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Abstract: A class of tensor models were recently outlined as potentially calculable exam-

ples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev

(SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched

disorder averaging). These facts make them intriguing tentative models for quantum black

holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten ten-

sor model and study its spectral and late-time properties. We find parallels to (a single

sample of) SYK where some of these features were recently attributed to random matrix

behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-

plateau structure after a running time average, in qualitative agreement with SYK. But

we also observe that even though the spectrum has a unique ground state, it has a huge

(quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta

function due to the degeneracies however, there is level repulsion in the unfolded spacing

distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also

has a spectral mirror symmetry which we trace back to the presence of a unitary operator

with which the Hamiltonian anticommutes. We use it to argue that to the extent that the

model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but

by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.

Keywords: 1/N Expansion, Black Holes in String Theory, Holography and condensed

matter physics (AdS/CMT)

ArXiv ePrint: 1612.06330

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2017)056

mailto:chethan.krishnan@gmail.com
mailto:sambuddha.sanyal@icts.res.in
mailto:pnbalasubramanian@gmail.com
https://arxiv.org/abs/1612.06330
http://dx.doi.org/10.1007/JHEP03(2017)056


J
H
E
P
0
3
(
2
0
1
7
)
0
5
6

Contents

1 Motivation and conclusions 1

2 The holographic tensor model 3

3 The D = 3, n = 2 Gurau-Witten Hamiltonian 4

3.1 Friendly and really-real spinor representations 4

3.2 Hamiltonian in terms of gamma matrices 5

4 Numerical results 7

4.1 The eigenvalue spectrum 7

4.2 Spectral form factor 8

4.3 Level repulsion 9

5 Discrete symmetries and the choice of ensemble 9

6 Comments 11

1 Motivation and conclusions

In the holiday wish-list [1] of a devout Holographer, one might very well find a theory

that exhibits (a) solvability in the large-N limit, (b) maximal chaos [2], and (c) emergent

conformal symmetry in the infrared. A theory with these properties would be a potential

candidate for a controllable holographic model for quantum black holes. At first glance,

these demands together might seem forbiddingly constraining,1 but a remarkable theory

that passes all three criteria is known: this is the 0+1 dimensional model of Sachdev, Ye

and Kitaev (SYK) [3, 4]. See also [5–40].

The SYK model has “quenched disorder”, which means that it is a theory whose

correlation functions are to be considered after2 an average over an ensemble of couplings.

This means that the SYK (ensemble-averaged) correlation functions cannot themselves be

interpreted as those of a true quantum system, and therefore one might worry about the

lessons one can extract about the quantum behavior of black holes by studying them.

As an antidote to this, Witten proposed [42] a class of tensor models (building on

the work of Gurau and collaborators [44–49]) which have the same large-N “melonic”

behavior [43] as the SYK model and therefore shares its nice features, but does not require

a quench. We will call these models and their relatives [50] Holographic Tensor Models

1In particular, Nature probably does not owe us solvability.
2Of course, one can also consider the theory where the couplings realize only a single element of the en-

semble. Indeed, we will see that this could actually be interesting for our discussions, see also section 8 of [41].

But the exact solvability at large-N of SYK is unfortunately and crucially tied to the ensemble average.
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(HTM). In this paper, we will explicitly solve the simplest3 non-trivial Gurau-Witten tensor

model.

Our interest in this problem is directly motivated by the work of [41, 51], who studied

spectral properties of the SYK model and showed that it exhibits various features that are

characteristic of random matrices and quantum chaos [52, 53]. In particular, [41] considered

a specific function constructed from the spectrum of the theory4 and showed that a specific

dip-ramp-plateau structure in its time-dependence is a signature also shared by random

matrices in the appropriate ensembles. This statement is true without further qualifications

for the SYK model after the ensemble average. But even for a single realization of SYK, this

statement holds after a running time average.5 In this paper, we will show that such a dip-

ramp-plateau structure for the SFF holds also in the Gurau-Witten tensor model (after the

running time average to kill the late-time fluctuations). This is interesting because unlike

in the (single realization of the) SYK model, the coupling here is a single (dimensionful)

number, not O(N4) numbers each chosen from a Gaussian distribution. This result is

indicative that despite this, there is randomness and chaos in the system.

We will also see however that there are some interesting differences between the tensor

model and SYK. One of the most striking features is that the tensor model has what

looks (to within our numerical error) like a huge degeneracy in the middle of the energy

spectrum, as well as moderate degeneracy elsewhere. The ground state however, is unique.

It is tempting to speculate that such a large degeneracy has to do with the entropy of black

hole states in the theory [54]. Interestingly, once we remove the degeneracies and look at

the (unfolded) level spacing distribution P (s), we find distinct evidence that the system

shows level repulsion at low s indicative of chaotic dynamics. Another feature we see is

that the spectrum has gaps in it, especially close to the midpoint of the energy spectrum.

Yet another interesting feature is that it has a mirror symmetry, by which we mean that

the energy levels come in pairs around the center as

(E0 + En, E0 − En). (1.1)

The midpoint energy is E0 = 0 and it is at that energy that we see the huge degeneracy.

The presence of spectral mirror symmetry is an indication that the system has a

discrete symmetry which we will discuss in detail later. We will see that it can be traced

to the existence of a unitary operator that anti -commutes with the Hamiltonian [42]. We

will explicitly construct this operator for our Gurau-Witten model. Together with the

presence of a Particle-Hole Symmetry operator which has already been identified for SYK

and SYK-like models like ours [41, 55, 56], this helps us fix the symmetry class of the

theory. We will find that the symmetry class is the so-called BDI class in the 10-fold

classification of Altland and Zirnbauer [57]. This means that unlike the SYK models

which were controlled (depending on the parity properties of N) by the Gaussian Unitary,

Orthogonal and Symplectic ensembles of Dyson, the random matrix behavior of this model

3The effective N for this model turns out to be 32, which makes it comparable to the N = 32 version of

the SYK model that already exhibits [41] many large-N features.
4They call this function the Spectral Form Factor (SFF), and we will adopt this terminology.
5See section 8 of [41] and our discussions later for a precise definition of the running time average.
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is likely to be controlled by the chiral Gaussian Orthogonal Ensemble. We leave a detailed

study of these and numerous other interesting questions for future work, some of which we

comment on in a final section.

2 The holographic tensor model

The general Gurau-Witten tensor model contains q = D + 1 real fermionic fields

ψa,ia0... /iaa...iaD (2.1)

where a, b ∈ {0, 1, . . . , D} are called colors, and each of the iam’s run from 1, . . . , n, where

n is independent of D. The notation /iaa means that iaa is omitted in the indices. The

transformation property of this index iam is what defines the symmetry group of the theory,

and it is fixed as follows. First we define a group Gab = O(n) for each unordered pair (a, b)

of distinct elements in {0, 1, . . . , D}. This means that upto an overall discrete group that

we will not keep track of in this paper, the symmetry group of the theory is

G ∼ O(n)D(D+1)/2 (2.2)

Now the index iam is thought of as transforming in the vector represnetation of Gam for

each m 6= a. Since there are D groups Gab with a 6= b for a given a, each ψa has nD

components. Now the Gurau-Witten action is written as

SGW =

∫

dt

(

i

2
ψi∂tψi −

i(D+1)/2J

nD(D−1)/4
ψ0ψ1 . . . ψD

)

(2.3)

where we have suppressed the contractions in the interaction term. Since a runs from 0

to D, the total number of real fermions in the theory is N = (D + 1)nD. This is the N

that is relevant for large N , in the sense of comparison to SYK: remember the q in SYK

is (D + 1) here. The sum over i in the kinetic term is from 1 to N . It should be clear

that because the index structure of each ψa is explicitly constructed to reflect the rest of

the fields in the theory, the contraction structure when explicitly written out is a bit of

a mess; see e.g. [43] for the explicit form of the action. We will only discuss the simplest

Gurau-Witten theories where it will be straightforward to write down the contractions by

inspection. We also note that the scaling in the coupling J is introduced so that we have

well-defined large-N limit.

Lets start with the simplest theories, where D = 1. In this case, we have two sets

of fields: ψ0 transforming as a vector under G01 = O(n) and ψ1 transforming as a vector

under G10 = G01. This means that the theory is an O(n) theory and explicitly we have

SD=1
GW =

∫

dt

(

i

2
ψi
a∂tψ

i
a − iJ ψi

0ψ
i
1

)

(2.4)

where all indices are explicit and repeated indices are summed over their appropriate ranges.

This theory is trivially solved for any value of n because it is free after an appropriate diag-

onalization in field space: we will not present the details. Essentially identical discussions

can be found in e.g. [41, 58] in the context of SYK.
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Since the Lagrangian has to be a boson, the next simplest example corresponds to

D = 3. Some index chasing and being careful about the locations of contractions shows

that the explicit action is given by [50]:

SD=3
GW =

∫

dt

(

i

2
ψijk
a ∂tψ

ijk
a +

J

n3/2
ψijk
0 ψilm

1 ψnjm
2 ψnlk

3

)

(2.5)

The theory has an O(n)6 symmetry group, and the number of fermions in the theory is

4n3. The case n = 2 will be the subject matter of most of our discussions.

3 The D = 3, n = 2 Gurau-Witten Hamiltonian

Our goal in this paper is to diagonalize the Hamiltonian corresponding to (2.5) and use it

to investigate whether the system exhibits any features of chaos/random-matrix behavior.

The canonical anti-commutation relations of the theory immediately lead to the Clif-

ford algebra

{ψijk
a , ψlmn

b } = δabδ
ilδjmδkn. (3.1)

This means that we can realize the fermion operators in 0+1 dimensions as Euclidean

Gamma matrices6 of SO(N) = SO((D + 1)nD). The dimension of the spinors on which

they act grow exponentially fast in N , so if we want to have any chance of solving these

on a computer, we need to stick to low values for D and n: the upper limit for N that is

tractable on a computer is about 32, 34, . . . from what we see in papers on the subject.

Quite fortunately, we find that the first non-trivial value for N in the Gurau-Witten model

corresponds to n = 2 which yields N = 32. This is the model we will solve in this paper.

Note that we got lucky: the next lowest GW model is computationally inaccessible

and requires too much RAM to store the matrices (at least by our resources and skills in

computing), as we will discuss later. It is also fortuitous that the solvable N is not too

low! If it were, we could not legitimately hope to reasonably claim that we are seeing hints

of any large-N physics. As it happens, N = 32 happens to fall in the right range, and it

also happens to be around the upper boundary of N considered in the work of [41].

3.1 Friendly and really-real spinor representations

The gamma matrices we will need are those of SO(32) which means they are going to be

65536 × 65536 matrices. To solve them with our computing resources, we found it best

to work not with the standard representation of gamma matrices which are complex, but

instead with a real symmetric representation. The fact that such a representation exists is

guaranteed in N = 0 mod 8 dimensions. We will use the so-called friendly representation

of gamma matrices [59] where the gamma matrices are “really real” in N = 0 mod 8

6The nomenclature here in the condensed matter literature is a bit confusing to the high energy the-

orist. To emphasize the obvious: there are no genuine spinors in 0+1 D. What is meant by a fermion in

0+1 dimensional quantum mechanics is an operator that satisfies the Clifford algebra, in other words a

gamma matrix. The dimensionality of the Clifford representation is a choice one has the freedom to make,

independent of the spacetime dimension which is of course 0+1. In the SYK model for instance, this choice

of N gets interpreted as the number of lattice sites.
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dimensions. To construct them systematically, we adopt the following recipe. We first

construct Euclidean gamma matrices Ei in N = 8

E1 = σ1 ⊗ 1⊗ 1⊗ 1,

E2 = σ3 ⊗ 1⊗ 1⊗ 1,

E3 = σ2 ⊗ σ2 ⊗ σ1 ⊗ 1,

E4 = σ2 ⊗ σ2 ⊗ σ3 ⊗ 1,

E5 = σ2 ⊗ σ1 ⊗ 1⊗ σ2,

E6 = σ2 ⊗ σ3 ⊗ 1⊗ σ2,

E7 = σ2 ⊗ 1⊗ σ2 ⊗ σ1,

E8 = σ2 ⊗ 1⊗ σ2 ⊗ σ3. (3.2)

These can be explicitly checked to satisfy the Clifford algebra. Together with the definition

E∗ = E1 . . . E8 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2, (3.3)

now we can follow the recipe [59]

γµ = γ̃µ ⊗ E∗, µ = 0, 1, . . . , D − 1,

γD−1+i = 1⊗ Ei, i = 1, 2 . . . , 8. (3.4)

to construct gamma matrices in D+8 dimensions starting from those in D. Starting from

eight dimensions and doing this three times we get from N =8 to 16 to 24 to 32, which is

the case we want. These gamma matrices are real and symmetric.

3.2 Hamiltonian in terms of gamma matrices

Using these gamma matrices as our definition of the fermions, we can explicitly write out

the Gurau-Witten Hamiltonian in terms of the SO(32) gamma matrices. The result is a

bit cumbersome:

H =
J√
8

(

γ1γ9γ17γ25 + γ1γ9γ21γ29 + γ1γ10γ18γ25 + γ1γ10γ22γ29 + γ1γ11γ17γ27

+γ1γ11γ21γ31 + γ1γ12γ18γ27 + γ1γ12γ22γ31 + γ2γ9γ17γ26 + γ2γ9γ21γ30

+γ2γ10γ18γ26 + γ2γ10γ22γ30 + γ2γ11γ17γ28 + γ2γ11γ21γ32 + γ2γ12γ18γ28

+γ2γ12γ22γ32 + γ3γ9γ19γ25 + γ3γ9γ23γ29 + γ3γ10γ20γ25 + γ3γ10γ24γ29

+γ3γ11γ19γ27 + γ3γ11γ23γ31 + γ3γ12γ20γ27 + γ3γ12γ24γ31 + γ4γ9γ19γ26

+γ4γ9γ23γ30 + γ4γ10γ20γ26 + γ4γ10γ24γ30 + γ4γ11γ19γ28 + γ4γ11γ23γ32

+γ4γ12γ20γ28 + γ4γ12γ24γ32 + γ5γ13γ17γ25 + γ5γ13γ21γ29 + γ5γ14γ18γ25

+γ5γ14γ22γ29 + γ5γ15γ17γ27 + γ5γ15γ21γ31 + γ5γ16γ18γ27 + γ5γ16γ22γ31

+γ6γ13γ17γ26 + γ6γ13γ21γ30 + γ6γ14γ18γ26 + γ6γ14γ22γ30 + γ6γ15γ17γ28

+γ6γ15γ21γ32 + γ6γ16γ18γ28 + γ6γ16γ22γ32 + γ7γ13γ19γ25 + γ7γ13γ23γ29

+γ7γ14γ20γ25 + γ7γ14γ24γ29 + γ7γ15γ19γ27 + γ7γ15γ23γ31 + γ7γ16γ20γ27

+γ7γ16γ24γ31 + γ8γ13γ19γ26 + γ8γ13γ23γ30 + γ8γ14γ20γ26 + γ8γ14γ24γ30

+γ8γ15γ19γ28 + γ8γ15γ23γ32 + γ8γ16γ20γ28 + γ8γ16γ24γ32

)

(3.5)
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Figure 1. The MatrixPlot of Hamiltonian (3.5).

Figure 2. The MatrixPlot of an SYK Hamiltonian for a single draw from the ensemble. We are

considering the case N = 16, with really real Gamma matrices.

This object is what we will diagonalize and study in the upcoming sections. All its elements

are either +1, -1 or zero. The matrix is largely sparse, and it is useful for some of our pur-

poses later to have an idea about the distribution of its non-trivial matrix elements, so we

plot it in figure 1. It is evident that it has some interesting structure. It is also interesting to

note that the result of a single draw of the SYK ensemble (with the same really real Gamma

matrices) results in a Hamiltonian which looks a lot more “random” and less sparse in ap-

pearance. We present its sparseness structure in figure 2 for comparison. It is worth noting

that the non-zero elements of such an SYK Hamiltonian are randomly distributed numbers,

whereas the elements of the GW Hamiltonian are +1, -1 or zero. And yet, we will see that

it produces features of randomness. This is not unfamiliar in the case of condensed matter

systems where eigenvalue spectra of adjacency matrices can give rise to randomness.

We have diagonalized the Hamiltonian above numerically, and we report on various

aspects of the result in the next section.
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Figure 3. The density of states. The d.o.s is symmetric: the slight asymmetry is an artifact of the

binning of the eigenvalues.

Figure 4. The integrated density of states. The jump around zero is a result of the degeneracy

at E = 0.

4 Numerical results

We first present the spectrum, and then in the subsequent subsections present qualitative

comparisons to various spectral properties of the SYK model as well as to hints of random

matrix-like behavior and chaos. We also mention the differences from SYK.

4.1 The eigenvalue spectrum

The density of states is plotted in figure 3. It has a multi-peak structure that differs from

the SYK single draw case [58]. We also note that the spectrum is exactly symmetric around

E = 0. We will have more to say about this in the next section, but for now, we note that

an approximate symmetry of this type existed also in (a single draw of) the SYK spectrum

as well: see figure 13 in [58]. We also note that the ground state is unique and has no de-

generacies, but there is a huge degeneracy around E = 0 (within our numerical precision).
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Figure 5. The SSF for β = 0.

Figure 6. The SSF for β = 0.5.

4.2 Spectral form factor

The plots of the spectral form factor, which is defined [41] as

Fβ(t) =
|Z(β, t)|2
|Z(β)|2 (4.1)

with

Z(β, t) ≡ Tr
(

e−(β+it)H
)

(4.2)

was used as a measure of the random-matrix-like behavior of the SYK model. A dip-ramp-

plateau structure in the theory was argued to be evidence for this. The work of [41] mostly

focused on the ensemble-averaged case, but it was also noted that a running time average

in the single draw case results in qualitatively similar features.

We have computed the same quantity in the Gurau-Witten theory and we report the

plots after a running time average. This means we plot a sliding window average with fixed

time windows given by ∆t. The averaging times ∆t are quoted in the figures. We see a

pattern that is quite parallel to that found in [41]. Note also that our ramp is steeper than

the one found there. We also note (as observed in [60]) that there is some tension between

increasing the averaging window and the existence of the ramp.

– 8 –
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Figure 7. The integrated d.o.s plot after degeneracies have been removed. This is the data that

we use for doing the unfolding.

Figure 8. Unfolded level spacing distribution showing level repulsion near s → 0. The level

repulsion is evident, but we emphasize that after the degeneracies are removed, the eigenvalues

available are not many.

4.3 Level repulsion

Once the degeneracies are removed (so that the delta function at the origin of the level

spacing distribution goes away), we find that the level spacing distribution P (s) shows

distinct signs of level repulsion.

To see this, we first have to unfold the spectrum (see [51] and refernces therein). In in-

tegrable systems, the unfolded level spacing distribution typically shows a Poisson distribu-

tion steadily increasing as s→ 0. The absence of this, and a turnaround in the distribution

close to zero is called level repulsion and is often taken as an indicator of chaotic behavior

in the dynamics. In the plot 8, we see distinct evidence for this type of level repulsion.

5 Discrete symmetries and the choice of ensemble

From a glance at the spectrum, it becomes clear that the eigenvalues are exactly symmet-

rical around zero. Such a spectrum is said to exhibit spectral mirror symmetry [53]. In

– 9 –
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this section we will understand this symmetry in the spectrum in terms of an underlying

discrete symmetry of the system. This will enable us to also identify the ensemble that is

likely to control the random matrix-like behavior of the D = 3, n = 2 Gurau-Witten theory.

The basic observation here is simple. We note that flipping the sign of any one of the

ψa’s in the theory changes the sign of the Hamiltonian: there is a unitary [42] operator

under which the Hamiltonian is odd. Following the conventions of [53], we will call this

the S operator. The statement then is that

SHS† = −H (5.1)

What is this operator explicitly? It is straightforward to see this in the gamma matrix

language. Flipping ψ0 corresponds in this language to flipping the signs of all the γi’s in the

range i = 1, . . . 8 while retaining the signs of all the rest.7 This means that S is defined by

S = γ1γ2 . . . γ8 (5.2)

so that

SγiS = −γi for i = 1, . . . , 8 (5.3)

SγiS = +γi for i = 9, . . . , 32 (5.4)

Note also that in the really real representation that we are working with, the gamma’s are

real and symmetric and so the Clifford algebra guarantees that S2 = SS† = SST = 1. So

what we are left with is a unitary operator S that anti-commutes with the Hamiltonian,

and squares to 1.

Furthermore, it was noted in [41, 55, 56] that the theory has a symmetry P that has

been called a particle-hole symmetry.8 The same construction goes through in our case as

well. For SYK with N = 0 mod 8, as well as in our case, it is straightforward to check that

it squares to 1.

Together then, we have two discrete symmetries. An S that squares to 1, and a T

that squares to 1. It turns out that these two symmetries are the defining features of the

symmetry class BDI in the Altland-Zirnbauer 10-fold classification. It is also referred to

as the chiral Gaussian Orthogonal Ensemble. This observation is a strong suggestion that

unlike in the SYK cases, the random matrix ensembles corresponding to the Holographic

Tensor Models need not be the Wigner-Dyson ensembles.

We conclude this section with one brief comment. Note that figure 1 is very suggestive

of a Bogolubov-de Gennes (BdG) structure for the Hamitonian. This structure refers to

Hamiltonians of the form

H =

(

A B

B† −AT

)

(5.5)

7Flipping the signs of any of the other ψa’s can be understood as a (signed) permutation of the ψa’s

together with the S operation, and the former is a symmetry of the theory, so these do not give rise to

essentially new S operators.
8It is perhaps more usefully called a T operator. We will adopt this terminology. It contains an anti-linear

piece and is related to Kramer’s degeneracy, see page 10 of [56].
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Figure 9. The MatrixPlot structure of S.

which are common in mesoscopic physics. One can in fact check explicitly that our Hamil-

tonian actually satisfies A = AT . Also since the Hamiltonian is real symmetric, we also

have B† = BT . But our Hamiltonian does not satisfy B = ±BT which would have taken

it to one of the other symmetry classes instead of BDI. Operationally this is because the

S operator in our case is not of the form

(

0 1

±1 0

)

, (5.6)

see for example [53]. Explicit evaluations shows that its structure is as in figure 9 in the

gamma matrix representation that we are working with.

6 Comments

Clearly, we have only considered the most basic features of a specific holographic tensor

model. The results we find are a strong suggestion that there is a lot to be understood

here. We only make some brief comments of immediate relevance.

It will be very interesting to understand the detailed level spacing distribution and

other “random matrix-like” quantities of HTMs with larger N : in our N = 32 case we do

not have too much statistics once the degeneracies are removed because the total number

of eigenvalues of the Hamiltonian is merely 65536. The next simplest Gurau-Witten model

however is at D = 3, n = 3 and D = 5, n = 2 which corresponds to N = (D + 1)nD = 108

and 192 which is computationally inaccessible via brute force.9 Another possibility is to

consider the model considered in [50], where the model is uncolored and therefore one gets

9We are informed by J. Sonner that one can avoid dealing with explicit matrix assignments for gamma

matrices, by treating operations involving them as logical operations on their matrix elements. This will

reduce some of the demands on computing.
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a reduction in degrees of freedom by a factor of D + 1. The N -dependence of the various

features would be interesting to understand.

One thing we have not emphasized in this paper is the existence of the ∼ O(N)D(D+1)/2

symmetry in the Gurau-Witten theory, which should appropriately be thought of as gauged

for holographic purposes. We have limited our discussion to a direct comparison with the

SYK model where this symmetry is absent. See discussion in [50] for comments on this.

We have also done some partial investigations of the thermodynamics of this model, but a

thorough discussion will be presented elsewhere.
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