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Abstract

In this paper, we propose quantum circuits for runtime as-

sertions, which can be used for both software debugging and

error detection. Runtime assertion is challenging in quantum

computing for two key reasons. First, a quantum bit (qubit)

cannot be copied, which is known as the non-cloning the-

orem. Second, when a qubit is measured, its superposition

state collapses into a classical state, losing the inherent paral-

lel information. In this paper, we overcome these challenges

with runtime computation through ancilla qubits, which are

used to indirectly collect the information of the qubits of

interest. We design quantum circuits to assert classical states,

entanglement, and superposition states. Our experimental

results show that they are e�ective in debugging as well as

improving the success rate for various quantum algorithms

on IBM Q quantum computers.

CCS Concepts. • Hardware→ Quantum technologies.
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1 Introduction

Quantum computing features unique advantages over clas-

sical computing and recent advances in quantum computer

hardware raise high hopes to realize the remarkable potential

of quantum computing. However, there are important hur-

dles to overcome to make quantum computing mainstream.
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The �rst is the di�culty of developing and debugging quan-

tum programs. The second is that the quantum computers

are highly susceptible to errors and quantum error correc-

tion incurs very high overhead. To tackle the �rst problem,

prior work by Huang et al. [17] shows that many bugs in

quantum programs can be detected using assertions. Asser-

tions, especially dynamic ones, during quantum program

execution are challenging for two key reasons. The �rst is

the non-cloning theorem, which means that it is impossible

to copy a quantum bit (qubit) with an arbitrary state. The

second is that any measurement on a qubit in a superposi-

tion state will project it into a classical state. As a result, in a

recent work by Huang et al. [18], statistical assertions, mean-

ing statistical analysis on multiple measurement results, are

proposed to debug quantum programs. The key limitation

of this approach is that each measurement stops program

execution and the assertions require ensembles of runs when

the actual computation results are to be measured.

In this paper, we propose quantum circuits to overcome

this limitation and to enable dynamic assertions for quan-

tum programs. We also propose to leverage assertion for

opportunistic error detection such that we can increase the

success rate of the quantum computer without error correc-

tion. Our proposed quantum circuits for dynamic assertions

are inspired from quantum error correction and nondestruc-

tive discrimination. As qubits cannot be copied and cannot

be measured directly, our approach for dynamic assertions

is to indirectly verify the desired condition to be checked.

In comparison, quantum error correction shares the same

constraints and the various previously proposed quantum

error correction codes [13][25] introduce ancilla qubits and

encode the information of the qubits to be protected in the

ancilla qubits, which are checked and used to correct the

qubits if they are corrupted. Similarly, we also introduce

ancilla qubits for assertions but the di�erence is that we

only need to check for assertions and our proposed quantum

circuits for assertions are much simpler than those for error

correction, which incurs very high overhead in the number

of ancilla qubits and the associated quantum circuits. Non-

destructive discrimination (NDD) is mainly used in secure

quantum communication. Several NDD protocols [14, 15, 19]

have been proposed to discriminate entangled states such as

Bell states in quantum information processing. We can lever-

age these NDD protocols to assert the target quantum states

https://doi.org/10.1145/3373376.3378488
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without disturbing the qubits under test while our proposed

quantum circuits are simpler than the NDD protocols as we

do not need to discriminate all the entangled states.

According to the previous work by Huang et al. [18],

three types of possible assertions are essential for debug-

ging quantum programs: classical assertions, superposition

assertions, and entanglement assertions. Classical assertions

check quantum variables with classical values to see whether

they match the desired ones; superposition assertions check

whether a quantum variable is in a desired superposition

state; and entanglement assertions check whether the en-

tangled quantum variables exhibit the desired correlation.

In this paper, we propose circuits for these three types of

assertions. In addition, we also enable superposition asser-

tion with a desired phase, which cannot be asserted with

the statistical approach. Besides debugging, we show how

these assertion circuits can be used to improve success rate

via post measurement selection, meaning that we ignore the

measurement results which fail the assertion checks. In our

evaluation, we perform experiments on an actual quantum

computer, IBM Q, to show the e�ectiveness of our proposed

schemes.

The key novelty of this work is (a) quantum circuits for dy-

namic assertions, which are used as primitives for quantum

program debugging, (b) the use of the circuits for opportunis-

tic error detection so as to improve success rates on noisy

intermediate scale quantum (NISQ) systems, (c) an analysis

of the impact from our proposed assertion circuits on the

circuits under test, and (d) a detailed evaluation on a variety

of quantum algorithms.

2 Background and Related Work

Qubits are the foundation of quantum computing. Executing

a quantum program means performing a sequence of oper-

ations upon the qubits. A qubit can be in a classical state,

i.e., the |0⟩ state or |1⟩ state, which can be viewed as the

classical 0 or 1 states. Besides classical states, a qubit can

be in a superposition state, which is a linear combination

of classical states, i.e., |Ψ⟩ = 0 |0⟩ + 1 |1⟩ where 0 and 1 are

complex numbers and |0 |2 + |1 |2 = 1. When a qubit in the

superposition state is measured, the superposition state is

projected into a classical state with the probability of |0 |2
being state |0⟩ and |1 |2 being state |1⟩. Superposition states

are the reason for quantum parallelism, as = qubits can be in

a mixture of 2= states while in classical computing an =-bit

variable takes one of the 2= states at a time.

The state of multiple qubits can be described as the ten-

sor product between the individual qubit state vectors. For

example, the state of the two qubit, |Ψ⟩ = 0 |0⟩ + 1 |1⟩ and
|X⟩ = 2 |0⟩ + 3 |1⟩, can be described as |Ψ⟩ ⊗ |X⟩ = 02 |00⟩ +
03 |01⟩+12 |10⟩+13 |11⟩, where |00⟩ is |0⟩⊗ |0⟩, |01⟩ is |0⟩⊗ |1⟩,
etc. Two or more qubits can be entangled, meaning that their

measurements results will be correlated and their state can-

not be expressed as the tensor product of individual qubits.

One implication is that among the entangled qubits, if one

of them is measured (i.e., projected to a classical state), the

rest will also collapse into a compatible state, losing some or

all of their superposition states.

A quantum program is a sequence of quantum operations

(gates) performed upon a collection of qubits. There are

single-qubit gates such as Hadamard (H) gate, phase (S) gate,

and the Pauli gates (X, Y, and Z), andmulti-qubit gates such as

controlled-NOT (CNOT) gate. Barenco et al. [5] has proved

that single-qubit gates and CNOT gates are universal for

quantum computation. As we mainly use H gates and CNOT

gates in this paper, we present their logic relationship in

Figure 1.

Figure 1. Logic functions of Hadamard gate and CNOT gate.

Both superposition and entanglement are used extensively

in quantum programs, and they are the fundamental reason

for the computational advantage of quantum computing

over classical computing. However, they do not have corre-

spondence in classical computing, which makes them hard

to reason about. The development of quantum programs

remains a di�cult task and debugging them is also very chal-

lenging. In the prior work, Huang et al.[18] analyzed a set of

quantum programs and identi�ed that the following three

types of assertions are needed in quantum programs: asser-

tions for classical values, assertions for superposition states,

and assertions for entangled states. They proposed a statis-

tical approach to realize these assertions by measuring the

qubits many times. The limitation is that each measurement

collapses the superposition state and projects the entangled

qubits. As a result, such measurements stop the execution of

the quantum program. When the execution is performed and

the results are measured, such intermediate assertions could

not be enforced. Another limitation is that direct measure-

ment results cannot reveal the phase information of qubits.

Quantum property testing studies [8][24] aim to design

algorithms that can distinguish whether a large object has

a certain property or not. Aharonov et al. [2] introduced a

technique for testing whether a shared bipartite quantum

state is the maximally entangled state. Harrow et al. [16]

proposed a test that can distinguish the product states and

the states that are far from the product states. The di�erence



between quantum property testings and our proposed asser-

tion circuit is that quantum property testings usually handle

very large objects and they do not require preserving the

state after the test. For the purpose of assertion, our circuit

should measure the states nondestructively.

Nondestructive discrimination (NDD) plays an important

role in a number of quantum computational protocols such

as entanglement concentration protocols [4] and secret quan-

tum conversation [19]. It is used to discriminate entangled

states without destroying the information. Gupta et al. [14]

proposed nondestructivemeasurement scheme for Bell states.

Mitali et al. [30] experimentally realised Gupta et al.’s scheme

on a 5-qubit quantum computer. Manu et al. [22] describes

an algorithm for arbitrary set of orthogonal quantum states

nondestructive discrimination based on phase estimation.

Satyajit et al. [28] de�ned a new set of highly entangled

orthogonal states as Z-states and demonstrate their discrimi-

nation using IBM’s 5-qubit quantum computer. Our dynamic

assertion circuits are related to NDD as our circuits also non-

destructively measure the qubits under test. The di�erence

lies in what information we assert, which determines the

complexity of the quantum circuits, and how we use them

for. In a sense, we repurpose NDD for program debugging

and error detection, although our proposed circuit is not the

same as (usually simpler than) the NDD circuits.

3 Quantum Circuits for Dynamic
Assertions

Our key approach to enabling dynamic assertion is to intro-

duce additional quantum bits, aka ancilla qubits, to collect

information about the qubits under test, and to measure the

ancilla qubits rather than directly measuring the qubits under

test. This way, we do not need to disrupt the program exe-

cution while the assertion is checked. However, care needs

to be taken to ensure that measuring the ancilla qubits will

not a�ect the original quantum circuit. Next, we describe

our proposed circuits for each type of assertion. For all the

circuits, a measurement of the ancilla qubit being |1⟩ means

an assertion error. This rule is helpful as it alleviates the

decoherence and readout error in assertion circuits. When

the assertion circuits are used on real quantum computers

to improve success rates, we check to ensure no additional

SWAP gates are inserted due to our assertion circuits.

3.1 Dynamic Assertion for Classical Values

To ensure that the qubits are initialized to the correct values

or some intermediate classical results should satisfy some

conditions such as (|Ψ⟩ == |0⟩)), we can resort to assertions

for classical values.We propose to introduce one ancilla qubit

and a CNOT gate to achieve classical-value assertion for one

qubit, as shown in Figure 2. In the �gure, the qubit |Ψ⟩ is to
be checked for (|Ψ⟩ == |0⟩). The ancilla qubit is initialized

to |0⟩ and measured after the CNOT gate. If we initialize the

ancilla qubit to be |1⟩, the same circuit asserts (|Ψ⟩ == |1⟩).

Figure 2. Circuit for asserting classical values (|Ψ⟩ == |0⟩).

Proof. In Figure 2, the state |Ψ1⟩ = |Ψ⟩ ⊗ |0⟩.
The state after the CNOT gate |Ψ2⟩ = |Ψ⟩ ⊗ |Ψ ⊕ 0⟩ =

|Ψ⟩ ⊗ |Ψ⟩.
If |Ψ⟩ is in a classical state, either |0⟩ or |1⟩, then |Ψ1⟩ is

either |00⟩ or |10⟩ and |Ψ2⟩ is either |00⟩ or |11⟩, correspond-
ingly. As a result, when the ancilla qubit is measured, if it is

|0⟩, it means that |Ψ⟩ must be |0⟩; if it is |1⟩, |Ψ⟩ must be |1⟩,
i.e., an assertion error.

If the qubit |Ψ⟩ is in a superposition state due to a bug

or a runtime error, |Ψ⟩ = 0 |0⟩ + 1 |1⟩. |Ψ1⟩ is 0 |00⟩ + 1 |10⟩
and |Ψ2⟩ becomes 0 |00⟩ + 1 |11⟩, which is an entangled state.

Due to such entanglement, after the measurement of the

ancilla qubit, if the measurement result is |0⟩ (i.e., no asser-

tion error), the qubit under test will be projected into the

classical state |0⟩, i.e., |Ψ′⟩ = |0⟩. If the measurement result

is |1⟩ (i.e., an assertion error), it is projected into the classical

state |1⟩. It means that when we perform an assertion check

(|Ψ⟩ == |0⟩), if there is no assertion error, the proposed

circuit may have automatically corrected the qubit if it is

in a superposition state. If it cannot correct the qubit into

the expected classical state, an assertion error occurs. Since

the probability of the measurement result being |0⟩ and |1⟩
is |0 |2 and |1 |2, respectively, the probability distribution of

assertion errors over repeated runs (and measurements) can

be used to estimate 0 and 1, if needed.

3.2 Dynamic Assertion for Entanglement

To assert that two or more qubits are in the entangled state

of 0 |00⟩ + 1 |11⟩ or 0 |01⟩ + 1 |10⟩, we propose to leverage

parity computation. Figure 3 shows the proposed circuit for

computing the parity of two qubits. If checking whether the

two qubits are entangled in the state of 0 |00⟩ + 1 |11⟩, the
ancilla qubit is initialized to |0⟩. If asserting that the two

qubits are in the state of 0 |01⟩ + 1 |10⟩, the ancilla should be

initialized to |1⟩.
Proof. In Figure 3, if the input qubits are in the state of

0 |00⟩ + 1 |11⟩, i.e., |Ψ⟩ = 0 |00⟩ + 1 |11⟩.
Then, the state |Ψ1⟩ = (0 |00⟩ + 1 |11⟩) ⊗ |0⟩ = 0 |000⟩ +

1 |110⟩.
The state |Ψ2⟩ = (0 |000⟩ + 1 |111⟩), i.e., the ancilla qubit is

entangled as well after the CNOT gate.



Figure 3. Circuit for asserting entanglement.

The state |Ψ3⟩ = 0 |000⟩ + 1 |110⟩ = (0 |00⟩ + 1 |11⟩) ⊗ |0⟩,
which means that the ancilla qubit is un-entangled from the

two qubits under test and should be |0⟩. The qubits state |Ψ⟩
is una�ected for subsequent computations.

If the input qubits are not entangled as expected, i.e., |Ψ⟩ =
0 |00⟩ + 1 |11⟩ + 2 |10⟩ + 3 |01⟩, then |Ψ1⟩ = 0 |000⟩ + 1 |110⟩ +
2 |100⟩ +3 |010⟩, |Ψ2⟩ = 0 |000⟩ +1 |111⟩ + 2 |101⟩ +3 |010⟩, and
|Ψ3⟩ = 0 |000⟩ +1 |110⟩ +2 |101⟩ +3 |011⟩. When measuring the

ancilla qubit, the result can be either |0⟩ or |1⟩. If |0⟩, |Ψ3⟩ is
projected to 0′ |000⟩+1 ′ |110⟩ = (0′ |00⟩+1 ′ |11⟩) ⊗ |0⟩, i.e., the
input qubits are forced into the desired entangled state. If |1⟩,
|Ψ3⟩ is projected to 2 ′ |101⟩ +3 ′ |011⟩ = (2 ′ |10⟩ +3 ′ |01⟩) ⊗ |1⟩,
i.e., another entangled state, while the assertion error is

reported. The probability of measurement results being |0⟩
or |1⟩ can be used to compute the coe�cients 0, 1, 2 , 3 , if

needed. This parity circuit is also a subset of the circuits for

Bell state NDD [15]. Note that our parity-based assertion

circuit can be scaled to assert more than two qubits. The

assertion circuit can assert multi-qubit entanglement states

with odd or even numbers of ones. For example, the circuit

in Figure 4 asserts for 3-qubit entanglement state with even

number of ones: |k ⟩ = 0 |000⟩ + 1 |011⟩ + 2 |101⟩ + 3 |110⟩.

Figure 4. Circuit for asserting three qubits are entangled.

3.3 Dynamic Assertion for Superposition

Superposition is a linear combination of classical states. In

Section 3.3.1, we propose our assertion circuit for uniform

superposition state. In Section 3.3.2, we introduce assertion

circuits for arbitrary superposition states.

3.3.1 Dynamic Assertion for Uniform Superposition

State. In quantum computing, it is common to useHadamard

gates to set the input qubits in the uniform superposition

state, |+⟩ =
1√
2
|0⟩ + 1√

2
|1⟩, in order to take advantage of

quantum parallelism. To assert such operations are correctly

performed, we propose the circuit as shown in Figure 5.

Figure 5. Circuit for asserting uniform superposition.

Proof. In Figure 5, the state |Ψ⟩ = 0 |0⟩ + 1 |1⟩. If it is in
the uniform superposition state, i.e., |Ψ⟩ = |+⟩ or 0 = 1 =

1√
2
,

the state |Ψ1⟩ = (0 |0⟩ + 1 |1⟩) ⊗ |0⟩ = 0 |00⟩ + 1 |10⟩, and
|Ψ2⟩ = 0 |00⟩ + 1 |11⟩.
The state |Ψ3⟩ = 0

|0⟩+ |1⟩√
2

⊗ |0⟩+ |1⟩√
2

+ 1
|0⟩−|1⟩√

2
⊗ |0⟩−|1⟩√

2
=

1

2
[0( |00⟩ + |01⟩ + |10⟩ + |11⟩) + 1 ( |00⟩ − |01⟩ − |10⟩ + |11⟩)].
The state |Ψ4⟩ = 1

2
[0( |00⟩+|01⟩+|11⟩+|10⟩)+1 ( |00⟩−|01⟩−

|11⟩ + |10⟩)] = 1

2
[(0 +1) |00⟩ + (0−1) |01⟩ + (0 +1) |10⟩ + (0−

1) |11⟩] = 1

2
{|0⟩ ⊗ [(0+1) |0⟩+ (0−1) |1⟩] + |1⟩ ⊗ [(0+1) |0⟩+

(0 − 1) |1⟩]} = 1

2
{(|0⟩ + |1⟩) ⊗ [(0 + 1) |0⟩ + (0 − 1) |1⟩]} =

1√
2
{|+⟩ ⊗ [(0 + 1) |0⟩ + (0 − 1) |1⟩]}. Therefore, after the

assertion circuit, the qubit under test is always in the |+⟩ state
and the ancilla qubit is un-entangled from it. The subsequent

computation is not a�ected by themeasurement of the ancilla

qubit.

If |Ψ⟩ = |+⟩ or 0 = 1 =
1√
2
, then |Ψ4⟩ = |+⟩ ⊗ |0⟩. This

means that the ancilla qubit should always be |0⟩, and it is

un-entangled from the qubit under test.

If |Ψ⟩ = |−⟩ or 0 =
1√
2
and 1 = − 1√

2
, then |Ψ4⟩ = |+⟩ ⊗ |1⟩.

This means that the ancilla qubit should always be |1⟩, and
it is un-entangled from the qubit under test.

If |Ψ⟩! = |+⟩ or |−⟩, the ancilla qubit and the qubit under

test are un-entangled and we can derive the probability of

the measurement result on the ancilla qubit being |0⟩ or |1⟩.
The probability of the measurement result being |0⟩ can be

computed as |0 +1 |2/(|0 +1 |2 + |0 −1 |2) = |0 +1 |2/2. If both
0 and 1 are real, then the probability becomes (02 + 201 +
12)/2 = (1 + 201)/2. Similarly, we can derive the probability

of the measurement result on the ancilla qubit being |1⟩ as
|0 − 1 |2/(|0 + 1 |2 + |0 − 1 |2) = |0 − 1 |2/2, which becomes

(02 − 201 + 12)/2 = (1 − 201)/2 if both a and b are real. The

probabilities of the measurement result of the ancilla qubit

being |0⟩ or |1⟩ can be used to compute the magnitude of

the original coe�cients 0 and 1. In the case of |Ψ⟩ being
in a classical state, i.e., 0 = 0 and 1 = 1 or 0 = 1 and 1 = 0,

the measurement result on the ancilla qubit has the equal

probability of 50% being |0⟩ or |1⟩.

3.3.2 DynamicAssertion forArbitrary Superposition

State. In quantum computing, it is also common for a qubit



to stay in an arbitrary superposition state in the middle

of computation. This state can be represented as a point

on the Bloch sphere. Given an orthonormal basis |0⟩ and
|1⟩, an arbitrary superposition state |Ψ⟩ of a qubit can be

written as a superposition of the basis vectors |0⟩ and |1⟩:
|Ψ⟩ = 2>B ( \

2
) |0⟩ + 48iB8=( \

2
) |1⟩. Here, we use the terms \

and i instead of coe�cients 0 and 1 in the previous section.

Manu and Kumar [22] described an algorithm for NDD of

arbitrary orthogonal quantum states. Here, we adapt this al-

gorithm to construct circuits for asserting the superposition

state |Φ⟩ = 2>B ( \
2
) |0⟩ + 48iB8=( \

2
) |1⟩.

Figure 6. Circuit for asserting arbitrary superposition

Figure 6 shows the circuit to assert a qubit with an arbi-

trary superposition state. It consists of a controlled-U gate

and two Hadamard gates. The U gate is constructed from

the superposition state |Φ⟩ we want to assert.

* = + ×" ×+ −1 (1)

+ is the matrix formed by column vectors,+ = [|Φ⟩|Φ′⟩]. We

assign eigenvalue 1 for |Φ⟩ and -1 for |Φ′⟩. The corresponding
matrix" is

" =

[

1 0

0 −1

]

(2)

For the superposition state |Φ⟩ = 2>B ( \
2
) |0⟩ +48iB8=( \

2
) |1⟩

that we want to assert, its orthogonal state is its antipodal

point on Bloch sphere: |Φ′⟩ = B8=( \
2
) |0⟩ − 48i2>B ( \

2
) |1⟩. The

V matrix is:

+ =

[

2>B ( \
2
) B8=( \

2
)

48iB8=( \
2
) −48i2>B ( \

2
)

]

(3)

and + −1 is

+ −1
=

[

2>B ( \
2
) 4−8iB8=( \

2
)

B8=( \
2
) −4−8i2>B ( \

2
)

]

(4)

then

* =

[

2>B (\ ) 4−8iB8=(\ )
48iB8=(\ ) −2>B (\ )

]

(5)

Proof. In Figure 6, |Ψ⟩ = 0 |0⟩ + 1 |1⟩, the state |Ψ1⟩ =

|Ψ⟩ ⊗ |0⟩ and |Ψ2⟩ = |Ψ⟩ ⊗ |0⟩+ |1⟩√
2

.

After the controlled-U gate, the state |Ψ3⟩ = 1√
2
[|Ψ⟩ ⊗ |0⟩+

* |Ψ⟩ ⊗ |1⟩].
If the input state |Ψ⟩ is the superposition state |Φ⟩ that

we want to assert, it is an eigenvector of the unitary matrix

U and the corresponding eigenvalue is 1, i.e., * |Φ⟩ = |Φ⟩.
Therefore, |Ψ3⟩ = 1√

2
[|Φ⟩ ⊗ |0⟩ + |Φ⟩ ⊗ |1⟩] = |Φ⟩ ⊗ |0⟩+ |1⟩√

2
.

Afte another H gate, the state |Ψ4⟩ = |Φ⟩ ⊗ |0⟩, which means

that the ancilla qubit is un-entangled from the qubit under

test and should be |0⟩.
If the state |Ψ⟩ is in the orthogonal state, i.e., |Φ′⟩, as its

corresponding eigenvalue is -1, the state |Ψ3⟩ = 1√
2
[|Φ′⟩ ⊗

|0⟩ − |Φ′⟩ ⊗ |1⟩] = |Φ′⟩ ⊗ |0⟩−|1⟩√
2

. The state after the H gate

|Ψ4⟩ = |Φ′⟩ ⊗ |1⟩, which means that the ancilla qubit is un-

entangled from the qubit under test and should be |1⟩.
If the state |Ψ⟩ is in an arbitrary superposition state due

to a bug or error, it can be expressed as |Ψ⟩ = 0′ |Φ⟩ + 1 ′ |Φ′⟩
where 0′ and 1 ′ are complex numbers and |0′ |2 + |1 ′ |2 = 1

as the states |Φ⟩ and |Φ′⟩ form a complete basis. Based on

the linearity principle, the state after assertion circuit |Ψ4⟩ =
0′ |Φ⟩⊗ |0⟩+1 ′ |Φ′⟩⊗ |1⟩. After the measurement of the ancilla

qubit, if the measurement result is |0⟩ (i.e., no assertion error),
the qubit state |Ψ⟩ is projected to |Φ⟩. If the measurement

result is |1⟩ (i.e., assertion error), the state is projected to

|Φ′⟩. It means that this circuit can automatically correct the

qubit state if there is no assertion error. And it will report an

assertion error when the qubit state is not corrected. For the

purpose of debugging, we can also estimate 0′ and 1 ′ based
on the probability distribution of |0⟩ and |1⟩.

As a special case, to assert the uniform superposition state,

i.e., \ =
c
2
and i = 0, the* gate becomes

* =

[

0 1

1 0

]

(6)

It is actually a NOT gate, and the controlled-U gate be-

comes a CNOT gate. The resulting assertion circuit is shown

in Figure 7.

Figure 7. Circuit for asserting uniform superposition

Although the circuits in Figure 5 and Figure 7 both assert

uniform superposition, the di�erence is that the circuit in

Figure 5 always "corrects" the qubit under test regardless of

themeasurement outcome of the ancilla qubit. In comparison,

the circuit in Figure 7 only corrects the qubit under test when

the ancilla qubit is |0⟩. However, when running on current

quantum machines, as the CNOT gate has relatively high

error rates, the latter design results in lower error rates as it

requires only one CNOT gate.

3.4 Impact of Errors in Assertion Circuits

Note that the derivations in previous sections are based on

the assumption that there are no errors in the assertion



circuits. This assumption is valid for quantum program de-

bugging. On the other hand, for error detection, an error in

the assertion circuits may propagate into the qubits under

test due to the CNOT gates used for assertions. We use two

di�erent approaches to study this impact.

The �rst approach is an error model. Instead of a detailed

study of quantum noise channels [21], we only consider the

error probability of the gates and qubits. In this model we

consider three types of errors:

1. Single qubit coherent error: The time of a qubit retain-

ing its information is called coherence time and the process

of losing the information is called decoherence process [29].

There are two kinds of coherence time )1 and )2. )1 asso-

ciates with the amplitude damping channel as it denotes the

process where the high-energy state |1⟩ decays to the low-

energy state |0⟩. In the amplitude damping channel, the qubit

retains its state with a probability of ?1 (C) = 4−C/)1 , where
t is the time of operation that depends on the gate time. )2
associates with the phase damping channel as it denotes the

process of phase change. In the phase damping channel, the

qubit retains its state with a probability of ?2 (C) = 4−C/)2 . So
the coherence error rate n2>ℎ4A4=C of a quantum gate can be

expressed as

? (C + ΔC) = ? (C) (1 − n2>ℎ4A4=C ) (7)

where ΔC is the gate time. As ? (C +ΔC) = ?1 (C +ΔC)?2 (C +ΔC)
and ? (C) = ?1 (C)?2 (C),

n2>ℎ4A4=C = 1 − 4−ΔC (1/) 1+1/) 2) . (8)

In current IBM quantum computers [11], the coherent time

varies from 10 to 100 micro-seconds. The gate time varies

from 100 to 1000 nano-seconds.

2. Gate error: Here, we consider the depolarizing error

n60C4 , which can be depicted by the randomized benchmark-

ing [20]. Randomized benchmarking measures the average

gate errors by running sequences of randomly selected Clif-

ford gates followed by the reverse gates that would return

the qubits to the initial state. This method is useful as it

measures the depolarization probability and does not rely on

accurate state preparation and measurement. In current IBM

quantum computers, the single qubit gate’s error rates are

approximately 10
−3 and two-qubit CNOT gate’s error rate is

10
−2 [11].
3. State preparation and Measurement error: State prepa-

ration error nBC0C4 happens when preparing the qubit. Mea-

surement error n<40BDA4 happens at the measurement of the

qubit. In IBM quantum computer, the measurement error

rates are between 10
−3 and 10

−2 [11]. The state preparation
error rates of qubits are not reported.

For purpose of deriving the success probability of the

system, we use the following assumptions similar to [27]:

• An error in a gate ormeasurement will cause the whole

program to fail.

• The probability of each error are independent of each

other and only depends on the corresponding qubit

and gate. In other words, we ignore the crosstalk er-

rors.

Based on the assumptions above, the success probability

%BD224BB of a quantum circuit can be represented as:

%BD224BB =
∏

8

(1 − n8 ) (9)

where i denotes all the errors including state preparation

error nBC0C4 , gate error n60C4 , coherent error n2>ℎ4A4=C and mea-

surement error n<40BDA4 .

As a result, for our assertion circuit, its error rate can be

computed as

n0BB4AC = 1 − %BD224BB = 1 −
∏

8

(1 − n8 ) (10)

We use our 3-qubit entanglement assertion circuit as an

example to demonstrate the extra errors caused by our asser-

tion logic. For this entanglement assertion circuit we append

three CNOT gates to the circuit under test. We assume the

state preparation error nBC0C4 is 0.01, CNOT gate time is 500ns,

)1 = )2 = 100`B , CNOT gate error n60C4 is 0.01, measurement

error n<40BDA4 is 0.01, the error rate n0BB4AC introduced by the

assertion circuit is:

n0BB4AC = 1 − [(4−500×(10−5+10−5) ) (1 − 0.01)3]3 = 0.113 (11)

We can see that based on the simple error model, the ex-

tra error introduced by the assertion circuit is small. The

other assertion circuits has fewer numbers of quantum gates

than the 3-qubit entanglement assertion circuit, thus they

should have fewer errors. In comparison, the circuit under

test is expected to have many more gates and more qubits,

which would have much higher error rates compared to the

assertion circuits.

The second approach is based on quantum state tomogra-

phy [31]. Quantum state tomography reconstructs the quan-

tum state and provides its density matrix d� by performing

sequences of measurements in di�erent bases. Fidelity quan-

ti�es the di�erence between experimental density matrix d�

and ideal density matrix d� [26], and it is de�ned by:

� (d�, d� ) = )A

[√

√

d�d�
√

d�

]

(12)

Based on the prior work [10], a quantum error detection

code with �delity score higher than 80% is considered as

high �delity. Our experiments show that the �delity of our

assertion circuits well above 80% (see Section 6.1), which

indicates that our assertion circuit has little impact on the

circuits under test.



Another related issue to be considered is the actual CNOT

gate implementation. Given the limited connectivity among

qubits in quantum computers, we check to ensure that there

are no additional SWAP gates being introduced as these

additional gates increase the circuit depth and are susceptible

to higher error rates.

4 Methodology

We implement our assertion circuits on Qiskit [3] which

is an open-source framework for quantum computing. We

augmented Qiskit version 0.13.0 with the function to insert

assertion circuits and check ancilla bits for assertion. The

adapted version of Qiskit is publicly available [1]. With our

tool, the programmer is able to insert dynamic assertion

circuits for classical, entanglement, and superposition states.

It checks the ancilla bits’ results for assertion errors and it

can also �lter out the erroneous results when running on

real quantum computers. We o�er three kinds of assertion

functions:

• classical_assertion(circuit, qubitList, value)

The classical_assertion() function takes three argu-

ments specifying the quantum circuit under test, the

list of qubits for assertion, and a particular classical

value to assert for.

• entanglement_assertion(circuit, qubitList, �ag)

The entanglement_assertion() function takes three ar-

guments specifying the quantum circuit under test,

the list of qubits for assertion and the type of entangle-

ment. The �ag being 0 denotes that the circuit asserts

for state in the form of 0 |00⟩ + 1 |11⟩. The �ag being 1
denotes that the circuit asserts for state in the form of

0 |01⟩ + 1 |10⟩.
• superposition_assertion(circuit, qubitList, phaseDict,

�ag)

The superposition_assertion() function takes four ar-

guments specifying the quantum circuit under test,

the list of qubits for assertion, the quantum state dic-

tionary for the qubits, and a �ag. The �ag being 0

denotes that the uniform entanglement assertion cir-

cuit described in Section 3.3.1 is in use. The �ag being

1 denotes that the circuit in Section 3.3.2 is used.

Qiskit does not have full support for an arbitrary controlled-

U gate. For the controlled-U gate discussed in Section 3.3.2,

we use the two qubit KAK decomposition function [12] in

Qiskit to decompose our proposed controlled-U gate into a

set of single qubit and CNOT gates.

We perform our experiments for quantum program de-

bugging on the simulator Aer from Qiskit. We also perform

experiments on an IBM Q (ibmq-20-tokyo) quantum com-

puter to check the e�ectiveness of using assertions to �lter

out erroneous results. The connectivity map of ibmq-20-

tokyo quantum computer is shown in Figure 8. For each

benchmark mentioned in Section 6, its comparison exper-

iments are executed within a time window of 30 minutes

to guarantee that there is not much change in the quantum

computer’s environment and error characteristics.

Figure 8. Connectivity map of ibmq-20-tokyo

Note that our proposed assertion circuit is aimed for de-

tecting bugs/errors while the program is running. In the

ideal case, when an assertion error is detected, the program

should stop or restart. Due to the limitation of current sys-

tems, all the measurement are taken at the end. So these

assertion qubits are used as post measurement selection on

actual quantum computers.

5 Dynamic Runtime Assertion for
Program Debugging

Previous research on statistical assertion [18] studies com-

mon types of bugs and proposes the statistical assertion

approach for debugging. The usage of our dynamic assertion

is the same as the statistical approach for debugging. Here,

we use the Quantum Phase Estimation (QPE) algorithm as an

example to illustrate how our proposed assertion primitives

are used.

QPE is an important algorithm in quantum computing

and is used as a building block in algorithms such as Shor’s

factoring algorithm. It estimates the phase (eigenvalue) of a

unitary operator U. Given a unitary operator U and a quan-

tum state |k ⟩ such that * |k ⟩ = 482c\ |k ⟩, the algorithm es-

timates the value for \ . Figure 9 shows the circuit of QPE

based on inverse Quantum Fourier Transform (QFT).

Figure 10 shows the code for =-qubit QPE and we have

inserted assertions at di�erent stages. A quantum algorithm

begins with initializing all the qubits to the preconditions in

the initialization stage. Usually, the qubits are initialized to

a classical value or a uniform superposition of values. In the

quantum information process protocols, the qubits are often

initialized to entanglement states such as Bell states. Our

dynamic assertion can assert the preconditions for classical,



Figure 9. Quantum Phase Estimation circuit based on in-

verse QFT

superposition and entanglement states. As shown in line

17, we assert for the uniform superposition state using the

"superposition_assertion()" function with the �ag being 0.

We also assert at line 23 the ancilla qubit which is in a non-

uniform superposition state |k ⟩. In this case, the �ag is set

to 1.

In QPE, after applying inverse QFT, the output states of

the qubits are in classical state. We assert for the expected

classical states using the "classical_assertion()" function in

line 35.

Besides the desired output, we can also assert for deallo-

cated ancilla qubits used in the algorithm. Generally speak-

ing, the programmer would only measure the qubits that

carry program output and ignore the ancilla qubits. The an-

cilla qubits in the algorithm should be deallocated and stay

in classic or superposition state. We argue that this ancilla

qubit still carries useful information that indicates whether

there is a bug in the program. Line 38 shows the superposi-

tion assertion for deallocated ancilla qubit, which ensures

that this qubit remain the same as its initialized state.

6 Dynamic Runtime Assertion for
Improving Success Rates

In this section, we will �rst show the reliability of our pro-

posed assertion circuits on real quantum computers. Then

we will provide several case studies on QFT, Quantum Phase

Estimation and Bernstein Vazirani benchmark to show the ef-

fectiveness of our approach in increasing the success rate on

the real quantum computers. In our experiment, each trial is

executed on a 20-qubit quantum computer, ibmq_20_tokyo,

for 8192 shots. We use the function from IBM Qiskit-Ignis to

calculate �delity.

6.1 Reliability of Proposed Assertion Circuits

Because of the faulty gates in real quantum computers, an

error may occur in the assertion circuits and propagate into

the qubits under test. Also, the qubits that we add for asser-

tion may have measurement errors when reading out the

value. It may, for example, be the case that the results are

1 #n qubits for quantum phase estimation circuit

2 q = QuantumRegister(n)

3 #one ancilla qubit

4 a = QuantumRegister(1)

5 c = ClassicalRegister(n)

6 circuit = QuantumCircuit(q,a,c)

7

8 # Initialize the qubits to uniform superposition

9 for i in range(n):

10 circuit.h(q[i])

11

12 # Initialize the qubit list for superposition assertion

13 qubitList = [q[0], q[1] ..., q[n−1]]
14 # Initialize the state dictionary for superposition assertion

15 phaseDict = {q[0]:[pi/2, 0], ..., q[n]:[pi/2, 0]}

16 # Superposition assertion for initialization states

17 superposition_assertion(circuit, qubitList, phaseDict, 0)

18

19 # Initialize q and _ for the ancilla qubit

20 circuit.u1(phi,lambda, a[0])

21

22 # Superposition assertion for ancilla qubit initialization state

23 superposition_assertion(circuit, [a[0]], {a[0]:[phi,lambda]}, 1)

24

25 # Controlled* 2
=

gate

26 for j in range(n):

27 controlled_U(circuit, a[0], q[j], j)

28

29 # n−qubit inverse QFT
30 iQFT(circuit, q, n)

31

32 # Initialize the qubit list for classical assertion

33 qubitList2 = [q[0], q[1] ..., q[n−1]]
34 # Classical assertion for output states

35 classical_assertion(circuit, qubitList2, value)

36

37 # Superposition assertion for ancilla qubit deallocated state

38 superposition_assertion(circuit, [a[0]], {a[0]:[phi,lambda]}, 1)

39

40 circuit.measure(q, c)

Figure 10. The code for n-qubit QPE and assertions.

correct, but assertion raises an error (false positive). We need

the false positive probability as well as �delity of the circuit

to quantify the di�erence between experimental output state

and the ideal output state.

Table 1 shows the results for our experiment. "Un1" stands

for the circuit for uniform superposition assertion in Figure

5. "Un2" stands for the circuit for uniform superposition

assertion in Figure 7. "Arb" is the arbitrary superposition

assertion circuit, for which \ =
c
2
and i =

c
2
. For these

circuits, the qubits under test are set to have no assertion

error.

From the table, we can see that all the classical and su-

perposition assertion circuits have false positive possibility



Classical Entanglement Superposition

Type 1bit 2bits 3bits Uni1 Uni2 Arb

Probability(%) 3.1% 2.6% 7.8% 2.7% 2.1% 3.8%

Fidelity(%) 95.0% 93.8% 88.5% 92.7% 93.3% 82.1%

Table 1. Probability of false positive case and �delity for all

assertion circuits

lower than 5%. And all the assertion circuits have �delity

higher than 80%. The entanglement assertion circuits have

higher false positive possibility as a result of more CNOT

gates in the circuit and the entanglement of multiple qubits.

We can also �nd that "Uni2" has lower false positive proba-

bility and higher �delity than "Uni1", which is in line with

our expectation.

6.2 Quantum Fourier Transform: Asserting for

Classical and Superposition States

In this section, we use QFT (Quantum Fourier Transform) as

a case study, where the code of the QFT function is from the

IBM Qiskit-Terra[3]. We compare the 4-qubit QFT program

with and without assertion supports and add di�erent types

of assertion supports. Our experiment shows the usefulness

of output state assertions and intermediate state assertions.

First, we evaluate the e�ectiveness of output state asser-

tions. We set the input qubits in the uniform superposition

state such that the expected output should be |0000⟩. The
quantum circuit based on code in Figure 11 is shown in

Figure 12. By inspecting the quantum circuit, we can see

that, although the circuit depth (i.e., number of gates) for the

four input qubits is the same, @3 is measured last. Therefore,

rather than asserting for |@3@2@1@0⟩ = |0000⟩, which requires

four extra qubits, we choose to add the circuitry to assert
′ |@3⟩ == |0⟩′. We use the function "classical_assert()" to as-

sert @3
′B output state for a classical value 0. The qubits for

QFT are mapped to actual qubit No.5, 6, 10 and 11 on the

20-qubit quantum computer, and the ancilla qubit for asser-

tion is mapped to qubit No.0. As shown in the connectivity

map, i.e., Figure 8, our classical assertion only requires one

extra CNOT gate, and no swap gate is involved. Note that

although the CNOT gate used for assertion itself is subject

to error, we expect it has much lower error rate compared

to the QFT circuit of interest due to the disparity in circuit

depth.

The measurement results are reported in Table 2 and Table

3. Without the assertion circuit (Table 2), the machine has a

72.0%(=5900/8192) success rate for the 4-qubit QFT compu-

tation. Among the erroneous ones, 14.0% has an error in @3.

After �ltering out the measurements with @3 being measured

as |1⟩, the success rate becomes 5811/(5811 + 219 + 879) =

84.1% (an improvement of 16.8%) as shown in Table 3.

The impact of the errors introduced from the assertion

circuit (i.e., the CNOT gate and the measurement) is small:

1.5% false positive and 2.7% false negative measurements,

1 # Quantum fourier transform function

2 def qft(circ, q, n):

3 for j in range(n):

4 for k in range(j):

5 circ.cu1(np.pi/�oat(2∗∗(j−k)), q[j], q[k])
6 circ.h(q[j])

7 q = QuantumRegister(4)

8 c = ClassicalRegister(4)

9 circuit = QuantumCircuit(q,c)

10

11 # Set up the 4−qubit input
12 for j in range(4):

13 circuit.h(q[j])

14

15 #4−qubit QFT
16 qft(circuit, q, 4)

17

18 # Initialize the qubit list for classical assertion

19 qubitList = [q[1]]

20 # Classical assertion for q[1]

21 classical_assertion(circuit, qubitList, 0)

22

23 circuit.measure(q,c)

Figure 11. The code for 4-qubit QFT and result assertion on

q[3].

Figure 12. QFT circuit based on the code from Figure 11

@3@2@1@0 Counts %(=counts/8192) Meaning

0000 5900 72.0% Correct result

0001∼0111 1142 14.0% Incorrect result with correct @3
1xxx 1150 14.0% Incorrect result with incorrect @3.

Table 2. The results of QFT without assertion on IBM Q

@3@2@1@0 Counts %(=counts/8192) Meaning

00000 5811 70.9% Correct result

10000 124 1.5%
Correct result with assertion error

(false positive)

01xxx 219 2.7%
Incorrect result without assertion error

(false negative)

11xxx 1033 12.6% Incorrect result with assertion error

10001∼10111 126 1.5%

Incorrect results with correct @3
but assertion error

00001∼00111 879 10.7%

Incorrect results with correct @3
and without assertion error

Table 3. The results of QFT with classical assertion on IBM

Q



compared to the errors in the QFT circuit. We also tried with

asserting two qubits ′ |@3@2⟩ == |00⟩′ in the QFT circuit and

the success rate is further increased to 86.2%.

To improve statistical signi�cance, we repeated the same

experiment �ve times on di�erent dates. The min, median,

and max improvement on the success rate by asserting @3
are 15.4%, 19.6%, 29.0%, respectively.

In order to observe the e�ect of decoherence (in which a

|1⟩ state devolves into |0⟩), we change the input state to pro-

duce an expected output state as |1111⟩. After measurement

we �nd that the success rate of QFT without assertion drops

to 49.3% due to decoherence error, and the success rate of

QFT with assertion is 60.8% (an improvement of 23.3%).

1 q = QuantumRegister(4)

2 c = ClassicalRegister(4)

3 circuit = QuantumCircuit(q,c)

4 # Set up the 4−qubit input 0100
5 circuit.x(q[2])

6

7 # 4−qubit QFT
8 qft(circuit, q, 4)

9

10 # Initialize the qubit list for superposition assertion

11 qubitList = [q[1]]

12 # Initialize the state dictionary for superposition assertion

13 phaseDict = {q[1]:[pi/2,pi/2]}

14 # Superposition assertion for q[1]'s intermediate state

15 superposition_assertion(circuit, qubitList, phaseDict, 1)

16

17 for i in range(4):

18 circuit.u1(−pi/(2∗∗(2−i)), q[i]) #change the output phase
19 circuit.h(q[i]) #change the output state to |0>

20 circuit.measure(q,c)

Figure 13. The code for 4-qubit QFT and intermediate as-

sertion on q[1].

Second, we evaluate the e�ectiveness of intermediate state

assertions.We set the input qubit state as |0100⟩ therefore the
output states of QFT are in superposition. The ideal output

states are: ′ |@0⟩ = 1√
2
|0⟩ + 1+8

2
|1⟩, |@1⟩ = 1√

2
|0⟩ + 8√

2
|1⟩, |@2⟩ =

1√
2
|0⟩ − 1√

2
|1⟩, |@3⟩ = 1√

2
|0⟩ + 1√

2
|1⟩′. We add superposition

assertion to assert ′ |@1⟩ == 1√
2
|0⟩+ 8√

2
|1⟩′ in the QFT’s output

states. Since the measurement of superposition states are

probabilistic, we add phase changing gates and Hadamard

gates at the output of QFT to change the qubit states to

classical states |0000⟩. As shown in Figure 13, the output of

QFT becomes intermediate state of the circuit and the �nal

output is |0000⟩.
Table 4 and Table 5 show the measurement results. As

shown in Table 4, the success rate without assertion is 43.4%

(=3556/8192). After we enable assertion, the success rate be-

comes 4961/(4961 + 187 + 1815) = 71.2% (an improvement of

64%). We repeated the same expreiment �ve times on di�er-

ent dates, The min, median and max improvement on the

success rate by assertion @1 are 36.4%, 52.8%, 66%, respec-

tively.

@3@2@1@0 Counts %(=counts/8192) Meaning

0000 3556 43.4% Correct result

xx0x 2890 35.3% Incorrect result with correct @1
xx1x 1746 21.3% Incorrect result with incorrect @1.

Table 4. The results of QFT without assertion on IBM Q

@3@2@1@0 Counts %(=counts/8192) Meaning

00000 4961 60.6% Correct result

10000 184 2.2%
Correct result with assertion error

(false positive)

0xx1x 187 2.3%
Incorrect result without assertion error

(false negative)

1xx1x 929 11.3% Incorrect result with assertion error

1xx0x 300 3.7%

Incorrect results with correct @1
but assertion error

0xx0x 1815 22.2%

Incorrect results with correct @1
and without assertion error

Table 5. The results of QFT with superposition assertion on

IBM Q

6.3 Quantum Phase Estimation: Asserting for

Classical States

As introduced in Section 5, QPE algorithm is used to estimate

the phase of a unitary operator U. In our experiment, we

implement themodi�ed LloydQPE algorithm [23] and enable

output state assertions. We change the phase of the unitary

operator to produce di�erent output states. The results of

4-qubit QPE are listed in Table 6. We always assert the most

signi�cant output bit.

Output states Without assertion With assertion Improvement

0000 73.2% 84.9% 16.0%

0001 53.3% 68.1% 12.8%

0011 47.3% 53.2% 12.5%

0111 44.0% 53.1% 20.7%

1000 69.2% 79.6% 15.0%

1100 64.0% 71.7% 12.0%

1110 56.3% 66.9% 18.8%

1111 47.9% 58.0% 21.1%

Table 6. The results of 4-qubit QPE algorithm with output

state classical assertion on IBM Q

Based on the results we can �nd that the success rate drops

as the number of ones in the output state increases. This is

because of two kinds of errors. The decoherence error decays

the high-energy state |1⟩ into the low-energy state |0⟩. The
measurement error has a higher error rate when measuring

state |1⟩. When we design our assertion circuits, we always

set the rule such that the ancilla qubit being |0⟩ means no



assertion error. This rule is set to alleviate decoherence error

and measurement error in the assertion circuit since these

errors will introduce false positive cases. We also �nd that

the success rate of "0011" is lower than "1100" while they

have the same number of ones in the output state. This is due

to the property di�erence of the actual qubits as di�erent

qubits will have di�erent gate and measurement error rates.

Also some optimizations are performed when the compiler

unrolls the circuit to basic gate sets. We �nd that the circuit

generated for output "0011" requires one less U3 gate than

the one for output "1100". This also explains that "0011" has

higher error rate than "1100".

6.4 Quantum Entanglement Swapping Protocol:

Asserting for Bell Pair States

Quantum entanglement swapping protocol [6] is a protocol

that swaps the entanglement between two repeater stations.

It is an important component for transferring information

to distant places. Assume we have three parties, Alice, Bob

and Charlie. We consider two pairs of entangled qubits, � −
�1, � − �2, where A and B denote the qubits of Alice and

Bob, respectively, and �1, �2 are qubits belongs to Charlie.

The qubits are entangled by the Bell channel,
|00⟩+ |11⟩√

2
. After

this swapping process, the qubits of Alice and Bob, A and

B get entangled. The qubits of Charlie(�1 and �2) also get

entangled. We can add entanglement assertion for the Bell

pair initialization stage and output stage of the swapping

protocol.

Figure 14. Entanglement swapping protocol with entangle-

ment assertion

If �−�,�1 −�2 are entangled after the swapping process,

after measurement, the output should be ’|0000⟩’, ’|0101⟩’,
’|1010⟩’ and ’|1111⟩’. In our experiment, the success rate of

the swapping protocol is 32.0%. After we enable entangle-

ment assertion for Bell pair initialization stage of @0 and @1,

the success rate becomes 29.6%. Because the depth of the

initialization stage is low, error is not likely to happen in

the initialization stage. So the entanglement assertion we en-

abled at the initialization stage does not improve the success

rate. In contrast, the success rate after asserting the output

stage @0 and @2 is 56.2%, much improved compared to the no

assertion case.

6.5 Bernstein Vazirani: Asserting for Uniform

Superposition States

In this section we use Bernstein Vazirani algorithm [7] as an

example to evaluate the e�ectiveness of deallocated ancilla

qubit assertion. In the Bernstein Vazirani algorithm, a black

box oracle implements the the function 52 (G) = G · 2 . The
algorithm �nds hidden string c with a single evaluation of

the function. In the oracle, hidden string c is encoded with

a set of CNOT gates. An ancilla qubit is used to encode

the hidden string, and it is in the uniform superposition

after deallocation. Therefore, we can apply superposition

assertion on this ancilla qubit. Figure 15 shows the code.

1 q = QuantumRegister(2)

2 a = QuantumRegister(1) # one ancilla qubit

3 c = ClassicalRegister(2)

4 circuit = QuantumCircuit(q,a,c)

5 for i in range(2):

6 circuit.h(q[i]) #set up the preconditions for 2 qubits

7 circuit.x(a[0])

8 circuit.h(a[0]) #set up the precondition for ancilla qubit

9

10 # Apply the oracle for hidden string 10

11 for j in range(2):

12 if (2 & (1 << j)):

13 circuit.cx(q[j], a[0])

14 else:

15 circuit.iden(q[j])

16 for k in range(2):

17 circuit.h(q[k])

18

19 qubitList = [a[0]] #list of qubits for assertion

20 phaseDict = {a[0]:[pi/2, 0]}

21 superposition_assertion(circuit, qubitList, phaseDict, 1)

22 circuit.measure(q,c)

Figure 15. The code for 2-qubit Bernstein Vazirani algorithm

and assertion on ancilla qubit.

In our experiment, we change the number of qubits in the

Bernstein Vazirani algorithm, and results are shown in Table

7. The hidden strings for 2, 3 and 4-qubit BV algorithm are

"10","110" and "1110" respectively. As the number of qubits

increases, the success rate of the system decreases; how-

ever, our proposed assertion circuit consistently improve the

success rate after asserting the ancilla qubit.

Number of qubits Without assertion With assertion Improvement

2 77.9% 87.4% 12.2%

3 72.3% 80.0% 10.7%

4 51.1% 57.9% 13.1%

Table 7. The results of Bernstein Vazirani algorithm with

ancilla qubit assertion on IBM Q



Figure 16. Bernstein Vazirani circuit based on code from

Figure 15

6.6 Other Benchmarks

We also enable our assertion circuit on other benchmarks.

Table 8 shows the success rate of the benchmarks and the

improvement of success rate after assertion. For the To�olli

gate, our input state is |110⟩ and the output state is |111⟩, we
enable classical assertion for ’|@2⟩ == |1⟩’. For the 1-qubit
adder, the output state is |10⟩. We enable classical assertion

for ’|@0⟩ == |0⟩’. The Deutsch-Jozsa algorithm [9] determines

whether a hidden oracle function is constant or balanced.

We assert ’|@4 == |0⟩’ which indicates the hidden function is

constant.

benchmark Without assertion With assertion Improvement

Tofolli gate 61.9% 70.0% 13.1%

1-bit adder 63.3% 81.8% 29.2%

4-bit Deutsch–Jozsa 74.3% 80.0% 7.7%

Table 8. The results of classical assertions on IBM Q

7 Conclusion

In this paper, we propose quantum circuits to enable dynamic

assertions for classical values, entanglement, and superpo-

sition. This enables a dynamic debugging primitive, driven

by a programmer’s understanding of the correct behavior

of the quantum program. We show that besides generat-

ing assertion errors, the assertion logic may also force the

qubits under test to be into the desired state. Besides de-

bugging, our proposed assertion logic can also be used in

noisy intermediate scale quantum (NISQ) systems to �lter

out erroneous results, as demonstrated on a 20-qubit IBM

Q quantum computer. Our proposed assertion circuits have

been implemented as functions in the open-source Qiskit

tool.
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A Artifact Appendix

A.1 Abstract

Our artifact provides the experiments for all our evaluated

benchmarks, alongwith experiments to validate the quantum

circuit �delity in our paper.

We also provide source code for all of our benchmarks

and our function for inserting assertion circuits.

A.2 Artifact check-list (meta-information)

• Algorithm: quantum mechanics

• Hardware: We recommend to run the experiments on a

20-qubit IBM Q machine to verify results.

• Execution: Run the corresponding jupyter notebooks

• Metrics: Fidelity: De�ned by Eq.12

Probability of false-positive case: % The count of the false-

positive case over the total count of the trials.

Success rate: % The count of correct output state over the

total count of the trials

• Output: Fidelity and probability of false positive case are

printed by running the jupyter notebook for �delity test.

Success rate for each benchmark is printed by running the

corresponding jupyter notebook.

• Experiments: We use functions from Qiskit to measure the

�delity of our assertion circuit. We calculate the probability

of false positive case and success rate based on the output

data of the IBMQ backends.

• Howmuch disk space required (approximately)?: 2GB

• How much time is needed to prepare work�ow (ap-

proximately)?: A couple of minutes

• How much time is needed to complete experiments

(approximately)?: Dozens of minutes, depending on the

number of jobs submitted to the machine.

• Publicly available?: Yes.

A.3 Description

A.3.1 How delivered. Our benchmark, source code, and jupyter

notebooks for experiments are available on Github: https://github.c

om/revilooliver/Quantum-Circuits-for-Dynamic-Runtime-Assertio

ns-in-Quantum-Computation.git. TheDOI of our artifact is https://d

oi.org/10.5281/zenodo.3597507.

A.3.2 Hardware dependencies. We recommend running the

experiments with a 20-qubit IBM Q machine (In our paper, we used

ibmq_20_tokyo). The experiments can also run on the publically

available 14-qubit machine ibmq_16_melbourne. Due to the hard-

ware property di�erence, the results of �delity and success rate on

di�erent machines may di�er.

A.3.3 Software dependencies. Python 3.5+, Qiskit 0.13.0, Jupyt

er notebook. Qiskit requires Ubuntu 16.04 or later, macOS 10.12.6

or later and Windows 7 or later

A.3.4 Data sets. Quantum computing benchmarks mentioned

in our paper.

A.4 Installation

To install Qiksit, please refer to:

https://qiskit.org/documentation/install.html
You can clone our jupyter notebooks and benchmarks from

Github:

$ git clone https://github.com/revilooliver/Quantum-Circuits-for-

Dynamic-Runtime-Assertions-in-Quantum-Computation.git

After clone, copy and paste the assertion.py �le under the com-

piler folder "... \qiksit \compiler" in the Qiskit installation directory.

A.5 Experiment work�ow

To run the experiments for the �delity of our assertion circuit,

run the jupyter notebooks under the folder named "�delity". Tests

should take less than 10 mins for the 20-qubit quantum computers,

depending on the number of jobs submitted to the machine.

To run the experiments for the success rate of di�erent bench-

marks, run the jupyter notebooks under the folder named "bench-

mark". Test could take dozens of minutes, depending on the number

of jobs submitted to the machine.

A.6 Evaluation and expected result

The �delity and success rates are printed after running the corre-

sponding jupyter notebook. The expected results are reported in

our paper.

A.7 Experiment customization

The jupyter notebooks are all customizable to run di�erent as-

sertions with di�erent benchmarks. To insert di�erent assertion

circuits, �rst import the corresponding assertion function:

from qiskit.compiler.assertion import classical_assertion

Then call the functions as described in Section 4. The assertion

function will insert the assertion circuits to the circuit under test.

A.8 Notes

Due to the hardware property di�erence of di�erent backends, the

results of �delity and success rate may di�er. When running the

experiments on backends with limited connectivity, the inserted

assertion circuit may introduce too many extra swap gates and

therefore hurt the success rate of the circuit under test. In our

paper, we ran our experiments on ibmq_20_tokyo quantum com-

puter which o�ers the best connectivity among all the 20-qubit

machines. However, this quantum computer has retired. Among

the currently available 20-qubit machines, ibmq_boeblingen has the

lowest noise level, so we recommend to reproduce the experiments

on boeblinegen machine.

The transpiler from Qiskit uses the stochastic swap pass, so the

number of swap gates (each swap gate consists of three CNOT

gates) inserted for the logical-to-physical mapping may vary for

the reproductions of the same experiment. We recommend use the

circuit.count_ops() function in Qiskit to check minimum number

of CNOT gates is inserted after logical-to-physical mapping.

A.9 Methodology

Submission, reviewing and badging methodology:

• h�p://cTuning.org/ae/submission-20190109.html

• h�p://cTuning.org/ae/reviewing-20190109.html

• h�ps://www.acm.org/publications/policies/artifact-review-

badging

https://github.com/revilooliver/Quantum-Circuits-for-Dynamic-Runtime-Assertions-in-Quantum-Computation.git
https://github.com/revilooliver/Quantum-Circuits-for-Dynamic-Runtime-Assertions-in-Quantum-Computation.git
https://github.com/revilooliver/Quantum-Circuits-for-Dynamic-Runtime-Assertions-in-Quantum-Computation.git
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https://github.com/revilooliver/Quantum-Circuits-for-Dynamic-Runtime-Assertions-in-Quantum-Computation.git
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http://cTuning.org/ae/submission-20190109.html
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https://www.acm.org/publications/policies/artifact-review-badging
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