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It is well known that a quantum circuit onN qubits composed of Clifford gates with the ad-
dition of k non Clifford gates can be simulated on a classical computer by an algorithm scaling
as poly(N)exp (k)[1]. We show that, for a quantum circuit to simulate quantum chaotic be-
havior, it is both necessary and sufficient that k = Θ(N). This result implies the impossibility
of simulating quantum chaos on a classical computer.

Introduction
Quantum chaos is a certain type of complex quantum behavior that results in the exponential decay of out-
of-time-order correlation functions (OTOC)[2–4] efficient operator spreading[5, 6], small fluctuations of the
purity[7] and information scrambling[8, 9]. All these quantities can be unified in a single framework[10]
which shows that, in order to simulate quantum chaos, one needs at least a unitary 4-design, that is, a set
of unitary operators that reproduces up to the four moments of the Haar distribution over the unitary group
U(d) in an d-dimensional Hilbert space. Here, we define quantum chaos for a quantum evolution in terms
of attaining the Haar value for general multi-point OTOC, that is, the value that would be reached by a
random unitary operator in U(d). We consider a subgroup of the unitary group - the Clifford group - which
only reproduces up to the four-point OTOC[3] and thus it is not sufficient to simulate quantum chaotic
evolutions. In [11], it was shown numerically that a Clifford circuit on a d = 2N -dimensional system of
N qubits doped by a single T gate can bring a typical product state in an entangled state with the same
entanglement spectrum statistics resulting from the random matrix theory for U(d). This result opens the
question of whether it would be possible to simulate quantum chaos with classical resources. In a seminal
paper[12], the authors show that an ε-approximate t-design can be obtained by doping a Clifford circuit
with k = O(t4 log2 t log ε−1) non Clifford gates. In particular, one can ε-simulate the quantum channel
that realizes a 4-design by classical resources. This result is striking: by injecting a vanishing density
σ = k/N of non Clifford gates in a Clifford quantum circuit - as the authors say, homeopathically - one can
obtain any ε-approximate t-design. Does this mean that one can simulate quantum chaos classically? The
answer is no, because - as we will show - to simulate quantum chaos, the error εmust be exponentially small
in N , ε = O(d−α), where α only depends on the Haar average over the full unitary group. A corollary
of the result in[12] is that a sufficient condition to simulate quantum chaos requires O(N) non Clifford
resources.

In this paper, we show that Θ(N) non Clifford resources are both necessary and sufficient to simulate
quantum chaos. To this end, we explicitly compute the 8-point OTOC and the fluctuations of the purity in a
subsystem and show that a doped Clifford circuit will attain the Haar values for these quantities if and only
if Θ(N) non Clifford resources are used. In other words, one needs more than a homeopathic dose of non
Clifford gates to simulate quantum chaos. Can a classical computer simulate quantum chaos? In order to
simulate a Clifford circuit with a Θ(N) non-Clifford resources, an exponential number of classical resources
are needed [1]. Complexity-theoretic arguments [13, 14] imply that one cannot simulate efficiently on a
classical computer a quantum Clifford circuit doped with Θ(N) non-Clifford gates, and therefore, since this
is necessary to simulate quantum chaos, the latter cannot be efficiently simulated on a classical computer:
quantum chaos is quantum.

Lorenzo Leone: Lorenzo.Leone001@umb.edu

Accepted in Quantum 2021-05-01, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

10
2.

08
40

6v
3 

 [
qu

an
t-

ph
] 

 3
 M

ay
 2

02
1

https://quantum-journal.org/?s=Quantum%20Chaos%20is%20Quantum&reason=title-click
mailto:Lorenzo.Leone001@umb.edu


1 Doped Random Quantum Clifford Circuits
Consider doped random quantum Clifford circuits U (k) on a system H = C2⊗N of N qubits of dimension
d = 2N . The architecture of the circuit is the following: we have layers of random Clifford unitary operators
on the fullH interspersed by a single qubit gate Ki applied randomly on any qubit i, see Fig.1. As we shall
see in Sec. C.2, the positioning i of the gates K does not play any role. We denote by k the number of
gates K in the circuit, also called the number of layers of the circuit, ψ a pure input state for the circuit, and
ψU = UψU† its output. We call the quantity σ = k/N the doping of the circuit U (k).

Figure 1: Left: Scheme of the 4-Doped Clifford circuit. Right: Detail of KC4 , a unitary single-qubit non Clifford
gate K evolved adjointly by a Clifford circuit C4. Note that the set formed by these circuits is equivalent to the
set of doped Clifford circuits, i.e circuits composed by Clifford unitaries Ci interspersed with single-qubit non
Clifford gates Ki.

We denote by x a set of unitary operators, e.g. x = U(d), C(d) the unitary and Clifford group, respec-
tively, on H. For k = 0, the circuit is just a Clifford circuit, U (0) ∈ C(d). The Haar average on these sets
will be denoted by 〈·〉U∈x. We define the (x, t)-fold channel as

Φ(t)
x (O) := 〈OU 〉U∈x (1)

where O ∈ B(H⊗t) and OU ≡ U⊗tOU†⊗t. Averaging over C(d) for a circuit U (k) with k layers involves
averaging over k independent Clifford groups; in the following we define this set of circuits as Ck. The
(Ck, 4)-fold channel is

Φ(4)
Ck (O) = 〈OU 〉U∈Ck ≡

〈
C⊗4
k K⊗4

ik
. . . C⊗4

1 K⊗4
i1
C⊗4

0 OC
†⊗4
0 K†⊗4

i1
C⊗4

1 . . .K†⊗4
ik

C†⊗4
k

〉
C1...Ck∈C(d)

(2)
Notice that the above average over C(d) is the same thing - because of the left/right invariance of group
averages - than the average over circuits of the type sketched in Fig.1.

Quantum chaos can be defined as an appropriate form of the butterfly effect[15]: an exponential (in N )
decay of the OTOCs defined as

OTOC8(U) := d−1tr
(
ABUCDUA

†D†UC
†B†U

)
(3)

so that the OTOCs adhere to the value of the OTOCs obtained by Haar-random U on the unitary group
scaling with d−4, while other ensembles, like the Clifford group, feature a scaling of d−2[3]. It is immediate
to see that, in order to distinguish the two types of scaling, one needs an ε = O(d−4). As 2t-OTOCs are
probes of t-designs, an 8-point OTOC is a probe of a 4-design, and therefore a quantum chaotic channel
needs to have a frame potential exponentially close to that of the Haar measure on U(d).

A related measure of chaos[10] is given by the fluctuations of the purity of the reduced density matrix
to a subsystem

∆x Pur(ψU )A :=
〈
(Pur(ψU )A − 〈Pur(ψU )A〉U∈x)2〉

U∈x (4)

This quantity is related to the emergent irreversibility in closed quantum systems[16] and to both 4-designs
and OTOCs. In Sec. 4, we show that the purity fluctuations are exponentially small for every doping
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(including no doping, k = 0) of the random Clifford circuits and thus also to distinguish the fluctuations
of the purity one needs an exponentially small error ε. We ask the question: what is the necessary and
sufficient number k of non Clifford gates K for U ∈ Ck to simulate quantum chaos?

The main goal of this paper is to show that, for Ck to reproduce the Haar-unitary values of the probes
Eqs. (3) and (4), Θ(N) non Clifford resources are both necessary and sufficient. We will prove it in the
next sections by explicitly computing these two quantities. Here, we want to make some more general
considerations. Given a probe to quantum chaos defined as Pt(U) := tr(T (t)O1U

⊗tO2U
†⊗t), see[7, 10],

we can establish the following

Proposition 1. Let Pt(U) a probe of quantum chaos of order t. If the number k of non Clifford
gates in the doped Clifford circuit U ∈ Ck is k = O((α+ t)Nt4 log2(t)), then:

δ
(k)
P ≡

∣∣∣〈P(U)〉U∈Ck − 〈P(U)〉U∈U(d)

∣∣∣ ≤ O(d−α) (5)

where α is given by the following relation 〈P(U)〉U∈U(d) = O(d−α).

Proof. The proof is straightforward from the result in [12]. In [10], we proved that the generic probe
Pt(U) to quantum chaos can be written as Pt(U) = tr(T (t)O1U

⊗tO2U
†⊗t) where O1,O2, T

(t) ∈
B(H⊗t), including the 2t-point OTOC which characterize t-designs[3]. Then, the following inequal-
ity holds:

δ
(k)
P ≤ ‖T

(t)O1‖∞‖O2‖1‖Φ(t)
C,k(·)− Φ(t)

U(d)(·)‖� ≤ d
t‖T (t)O1‖∞‖O2‖∞‖Φ(t)

C,k(·)− Φ(t)
U(d)(·)‖� (6)

where we bounded ‖O2‖1 ≤ ‖O2‖∞‖1l⊗t‖1 = dt‖O2‖∞. Thus if k = O((α + t)Nt4 log2(t)) then
δ

(k)
P = O(d−α).

As we will show in the following sections, the errorO(d−α) is required to have OTOCs and fluctuations
of the purity attain the unitary-Haar values. It follows that injecting O(N) non Clifford resources into a
Clifford circuit is sufficient to obtain quantum chaos.

As we stated above, the necessary (together with the sufficient) condition will follow from direct calcu-
lations. It is important at this point to make some remarks about the value of t. One wonders if it is enough
to consider 8-OTOCs to reveal quantum chaos, or if sometimes it should be necessary to use higher order
OTOCs. From the point of view of the above proposition, it is clear that O(N) non Clifford resources are
sufficient to obtain any OTOC with an exponentially good O(d−α) approximation. Once one has proved
the necessary condition for t = 4, it will also hold for any t > 4 design, as an approximate t-design is
necessarily a t′ approximate design, for all t′ < t. In other words, polynomials of degree four are all that
takes to reveal quantum chaos. To see this, notice that the 4m−OTOCs defined as

OTOC4m(U) := d−1tr[(A1B
U
1 A2B

U
2 · · ·AmBUm)A†1(A1B

U
1 A2B

U
2 · · ·AmBUm)] (7)

reduces, for A3, . . . , Am, B3, . . . Bm = 1l, to the 8−OTOC in Eq. (3); therefore k = Ω(N) are necessary
to obtain any 4m−OTOC with an exponentially good approximation.

2 Main Theorem
From the technical point of view, the main result of this paper is the exact calculation of the fourth moment
of the output of a k-doped random Clifford circuit for a generic operator O ∈ B(H⊗4):

Theorem 1. Let O ∈ B(H⊗4) be a bounded operator, U ∈ Ck a k-doped Clifford circuit; then the
(Ck, 4)-fold channel for the k-doped Clifford circuit reads

Φ(4)
Ck (O) =

∑
π,σ∈S4

[(
(Ξk)πσQ+ Γ(k)

πσ

)
cπ(O) + δπσbπ(O)

]
Tσ (8)

where
Q = 1

d2

∑
P∈P(2N )

P⊗4; Q⊥ = 1l⊗4 −Q (9)
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and P(2N ) is the Pauli group on N qubits; Tπ are permutation operators corresponding to π ∈ S4,
then Ξk is the k-matrix power of the matrix Ξ, whose components read

Ξσπ ≡
∑
τ∈S4

[
W+
πτ tr

(
TσK

⊗4QK†⊗4QTτ )−W−πτ tr(TσK⊗4QK†⊗4Q⊥Tτ
)]

(10)

with

Γ(k)
πσ ≡

∑
τ∈S4

Λπτ
k−1∑
i=0

(Ξi)τσ (11)

Λπτ ≡
∑
σ∈S4

W−πσtr(TτK⊗4QK†⊗4Q⊥Tσ) (12)

and the information about the operator O is all contained in the coefficients

cπ(O) ≡
∑
σ∈S4

[W+
πσtr(OQTσ)−W−πσtr(OQ⊥Tσ)] (13)

bπ(O) ≡
∑
σ∈S4

W−πσtr(OQ⊥Tσ) (14)

whereW±πσ are the generalized Weingarten functions for the Clifford group, introduced and discussed
in App. A.1.

The proof of the theorem can be found in App. B.1.
For many purposes, it is important to know to what Φ(4)

Ck (·) converges in the limit of infinite layers.
Without substantial loss of generality, we consider the case of the non Clifford resources given by phase
gates Pθ with θ 6= π/2. We can thus establish the application:

Application 1. For K = Pθ ≡ |0〉 〈0|+ eiθ |1〉 〈1|, where {|0〉 , |1〉} is the single qubit computational
basis, and for any θ 6= ±π/2 the (Ck, 4)-fold channel equals the (U(d), 4)-fold channel in the limit
k →∞ is

lim
k→∞

Φ(4)
Ck (O) = Φ(4)

U(d)(O) (15)

The proof can be found in App. B.2. Note that the above result can be also seen as a consequence of
the results in [17].

In the next sections, we apply these theorems to calculating the 8-point OTOCs and fluctuations of
subsystem purity to find how these quantities approach the Haar-average on U(d) with k.

3 The 8-point OTOC
Consider four non-identity and non-overlapping Pauli operators A,B,C,D ∈ P(d). Then consider the
unitary evolution of AU = UAU† in the Heisenberg picture and define an 8-point Out of Time Order
Correlator (OTOC) as[3], defined in Eq.(3)

OTOC8(U) := d−1tr(ABUCDUADUCBU ) (16)

We are interested in taking the twirling of the 8-point OTOC for a k-doped Clifford circuit, in order to find a
necessary and sufficient condition for the exponential decay of the OTOC. Thanks to Theorem 1 we obtain

Application 2. Let K ≡ T the single qubit T -gate, then the average of the 8-point OTOC over the
k-doped Clifford circuit reads

〈OTOC8(U)〉U∈Ck = 5d2

(d2 − 1)(d2 − 4)(d2 − 9) − (f−)k d(d2 + 4d+ 6)
6(d2 − 1)(d+ 2)(d+ 3)

+ (f+)k d(d2 − 4d+ 6)
6(d2 − 1)(d− 2)(d− 3) +

(
f+ + f−

2

)k 4d2

3(d2 − 1)(d2 − 4) (17)

where f± ≡ f±π/4 = 3d2±3d−4
4(d2−1) = 3

4 + Θ(d−1), where f±θ are defined in Eq.(84).
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Proof. Starting from Eq.(16) we can write the 8-point OTOC for U as

OTOC8(U) = d−1tr(T(1432)(A⊗ C ⊗A⊗ C)U⊗4(B ⊗D ⊗D ⊗B)U†⊗4) (18)

Taking the average over the k-doped Clifford U ∈ Ck we have

〈OTOC8(U)〉U∈Ck = d−1tr
(
T(1432) (A⊗ C ⊗A⊗ C) 〈(B ⊗D ⊗D ⊗B)U 〉U∈Ck

)
(19)

from the latter equation, the calculation is a straightforward, but tedious application of Theorem
1.

The following corollary explicitly shows the difference in the scaling of the 8-point OTOC for a pure
Clifford circuit and a universal circuit. As we shall see there is a marked difference in these scalings. As a
direct consequence of Theorem 1 and Application 1, we obtain the following

Corollary 1. Taking the average for U ∈ U(d) and C ∈ C(d) of the 8-point OTOC, one gets

〈OTOC8(U)〉U∈U(d) = 5d2

(d2 − 1)(d2 − 4)(d2 − 9) = 5
d4 + Θ(d−6) (20)

〈OTOC8(C)〉C∈C(d) = d2

d4 − 5d2 + 4 = 1
d2 + Θ(d4) (21)

Proof. The proof of Eq.(20) can be obtained from Eq.(17) in the limit k →∞, in virtue of Theorem
1, while Eq.(21) can be obtained from Eq.(17) setting k = 0.

With the following statement, we give the necessary and sufficient condition for the number of non
Clifford gates needed to precisely simulate the behavior of the 8-point OTOC, and thus to simulate quantum
chaos.

Corollary 2. Iff k = Θ(log d), then

δ
(k)
OTOC ≡

∣∣∣〈OTOC8(U)〉U∈Ck − 〈OTOC8(U)〉U∈U(d)

∣∣∣ = Θ(d−4) (22)

Proof. Taking the difference in absolute value between Eq.(17) and (20) we get

δ
(k)
OTOC = −(f−)k d(d2 + 4d+ 6)

6(d2 − 1)(d+ 2)(d+ 3) + (f+)k d(d2 − 4d+ 6)
6(d2 − 1)(d− 2)(d− 3)

+
(
f+ + f−

2

)k 4d2

3(d2 − 1)(d2 − 4) (23)

Taking the asymptotic limit for d→∞ up to Θ(d−4)

δ
(k)
OTOC = 1

d2

∣∣∣∣k − 3
3

∣∣∣∣ (3
4

)k
+ Θ(d−4) (24)

from here it’s easy to see that one has the following condition(
3
4

)k
k = Θ(d−2) ⇐⇒ k = Θ(log d) (25)

which leads to the desired result.

4 Purity and its Fluctuations
In this section, we compute the fluctuations of a subsystem purity Eq.(4) for the output of the k-doped
Clifford circuit U ∈ Ck. To this end, we first apply Theorem 1 to calculate the average of the fourth tensor
power of a pure state ψ, namely Φ(4)

Ck (ψ⊗4).
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Application 3. The (Ck, 4)-fold channel of a pure state ψ⊗4 ∈ B(H⊗4) reads

Φ(4)
Ck (ψ⊗4) = akQΠ(4)

sym + bkΠ(4)
sym (26)

where Π(4)
sym is the projector onto the completely symmetric subspace of the permutation group S4

and Dsym = tr(Π(4)
sym). The coefficients ak, bk are given by

ak ≡
(

tr(ψ⊗4Q)
D+ − tr(ψ⊗4Q⊥)

D−

)( cQ
D+ −

cQQ⊥

D−

)k
bk ≡ tr(ψ⊗4Q⊥)

D−
+
cQQ⊥

D−

k−1∑
i=0

ai (27)

with
cQ ≡ tr(K⊗4QK†⊗4QΠ(4)

sym), cQQ⊥ ≡ tr(K⊗4QK†⊗4Q⊥Π(4)
sym) (28)

The proof can be found in App. B.3. The evaluation of Eq.(26) becomes particularly simple if the gate
K is a Pθ-gate:

Application 4. If the single qubit gate K is the Pθ-gate, the coefficients cQ, cQQ⊥ read:

cQ = (d+ 2)(4 + 7d+ (4 + d) cos(4θ))
48 (29)

cQQ⊥ = (d+ 2)(d+ 4)
24 sin2(2θ) (30)

Then for any k we can write the coefficients ak, bk as

ak = 24
(d2 − 1)(d+ 2)(d+ 4)

(
d(d+ 3)

4 tr(ψ⊗4Q)− 1
)

(f−θ )k

bk = 1
Dsym

+ 24
(d2 − 1)(d+ 2)(d+ 4)

(
4

d(d+ 3) − tr(ψ⊗4Q)
)

(f−θ )k (31)

where (f−θ ) is defined in Eq.(84); note that (f−θ ) < 1 unless θ = ±π/2, i.e unless Pθ = S the S-gate
∈ C(d).

See App. B.4 for the proof.

Corollary 3. For any θ 6= ±π/2

lim
k→∞

Φ(4)
C,k(ψ⊗4) = Φ(4)

U(d)(ψ
⊗4) (32)

Proof. The proof follows directly from Application 1; here we give an alternative version: setting
fθ < 1 in Eq.(31) and taking the limit k →∞ one gets

lim
k→∞

ak = 0 (33)

lim
k→∞

bk = D−1
sym (34)

Now, since the fourth tensor power of ψU averages to - see Eq.(65) in App. A.3.1 for a proof -

Φ(4)
U(d)(ψ

⊗4) = Π(4)
sym

Dsym
(35)

then by Application 3 the proof is complete.

In what follows, we calculate the purity and its fluctuations in a bipartite Hilbert space for the output
state of a k-doped Clifford circuit, calculated above in Eq.(26). Consider then a bipartition of the N -qubit
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system H = HA ⊗HB with HA(B) = C2⊗NA(B) , NA + NB = N and dA(B) = 2NA(B) . The purity of a
marginal state ψA = trBψ ∈ B(HA) is given by

Pur(ψA) := tr(ψ2
A) (36)

The averages over Unitary and Clifford group for the purity of the output ψ of a random quantum circuits
are the same, namely

〈Pur(ψU )A〉U∈U(d) = 〈Pur(ψC)A〉C∈C(d) = dA + dB
dAdB + 1 (37)

This is a consequence of C(d) being a 3-design[18, 19] (in fact, being a 2-design is sufficient), see App.
A.3.1 for a proof. Notice that the average purity does not depend on the input state.

The fluctuations of the purity for the set x are defined as

∆x Pur(ψU )A := 〈(Pur(ψU )A − 〈Pur(ψU )A〉U∈x)2〉U∈x (38)

Since the fluctuations involve the fourth moment of the Haar measure, the fluctuations for U(d), C(d) are
expected to be different. We have indeed, for dA = dB =

√
d

∆U(d) Pur(ψU )A = 2(d− 1)2

(d+ 1)2(d+ 2)(d+ 3) = Θ(d−2) (39)

∆C(d) Pur(ψC)A = (d− 1)[d(d+ 1)tr(Qψ⊗4)− 2]
(d+ 1)2(d+ 2) =

{
Θ(d−1), ψ = |0〉 〈0|⊗N

Θ(d1−log2 5), ψ = ⊗iψi, ψi random
(40)

This result is a consequence of Application 3 and Corollary 3. Notice that while the fluctuations of the
purity for the unitary group again do not depend on the initial state, those for the Clifford group do. For
ψ being any other stabilizer state different from |0〉 〈0|⊗N , the formula would not change thanks to the
left/right invariance of the Haar measure over groups. Notably, starting from completely factorized states,
there is a marked difference whether the initial state ψ is a stabilizer state or a random product state.

Lemma 1. The fluctuations of the purity in the k-doped Clifford circuit, for dA = dB =
√
d and

ψ = |0〉 〈0|⊗N , are

∆Ck Pur(ψU )A = (d− 1)2

(d+ 1)2(d+ 2)(d+ 3)(2 + (d+ 1)(f−θ )k) (41)

where f−θ is defined in Eq.(84).

The proof can be found in App. B.5.

Remark 1. For the undoped, k = 0, pure Clifford circuit, one finds〈
Pur2(ψC)A

〉
C∈C(d) = 5d+ 1

(d+ 1)(d+ 2) (42)

Notice that, in the large d limit,〈
Pur2(ψC)A

〉
C∈C(d) = 5

d
+ Θ(d−2) (43)〈

Pur2(ψU )A
〉
U∈U(d) = 4

d
+ Θ(d−2) (44)

and thus have the same order. However, the next corollary shows that - because of an exact
cancellation - the fluctuations are very different in scaling with d.

Corollary 4. The fluctuations of the purity, for dA = dB =
√
d and ψ = |0〉 〈0|⊗N for the Clifford

circuit are

∆C(d) Pur(ψC)A = (d− 1)2

(d+ 1)2(d+ 2) = Θ(d−1) (45)

∆U(d) Pur(ψU )A = 2(d− 1)2

(d+ 1)2(d+ 2)(d+ 3) = Θ(d−2) (46)
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Proof. Eq.(45) follows immediately from Lemma 1 by setting k = 0, while Eq.(46) can be found
in [20].

Corollary 5. For any θ 6= ±π/2, for dA = dB =
√
d and ψ = |0〉 〈0|⊗N , iff k = Θ(log d)

δ
(k)
Pur ≡ |∆Ck Pur(ψU )A −∆U(d) Pur(ψU )A| = Θ(d−2) (47)

Proof. From Eq.(41) one has

δ
(k)
Pur = (d− 1)2

(d+ 1)(d+ 2)(d+ 3)(f−θ )k (48)

for k = 0 this difference is Θ(d−1), then in order to get O(d−2) one needs to have

fkθ = Θ(d−1) ⇐⇒ k = Θ(log d) (49)

moreover, note that the rate of convergence is dictated by fθ, which reaches its minimum value for
θ = π/4, that is the T -gate, cfr. Eq.(84).

Lemma 2. The fluctuations of the purity for a k-doped Clifford circuit, for dA = dB =
√
d and ψ

be a random product state read

∆Ck Pur(ψU )A = 2(d− 1)2

(d+ 1)2(d+ 2)(d+ 3) +
(d− 1)(d(2−log2 5)(d− 3)− 4)(f−θ )k

(d+ 1)(d+ 2)(d+ 3) (50)

Proof. The proof is straightforward and is left to the interested reader: by plugging (158) into Eqs.
(27) and (26) and using Eq.(120) the calculation follows easily.

Corollary 6. The fluctuations of the purity for a non-doped Clifford circuit, for dA = dB =
√
d and

ψ a random product state, are

∆C(d) Pur(ψU )A = (d− 1)[d(d+ 1)d1−log2 5 − 2]
(d+ 1)2(d+ 2) (51)

Proof. This result is obtained from Lemma 2 setting k = 0.

Remark 2. The hypothesis dA = dB =
√
d only simplifies the displayed formulas and the related

considerations but does not change the general behavior. For instance, in the case dB � dA � 1
one has - after a lengthy calculation,

∆Ck Pur(ψU )A = 2(d2 − d2
A)(d2

A − 1)
(d+ 1)2(d+ 2)(d+ 3)d2

A

+
(d2 − d2

A)(d2
A − 1)fkθ (d(d+ 3)tr

(
Qψ⊗4)− 4)

(d− 1)(d+ 1)(d+ 2)(d+ 3)d2
A

(52)

Conclusions and Outlook
In this paper, we showed that in a random Clifford circuit with N qubits, Θ(N) non Clifford gates are both
necessary and sufficient to simulate quantum chaos. As a consequence, quantum chaos cannot be efficiently
simulated on a classical computer, as the cost for simulating such circuits is exponential in the non Clifford
resources.

In perspective, there are several open questions. One could generalize many of these results by proving
that an ε-approximate 2t-OTOC characterizes an ε-approximate t-design. Although the scaling is fixed to be
Θ(N), the actual number of non Clifford resources is undetermined and it would be of practical importance
in obtaining approximate t-designs with a noisy, intermediate-scale quantum computer. One could thus
study the optimal arrangement of non Clifford resources. A related question is the onset of irreversibility in
a closed quantum system in the sense of entanglement complexity[16] is driven by the doping of a Clifford
circuit. Similarly, it would be interesting to show how the entanglement spectrum statistics converges with
the doping[11].
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A Haar averages: Unitary vs Clifford group
In this section, we are going to display the explicit formula to average over the full unitary group and the
full Clifford group without going into the group theoretic details. See [21, 22] for the Haar integration and
[23, 24] for the Clifford integration formula.

A.1 Clifford group average
Starting from the result about the 4-th moment of the Haar average over the Clifford group in[23] we are
going to prove a useful lemma.

Lemma 3. Let O ∈ B(H⊗4), the integration formula for the Clifford group reads

〈OC〉C∈C(d) =
∫
C(d)

dCC†⊗4OC⊗4 =
∑

π,σ∈S4

W+
πσtr(OQTπ)QTσ +W−πσtr(OQ⊥Tπ)Q⊥Tσ (53)

where Q = 1
d2

∑
P∈P(d) P

⊗4 and Q⊥ = 1l⊗4 −Q, while W±πσ are the generalized Weingarten func-
tions, defined as

W±πσ =
∑
λ`4
D±
λ
6=0

d2
λ

(4!)2
χλ(πσ)
D±λ

(54)

here λ labels the irreducible representations of the symmetric group S4, χλ(πσ) are the characters
of S4, dλ is the dimension of the irreducible representation λ, D+

λ = tr(QPλ) and D−λ = tr(Q⊥Pλ)
where Pλ are the projectors onto the irreducible representations of S4 and finally Tσ are permutation
operators corresponding to the permutation σ ∈ S4.

Proof. The projectors onto the irreducible representations of S4 read

Π(4)
λ = dλ

4!
∑
τ∈S4

χλ(τ)Tτ (55)

Starting from the integration formula (32) in [23] we have

〈OC〉C∈C(d) = 1
(4!)2

∑
λ`4,l(λ)≤d

d2
λ

∑
σ∈S4

(
1
D+
λ

tr(OQTσ)Q+ 1
D−λ

tr(OQ⊥Tσ)Q⊥
)
T−1
σ χλ(τ)Tτ

= 1
(4!)2

∑
λ`4,l(λ)≤d

d2
λ

∑
τσ∈S4

(
1
D+
λ

tr(OQTσ)Q+ 1
D−λ

tr(OQ⊥Tσ)Q⊥
)
χλ(τ)Tσ−1τ

= 1
(4!)2

∑
λ`4,l(λ)≤d

d2
λ

∑
π,σ∈S4

(
1
D+
λ

tr(OQTσ)Q+ 1
D−λ

tr(OQ⊥Tσ)Q⊥
)
χλ(σπ)Tπ (56)

At this point, we just define

W±πσ =
∑
λ`4
D±
λ
6=0

d2
λ

(4!)2
χλ(πσ)
D±λ

(57)

and the derivation is complete.
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An important property that will be used throughout the paper is the following:

[Q,Tπ] = 0, ∀π ∈ S4 (58)

another important property is that Q is a projector, namely Q2 = Q. Another useful result, related to the
generalized Weingarten functions is

∑
π,σ∈S4

W±πσ∈S4
Tπ = Π(4)

sym

D±
(59)

the proof comes from Eq. (54) and from Π(4)
sym = (4!)−1∑

π∈S4
Tπ .

A.2 Unitary group average
Let O ∈ B(H⊗t) be a bounded operator on t-copies ofH, then the Haar average reads[21, 22]

〈OU 〉U∈U(d) =
∫
U(d)

dUU†⊗tOU⊗t =
∑

π,σ∈St

Wπσtr(OTσ)Tπ (60)

where Tπ is the permutation operator corresponding to the permutation π ∈ St, the t-dimensional symmet-
ric group and Wπσ are the Weingarten functions defined as

Wπσ =
∑
λ`t

d2
λ

(t!)2
χλ(πσ)
Dλ

(61)

where Dλ = tr(Π(4)
λ ).

A.3 A couple of Haar averages over U(d)
A.3.1 The average purity

Let us calculate the average purity for the output state ψU , for U ∈ U(d) or U ∈ C(d); indeed the result of
the average for the two groups is the same because the Clifford group forms a unitary 3-design and being a
t-design means being a t̃-design for any t̃ ≤ t. Then, the average purity

〈Pur(ψU )A〉U∈U(d) =
∫
U(d)

dUtr(T (A)
(12)U

⊗2ψ⊗2U†⊗2) =
∑

π,σ∈S2

Wg(πσ)tr(ψ⊗2Tσ)tr(T (A)
(12)Tπ) (62)

Since Tσψ⊗2 = ψ⊗2 as long as ψ is a pure state, we have

〈Pur(ψU )A〉U∈U(d) =
∑

π,σ∈S2

Wg(πσ)tr(T (A)
(12)Tπ) = 1

Dsym
tr(T (A)

(12)Π
(2)
sym) (63)

where Π(2)
sym ≡ 1

2
∑
σ∈S2

Tσ and Dsym = tr(Π(2)
sym) = d(d+ 1)/2. Then, since Tσ = T

(A)
σ ⊗ T (B)

σ , see Sec.
C.2 for a more rigorous treatment, we have

〈Pur(ψU )A〉U∈U(d) = 1
d(d+ 1)

(
tr(T (A)

(12)T
(A)
(12))tr(T

(B)
(12)) + tr(T (A)

(12)1l
(A)⊗2)tr(1l(B)⊗2)

)
= 2

d(d+ 1)(d2
AdB + dAd

2
B) = dA + dB

dAdB + 1 (64)

where we have used d = dAdB .
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A.3.2 The average state
〈
ψ⊗4
U

〉
U∈U(d)

Let ψU be the output state of a quantum circuit U . Let us average the fourth tensor power of this output
state for U ∈ U(d). Using formula (60) we have

〈
ψ⊗4
U

〉
U∈U(d) =

∑
π,σ∈S4

Wπσtr(Tσψ⊗4)Tπ =
∑

π,σ∈S4

WπσTπ = Π(4)
sym

Dsym
(65)

where we used the fact that Tσψ⊗4 = ψ⊗4 for any permutation operator Tσ and that
∑
π,σ∈S4

WπσTπ =
Π(4)

sym/Dsym, where Dsym = tr(Π(4)
sym).

B Proofs
B.1 Proof of Theorem 1
Let O ∈ B(H⊗4) and let the Φ(4)

Ck (O) be its output through the (Ck, 4)-fold channel. Then

Φ(4)
Ck (O) := 〈OU 〉U∈Ck ≡ 〈C

⊗4
k K⊗4

ik
. . . C⊗4

1 K⊗4
i1
C⊗4

0 OC
†⊗4
0 K†⊗4

i1
C⊗4

1 . . .K†⊗4
ik

C†⊗4
k 〉C1...Ck∈C(d)

(66)
then since the averages over Ci for i = 1, . . . , k are independent from each other, we can also write

〈OU 〉U∈Ck =
〈
C⊗4
k K⊗4

ik
. . .K⊗4

i2

〈
C⊗4

1 K⊗4
i1

〈
C⊗4

0 OC
†⊗4
0

〉
C0∈C(d)

K†⊗4
i1

C†⊗4
1

〉
C1∈C(d)

K†⊗4
i2

. . .K†⊗4
ik
C⊗4
k

〉
Ck∈C(d)

(67)
The first Clifford average before inserting any single qubit K-gate reads

〈OU 〉U∈C0
=

∑
π,σ∈S4

[W+
πσtr(OQTσ)−W−πσtr(OQ⊥Tσ)]QTπ +

∑
π,σ∈S4

W−πσtr(OQ⊥Tσ)Tπ (68)

where we have used Eq.(53). We can recast it as

〈OU 〉U∈C0
=
∑
π∈S4

(cπ(O)Q+ bπ(O))Tπ (69)

where

cπ(O) =
∑
σ∈S4

[W+
πσtr(OQTσ)−W−πσtr(OQ⊥Tσ)] (70)

bπ(O) =
∑
σ∈S4

W−πσtr(OQ⊥Tσ) (71)

Now we need to apply the first Ki1 -gate on the i-th qubit; noting that [Tπ,K⊗4
i1

] = 0 for all π ∈ S4, we
have

〈OU 〉U∈C0
→ K†⊗4

i1
〈OU 〉U∈C0

K⊗4
i1

=
∑
π∈S4

(cπ(O)K⊗4
i1
QK†⊗4

i1
+ bπ(O))Tπ (72)

and then average over another Clifford layer, knowing that the Clifford operator only acts non trivially only
on the operator K⊗4

i1
QK†⊗4

i1
Tπ because [C⊗4, Tσ] = 0, ∀σ

〈OU 〉U∈C1
=
〈
C⊗4

1 K⊗4
i1
〈OU 〉U∈C0

K†⊗4
i1

C†⊗4
1

〉
C1∈C(d)

=
∑
π∈S4

cπ(O)
〈
C†⊗4

1 K⊗4
i1
QK†⊗4

i1
TπC

†⊗4
1

〉
C1∈C(d)

+bπ(O)Tπ

(73)
Then, from Eq.(53) 〈

C†⊗4
1 K⊗4

i1
QK†⊗4

i1
TπC

†⊗4
1

〉
C1∈C(d)

=
∑
σ∈S4

(ΞπσQ+ Λπσ)Tσ (74)
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where Ξπσ and Λπσ read

Ξσπ ≡
∑
τ∈S4

[W+
πτ tr(TσK⊗4QK†⊗4QTτ )−W−πτ tr(TσK⊗4QK†⊗4Q⊥Tτ )] (75)

Λσπ ≡
∑
τ∈S4

W−πτ tr(TσK⊗4QK†⊗4Q⊥Tτ ) (76)

we have defined the matrix Ξ omitting the subscript Ki1 because, as shown in Lemma 6, it does not play
any role. Thus, we have 〈OU 〉U∈C1

=
∑
π,σ∈S4

(ΞσπQ+ Λσπ)cπ(O)Tσ + bπ(O)Tπ; at the next iteration

〈OU 〉U∈C2
=

∑
π,στ∈S4

(ΞτσQ+ Λτσ)Ξσπcπ(O)Tτ +
∑

π,σ∈S4

[Λσπcπ(O) + δπσbπ(O)]Tσ (77)

we can recast it as

〈OU 〉U∈C2
=

∑
π,σ∈S4

[(
(Ξ2)πσQ+ Λπσ +

∑
τ∈S4

ΛπτΞτσ

)
cπ(O) + δπσbπ(O)

]
Tσ (78)

The latter relationship can be easily generalized to k layers as

〈OU 〉U∈Ck =
∑

π,σ∈S4

[(
(Ξk)πσQ+ Γ(k)

πσ

)
cπ(O) + δπσbπ(O)

]
Tσ (79)

where we have defined Γ(k)
πσ ≡

∑
τ∈S4

Λπτ
∑k−1
i=0 (Ξi)τσ. This concludes the proof.

B.2 Proof of Application 1
From theorem 1, the (Ck, 4)-fold channel reads

Φ(4)
Ck (O) =

∑
π,σ∈S4

[(
(Ξk)πσQ+ Γ(k)

πσ

)
cπ(O) + δπσbπ(O)

]
Tσ (80)

First of all let us write this equation in matrix form for the coefficients; define T a vector with compo-
nents the permutation operators Tσ , c the vector with components cπ(O) and similarly for b, then Eq.(80)
becomes

Φ(4)
Ck (O) = (Ξk · c,T)Q+ (Γ(k) · c + b,T) (81)

where the · stands for the row by column product and (·, ·) for the usual scalar product between lists. Recall
that for the Unitary group the (U(d), 4)-fold channel reads

Φ(4)
U(d)(O) = (W · t,T) (82)

where W is the matrix with components the Unitary group Weingarten functions, cfr Eq.(61). In the
following we prove that the first piece in Eq.(81) vanishes in the limit k →∞, while the second returns the
matrix W .

Lemma 4. For K = Pθ ≡ |0〉 〈0| + eiθ |1〉 〈1|, the matrix Ξ, defined in Eq.(10) has the following
properties

• Ξ is symmetric;

• Ξ has rank 6;

• the eigenvalues read

λ(±) = f±θ , µ(λ±) = 1

λav =
f+
θ + f−θ

2 , µ(λav) = 4 (83)

where µ(λ) stands for the algebraic multiplicity of the eigenvalue λ and

f±θ = 7d2 ± 3d+ d(d∓ 3) cos(4θ)− 8
8(d2 − 1) < 1, ∀ θ 6= ±π2 (84)

f±θ = 1, θ = ±π2
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• the maximum eigenvalue is f+
θ .

The proof comes from direct calculation of the 24× 24 matrix Ξ with K = Pθ.
Since all the eigenvalues of Ξ are less than 1,

lim
k→∞

(Ξk)πσ = 0, for all π, σ (85)

and
∞∑
i=0

Ξi = (1− Ξ)−1 (86)

thus Γ(∞) = Λ(1 − Ξ)−1. Defining the vector q having components tr(OQTσ) and the vector t having
components tr(OTσ), from Eq.(13) and Eq.(14) we note that

c = (W+ +W−) · q −W− · t
b = W− · t−W− · q (87)

where W± are the matrices with components the generalized Weingarten functions for the Clifford group,
cfr. (54). Therefore taking the limit k →∞ in Eq.(81)

lim
k→∞

Φ(4)
C,k(O) =

(
[Λ(1− Ξ)−1(W+ +W−)−W−] · q,T

)
+
(
[W− − Λ(1− Ξ)−1W−] · t,T

)
(88)

It is straightforward to check that
W− − Λ(1− Ξ)−1W− = W (89)

Then, the vector q is in kernel of the matrix ζ = Λ(1− Ξ)−1(W+ +W−)−W−, namely ker(ζ); indeed

ker(ζ) = span
(

e(α) |α = 1, . . . , 6
)

(90)

where the non null components of these six vectors read

e
(1)
(e) = e

(1)
(12)(34) = e

(1)
(13)(24) = e

(1)
(14)(23)

e
(2)
(13) = e

(2)
(24) = e

(2)
(1432) = e

(2)
(1234)

e
(3)
(14) = e

(3)
(23) = e

(3)
(1342) = e

(3)
(1243)

e
(4)
(12) = e

(4)
(34) = e

(4)
(1324) = e

(4)
(1423)

e
(5)
(132) = e

(5)
(124) = e

(5)
(143) = e

(5)
(234)

e
(6)
(123) = e

(6)
(142) = e

(6)
(134) = e

(6)
(243) (91)

because of Lemma 5 it is clear that q ∈ ker(ζ), which proves the theorem.

B.3 Proof of Application 3
We will make use of Theorem 1

Φ(4)
Ck (ψ⊗4) =

∑
π,σ∈S4

[(
(Ξk)πσQ+ Γ(k)

πσ

)
cπ(ψ⊗4) + δπσbπ(ψ⊗4)

]
Tσ (92)

Let us first compute the term
∑
π,σ∈S4

cσ(ψ⊗4)(Ξk)πσQTπ; note that [Tπ, Q] = 0. This is a fact that will
be repeatedly exploited in this proof. First we prove that cσ = c independent from the specific permutation
σ; from Eq.(13) we have

cσ(ψ⊗4) =
∑
π∈S4

[W+
πσtr(ψ⊗4QTπ)−W−πσtr(ψ⊗4Q⊥Tπ)] =

∑
π∈S4

W+
πσtr(Qψ⊗4)−W−πσtr(Q⊥ψ⊗4)

= 1
4!D+ tr(Qψ⊗4)− 1

4!D− tr(Q⊥ψ⊗4) ≡ c (93)

Accepted in Quantum 2021-05-01, click title to verify. Published under CC-BY 4.0. 14



where we used Tπψ⊗4 = ψ⊗4 for all π and
∑
π∈S4

W±πσ = (4!D±)−1. Then the sum can be written as∑
π,σ∈S4

cπ(ψ⊗4)(Ξk)πσQTσ = c
∑

π,σ∈S4

(Ξk)πσQTσ = c
∑

π,σ,τ∈S4

Ξπτ (Ξk−1)τσQTσ

= c
∑

σ,τ∈S4

(∑
π

Ξπτ

)
(Ξk−1)τσTσQ (94)

let us prove that
∑
π∈S4

Ξπτ does not depend on τ ; from Eq.(10) it is easy to see that∑
π∈S4

Ξπτ = 1
D+ tr(Π(4)

symK
⊗4QK†⊗4Q)− 1

D−
tr(Π(4)

symK
⊗4QK†⊗4Q⊥) = cQ

D+ −
cQQ⊥

D−
(95)

where we have used
∑
π∈S4

W±πσ = (4!D±)−1 and Π(4)
symTτ = Π(4)

sym for any τ ∈ S4. The coefficients cQ
and cQQ⊥ are to be computed in a straightforward way; for the case K = Pθ they are explicitly calculated
in App. B.4. Since

∑
π∈S4

Ξπτ does not depend on τ , the decomposition introduced in the last equality of
Eq. (94) can be reiterated k times to obtain∑

π,σ∈S4

cπ(ψ⊗4)(Ξk)πσQTσ = c
( cQ
D+ −

cQQ⊥

D−

)k ∑
σ∈S4

TσQ

=
(

tr(Qψ⊗4)
D+ − tr(ψ⊗4Q⊥)

D−

)( cQ
D+ −

cQQ⊥

D−

)k
Π(4)

symQ (96)

Now we compute the term
∑
π,σ∈S4

Γ(k)
πσ cπ(ψ⊗4)Tσ where Γ(k)

πσ is defined in Theorem 1; since cπ(ψ⊗4) is
independent from the permutation π we can write

∑
π,σ∈S4

Γ(k)
πσ cπ(ψ⊗4)Tσ = c

∑
π,σ∈S4

Γ(k)
πσTσ = c

∑
π,σ,τ∈S4

Λπτ

(
k−1∑
i=0

(Ξi)τσ

)
Tσ (97)

It is easy to see
∑
π∈S4

Λπτ = cQQ⊥/D
− does not depend on τ ; from this fact, we can use the same

technique used above to compute
∑
τ∈S4

(∑k−1
i=0 (Ξi)τσ

)
and finally obtain

∑
π,σ∈S4

Γ(k)
πσ cπ(ψ⊗4)Tσ = tr(ψ⊗4Q⊥)

D−
+
cQQ⊥

D−

(
tr(Qψ⊗4)
D+ − tr(Q⊥ψ⊗4)

D−

) k−1∑
i=0

( cQ
D+ −

cQQ⊥

D−

)i
Π(4)

sym

(98)
The last term we need to evaluate is

∑
π bπ(ψ⊗4)Tπ; as before, let us prove that bπ(ψ⊗4) does not depend

on π
bπ(ψ⊗4) =

∑
σ∈S4

W−πσtr
(
ψ⊗4Q⊥Tσ

)
=
∑
σ∈S4

W−πσtr
(
ψ⊗4Q⊥

)
= 1

4!D− tr(Q⊥ψ⊗4) (99)

then ∑
π∈S4

bπ(ψ⊗4)Tπ = 1
D−

tr(Q⊥ψ⊗4) 1
4!
∑
π∈S4

Tπ = 1
D−

tr(Q⊥ψ⊗4)Π(4)
sym (100)

Putting together Eqs. (96), (98) and (100) we obtain the final result in Eq.(26).

B.4 Proof of Application 4
In this section we evaluate cQ = tr(K⊗4

ij
QK†⊗4

ij
QΠ(4)

sym) for K = Pθ ≡ |0〉 〈0| + eiθ |1〉 〈1|. As pointed
out in Lemma 6, the position of the operator Kij does not affect the calculations, so in the following we
analyze the case in which the operator Ki acts on the first qubit i1. The term cQ can be rewritten as

tr(K⊗4
i1
QK†⊗4

i1
QΠ(4)

sym) = tr(R−1RK⊗4
i1
R−1RQR−1RK†⊗4

i1
R−1RQR−1RΠ(4)

sym) (101)

where R ∈ S4N is a permutation operator whose action on a tensor product basis element is

R |i1 . . . iN 〉⊗4 ≡ |i1〉⊗4 |i2 . . . iN 〉⊗4 (102)
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The adjoint action of the permutation R allows us to rewrite the operator Q as

RQR−1 = 1
4(QI +QX +QY +QZ) (103)

where X,Y, Z, I are single qubit Pauli matrices and for example QX reads

QX = 1
(d/2)2

∑
P∈P(d/2)

X⊗4 ⊗ P⊗4 = X⊗4 ⊗Qd/2 (104)

and Qd/2 = (d/2)−2∑
P∈P(d/2) P

⊗4. Similarly the adjoint action of R on K⊗4

RK⊗4
i1
R−1 = K⊗4 ⊗ (1l2 ⊗ · · · ⊗ 1lN )⊗4 (105)

acting on the first qubit element of each copy ofH it acts on the first four elements of RQR−1. It is simple
to see that the adjoint action of R on the symmetric projector Π(4)

sym give us again the symmetric projector
on the new permuted space and we denote it with Π̃(4)

sym. The term cQ can be rewritten as

tr(K⊗4
i1
QK†⊗4

i1
QΠ̃(4)

sym) = 1
16tr(RK⊗4

i1
R−1(QI +QX +QY +QZ)RK†⊗4

i1
R−1(QI +QX +QY +QZ)Π̃(4)

sym)

= 1
16tr[(QI +QZ)(QI +QX +QY +QZ)Π̃(4)

sym]

+ tr[K⊗4
i1

(QX +QY )K†⊗4
i1

(QI +QX +QY +QZ)Π̃(4)
sym] (106)

where we used the fact that [K, I] = [K,Z] = 0; then the first term of Eq.(106) reads

tr[(QI +QZ)(QI +QX +QY +QZ)Π̃(4)
sym] = 8tr(QΠ̃(4)

sym) = 8D+. (107)

We focus now on the second term of Eq.(106)

tr[K⊗4
i1

(QX +QY )K†⊗4
i1

(QI +QX +QY +QZ)Π̃(4)
sym] = tr[(QKXK† +QKYK†)(QI +QX +QY +QZ)Π̃(4)

sym]

= 2tr[(QKXK† +QKXK†X +QKXK†Y +QKYK†)Π̃(4)
sym]

= 2tr(Q̃Π̃(4)
sym) = 1

12
∑
σ∈S4

tr(Q̃T̃σ) (108)

where denoted T̃σ = RTσR
−1 and defined

Q̃ ≡ (QKXK† +QKXK†X +QKXK†Y +QKYK†) (109)

and

QKXK†X = (KXK†X)⊗4 ⊗Qd/2, (110)
QKXK†Y = (KXK†Y )⊗4 ⊗Qd/2,

QKXK† = (KXK†)⊗4 ⊗Qd/2

QKYK† = (KYK†)⊗4 ⊗Qd/2

Therefore

cQ = tr(K⊗4QK†⊗4QΠ(4)
sym) = D+

2 +
∑
σ∈S4

tr(Q̃T̃σ)
192 (111)

In a similar fashion to what we have done in Sec. C.2 it is possible to see that T̃σ = T
(2)
σ ⊗ T (d/2)

σ where
T

(2)
σ ∈ B((C2)⊗4) and T (d/2)

σ ∈ B((C2⊗(N−1))⊗4); thus, the following equality holds

tr[(QKXK† +QKXK†X +QKXK†Y +QKYK†)Π̃(4)
sym] = (112)

1
12
∑
σ∈S4

tr[T (2)
σ ((KXK†)⊗4 + (KYK†)⊗4 − (KXK†X)⊗4 − (KXYK†Y )⊗4)]tr(Qd/2T

(d/2)
σ )
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It is easy to see that

(KXK†)⊗4 =
(

0 e−iθ

eiθ 0

)⊗4

, (KYK†)⊗4 =
(

0 −ie−iθ
ieiθ 0

)⊗4

, (113)

(KXK†X)⊗4 =
(
e−iθ 0

0 eiθ

)⊗4

, (KXK†Y )⊗4 =
(
ie−iθ 0

0 −ieiθ
)⊗4

,

With all the previous consideration we are now ready to compute the coefficients

1× tr(Q̃) = 16(cos4 θ + sin4 θ)tr(Qd/2) = 4(cos4 θ + sin4 θ)d2

6× tr(T(ij)Q̃) = 8 cos2(2θ)tr(T(ij)Qd/2) = 4d cos2(2θ)
8× tr(T(ijk)Q̃) = 4 cos(4θ) (114)
6× tr(TijklQ̃) = 8 cos2(2θ)tr(T(ijkl)Qd/2) = 4d cos2(2θ)

3× tr(T(ij)(kl)Q̃) = 4(3 + cos(4θ))tr(T(ij)(kl)Qd/2) = d2(3 + cos(4θ))

Thus 1
12
∑
σ∈S4

tr(Q̃T̃σ) = 4(d+2)(3d+(d+4) cos(4θ))
12 and

cQ = tr(K⊗4
i1
QK†⊗4

i1
QΠ(4)

sym) = d2 + 3d+ 2
12 + (d+ 2)(3d+ (d+ 4) cos(4θ))

48 (115)

= (d+ 2)((d+ 4) cos(4θ) + 7d+ 4)
48

cQQ⊥ = tr(K⊗4
i1
QK†⊗4

i1
Q⊥Π(4)

sym) = tr(QΠ̃(4)
sym)− cQ = (d+ 4)(d+ 2)

24 sin2(2θ) (116)

Therefore

ak =
24(f−θ )k

(d2 − 1)(d+ 2)(d+ 4)

(
d(d+ 3)

4 tr(ψ⊗4Q)− 1
)

(117)

bk = 1
Dsym

+ 24
(d2 − 1)(d+ 2)(d+ 4)(f−θ )k

(
4

d(d+ 3) − tr(ψ⊗4Q)
)

(118)

where f−θ is, cfr. (84)

f−θ ≡
7d2 − 3d+ d(d+ 3) cos(4θ)− 8

8(d2 − 1) = 7 + cos(4θ)
8 + Θ(d−1) (119)

It is possible to calculate the extreme points of fθ. the maximum is fθ = 1 for θ = π/2, while the minimum
is fθ ≈ 3

4 for θ = π/4.

B.5 Proof of Lemma 1
The average square purity for the k-doped Clifford circuit can be written as[20]〈

Pur2(ψU )A
〉
U∈Ck

= tr
(
T

(A)
(12)(34)

〈
ψ⊗4
U

〉
U∈Ck

)
(120)

Then, substituting Eq.(26)〈
Pur2(ψU )A

〉
U∈Ck

= aktr(QΠ(4)
symT

(A)
(12)(34)) + bktr(Π(4)

symT
(A)
(12)(34)) (121)

where ak and bk are defined in Eq.(27). Recalling that Q = QA ⊗QB up to a rearrangement of the tensor
product (cfr. App. C.2), then Tσ = T

(A)
σ ⊗ T (B)

σ and Π(4)
sym = 1/24

∑
σ∈S4

Tσ , we write

tr(QΠ(4)
symT

(A)
(12)(34)) = 1

24
∑
σ∈S4

tr(QAT (A)
σ T

(A)
(12)(34))tr(QBT

(B)
σ ) (122)

tr(Π(4)
symT

(A)
(12)(34)) = 1

24
∑
σ∈S4

tr(T (A)
σ T

(A)
(12)(34))tr(T

(B)
σ ) (123)
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after some long but trivial algebra one gets, for the case dA = dB =
√
d and ψ = |0〉 〈0|⊗N

〈
Pur2(ψU )A

〉
U∈Ck

=
2(2d2 + 9d+ 1) + (d2 − 2d+ 1)(f−θ )k

(d+ 1)(d+ 2)(d+ 3) (124)

〈
Pur2(ψU )A

〉
U∈U(d) = 4d2 + 18d+ 2

(d+ 1)(d+ 2)(d+ 3) (125)

and thus, by computing
〈
Pur2(ψU )A

〉
U∈Ck

− 〈Pur(ψU )A〉2U∈U(d) one finds Eq.(41).

C Other Proofs
C.1 Notes on Pauli operators
The Pauli operators on C2⊗N are formed by all Pauli strings

P = p1 ⊗ p2 ⊗ · · · ⊗ pN (126)

where pi ∈ {I,X, Y, Z} are usual Pauli matrices on C2. They are unitary and hermitian operators. More-
over, the Pauli group forms a 1-design, i.e the (P(d), 1)-fold channel of the Pauli group equals the (U(d), 1)-
fold channel

Φ(1)
P(d)(O) ≡ 1

d2

∑
P∈P(d)

POP = tr(O)
d

(127)

Since Pauli operators commute or anticommute, we define for P1, P2 ∈ P(2N )

P2P1P2 = K(P1, P2)P1 K(P1, P2) := 1
d

tr(P †2P1P2P1) (128)

where K(P1, P2) is either 1 or −1; a useful rule for combining them

K(P1, P2)K(P1, P3) = 1
d
K(P1, P2P3) = 1

d2 tr((P2P3)†P1P2P3P1) (129)

where P1, P2, P3 ∈ P(2N ). The above facts are sufficient to prove the following lemma

Lemma 5. Let O ∈ B(H⊗4) and let Q = d−2∑
P∈P(2N ) P

⊗4, then the following relations hold

tr(OQ) = tr(OQT(12)(34)) = tr(OQT(13)(24)) = tr(OQT(14)(23)) (130)
tr(OQT(24)) = tr(OQT(1432)) = tr(OQT(13)) = tr(OQT(1234)) (131)

tr(OQT14) = tr(OQT(23)) = tr(OQT(1342)) = tr(OQT(1243)) (132)
tr(OQT(12)) = tr(OQT(34)) = tr(OQT(1324)) = tr(QT(1423)) (133)

tr(OQT(132)) = tr(OQT(234)) = tr(OQT(124)) = tr(OQT(143)) (134)
tr(OQT(123)) = tr(OQT(142)) = tr(OQT(243)) = tr(OQT(134)) (135)

Proof. In order to prove the above relationship we need the expansion of O in Pauli operators

O =
∑

P1,P2∈P(2N )
P3,P4∈P(2N )

= tr(OP1 ⊗ P2 ⊗ P3 ⊗ P4)P1 ⊗ P2 ⊗ P3 ⊗ P4 (136)

At this point we can prove the above relations for O ≡ P1⊗P2⊗P3⊗P4 without loss of generality.
We won’t perform all the calculations, rather just some instructive examples. Let us prove Eq.(130)

tr[(P1⊗P2⊗P3⊗P4)Q] = 1
d2

∑
P∈P(2N )

tr(P1P )tr(P2P )tr(P3P )tr(P4P ) = d2
∑

P∈P(2N )

δPP1δPP2δPP3δPP4 = d2δP1P2P3P4

(137)
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the second one

tr[(P1 ⊗ P2 ⊗ P3 ⊗ P4)QT(12)(34)] = d−2
∑

P∈P(2N )

tr(P1PP2P )tr(P3PP4P ) (138)

= 1
d2

∑
P∈P(2N )

d2δP1P2δP3P4K(P, P4)K(P, P2)

= δP1P2δP3P4

∑
P∈P(2N )

1
d

tr((P2P4)†P (P3P4)P ) = δP1P2δP2P4tr(P2P4)2

= d2δP1P2P3P4

the same procedure follows for T(13)(24) and T(14)(23). Let us prove Eq.(133)

tr[(P1 ⊗ P2 ⊗ P3 ⊗ P4)QT(12)] = 1
d2

∑
P∈P(2N )

tr(P1PP2P )tr(P3P )tr(P4P ) = δP3P4tr(P1P3P2P3)

= dK(P2, P3)δP3P4δP1P2 (139)

the 4-cycle

tr[(P1 ⊗ P2 ⊗ P3 ⊗ P4)QT(1423)] = 1
d2

∑
P∈P(2N )

tr(P1PP3PP2PP4P ) = 1
d2

∑
P∈P(2N )

K(P, P4)K(P, P3)tr(P1P3P2P4)

= 1
d3

∑
P∈P(2N )

K(P, P4P3)tr(P1P3P2P4) = dδP3P4δP1P2tr(P1P3P2P4)

= dK(P2, P3)δP1P2δP3P4 (140)

the same calculations follow for T(34) and T(1324).

C.2 Q decomposition and traces
It is interesting to prove a useful property of the operator Q, that we recall is defined as

Q = 1
d2

∑
P∈P(2N )

P⊗4 = 1
d2

∑
σi1 ,...,σiN

(σi1 ⊗ · · · ⊗ σiN )⊗4 (141)

where σij ∈ P(2). It is possible to introduce a permutation S ∈ S4N , whose action on a tensor product
state is defined as

S(|i1 . . . iN 〉⊗4) = |i1〉⊗4 · · · |iN 〉⊗4 (142)

The adjoint action of a permutation S on Q reads

SQS−1 = 1
d2

∑
σi1 ,...,σiN

S(σi1 ⊗ · · · ⊗ σiN )⊗4S−1 (143)

=
(

1
4

)N ∑
σi1 ,...,σiN

σ⊗4
i1
⊗ · · · ⊗ σ⊗4

iN
= Q⊗N2 (144)

whereQ2 =
∑
σ∈P(2) σ

⊗4. Then, let us show the adjoint action of S on a permutation operator between the
4-copies of H. Let Tσ ∈ B(H⊗4) a permutation operator between 4 copies of H ≡ C2⊗N corresponding
to σ ∈ S4; written in terms of bras and kets it reads

Tσ =
∑
i1...iN
j1...jN

∑
k1...kN
l1...lN

|σ(i1) . . . σ(iN )σ(j1) . . . σ(jN )σ(k1) . . . σ(kN )σ(l1) . . . σ(lN )〉 〈i1 . . . iN j1 . . . jNk1 . . . kN l1 . . . lN |

(145)
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The adjoint action of S reads

STσS
−1 =

∑
i1...iN
j1...jN

∑
k1...kN
l1...lN

|σ(i1)σ(j1)σ(k1)σ(l1)〉 〈i1j1k1l1|⊗· · ·⊗|σ(iN )σ(jN )σ(kN )σ(lN )〉 〈iN jNkN lN |

(146)
It is clear that we can write

STσS
−1 = T (2)⊗N

σ (147)

where we are denoting T (2)
σ =

∑
i,j,k,l |σ(i)σ(j)σ(k)σ(l)〉 〈ijkl| ∈ B(C2) which is a permutation operator

between 4 copies of a single qubit Hilbert space C2.

Lemma 6. Let Ki and Kj two identical single qubit gates with support on a different qubit, i and
j respectively. Let Tσ be a permutation operator between the 4-copies of H; the following equality
holds

tr(TσQK⊗4
i QK†⊗4

i ) = tr(TσQK⊗4
j QK†⊗4

j ) (148)
Proof. First of all

K⊗4
i = (1l1 ⊗ · · · ⊗ 1li−1 ⊗K ⊗ 1li+1 ⊗ · · · ⊗ 1lN )⊗4 (149)

Acting adjointly with the permutation operator S ∈ S4N , defined in Eq.(142) on K⊗4
i we have

SK⊗4
i S−1 = (1l⊗4

1 ⊗ · · · ⊗ 1l⊗4
i−1 ⊗K⊗4 ⊗ 1l⊗4

i+1 ⊗ · · · ⊗ 1l⊗4
N ) (150)

Then from the above equality and from Eq.(144) and Eq.(147) we have

tr(TσQK⊗4
i QK†⊗4

i ) = tr(T (2)⊗N
σ Q⊗N2 (SK⊗4

i S−1)Q⊗N2 (SK†⊗4
i S−1)) (151)

= tr(T (2)
σ Q2KQ2K

†)tr(T (2)⊗(N−1)
σ Q

⊗(N−1)
2 )

where we used the fact that (Q⊗N−1
2 )2 = Q⊗N−1

2 . From the above relation it’s clear that the
position of the qubit on which K applies does not play any particular role.

Application 5. Let ψ = ⊗iψi a completely factorized random product state on C2⊗N . Then
tr(ψ⊗4Q) = d−1−(log2 5−2) (152)

Proof. Let us calculate tr(Qψ⊗4) in the case ψ = |0〉 〈0|⊗N . As proven in Sec. C.2

SQS−1 = (Q2)⊗N (153)

where S is a permutation operator defined in Eq.(142). Here Q2 reads

Q2 = 1
4(I +X + Y + Z) (154)

therefore
tr(Qψ⊗4) = 〈0|Q2|0〉N = 1

2N = d−1 (155)

Now let us average tr(ψ⊗4Q) with the local-qubit Haar average. Let ψ⊗4
loc be

ψ⊗4
loc =

∫ N∏
i=1

dUi

(
N⊗
i=1

UiψiU
†
i

)⊗4

(156)

where supp(Ui) = C2 for any i. Using the Haar average formulas displayed in Sec. A the adjoint
action of S on ψ⊗4

loc , defined in Eq.(142), reads

Sψ⊗4
locS

−1 =
(

Π(4)
sym

Dsym

)⊗N
(157)

where supp(Π(4)
sym) = C2 and D(4)

sym = (2 · 3 · 4 · 5)/24. Therefore tr(ψ⊗4
locQ) is

tr(ψ⊗4Q) = tr

(Π(4)
sym

Dsym

)⊗N
Q⊗N2

 = 5−N (tr(Π(4)
symQ2))N =

(
2
5

)N
= d−1−(log2 5−2) (158)
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