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Quantum-chemical insights from deep
tensor neural networks
Kristof T. Schütt1, Farhad Arbabzadah1, Stefan Chmiela1, Klaus R. Müller1,2 & Alexandre Tkatchenko3,4

Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text

and image search, speech recognition, as well as bioinformatics. Can machine learning enable

similar breakthroughs in understanding quantum many-body systems? Here we develop an

efficient deep learning approach that enables spatially and chemically resolved insights into

quantum-mechanical observables of molecular systems. We unify concepts from many-body

Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-

extensive and uniformly accurate (1 kcalmol� 1) predictions in compositional and config-

urational chemical space for molecules of intermediate size. As an example of chemical

relevance, the model reveals a classification of aromatic rings with respect to their stability.

Further applications of our model for predicting atomic energies and local chemical potentials

in molecules, reliable isomer energies, and molecules with peculiar electronic structure

demonstrate the potential of machine learning for revealing insights into complex quantum-

chemical systems.
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C
hemistry permeates all aspects of our life, from the
development of new drugs to the food that we consume
and materials we use on a daily basis. Chemists rely

on empirical observations based on creative and painstaking
experimentation that leads to eventual discoveries of molecules
and materials with desired properties and mechanisms to
synthesize them. Many discoveries in chemistry can be guided
by searching large databases of experimental or computational
molecular structures and properties by using concepts based
on chemical similarity. Because the structure and properties
of molecules are determined by the laws of quantum mechanics,
ultimately chemical discovery must be based on fundamental
quantum principles. Indeed, electronic structure calculations
and intelligent data analysis (machine learning) have recently
been combined aiming towards the goal of accelerated discovery
of chemicals with desired properties1–8. However, so far the
majority of these pioneering efforts have focused on the
construction of reduced models trained on large data sets of
density-functional theory calculations.

In this work, we develop an efficient deep learning approach
that enables spatially and chemically resolved insights
into quantum-mechanical properties of molecular systems
beyond those trivially contained in the training dataset.
Obviously, computational models are not predictive if they lack
accuracy. In addition to being interpretable, size-extensive
and efficient, our deep tensor neural network (DTNN) approach
is uniformly accurate (1 kcalmol� 1) throughout compositional
and configurational chemical space. On the more fundamental
side, the mathematical construction of the DTNN model provides
statistically rigorous partitioning of extensive molecular proper-
ties into atomic contributions—a long-standing challenge
for quantum-mechanical calculations of molecules.

Results
Molecular deep tensor neural networks. It is common to use a
carefully chosen representation of the problem at hand as a basis
for machine learning9–11. For example, molecules can be
represented as Coulomb matrices7,12,13, scattering transforms14,
bags of bonds15, smooth overlap of atomic positions16,17

or generalized symmetry functions18,19. Kernel-based learning
of molecular properties transforms these representations
non-linearly by virtue of kernel functions. In contrast, deep
neural networks20 are able to infer the underlying regularities and
learn an efficient representation in a layer-wise fashion21.

Molecular properties are governed by the laws of quantum
mechanics, which yield the remarkable flexibility of chemical
systems, but also impose constraints on the behaviour of bonding
in molecules. The approach presented here utilizes the many-
body Hamiltonian concept for the construction of the DTNN
architecture (Fig. 1), embracing the principles of quantum
chemistry, while maintaining the full flexibility of a complex
data-driven learning machine.

DTNN receives molecular structures through a vector of
nuclear charges Z and a matrix of atomic distances D ensuring
rotational and translational invariance by construction (Fig. 1a).
The distances are expanded in a Gaussian basis, yielding a feature
vector d̂ij 2 RG, which accounts for the different nature of
interactions at various distance regimes. Similar approaches have
been applied to the entries of the Coulomb matrix for the
prediction of molecular properties before12.

The total energy EM for the molecule M composed of N atoms
is written as a sum over N atomic energy contributions Ei, thus
satisfying permutational invariance with respect to atom index-
ing. Each atom i is represented by a coefficient vector c 2 RB,
where B is the number of basis functions, or features. Motivated

by quantum-chemical atomic basis set expansions, we assign
an atom type-specific descriptor vector cZi to these coefficients
c 0ð Þ
i . Subsequently, this atomic expansion is repeatedly refined by
pairwise interactions with the surrounding atoms

c tþ 1ð Þ
i ¼c tð Þ

i þ
X
j 6¼ i

vij; ð1Þ

where the interaction term vij reflects the influence of atom j at a
distance Dij on atom i. Note that this refinement step is seamlessly
integrated into the architecture of the molecular DTNN, and
is therefore adapted throughout the learning process. In
Supplementary Discussion, we show the relation to convolutional
neural networks that have been applied to images, speech and text
with great success because of their ability to capture local
structure22–27. Considering a molecule as a graph, T refinements
of the coefficient vectors are comprised of all walks of length
T through the molecule ending at the corresponding atom28,29.
From the point of view of many-body interatomic interactions,
subsequent refinement steps t correlate atomic neighbourhoods
with increasing complexity.

While the initial atomic representations only consider isolated
atoms, the interaction terms characterize how the basis functions
of two atoms overlap with each other at a certain distance. Each
refinement step is supposed to reduce these overlaps, thereby
embedding the atoms of the molecule into their chemical
environment. Following this procedure, the DTNN implicitly
learns an atom-centered basis that is unique and efficient with
respect to the property to be predicted.

Non-linear coupling between the atomic vector features and
the interatomic distances is achieved by a tensor layer30–32, such
that the coefficient k of the refinement is given by

vijk¼ tanh c tð Þ
j Vkd̂ij þ Wcc tð Þ

j

� �
k
þ Wdd̂ij
� �

k
þ bk

� �
; ð2Þ

where bk is the bias of feature k andWc andWd are the weights of
atom representation and distance, respectively. The slice Vk of the
parameter tensor V 2 RB�B�G combines the inputs
multiplicatively. Since V incorporates many parameters, using
this kind of layer is both computationally expensive as well as
prone to overfitting. Therefore, we employ a low-rank tensor
factorization, as described in (ref. 33), such that

vij¼ tanh Wfc Wcfcj þ bf 1
� �

� Wdf d̂ij þ bf 2
� �� �h i

; ð3Þ

where ‘�’ represents element-wise multiplication, while Wcf, bf 1 ,
Wdf, bf 2 and Wfc are the weight matrices and corresponding
biases of atom representations, distances and resulting factors,
respectively. As the dimensionality of Wcfcj and Wdf d̂ij
corresponds to the number of factors, choosing only a few
drastically decreases the number of parameters, thus solving both
issues of the tensor layer at once.

Arriving at the final embedding after a given number of
interaction refinements, two fully-connected layers predict an
energy contribution from each atomic coefficient vector, such that
their sum corresponds to the total molecular energy EM.
Therefore, the DTNN architecture scales with the number of
atoms in a molecule, fully capturing the extensive nature of the
energy. All weights, biases, as well as the atom type-specific
descriptors were initialized randomly and trained using stochastic
gradient descent.

Learning molecular energies. To demonstrate the versatility of
the proposed DTNN, we train models with up to three interaction
passes T¼ 3 for both compositional and configurational degrees
of freedom in molecular systems. The DTNN accuracy saturates
at T¼ 3, and leads to a strong correlation between atoms in
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molecules, as can be visualized by the complexity of the potential
learned by the network (Fig. 1e). For training, we employ
chemically diverse data sets of equilibrium molecular structures,
as well as molecular dynamics (MD) trajectories for small
molecules. We employ two subsets of the GDB-13 database34,35

referred to as GDB-7, including 47,000 molecules with up to
seven heavy (C, N, O, F) atoms, and GDB-9, consisting of 133,885
molecules with up to nine heavy atoms36. In both cases, the
learning task is to predict the molecular total energy calculated
with density-functional theory (DFT). All GDB molecules are
stable and synthetically accessible according to organic chemistry
rules35. Molecular features such as functional groups or

signatures include single, double and triple bonds; (hetero-)
cycles, carboxy, cyanide, amide, amine, alcohol, epoxy, sulphide,
ether, ester, chloride, aliphatic and aromatic groups. For each of
the many possible stoichiometries, many constitutional isomers
are considered, each being represented only by a low-energy
conformational isomer.

As Supplementary Table 1 demonstrates, DTNN achieves a
mean absolute error of 1.0 kcalmol� 1 on both GDB data sets,
training on 5.8 k GDB-7 (80%) and 25 k (20%) GDB-9 reference
calculations, respectively. Figure 1c shows the performance
on GDB-9 depending on the size of the molecule. We observe
that larger molecules have lower errors because of their
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Figure 1 | Prediction and explanation of molecular energies with a deep tensor neural network. (a) Molecules are encoded as input for the neural

network by a vector of nuclear charges and an inter-atomic distance matrix. This description is complete and invariant to rotation and translation.

(b) Illustration of the network architecture. Each atom type corresponds to a vector of coefficients c
0ð Þ
i , which is repeatedly refined by interactions vij.

The interactions depend on the current representation c tð Þ
j , as well as the distance Dij to an atom j. After T iterations, an energy contribution Ei is predicted

for the final coefficient vector c
Tð Þ
i . The molecular energy E is the sum over these atomic contributions. (c) Mean absolute errors of predictions for the

GDB-9 dataset of 133,885 molecules as a function of the number of atoms. The employed neural network uses two interaction passes (T¼ 2) and 50,000

reference calculation during training. The inset shows the error of an equivalent network trained on 5,000 GDB-9 molecules with 20 or more atoms, as

small molecules with 15 or less atoms are added to the training set. (d) Extract from the calculated (black) and predicted (orange) molecular dynamics

trajectory of toluene. The curve on the right shows the agreement of the predicted and calculated energy distributions. (e) Energy contribution Eprobe
(or local chemical potential OM

H rð Þ, see text) of a hydrogen test charge on a
P
i

r� rik k� 2 isosurface for various molecules from the GDB-9 dataset for a

DTNN model with T¼ 2.
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abundance in the training data. However, when predicting larger
molecules than present in the training set, the errors increase.
This is because the molecules in the GDB-9 set are quite small,
so we considered all atoms to be in each other’s chemical
environment. Imposing a distance cutoff to interatomic interac-
tions of 3 Å leads to a 0.1 kcalmol� 1 increase in the error.
However, this distance cutoff restricts only the direct interactions
considered in the refinement steps. With multiple refinements,
the effective cutoff increases by a factor of T because of indirect
interactions over multiple atoms. Given large enough molecules,
so that a reasonable distance cutoff can be chosen, scaling
to larger molecules will require only to have well-represented
local environments. For now, we observe that at least a few larger
molecules are needed to achieve a good prediction accuracy.
Following this train of thought, we trained the network on a
restricted subset of 5 k molecules with 420 atoms. By adding
smaller molecules to the training set, we are able to reduce the
test error from 2.1 kcalmol� 1 to o1.5 kcalmol� 1 (see inset in
Fig. 1c). This result demonstrates that our model is able to
transfer knowledge learned from small molecules to larger
molecules with diverse functional groups.

While only encompassing conformations of a single molecule,
reproducing MD simulation trajectories poses a radically different
challenge to predicting energies of purely equilibrium structures.
We learned potential energies for MD trajectories of benzene,
toluene, malonaldehyde and salicylic acid, carried out at a rather
high temperature of 500K to achieve exhaustive exploration of
the potential-energy surface of such small molecules. The neural
network yields mean absolute errors of 0.05, 0.18, 0.17 and
0.39 kcalmol� 1 for these molecules, respectively (Supplementary
Table 1). Figure 1d shows the excellent agreement between
the DFT and DTNN MD trajectory of toluene, as well as the
corresponding energy distributions. The DTNN errors are much
smaller than the energy of thermal fluctuations at room
temperature (B0.6 kcalmol� 1), meaning that DTNN potential-
energy surfaces can be utilized to calculate accurate molecular
thermodynamic properties by virtue of Monte Carlo simulations.

Supplementary Figs 1 and 2 illustrate how the performance
of DTNN depends on the number of employed reference
calculations and refinement steps (Supplementary Discussion).
The ability of DTNN to accurately describe equilibrium structures
within the GDB-9 database and MD trajectories of selected
molecules of chemical relevance demonstrates the feasibility of
developing a universal machine learning architecture that
can capture compositional as well as configurational degrees of
freedom in the vast chemical space. While the employed
architecture of the DTNN is universal, the learned coefficients
are different for GDB-9 and MD trajectories of single molecules.

Local chemical potential. Beyond predicting accurate
energies, the true power of DTNN lies in its ability to provide
novel quantum-chemical insights. In the context of DTNN, we
define a local chemical potential OM

A rð Þ as an energy of a certain
atom type A, located at a position r in the molecule M. While the
DTNN models the interatomic interactions, we only allow the
atoms of the molecule act on the probe atom, while the probe
does not influence the molecule. The spatial and chemical
sensitivity provided by our DTNN approach is shown in Fig. 1e
for a variety of fundamental molecular building blocks. In this
case, we employed hydrogen as a test charge, while the results for
OM

C;N;O rð Þ are shown in Fig. 2. Despite being trained only on total
energies of molecules, the DTNN approach clearly grasps
fundamental chemical concepts such as bond saturation and
different degrees of aromaticity. For example, the DTNN model
predicts the C6O3H6 molecule to be ‘more aromatic’ than benzene

or toluene (Fig. 1e). Remarkably, it turns out that C6O3H6 does
have higher ring stability than both benzene and toluene and
DTNN predicts it to be the molecule with the most stable
aromatic carbon ring among all molecules in the GDB-9 database
(Fig. 3). Further chemical effects learned by the DTNN model are
shown in Fig. 2 that demonstrates the differences in the chemical
potential distribution of H, C, N and O atoms in benzene,
toluene, salicylic acid and malonaldehyde. For example, the
chemical potentials of different atoms over an aromatic ring are
qualitatively different for H, C, N and O atoms—an evident fact
for a trained chemist. However, the subtle chemical differences
described by DTNN are accompanied by chemically accurate
predictions—a challenging task for humans.

Because DTNN provides atomic energies by construction, it
allows us to classify molecules by the stability of different building
blocks, for example aromatic rings or methyl groups. An example
of such classification is shown in Fig. 3, where we plot the
molecules with most stable and least stable carbon aromatic rings
in GDB-9. The distribution of atomic energies is shown in
Supplementary Fig. 3, while Supplementary Fig. 4 lists the full
stability ranking. The DTNN classification leads to interesting
stability trends, notwithstanding the intrinsic non-uniqueness of
atomic energy partitioning. However, unlike atomic projections
employed in electronic-structure calculations, the DTNN
approach has a firm foundation in statistical learning theory.
In quantum-chemical calculations, every molecule would corre-
spond to a different partitioning depending on its self-consistent
electron density. In contrast, the DTNN approach learns the
partitioning on a large molecular dataset, generating a transfer-
able and global ‘dressed atom’ representation of molecules in
chemical space. Recalling that DTNN exhibits errors below
1 kcalmol� 1, the classification shown in Fig. 3 can provide useful
guidance for the chemical discovery of molecules with desired
properties. Analytical gradients of the DTNN model with respect
to chemical composition or OM

A rð Þ could also aid in the
exploration of chemical compound space37.

Energy predictions for isomers. The quantitative accuracy
achieved by DTNN and its size extensivity paves the way to
the calculation of configurational and conformational energy
differences—a long-standing challenge for machine learning
approaches7,12,13,38. The reliability of DTNN for isomer energy
predictions is demonstrated by the energy distribution in Fig. 4
for molecular isomers with C7O2H10 chemical formula (a total of
6,095 isomers in the GDB-9 data set).

Training a common model for chemical as well as conforma-
tional freedoms requires a more complex model. Furthermore,
it comes with technical challenges like sampling and multiscale
issues since the MD trajectories form clusters of small variation
within the chemical compound space. As a proof of principle, we
trained the DTNN to predict various MD trajectories of the
C7O2H10 isomers. To this end, we calculated short MD
trajectories of 5,000 steps each for 113 randomly picked isomers
as well as consistent total energies for all equilbrium structures.
The training set is composed of all isomers in equilibrium as well
as 50% of each MD trajectory. The remaining MD calculations
are used for validation and testing. Despite the added complexity,
our model achieves a mean absolute error of 1.7 kcalmol� 1.

Discussion
DTNNs provide an efficient way to represent chemical environ-
ments allowing for chemically accurate predictions. To this end,
an implicit, atom-centered basis is learned from reference
calculations. Employing this representation, atoms can be
embedded in their chemical environment within a few refinement
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steps. Furthermore, DTNNs have the advantage that the
embedding is built recursively from pairwise distances. Therefore,
all necessary invariances (translation, rotation, permutation) are
guaranteed to be exploited by the model. In addition, the learned
embedding can be used to generate alchemical reaction paths
(Supplementary Fig. 5).

In previous approaches, potential-energy surfaces were
constructed by fitting many-body expansions with neural

networks39–41. However, these methods require a separate NN
for each non-equivalent many-body term in the expansion. Since
DTNN learns a common basis in which the atom interact, higher-
order interactions can obtained more efficiently without separate
treament.

Approaches like smooth overlap of atomic positions16,17

or manually crafted atom-centered symmetry functions18,19,42

are, like DTNN, based on representing chemical environments.
All these approaches have in common that size-extensivity
regarding the number of atoms is achieved by predicting atomic
energy contributions using a non-linear regression method
(for example, neural networks or kernel ridge regression).
However, the previous approaches have a fixed set of basis
functions describing the atomic environments. In contrast,
DTNNs are able to adapt to the problem at hand in a
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data-driven fashion. Beyond the obvious advantage of not having
to manually select symmetry functions and carefully tune hyper-
parameters of the representation, this property of the DTNN
makes it possible to gain quantum-chemical insights
by analysing the learned representation.

Obviously, more work is required to extend this predictive
power for larger molecules, where the DTNN model will have
to be combined with a reliable model for long-range interatomic
(van der Waals) interactions. The intrinsic interpolation smooth-
ness achieved by the DTNN model can also be used to identify
molecules with peculiar electronic structure. Supplementary Fig. 6
shows a list of molecules with the largest DTNN errors compared
with reference DFT calculations. It is noteworthy that most
molecules in this figure are characterized by unconventional
bonding and the electronic structure of these molecules has
potential multi-reference character. The large prediction errors
could stem from these molecules being not sufficiently
represented by the training data. On the other hand, DTNN
predictions might turn out to be closer to the correct answer
because of its smooth interpolation in chemical space. Higher-
level quantum-chemical calculations would be required to
investigate this interesting hypothesis in the future.

We have proposed and developed a deep tensor neural network
that enables understanding of quantum-chemical many-body
systems beyond properties contained in the training dataset. The
DTNN model is scalable with molecular size, efficient, and
achieves uniform accuracy of 1 kcalmol� 1 throughout composi-
tional and configuration space for molecules of intermediate size.
The DTNN model leads to novel insights into chemical systems, a
fact that we illustrated on the example of relative aromatic ring
stability, local molecular chemical potentials, relative isomer
energies and the identification of molecules with peculiar
electronic structure.

Many avenues remain for improving the DTNN model on
multiple fronts. Among these we mention the extension of
the model to increasingly larger molecules, predicting
atomic forces and frequencies, and non-extensive electronic and
optical properties. We propose the DTNN model as a versatile
framework for understanding complex quantum-mechanical
systems based on high-throughput electronic structure
calculations.

Methods
Reference data sets. We employ two subsets of the GDB database34, referred to
in this paper as GDB-7 and GDB-9. GDB-7 contains 7,211 molecules with up to
seven heavy atoms out of the elements C, N, O, S and Cl, saturated with
hydrogen12. Similarly, GDB-9 includes 133,885 molecules with up to 9 heavy atoms
out of C, O, N, F (ref. 36). Both data sets include calculations of atomization
energies employing density-functional theory43 with the PBE0 (ref. 44) and B3LYP
(ref. 45–49) exchange-correlation potential, respectively.

The molecular dynamics trajectories are calculated at a temperature of 500K
and resolution of 0.5 fs using density-functional theory with the PBE exchange-
correlation potential50. The data sets for benzene, toluene, malonaldehyde and
salicylic acid consist of 627, 442, 993 and 320 k time steps, respectively. In the
presented experiments, we predict the potential energy of the MD geometries.

Details on the deep tensor neural network model. The molecular energies of the
various data sets are predicted using a deep tensor neural network. The core idea is
to represent atoms in the molecule as vectors depending on their type and to
subsequently refine the representation by embedding the atoms in their neigh-
bourhood. This is done in a sequence of interaction passes, where the atom
representations influence each other in a pair-wise fashion. While each of these
refinements depends only on the pair-wise atomic distances, multiple passes enable
the architecture to also take angular information into account. Because of this
decomposition of atomic interactions, an efficient representation of embedded
atoms is learned following quantum-chemical principles.

In the following, we describe the deep tensor neural network step-by-step,
including hyper-parameters used in our experiments.

1. Assign initial atomic descriptors

We assign an initial coefficient vector to each atom i of the molecule according
to its nuclear charge Zi:

c 0ð Þ
i ¼cZi 2 RB; ð4Þ

where B is the number of basis functions. All presented models use atomic
descriptors with 30 coefficients. We initialize each coefficient randomly following
cz �N 0; 1=

ffiffiffi
B

p� �
.

2. Gaussian feature expansion of the inter-atomic distances
The inter-atomic distances Dij are spread across many dimensions by a uniform

grid of Gaussians

d̂ij¼ exp � Dij � mmin þ kDmð Þ
� �2

2s2

 !" #
0�k�mmax=Dm

; ð5Þ

with Dm being the gap between two Gaussians of width s.
In our experiments, we set both to 0.2 Å. The centre of the first Gaussian mmin

was set to � 1, while mmax was chosen depending on the range of distances in the
data (10Å for GDB-7 and benzene, 15Å for toluene, malonaldehyde and salicylic
acid and 20Å for GDB-9).

3. Perform T interaction passes
Each coefficient vector c tð Þ

i , corresponding to atom i after t passes, is corrected
by the interactions with the other atoms of the molecule:

c tþ 1ð Þ
i ¼c tð Þ

i þ
X
j 6¼ i

vij: ð6Þ

Here, we model the interaction v as follows:

vij¼ tanh W fc Wcf cj þ bf 1
� �

� Wdf d̂ij þ bf 2
� �� �h i

; ð7Þ

where the circle (�) represents the element-wise matrix product. The factor
representation in the presented models employs 60 neurons.

4. Predict energy contributions
Finally, we predict the energy contributions Ei from each atom i. Employing two

fully-connected layers, for each atom a scaled energy contribution Êi is predicted:

oi¼ tanh Wout1 c Tð Þ
i þ bout1

� �
ð8Þ

Êi¼Wout2oi þ bout2 ð9Þ

In our experiments, the hidden layer oi possesses 15 neurons. To obtain the final
contributions, Êi is shifted to the mean Em and scaled by the s.d. Es of the energy
per atom estimated on the training set.

Ei¼EsÊi þEm ð10Þ

This procedure ensures a good starting point for the training.
5. Obtain the molecular energy E¼

P
i Ei

The bias parameters as well as Wout2 are initially set to zero. All other weight
matrices are initialized drawing from a uniform distribution according to (ref. 51).
Neural network code is available.

The deep tensor neural networks have been trained for 3,000 epochs
minimizing the squared error, using stochastic gradient descent with 0.9
momentum and a constant learning rate52. The final results are taken from the
models with the best validation error in early stopping.

All DTNN models were trained and executed on an NVIDIA Tesla K40 GPU.
The computational cost of the employed models depends on the number of
reference calculations, the number of interaction passes as well as the number of
atoms per molecule. The training times for all models and data sets are shown in
Supplementary Table 2, ranging from 6 h for 5.768 reference calculations of GDB-7
with one interaction pass, to 162 h for 100,000 reference calculations of the GDB-9
data set with three interaction passes.

On the other hand, the prediction is instantaneous: all models predict examples
from the employed data sets in o1ms. Supplementary Fig. 7 shows the scaling of
the prediction time with the number of atoms and interaction layers. Even for a
molecule with 100 atoms, a DTNN with three interaction layers requireso5ms for
a prediction.

The prediction as well as the training steps scale linearly with the number of
interaction passes and quadratically with the number of atoms, since the pairwise
atomic distances are required for the interactions. For large molecules it is
reasonable to introduce a distance cutoff. In that case, the DTNN will also scale
linearly with the number of atoms.

Computing and visualizing the local potentials of the DTNN. Given a trained
neural network as described in the previous section, one can extract the coefficients
vectors c tð Þ

i for each atom i and each interaction pass t for a molecule of interest.
From each final representation c Tð Þ

i , the energy contribution Ei of the corre-
sponding atom to the molecular energy can be obtained. Instead, we let the
molecule act on a probe atom, described by its charge z and the pairwise distances
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d1,y, dn to the atoms of the molecule:

c tþ 1ð Þ
probe ¼c tð Þ

probe þ
Xn
j¼1

vj; ð11Þ

with vj¼ tanhðW fcððWcf cj þ bf 1 Þ � ðWdf d̂j þ bf 2 ÞÞÞ. While this is equivalent to
how the coefficient vectors of the molecule are corrected, here, the molecule does
not get to be influenced by the probe. Now, the energy of the probe atom is
predicted as usual from the final representation c Tð Þ

probe.
Interpreting this as a local potential OM

A rð Þ generated by the molecule, we can
use the neural network to visualize the learned interactions as illustrated in
Supplementary Fig. 8. The presented energy surfaces show the potential for
different probe atoms plotted on an isosurface of

Pn
i¼1 d

� 2
i . We used Mayavi53 for

the visualization of the surfaces.

Data availability. The GDB-9 data set is available under the DOI 10.6084/
m9.figshare.978904. All data sets used in this work are available at http://quantum-
machine.org/datasets/.
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