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Abstract: Modern videogames place increasing demands on the computational and graphical

hardware, leading to novel architectures that have great potential in the context of high

performance computing and molecular simulation. We demonstrate that Graphical Processing

Units (GPUs) can be used very efficiently to calculate two-electron repulsion integrals over

Gaussian basis functionssthe first step in most quantum chemistry calculations. A benchmark

test performed for the evaluation of approximately 106 (ss|ss) integrals over contracted s-orbitals

showed that a naı̈ve algorithm implemented on the GPU achieves up to 130-fold speedup over

a traditional CPU implementation on an AMD Opteron. Subsequent calculations of the Coulomb

operator for a 256-atom DNA strand show that the GPU advantage is maintained for basis sets

including higher angular momentum functions.

1. Introduction
The past decade has seen a tremendous increase in the
computing requirements of consumer videogames, and this
demand is being met through novel hardware architectures
in the form of proprietary consoles and graphics cards.
Offerings such as the Sony PlayStation 3 (designed around
IBM’s Cell processor1) and the nVidia GeForce 8800 GTX
graphics card are excellent examples, both of which may be
characterized as stream processors.2 Stream processing is a
generalization of the single instruction multiple data (SIMD)
vector processing model which formed the core of the Cray-1
supercomputer.3 Applications are organized into streams and
kernels, representing blocks of data and code transformations,
respectively. The kernel is typically comprised of a tight loop
of relatively few instructions. Streams of data are then
processed in pipelined and parallel fashion by many proces-
sors executing a small number (possibly only one) of kernels.
In the case of the nVidia 8800 GTX, there are 128 total
processors organized as 16 multiprocessor units comprised
of 8 processing units each. These run at a clock speed of
1.35 GHz, which is comparable to the conventional CPUs
commonly used as the basis for scientific computing clusters.

Since a graphics card typically costs less than a single
CPU used in conventional scientific clusters, it is tempting
to consider the use of graphics cards for computational
chemistry. The earliest attempts to use graphics processing
units (GPUs) for nongraphical computing in fields outside
of chemistry4-6 were largely stymied by limited precision
and difficulty of programming. The former problem has been
partially remedied, and the latest GPUs support 32-bit
floating point arithmetic. The next generation of GPUs and
stream processors from nVidia and AMD have already been
announced and will extend this support to 64-bit. The latter
problem of programming difficulty has been largely removed
by nVidia’s recent introduction of the Compute Unified
Device Architecture (CUDA), which provides a relatively
simple programming interface that can be called from the
standard C language. A few groups have recognized the po-
tential of GPUs in the context of computational chemistry,7-9

with some recent implementations within the CUDA
framework.8-10 Much of the focus has been on questions of
accuracy associated with 32-bit single precision arithmetic,
but we discuss this only very briefly here since the precision
problem will be much less important with the advent of 64-
bit GPUs and stream processors. Instead, our paper focuses* Corresponding author e-mail: tjm@spawn.scs.uiuc.edu.
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on the implementation of quantum chemistry algorithms in
the context of stream processors.

In this paper, we propose and test three different algorithms
to solve one of the bottleneck problems of most ab initio
calculations, the two-electron integral evaluation part, entirely
on the GPU. Yasuda has recently demonstrated that that GPU
evaluation of two-electron integrals is feasible with up to
10× speedups compared to conventional CPUs.9 He intro-
duced a novel scheme that calculates the largest integrals
on the CPU in double precision and others on the GPU in
single precision. In contrast, we explore several computa-
tional organizations for the problem, determining which are
most appropriate for the GPU architecture. We formulate
three different approaches, each with its own strong and weak
points. By taking the architectural details of the GPU into
account, we are able to achieve speedups of more than 100×
compared to mature algorithms on conventional CPUs. One
of the algorithms is particularly suitable for direct SCF
methods,11 where the integrals are recomputed every SCF
iteration, while the others are better for conventional SCF
methods, where primitive integrals have to be contracted and
stored (usually on disk) before the SCF procedure starts.

To assess the relative performance of these three algo-
rithms, we have chosen a relatively simple test system
consisting of 64 H atoms organized on a 4× 4 × 4 cubic
lattice with nearest-neighbor spacing of 0.74 Å using the
STO-6G and 6-311G basis sets. In this test system, only
(ss|ss) type integrals need to be evaluated. Having identified
the algorithm which is most suitable for direct SCF calcula-
tions, we then use it to construct (entirely on the GPU) the
Coulomb contribution to the Fock matrix (theJ-matrix) for
a much larger system including boths- and p-type basis
functionssa 256-atom DNA strand using the 3-21G basis
set (1699 basis functions). Comparison of the corresponding
CPU and GPU timings confirms that the GPU architecture
is well-suited for use in quantum chemistry calculations. The
algorithms presented here, and to a large extent also the code,
will be directly applicable to double-precision GPUs and
stream processors with little or no modification.

This paper is organized in the following way. Section 1
is the Introduction; section 2 outlines the problem back-
ground; section 3 provides a brief overview of the GPU
architecture and some programming basics required for
understanding the further material; the integral computation
algorithms on GPU are described in section 4; and section 5
includes the benchmark timing results as well as a brief
discussion concerning the impact of 32-bit precision in the
GPU calculations.

2. Two-Electron Repulsion Integrals
The first step in any ab initio Molecular Orbital (MO) or
Density Functional Theory (DFT) treatment of electronic
structure is the evaluation of a large number of two-electron
repulsion integrals overN atom-centered one-electron basis
functionsæ

whererb refers to the electronic coordinates. In practice, these
basis functions are typically linear combinations of primitive
atom-centered Gaussian basis functions:

The primitive basis functionsø are centered at the coordinates
RBA ) (XA,YA,ZA) of the Ath nucleus:

The two-electron integrals in the contracted basis are thus
evaluated as

where we use brackets to denote two-electron integrals over
primitive basis functions and parentheses to denote such
integrals over contracted basis functions. The angular
momentum of the basis functions is given by the sum of the
three integer parameters,λ ) nx + ny + nz, in the usual way.
The primitive integrals can be evaluated analytically as
originally shown by Boys.12 Since Boys’ seminal work,
numerous computational approaches have been developed
to minimize the effort in thisN4 bottleneck.13-17 However,
even if the most efficient algorithm is being used, the two-
electron integral evaluation phase still takes much of the
computation time.

3. Overview of GPU Hardware and CUDA API
All calculations throughout this project were performed on
one nVidia GeForce 8800 GTX graphical processor running
under the Windows XP operating system. The Compute
Unified Device Architecture (CUDA) Application Program-
ming Interface (API) provided by nVidia18 was used to
develop the GPU-side code. Perhaps the most detailed
descriptions of the nVidia GeForce GPU architecture and
the CUDA API are provided in the CUDA Programming
Guide available for download free of charge.19 We briefly
outline some features of the hardware and programming
models that are needed to understand our implementation
of two-electron integral evaluation.

In the beta version of the CUDA implementation which
we used for this work, all GPU functions (those functions
which are executed on the GPU, not on the CPU) are called
synchronously. In other words, when the CPU reaches the
point where a GPU function (“kernel”) is called, the CPU
waits until this function returns and only then can proceed
further.20 From this point of view, the GPU can be considered
as a coprocessor to the CPUsa fast processor that is
responsible for executing the most computationally intensive
parts of a program which can be efficiently processed in
parallel. The processors of the GPU are not able to access
CPU memory directly. Therefore, before a GPU kernel is
executed, the CPU (using functions provided by the CUDA
host runtime component) must copy required data from CPU
memory to GPU memory. Likewise, if desired, the results
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in GPU memory may be copied to CPU memory after GPU
processing is completed.

The GeForce 8800 is able to process a large number of
parallel threads. Within the CUDA framework, the whole
batch of threads is arranged as a one- or two-dimensional
grid of blocks with up to 65 535 blocks in each dimension.
Each block of threads can be one-, two-, or three-dimensional
depending on the problem being solved. The number of
threads in a block must be specified explicitly in the code
and should not be more than 512 in the current CUDA
implementation. The best performance is obtained if the
number of threads in a block is a multiple of 32, for
scheduling reasons discussed below. The CUDA framework
assigns a unique serial number (threadIdx) to each thread in
a block. Likewise, each block of threads is assigned a unique
identification number (blockIdx). For a two-dimensional grid
of blocks,blockIdxconsists of two numbers,blockIdxx and
blockIdxy. Using both threadIdx and blockIdx, one can
completely identify a given thread. This makes it possible
for each thread to identify its share of the work in a Single
Program Multiple Data (SPMD) application.

The GeForce 8800 GTX consists of 16 independent stream
multiprocessors (SM). Each SM has a Single Instruction
Multiple Data (SIMD) implementation with eight scalar
processors and one instruction unit. At each clock cycle, the
instruction unit of an SM broadcasts the same instruction to
all eight of its scalar processor units, which then operate on
different data. Each SM can process several blocks concur-
rently, but all the threads in a given block are guaranteed to
be executed on a single SM. Threads within the same block
are thereby able to communicate with each other very
efficiently using fast on-chip shared memory and are
furthermore able to synchronize their execution. In contrast,
threads belonging to different blocks are not able to com-
municate efficiently nor to synchronize their execution. Thus,
interblock communication must be avoided in an efficient
GPU algorithm.

Since the number of threads in a typical GPU application
is much larger than the total number of scalar processing
units, all the threads are executed using time slicing. All
blocks are split into 32-thread groups (which is why the
number of threads in a block should be a multiple of 32)
called warps. Each warp is then processed in SIMD fashion
(all 32 threads are executed by 8 processor units in 2 clock
cycles). The thread scheduler periodically switches the active
warps to maintain load balancing, maximizing the overall
performance.

4. GPU Algorithms for Two-Electron Integrals
Most parallel programs use one of two general organizational
schemes: the master-slave model or the peer model. In the
master-slave model, there is one master node which
executes a common serial program but distributes the most
computationally intensive parts among the slave nodes. After
the slave nodes are done, the master node gathers the results
and uses them in further computations. In the case of the
two-electron integral evaluation problem, a common imple-
mentation21-23 of the master-slave model is as follows: the
master node loops over all atomic orbitals, generating lists

of (pq|rs) integrals (i.e., index ranges) and the required input
data (exponents, contraction coefficients, and atomic coor-
dinates). These lists are sent to the slave nodes, which then
evaluate the corresponding integrals. In the peer model, there
is no master node, and all computational nodes execute the
same program.

There are two levels of parallelism in a typical GPU code.
The first is between the CPU and the GPUs, which is handled
in the master-slave model. The CPU is the master node
which calls one or more GPUs as slave nodes. The second
level of parallelism is within the GPU itself, which is
implemented in the peer model, where each thread executes
the same program and must use itsthreadIdxandblockIdx
to determine precisely what work it is to perform.

Because of the relatively slow 2Gb/s transfer speeds
between the CPU and GPU, it is important to avoid CPU-
GPU data transfer as much as possible. Below, we present
several algorithms for two-electron integral evaluation. We
test them on a simple system consisting of 64 H atoms.
Finally, we show that these algorithms preserve their
efficiency for much more complex systems, specifically a
256-atom DNA strand, containing 685 contracteds-and 1014
p-type basis functions.

4a. Mapping Integrals to the GPU Threads. The
mapping procedure starts by enumerating all theN atomic
orbitals æp in the system (p)1...N) and then constructing
correspondingbra- andket-arraysæpæq of lengthM ) N(N
+ 1)/2. The two-electron integrals can then be generated as
(pq|rs) bra- and ket-vector element combinations. This is
schematically represented in Figure 1. Each light green
square represents one (bra|ket) integral out of M2 total
integrals. The (bra|ket))(ket|bra) symmetry reduces these
M2 integrals to the final set ofM(M + 1)/2 unique two-
electron integrals represented by the upper-right triangle
submatrix in Figure 1. Several different integralTGPU thread
mappings can be envisioned. The two-dimensional square
grid of contracted integrals in Figure 1 can be naturally
mapped to a two-dimensional grid of GPU thread blocks. In
this case, there are two possibilitiesseither each block of
GPU threads calculates a contracted integral as depicted in
Figure 1, or each GPU thread calculates a contracted integral
as depicted in Figure 2. In the first case, the primitive
integrals contributing to the same contracted integral are
cyclically mapped to the threads of a block (the predefined
number of threads in a block is the same for all blocks).
Following the calculation of the primitive integrals, a block
sum reduction performs the final summation leading to the
contracted integral. In the second case, each individual GPU
thread calculates its own contracted integral by looping over
all contributing primitive integrals and accumulating the
result in a local variable. A third possible mapping is shown
in Figure 3, where each thread calculates just one primitive
integral, no matter to which contracted integral it contributes.
In this case, additional overhead is needed to perform a series
of local sum reductions converting the grid of primitive
integrals to the grid of contracted integrals.

These three approaches cover a wide range of possible
mapping schemes. The third mapping (one threadT one
primitive integral) is very fine-grained with perfect computa-
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tion load balancing but relatively large data reduction
overhead. In contrast, the second mapping (one threadT
one contracted integral) is very coarse-grained with imperfect
load balancing. This is because different threads can have
different loop lengths, depending on the degree of contraction
of each of the four basis functions in the integral. On the
other hand, this mapping has no data reduction overhead
(summation of data held in different threads). The first
mapping, (one thread blockT one contracted integral) is
intermediate in terms of the grain of parallelism. Load
imbalancing can decrease the performance significantly, for
example in basis sets with low average degree of contraction.
However, the load is balanced more effectively than in the
second mapping. Additionally, the data reduction overhead
is small because the threads that need to communicate are
all located in the same thread block (and hence reside on
the same SM).

We have tested all these three approaches on a system of
64 hydrogen atoms using the STO-6G24,25and 6-311G26 basis
sets, representing highly contracted and relatively uncon-
tracted basis set cases, respectively.

4b. One Thread Block T One Contracted Integral
Mapping. The “One BlockT One Contracted Integral”
mapping (1B1CI) is schematically represented in Figure 1.

The green squares represent the contracted integrals as well
as the blocks of computational GPU threads mapped to them.
Because of (bra|ket))(ket|bra) symmetry, those integrals
lying below the main diagonal should be disregarded. This
is easily done with a logic statement at the beginning of
thread execution. If the thread is assigned to an integral in
the lower triangle, it simply exits without computing
anythingsthis is indicated in Figure 1 by the designation
“idle blocks”. This “outscheduling” has little effect on
performance since the scheduler switches between GPU
warps very quickly (once all threads in a warp have
completed processing, they are removed from the scheduling
list and do not impose any load balancing penalty). After
each contracted integral is mapped to the corresponding block
of GPU threads, the primitive integrals contributing to the
particular contracted integral are assigned to the threads
constituting this block. Different schemes can be used heres
in our program we use a cyclic mapping to a one-dimensional
block of 64 threads (orange rectangles in Figure 1). Each
successive term in the sum of eq 4 is then mapped to a
successive GPU thread, i.e., [11|11] to thread 0, [11|12] to
thread 1, and so on. If the number of primitive integrals is
larger than the number of GPU threads in the block, the
procedure repeats: the 65th primitive integral is mapped to
thread 0, the 66th to thread 1, and so on until all primitive
integrals have been assigned to a GPU thread. Depending
on the number of terms in eq 4 for the contracted integral
under consideration, two situations are possible as shown
on the right in Figure 1. Block (4,1) represents the case when
some threads have no integrals mapped to them. This can
happen, for example, when there is only one term in the sum
of eq 4, i.e. the contraction length for all basis functions
involved in the integral is unity. Since the number of threads
in a block is fixed and is the same for all the blocks, the
number of threads in Block (4,1) will be 64, of which only
one will do useful worksthe others will just waste the
computational resources executing unnecessary instructions.
Thus, the 1B1CI mapping is more efficient for highly
contracted basis sets. Direct computational tests confirm this
conclusion and show that for low-contracted basis sets the
performance drops by a factor of 2-3. Note that the

Figure 1. “One Block T One Contracted Integral” (1B1CI) mapping. The green squares represent the contracted integrals as
well as one-dimensional 64-thread blocks mapped to them. To the right, the GPU thread to primitive integral mapping is illustrated
for two contracted integrals containing 1 and 34 ) 81 primitive integrals. After all the primitive integrals are calculated, a block
sum reduction leads to the final result.

Figure 2. “One Thread T One Contracted Integral” (1T1CI)
mapping. Green squares represent the contracted integrals
as well as individual GPU threads mapped to them. A two-
dimensional 4 × 4 thread block is outlined in red. Each thread
calculates its integral by looping over all primitive integrals
and accumulating the result in a local variable.
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performance penalty is less than might have been expected.
This is partly because of the efficient scheduling and
organization of threads into warps as discussed above. When
all of the threads in a warp are idle, the entire warp wastes
only one clock cycle, after which the GPU “outschedules”
the warp, i.e., it is removed from consideration for further
scheduling. Block (3, 2) represents the case when the number
of primitive integrals is not a multiple of the number of the
number of threads in a block. In this case, there is also
performance degradation since threads 17-31 are only
calculating one primitive integral, while threads 0-16
calculate two primitive integrals. However, in general the
effect is much smaller than in the previous case. Again, the
efficient scheduling of the GPU and organization of threads
into warps is the reason for relatively minor effects of load
imbalance. Given the current lack of performance monitoring
tools for the GPU, the only way to assess the impact of load
imbalancing is by direct experimentation for realistic test
cases.

4c. One ThreadT One Contracted Integral Mapping.
The “One ThreadT One Contracted Integral” (1T1CI)
mapping is shown schematically in Figure 2. Again, the green
squares represent the contracted integrals, while the blocks
of threads are sketched in red. In contrast to the previous
model, the blocks of threads are now two-dimensional. Figure
2 shows a block of 16 threads arranged as a 4× 4 grid for
illustrative purposes, while in our test calculations we found
the 16× 16 configuration to be optimal. Each thread now
has its own contracted integral to calculate. It does this by
looping over all primitive integrals and accumulating the
result. Figure 4 presents a detailed flowchart of the procedure.
As mentioned above, the 1T1CI mapping scheme can suffer
from load balancing problems since there may be a different
number of terms in each of the sums of primitive integrals.
This results in a different number of loop cycles needed to
calculate each contracted integral and a corresponding
imbalance in the computational work per thread. The effect
of this load imbalance can be minimized by organizing the
contracted integrals into subgrids, so that each subgrid
contains contracted integrals involving the same number of

primitive integrals. The computation threads are then as-
signed over all the subgrids serially through a series of
synchronous function calls from the CPU. This provides
all GPU threads in each subgrid exactly the same amount
of work, which is nonetheless different for different sub-
grids. The sorting step to divide the work into subgrids
is done on the CPU prior to integral evaluation by the GPU.

4d. One Thread T One Primitive Integral Mapping .
The “One ThreadT One Primitive Integral” (1T1PI)
mapping exhibits the finest grained parallelism of all the
mappings we consider here. The mapping scheme is shown
schematically in Figure 3, where it can be seen that each
individual GPU thread calculates only one primitive integral,
no matter which contracted integral it contributes to. In
Figure 3, two-dimensional blocks of threads are represented
by green squares, while the red squares represent contracted
integrals. Individual primitive integrals are not displayed. The
situation shown in Figure 3 corresponds to the STO-6G basis
set (with 1296 primitive integrals in each contracted integral)
and a block size of 16× 16 threads. Since 16 is not a
multiple of 36, some blocks like block (4, 1) calculate
primitive integrals which belong to different contracted
integrals like (11|12) and (11|13). From the computational
point of view, this is the fastest version because of
ideal load balancing. However, the following sum reduction
stage, which converts the calculated primitive integral grid
to the final contracted integral grid, is the most expensive
part in this model and can decrease the ultimate perfor-
mance. As depicted in Figure 3, the reduction to contracted
integrals will sometimes require summation over values
from threads in different blocks, and these therefore may
reside on different SMs, necessitating expensive communica-
tion.

4e. The (ss|ss) Integral Computation Algorithm . The
general formula for primitive [ss|ss] integral evaluation is12

Figure 3. “One Thread T One Primitive Integral” (1T1PI) mapping. The two-dimensional 16 × 16 thread blocks are represented
by green squares, while the red squares represent contracted integrals. To the right, we show an example where the primitives
calculated by one thread block contribute to more than one contracted integral.

[s1s2|s3s4] )

π3

ABxA + B
K12(RB12)K34(RB34)F0( AB

A + B
[RBP - RBQ]2) (5)
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where

In eqs 5-10, Rk and RBk denote the exponent and atomic
center of thekth primitive basis function in the integral.
Instead of having each GPU thread calculate a primitive
integral directly through eqs 5-10, we precalculate all pair
quantities on the host CPU. Alternatively, this could be done
on the GPU, if desired. The following terms are precalculated
and stored in the GPU memory:R1 + R2, π3/2 c1c2/(R1 +
R2)exp(-R1R2/(R1 + R2)RB12

2), and (R1RB1 + R2RB2)/(R1 + R2).
Having loaded these pair quantities for bothbra andketparts,
each GPU thread is then able to calculate the required
primitive integrals.

4f. Extension to Basis Sets with Higher Angular
Momentum Functions.The algorithm presented for (ss|ss)
integral calculations is easily generalized to allow for higher
angular momentum functions. We discuss some of the
relevant considerations here. Consider an example of a
system consisting of five uncontracted basis shells: four
s-shells and onep-shell. The total number of basis functions
is thus seven. First, the shells can be sorted from the lowest
angular momentum to the highest angular momentum. In our

example, this would lead to{1,2,3,4,5} T {s,s,s,s,p}. The
integral grid can now be generated in exactly the same way
as previously discussed. This is shown for the given example
in Figure 5, where now each individual square represents
an integral batch rather than a single integral. For example,
every (ss|pp) batch (pink squares in Figure 5) contains nine
integrals. The resulting grid for this example contains 120
unique two-electron integral batches as shown in Figure 5.
Different colors represent different types of batches: orange
- (ss|ss), blue- (ss|sp), yellow - (sp|sp), pink - (ss|pp),
green- (sp|pp), and dark red- (pp|pp). Typical integral
evaluation programs have separate routines for each class
of integrals represented as different colors in Figure 5. A
straightforward method to calculate all the integrals would
be the following: a) each of 6 functions spawns a 15× 15
grid of blocks to cover the whole integral batch grid (Figure
5a); b) depending on its type [(ss|ss), (ss|sp), etc.], each
routine (“kernel”) has its own set of rules to extract only
those batches (small squares of the same color in Figure 5a)
which it is responsible to calculate and schedules out the
others; c) the result is then stored in the GPU memory and
another function, responsible for another type of batch is
called on the same 15× 15 grid. However, such an approach
has one serious drawbacksthe batches of the same type are
scattered over the whole grid (Figure 5a). As a result, the
rules each integral evaluation kernel needs to apply to
outschedule the unsuitable batches will be rather complicated.
In addition, the number of such integral batches rapidly
increases with the system size, which will ultimately decrease
computational performance.

The integral batch grid shown in Figure 5a was generated
by a conventional loop structure as shown in Figure 6a. If
one instead adopts a less conventional loop structure as
shown in Figure 6b, one obtains the integral batch grid shown

Figure 4. Flowchart for the 1T1CI mapping algorithm. The small orange boxes represent individual threads, each calculating
a contracted integral. The whole block of threads (large yellow box) thus calculates a number of contracted integrals (nine in the
example shown). The “bra-” and “ket-” rectangles on the top left of the thread block represent the pairwise quantities precalculated
on the CPU.

A ) R1 + R2; B ) R3 + R4 (6)
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in Figure 5b. This new integral grid, orsupergrid, has very
well definedsubgridsof integral batches of the same type.
Calculation on the GPU is now straightforwardsall the
different integral type calculation functions are called on their
own subgrids. In this case, the off-diagonal integral types,
i.e., (ss|sp), (ss|pp), and so on, do not require any block
outscheduling, since the corresponding subgrids have rect-
angular shape. The diagonal integral types still need the very
inexpensive “main-diagonal” outscheduling, as discussed
previously in the context of the (ket|bra))(bra|ket) symmetry
(section 4b). Any of the three different thread-integral
mapping schemes discussed above can now be directly
applied.

4g. Considerations for Direct Self-Consistent Field
Calculations. The next step after generation of the two-
electron integrals is the assembly of the Fock operator for
direct SCF calculations. In this context, there is no need to
generate the contracted integrals explicitlysinstead, one can
use the primitive integrals directly to generate the desired
Coulomb and exchange operators. Thus, the best of the three
integral mappings considered above for direct SCF will be
the 1T1PI scheme, since it exhibits ideal load balancing and
the problematic inter-SM communication requirements are
completely alleviated if the contracted integrals are never
explicitly formed.

Given the considerations listed above when angular
momenta higher thans functions are involved, we have
extended the 1T1PI scheme such that each individual GPU
thread evaluates an entire batch of integrals (the small squares

in Figure 5) instead of a single primitive integral (which was
the case when onlys functions were being considered above).
Thus, when angular momenta higher thans are involved,
this scheme might be better denoted as “One ThreadT One
Batch” (1T1B). Once every integral batch is assigned to a
corresponding computation thread, the thread first evaluates
the integral Schwartz upper bound.27 If this upper bound is
larger than some predefined threshold (we used the value of
10-9 au), the thread calculates all the integrals in the batch
and accumulates them in the corresponding elements of the
Coulomb matrix.

We have used the Rys-quadrature approach28 for evaluat-
ing integrals involving basis functions of higher angular
momenta thans functions because it requires little memory
for intermediate quantities. This is an important consideration
because the amount of memory available to each thread
during the computation is limited on the GPUsfor optimal
performance, one should stay within the register space of
each SM as much as possible. On the 8800 GTX, there are
8192 32-bit registers per SM, and this register space must
be evenly distributed among all threads executing on the SM.
Thus, decreasing memory usage per thread is important to
ensure that a large number of threads can execute in parallel
on each SM (streaming processors exploit this parallelism
to hide latency associated with memory-access). Six different
GPU kernels were hand-coded, each capable of handling one
of the six unique batch typess(ss|ss), (ss|sp), (ss|pp), (sp|sp),
(sp|pp), and (pp|pp). We are developing a program that will
generate the source code for basis sets including angular
momenta higher thanp functions.

5. Results and Discussion
First, we have benchmarked these three different mapping
schemes on a relatively simple system consisting of 64
hydrogen atoms organized on a 4× 4 × 4 atom cubic lattice
with 0.74 Å nearest-neighbor interatomic distance. The STO-
6G and 6-311G basis sets were used, representing highly
contracted and relatively uncontracted basis sets, respectively.
All GPU computations were performed on one nVidia
Geforce 8800 GTX card. For comparison, all reference

Figure 5. a) The integral grid generated by a conventional loop over shells ordered according to their angular momentum (s,
then p, etc.). b) Rearranged loop sequence that leads to a well-ordered integral grid, suitable for calculations on the GPU.
Different colors represent different integral types such as (ss|ss), (ss|sp), etc. as discussed in section 4f.

Figure 6. Pseudocode for the loop arrangement correspond-
ing to Figure 5.
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timing data was generated by GAMESS29,30 running on a
single AMD Opteron 175 processor. The GAMESS source
code was modified to prevent it from storing the computed
integrals on the hard drive, avoiding all I/O and ensuring
fair timing comparisons. The results are presented in Table
1. Note that the time required to transfer the integrals from
the GPU to CPU memory can be significant, especially for
weakly contracted basis sets. In fact, this transfer time can
be comparable to the integral evaluation time. The GPU-
CPU transfer time is determined by the speed of the host
bus, and straightforward calculation from the data in Table
1 (only unique integrals are transferred) gives a speed of
0.7 Gbytes per second, consistent with the expected speeds31

on the PCI Express x8 bus used (unidirectional peak speed
of 2 Gb/s). For the 6-311G basis set, the GPU-CPU transfer
time exceeds the integral evaluation itself. Thus, it is clearly
desirable to implement a direct SCF approach11 entirely on
the GPU.

As mentioned in section 4, we have chosen the 1T1PI (or
1T1B) mapping for future work in generating a direct SCF
algorithm. For a realistic benchmark, we have chosen a 256-
atom DNA strand shown in Figure 7. The 3-21G basis set is
used, with a total of 1699 basis functions, including boths
and p angular momenta. Although our direct SCF imple-
mentation is still under development, we are able to provide
significant timing comparisons based on the formation of
the Coulomb contribution to the Fock matrix. We compare
the GPU time for Coulomb matrix construction to the time
GAMESS requires to evaluate all two-electron integrals. For
both our GPU implementation and GAMESS, the integral
upper bound used for Schwartz inequality prescreening was
10-9 Hartree. The GPU implementation does not utilize
prescreening based on the density matrix elements, i.e., all
two-electron integrals which are not prescreened are calcu-
lated and contracted with density matrix elements. The
current version of the GPU code for Coulomb matrix
construction evaluatesO(N4/4) integrals, while the total
number of unique two-electron integrals isO(N4/8). In other
words, each integral is calculated twice. In spite of this fact,
the GPU algorithm demonstrates impressive performances
the time required to calculate the Coulomb matrix for the
DNA molecule described above (Figure 7) is 19.8 s. Further
elimination of the redundant integrals calculated in the GPU
algorithm is expected to improve its performance. For
comparison, GAMESS requires 1600 s (on an AMD Opteron
175) just to evaluate all the two-electron integrals (which

need to be further contracted with the density matrix elements
to generate the Coulomb matrix).

An additional issue that merits some discussion is the fact
that the 8800 GTX hardware supports only single precision
floating point operations. As a result, all the integrals
calculated on the GPU have single precision (7-digit)
accuracy. Figure 8 presents the number of two-electron
integrals calculated for the 64 H atom test system using the
6-311G basis set with given absolute and relative errors as
determined by comparison with double precision CPU
results. The relative error distribution demonstrates typical
behavior for single precision calculations (relative error of
10-7-10-8). However, electronic structure calculations are
often held to an absolute accuracy standard, since it is energy
differences that are important. The absolute error distribution
has a maximum at 10-8-10-10 Hartree. In order to save CPU

Table 1. Timings for the 64 H Atom System Two-Electron
Integral Evaluation on the GPU Using the Algorithms
(1B1CI, 1T1CI, 1T1PI) Described in the Texta

GPU
1B1CI

(s)

GPU
1T1CI

(s)

GPU
1T1PI

(s)

CPU pre-
calculation

(s)

GPU-CPU
transfer

(s) GAMESS

6-311G 7.086 0.675 0.428 0.009 0.883 170.8

STO-6G 1.608 1.099 2.863 0.012 0.012 90.6
a The “CPU precalculation” column lists the amount of time required

to generate pair quantities on the CPU, and the “GPU-CPU transfer”
column lists the amount of time required to copy the contracted
integrals from the GPU to CPU memory. Timings for the same test
case using the GAMESS program package on a single Opteron 175
CPU are provided for comparison.

Figure 7. The 256-atom DNA strand used for the Coulomb
matrix formation benchmark. The chemical formula of the
molecule is C77P8N31H91O49. Our GPU algorithm calculates
the Coulomb matrix for this molecule in 19.8 s compared to
1600 s required by GAMESS (on a single AMD Opteron 175
CPU) for evaluation of the two-electron integrals (which need
to be further contracted to form the Coulomb matrix).

Figure 8. Absolute and relative error distribution of two-
electron integrals generated on the GPU for the test system
of 64 H atoms on a 4 × 4 × 4 cubic lattice using the 6-311G
basis set.
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time, electronic structure codes often neglect two-electron
integrals less than 10-9 or 10-10 Hartree. Thus, the accuracy
achieved by the GPU is somewhat worse than what is usually
required in quantum chemistry calculations. Yasuda has
discussed this in detail and outlined a solution which
calculates large integrals (where higher precision is needed)
on the CPU and others on the GPU.9 This is definitely a
fruitful approach when confronted with hardware limited to
single precision. However, the introduction of double preci-
sion support in upcoming GPUs from nVidia and AMD’s
FireStream processor makes it unclear whether such mixed
CPU-GPU schemes will be worth the extra effort in the
future. Certainly, it will not be necessary to adopt such a
strategy. Only minor revisions of our current single-precision
accuracy code will be needed for these 64-bit stream
processors, and the relative effectiveness of the algorithms
presented here will not be affected at all.

6. Conclusions
We have demonstrated that graphical processors can sig-
nificantly outpace the usual CPUs in one of the most
important quantum chemistry problems bottleneckssthe
evaluation of two-electron repulsion integrals. We have
achieved speedups of more than 130× for two-electron
integral evaluation in comparison to the GAMESS program
package running on a single Opteron 175 CPU. One can
easily anticipate the possibility of using GPUs in parallel,
and hardware support for 4 GPUs per CPU has already been
announced by nVidia. Parallelization of electronic structure
calculations over GPUs is an obvious next step that is
expected in the near future. We have demonstrated the
calculation of the Coulomb matrix for a chemically signifi-
cant test molecule corresponding to a 256-atom DNA strand,
showing that the speedups we have obtained are representa-
tive of what can be expected on realistic systems.

The integrals generated on the GPU in single precision
have a relatively large absolute error of≈10-8 Hartree.
Possible accuracy problems can be addressed by using
effective core potentials for medium sized molecules to
reduce the dynamic range of the one- and two-electron
integrals used to construct the Fock matrix. Alternatively, a
hybrid strategy evaluating some of the integrals on the GPU
and others on the CPU could be used, as previously
demonstrated.9 However, both nVidia and AMD have already
announced GPUs with hardware support for double precision,
so this will likely be a moot point within the next few
months. Consequently, we are focusing on the development
of a complete electronic structure code running almost
entirely on the GPU, in anticipation of the coming hardware
improvements.
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