the reason for the wide relative responsivity linewidth

of 10% at 5 K for 3392 and even 20% for 3394; comparable

longer wavelength In Ga As–In Al As QCDs have

significantly narrower linewidths, such as the 4.7 m QCD

N1022 discussed previously with 3.7% at 5 K.

The weak shoulder of 3392’s responsivity peaking at

670 meV with 0.25 mA/W at 5 K can be assigned to the diag-

onal backward transition followed by the

extractor path: due to the thin barrier between QW H and A,

the oscillator strength is sufficiently high to

lead to a measurable photocurrent.

The measured peak absorptions per double pass amount

to 3% for 3392 and 1.2% for 3394, they also agree well

with the values calculated using Fermi’s golden rule (3) of

2.95% for 3392 and 0.84% for 3394. This weak absorption

efficiency is caused by the low ( )

oscillator strengths of (0.225, 0.0598) for 3392 and (0.158,

0.114) for 3394. As the oscillator strengths obey the sum rule

[33], a reduction of and

would result in an increase of

The Johnson noise-limited detectivities of 3392 and

3394 were calculated with (4) using measured values for

the peak responsivity and . At 300 K, 3392 has an

of 47.9 cm resulting in a of Jones; the

corresponding values for 3394 are cm and

Jones. amounts to Jones

for 3392, respectively, Jones for 3394. As the

measurements are limited by the maximal source meter

sensitivity of 5 pA to values below 10 cm , the measured

shown in Fig. 14 are extrapolated to determine . The

values obtained with this extrapolation are K for

Fig. 15. Responsivity of InGaAs–AlAsSb QCD EP745 at different tempera-
tures (solid lines). The dashed line is the responsivity of 3392 at 10 K scaled by
a factor 0.64. The shaded area is the room temperature absorption per double
pass of EP745 with a peak value of 3.4%. The inset compares the FWHM of
EP745 to 3392.

3392 and K for 3394. The higher of 3394

is explained by its shorter operation wavelength, resulting in

a higher and thus a higher . The low s are a

consequence of the weak absorption efficiencies of 3392 and

3394.

A redo of 3392, EP745, with thicker extractor barriers, es-

pecially between QW H and , was designed to suppress the

high energy shoulder of 3392; another benefit of the thicker bar-

rier between QW H and is the higher oscillator strength and

thus absorption efficiency between and respectively

and . The overall extraction efficiency does not suffer from

a thicker barrier at the low-energy end of the extractor: once an

extracted electron reaches the thicker barrier, its recapture prob-

ability into the active QW from where it originated is negligible.

As described in [34], AlAs diffusion barriers were introduced at

the QW/barrier interfaces to reduce the Sb segregation between

QW and barrier. EP745 was grown at FIRST laboratory, ETH

Zurich, on a Veeco GEN II MBE system.

The responsivity of EP745 is shown in Fig. 15. Compared

with 3392, two main differences are observed: the linewidth of

EP745 is 35% smaller and the high energy shoulder at 5400

cm is not present in EP745’s responsivity. This shows that

both the AlAs interdiffusion barriers at the interfaces and the

thicker barrier between QWs H and have the expected ef-

fects of improving the interface abruptness and lowering the

oscillator strength. The AlAs diffusion barriers used

in EP745 lead to a significantly higher device resistance com-

pared to 3392: at 200 K, cm for EP745

compared to cm for 3392. As a consequence of

the high , the Johnson current noise is low and the Johnson

noise limited detectivity is high, namely Jones

at 200 K. If is extrapolated towards lower temperatures, it

equals the 300 K background limited hemispherical

Jones at K.

At this point, a comparison with NIR detectors on the market

is due: For wavelengths below 2.5 m, commercial InGaAs in-

terband photodetectors are available which show significantly

better performance: the Judson technologies J23-xxx-2.6 with a
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Fig. 16. Self-consistently calculated conduction band structure of the THz
QWIP A2879 at 10 K. One full period, surrounded by adjacent parts of the
previous and next period, is shown. The observed transitions take place between
the ground state 0 and the upper states 4 and 5 and have computed energies of
13.7 and 16.0 meV. The extraction cascade consists of the states 3,2,1.

50% cutoff wavelength of m has a room temperature

Jones, which increases to

Jones for a Peltier-cooled device with an operating temperature

of 188 K. At this temperature, InAs detectors with

m have similar . As both InAs and InGaAs are close to the

theoretical limit of and have mature and cost-efficient mate-

rial growth and processing, possible commercial interest to ISB

photodetectors at wavelengths below 3.3 m narrows down to

applications which require fast detection speed or intrinsically

narrow linewidths. One example is 3-D imaging based on the

time-of-flight distance measurement principle, where the depth

resolution is proportional to the light pulse frequency. In yet

another line of application using mainly their small linewidth,

QCD stacks detecting at slightly different wavelengths would

provide a rough estimation on spectral composition without re-

quiring a grating or interferometric spectrometer; a prospective

market for such NIR spectroscopy is noninvasive determination

of glucose concentration in human blood by measuring glucose

absorption features around 3 m.

C. THz QCD

The THz radiation region is loosely defined by the frequency

range of 0.1 to 10 THz (30 to 3000 m) and attracts interest

from sectors as diverse as the semiconductor, medical, manufac-

turing, space, and defense industry [35]. For radiation sources

and detectors, this region is often referred to as THz gap, as it lies

between microwaves, the high frequency extreme of electronic

devices, and infrared, the low frequency extreme of photonic

devices. To detect THz radiation, bolometers are an established

technology for certain applications. ISB THz QWIP detectors

are also an emerging technology [36]. Quantum cascade lasers

were demonstrated at wavelengths up to 250 m [37], showing

that quantum cascades are also well suited for THz devices. The

absence of dark current in QCDs becomes even more beneficial

at THz detection frequencies compared to QWIPs, as their dark

current increases with decreasing detection frequency.

Fig. 17. Photocurrent spectra of the THz QCD. Different peaks are identifiable
with calculated transition energies.

Graf et al. [38] published a THz QCD detecting at 84 m

(15 meV) with GaAs QWs and Al Ga As barriers. Fig. 16

shows the conduction band profile computed with a self-consis-

tent Schrödinger-Poisson solver. The active QW lies at 700 nm

in the figure and is doped to cm . Starting with the

second barrier from the left, the layer thicknesses in are ,

110, , 135, , 145, , 180, , 210, , 100 where bold

typeface denotes barriers.

In Fig. 17, the photocurrent spectrum of the THz QCD at tem-

peratures between 5 and 30 K is depicted. At higher tempera-

tures, the detector signal is buried in the rising Johnson noise

floor. The photocurrent peaks at 84 m (14.8 meV) and 74 m,

(16.8 meV) which is in good agreement with the calculated ISB

transition energies between level 0 and level 4 respectively 5 of

13.6 meV and 16 meV. The additional peaks at 46.3 m and

33.7 m are due to ISB transition into states 6 and 7. The re-

sponsivity was measured to be 8.6 mA/W at 87 m and 10 K

and the detectivity amounted to Jones.

Compared with the results of a THz heterojunction photode-

tector based on internal photoemission [39], those results are

about two orders of magnitude lower. However, the THz QCD

is believed to have room for improvement [38], especially by

increasing the doping density and optimizing the bandstructure

for high absorption and escape probability.

D. Broadband QCD

Up to now, it was not clear whether a QCD with a spec-

trally broad response would—at least partially—preserve the

good noise properties of the standard narrow response QCD. Re-

cently, a MIR QCD based on lattice-matched InGaAs–InAlAs

with a relative linewidth of 27% was designed and fabricated

by Hofstetter et al. [40]. It makes use of 26 carefully designed

active region stages spanning a wavelength range between 4.7

and 7.4 m (measured at 10% of the peak responsivity). These

stages were arbitrarily divided into six smaller groups having

very similar extraction cascades. Within a group, only the first

two active QWs were changed in order to produce slightly dif-

ferent absorption spectra for each stage.

As shown in Fig. 18(a), the 10 K responsivity peaks at

1950 cm (242 meV) with 13 mA/W. The FWHM at this low
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Fig. 18. (a) Responsivity and (b) absorption spectra of the broadband QCD at
10 K, 100 K, 200 K, and 300 K.

Fig. 19. Detectivity of the broadband QCD as a function of temperature along
with a calculated value of the background limited detectivity.

temperature is 420 cm ( meV, %).

When going to 300 K, a responsivity of 1.25 mA/W peaking

at 1920 cm ( meV) was observed, with a FWHM

of 525 cm ( meV, %). Absorption

spectra measured using a multipass waveguide configuration

are shown in Fig. 18(b) for selected temperatures of 10, 100,

200, and 300 K. They agree quite well with the responsivity

curves at the corresponding temperatures.

Despite the large detection spectrum, the noise properties

of this device were not too adversely affected: as presented

in Fig. 19, the background limited detectivity amounts to

Jones up to a temperature of 110 K. Al-

though not yet being fully optimized in its performance, this

device is a first step towards semiconductor based ISB detectors

for spectrally broad applications such as spectroscopy.

IV. CONCLUSION

QCDs are an emerging technology which is shown to en-

compass wavelengths from the near-infrared to the THz region

as shown in Fig. 20. The design of QCDs has proven to be

reliable and robust. Especially in the MIR range around 4 to

17 m, well-established semiconductor material systems and

Fig. 20. Normalized photocurrent of the QCDs presented in this work. They
span a wavelength range from 2.05 �m (4880 cm ) to 84 �m (120 cm ).

processing procedures are available. Accordingly, we demon-

strated QCDs in the NIR fabricated from InGaAs–AlAsSb, in

the midIR using InGaAs/InAlAs, and in the THz-region using

GaAs–AlGaAs materials. A chirped QCD design is a first

step towards semiconductor-based ISB detectors for spectrally

broad applications. To cite just two examples of remarkably

high performance, we would like to mention a QCD sensitive

at 5.35 m which was tested at frequencies up to 23 GHz;

while an InGaAs–InAlAs-based, strain-compensated QCD at

3.96 m reached a background limited detectivity in excess of

10 Jones at 108 K. Together with the high speed and design

flexibility, this makes QCDs very interesting candidates for

applications in this wavelength range. However, the successful

integration of a QCD in applications such as astronomy, 3-D

imaging, or even telecommunication remains to be demon-

strated. Considerable margin for improvement, especially in

terms of room temperature detectivity and responsivity, has

been identified. As one typical example, the device resistance

can be greatly influenced by the use of thicker barrier layers,

higher lying extractor states and carefully adapted doping

levels.
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