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History (forward and backwards)

Classical - Landauer’s
thermodynamic principle: amount
of information stored is equal to
amount of work necessary to erase
it.

Previous work - Oppenheim and
H3 showed that the work
achievable by two parties on a
bipartite state is less than work on
the whole state.

Schumacher’s “entropy exchange”
will be the quantity of choice to
measure the work in a quantum
state.

Calculated the amount necessary
to erase all correlations in a
quantum state, as well as quantum
and classical correlations
individually.

Conjecture: quantum correlations
≤ classical correlations for any
bipartite state.

Operational interpretation (and
straightforward proof) of strong
subadditivity of mutual
information.
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A simple example
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A simple example

Begin with the state →

|Φ+〉 = 1√
2

(

|00〉AB + |11〉AB
)

.

Apply I
AB or ZA ⊗ I

B with equal probability →

ρ =
1

2
|00〉〈00|AB +

1

2
|11〉〈11|AB .

Apply I
AB or XA ⊗ I

B with equal probability →

ρ
′ = π

A ⊗ π
B
.

Thus 2 bits are required to erase the total correlations in the state (1 classical,
1 pure entanglement).
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Total bipartite correlations

Definition (Randomizing map)

Let R be as follows:

R : ρAB →
N
∑

i=1

pi

(

U
A

i ⊗ V
B

i

)

ρ
(

U
A

i ⊗ V
B

i

)†

R ε− decorrelates a state ρAB if there exists ωA ⊗ ωB such that
∥

∥

∥
R(ρ)− ω

A ⊗ ω
B

∥

∥

∥

1
≤ ε

We call R a COLUR map. If all Vi = I then it is a A-LUR map. If all Ui = I

then it is a B-LUR map. The composition of A-LUR and B-LUR is a LUR map.

Definition (Entropy exchange)

For a purification |ψ〉〈ψ|ZAB of ρAB and the map R, we define

Se(R
AB
, ρ

AB) := S
((

I
Z ⊗ R

AB

)

|ψ〉〈ψ|
)
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Total bipartite correlations

First note that
logN ≥ H(p) ≥ Se(R, ρ).

Lemma (Size of COLUR maps)

Any ε− decorrelating COLUR map R on AnBn has the lower bound

Se

(

R, ρ
⊗n

)

≥ n (I (A;B)− O(ε))

The above can be proved entirely via concavity of entropy and Fannes inequality

Lemma (Size of A-LUR maps)

There exists an ε− decorrelating A-LUR map R on AnBn with the upper bound

logN ≤ n (I (A;B) + O(ε))
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Total bipartite correlations
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Chernoff bound

Lemma (Chernoff bound)

Le X1, ..., XN be i.i.d. random variables taking values in the operator interval

[0; I] and with expectation EX ≥ µI. Then for 0 ≤ ε ≤ 1,

Pr

{

1

N

∑

i

Xi 6∈ [(1− ε)EX ; (1− ε)EX ]

}

≤ exp

(

−N
µε2

2

)

.

Our random variable is Ui and N = 2n(I (A;B)+4ε) is sufficient to make this bound
≤ 1.
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Total bipartite correlations

Together, the two lemmas give an extremely robust statement

Theorem

The amount of local noise needed to turn ρAB into a product state is measured

by

sup
ε

lim inf
n→∞

1

n
min

{

Se(R, ρ
⊗n) : R, ε− COLUR

}

= sup
ε

lim inf
n→∞

1

n
min {logN : R, ε− A− LUR}

= I (A;B)

“Smallest R for worst ε in the asymptotic limit”
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Moving freely between COLURs and LURs

Implementing the correlated unitary randomizing map requires providing i to
Alice and Bob via the state

γ =
∑

i

pi |i〉〈i |A ⊗ |i〉〈i |B

We consider the least cost of erasing ρ⊗ γ minus the cost of erasing γ. We
know this to be I (A;B) by the theorem. However, this implies catalysis does

not increase the cost.
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Subadditivity

Clearly the green process simulates the red process =⇒ I (A : BC) ≥ I (A : B)
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Quantum correlations
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Classical correlations

We define two quantities, the first is well-motivated, the second is desirable,

Cler(ρ) := sup
ε>0

lim sup
n→∞

sup
‖σ−R(ρ⊗n‖1≤ε

1

n
I (A;B)σ

Cl
⋆
er
(ρ) := sup

ε>0
lim sup
n→∞

sup
‖σ−T (ρ⊗n‖1≤ε

1

n
I (A;B)σ

where T is any local CPTP map.

Remark For pure states it is shown that Eer(ψ) = Cl⋆
er
(ψ) = 1

2
Cer(ψ) = E(ψ).

However for mixed states the optimal paths of erasure do not necessarily
coincide.
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Open questions

Do the cost of entanglement erasure (Eer) and optimistic cost (E
er
)

coincide asymptotically?

sup
ε>0

lim sup
n→∞

inf
‖σ−R(ρ⊗n‖1≤ε

1

n
S(σ)− S(ρ) = lim sup

n→∞
inf

σ=R(ρ⊗n

1

n
S(σ)− S(ρ)

Is Eer monotonic under local operations and classical communication? Is it
convex?

Is Eer a bound on the distillable entanglement and is Cler a bound on the
distillable secret key?
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