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ln this paper, we shall address the question of classical-quantum

correspondence of the Fourier spectrwn of a classical variable. An example

of such a variable from classical nwchanics is

x !i1= eiut
Xtdt ,

u
‘E-m

(1)

where Xt Is the x-coordinate as a function of time. In systems of

Interest, X is but one of severs! coordinates, and the dynamics may be

integrable or chaotic . Such Fourier spectra are often used as qualitative

lndic~tors of chaos, because in the quasiperiocilc region, only N fundamental

frequel~cles (Uol --- UON) and the their overtones and combinations may

3ppear in Xu:

(2)

whereas 111 the ch~otlc ch]m~irl, no such restrictions apply.

A qudr]turn c)naloa of Eq. (1) 1s obtained by replaclnq Xt with Xt 0

where XQ
t

❑ <X>t = <+t x l+?. It 1s an interestlnq exercise to rtlscv~er how

the cl~sslc~l llmlt, E.q. (2)is recovered from the quarltm mechan!cs as

%+0, ar~d how the cl~sslcdl chaos 1s reflected In the quantum spcct rd.

111 urder to correspond 10 the classlcal sltuat loll af sett!nq all the

lrlltldl cor~dltiolls o: the coordll~~tes ar~d momel~t~ to somv spcclfled v~l(tvs,

dlld “rulll~lr~g a tr~jectory” to determlrle Xt, we t~ke the lnltl~l wave-

which drc mllllmm ullcvrtalnty stdtes with
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<g.

<g.

x IQ = X..

Plgo> = P..

Ehrenfest ’s theorem tells

for some reasonable time, this

f~ct alread} implies a limited

(3)

us that Xt and X? will be nearly the same

time becominq lonqer as li+o. This simple

kind of quantum-classical spectr~l

corresporldence, because of a certain property of the Fourier ;onvolutlon

theorem which we might call “enveloping.” Consider two trajectories, Xt and

X$ for which we may say

2XXt:, t<T.

HFor t >T, suppose no claim is m,lde as to the proximity of Xt and X~.

Now consid:r

with d slmiliirequdt ion for X:, and

(5)

(6)

-Qwith d simildr equdtiori for Xu , wd wherr ~
t

h~s the property
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Ct=lt<T

=0 t >T

With the \ ~nditions (4) and (7), we have immediately

The Fourier convolution theorem dictates

(7)

(8)

(9)

-Qwith an analogous equation for ~.

The Fouiier transform of Ct, namely C@, has a spectral width af AU ~

2n/T. Equations (8) and (9) thus dictate that, whatever the differences in

the detailed, high resolution ~ and X$, the smoothed (convoluted?

‘Qversions ~ and ~ have to agree with each other up to e resolution Ah,

Qii Xt and Xt agree up to a time T, where huT ‘:21T.

In a loose sense, we nEIy say that the s~.ectrum ~ mu~,t be consistent

peak its low resolution analog, ?&, in which accumulations of intensitv

may be smoothed into bands at lower resolution.

Figure 1 with help to illustrat tbe situation. The ieft sequence show

-Qthe quantum spectrum & for ~ increasing downward, the ii~ht sequence show

the classical spectrum, %* For t longer than T, Xt and X! start to d~~,’te,

and the quantum spectrum starts to show sub-bands not prese!,t in the

clansical spectrum. The classical spectrum simply narrows around the a“llowetl

Fourier components of the qcasiperind;.c nmtioi~.
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S0 far, we have only required Fourier analysis and Ehrenfest’s theorem,

‘Qand a certain spectral similarity of ‘~ and ~ has been nored.

To understand the sub-structure present in the higher resolution quantum

spectrum ~Q, we must introduce a little quantum (or at least semiclassical)

mechanics. TWCI features are present in each of the quantum clusters of

lines: 1) The width of the cluster, 2) the number of peaks in each cluster.

Evidently, the width of the cluster, Au, is directly rela~ed to the

time, T, Qafter which tbe classical and quantum dynamics Xt and Xt

start to differ; i.e., Aw T = 27, However, this observation is more

tautology than anything else. What is needed is a basis for understanding or

predicting the magnitude of T or Au.

Specializing tc one degree of freedom we examine

# = <gt xt.

= <g. e’

gt>

Htffjx e-iHt/~
K.?

z -i(E ,-En)t/?,
= f: Xnn,fn’ e n

nn’

where < go n > = f; etc. , and n> are eigen.states. Also,

x:. z f: Xnn’fn’ 6(k-A )
nn’

nn’

where Ann I : (EnI-En)Yk. The factors contributing to the ov~rall

(1OC)

(11)

appearance: of ~ are LI)P quantitie~ fn, En, and XnnI , We examin~

each of these in turn.
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1.,

In one degree of freedom for a bound potential, :he main qualitative

feature of the fn’s is a smoothly peaked pattern of intensity. The fn’s

for 6 harmonic oscillat~r potential follow a Polssoa distribution, tending to

Gaussian as the displacement of go> gets greater.2 The overall energy

spread is

AE . (+) ~
x=x mu

o c

(12)

where the gaussian go is of the fOrm

-m’+ (X-XO)2w 1’2C2%
go(x) = (+)

and V(x) is the potential energy. The distribution of fn’s alwa~s becomes

gaussian as fi+o, or as the displacements get la,ge.

Now consider the energies En of the states. Jet us take an energy

near the center of the fn distributions, call this Er. The action” of

this state is

= (p+;)h
‘P

The hamiltoniatl H is expandable in term of the action as

(13)

H(j) = H(jn) + ~H/3j’
Ij=jo

(j-jo)

+; a2}i/aj2 i=j (j-jo)* + . . .

0

= E(jo) + v(jo) (j-io)

1 av
‘“iv (,i-jo)2 + ●**,

i-io

where V in the classical frequent.~ of nmtion. ApplyinK these relations to

the present situation we have, semiclassically,

(lLa)

(14tl)
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En=E +fiU(ll-p)+ ~ld~(rl-p) ’+...
P P

(15)

Note that because of the factor h in the definition of u’, w~+o, as h+o,
P

sire u(j) is a purely classical quantity. Thus Eq. (15) is a statement of

Lhe Bohr Correspondence Principle, name:y,

where u- is the classical frequency of motion at the average value of the
n

action

(n+]+ ~)+(r,+ ~)
7
J = h= (n+l)h (17)

2

The last quantity we need to study is Xnn’. Standard semiclassical

tricks (See the Appendix) give

\

2x/z iA ,t

x
nn

e Xt dt
nn’ -

0

(18)

where u is the freqlu~nry at the average action-j and Xt is the

classical trajectory. As n-n’ gets large, Xnn~ is expected to get small,

since the Fourier freq~leucy, Ann! M (En-En’)/~ = ~(n-n’ ), gets large.
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The spectral features correspoi~ding to n’-n =m are distinct for each m.

Let us consider m=l first (the “fundamental”), For n’=n+l (n’=n-l is the

negative frequency range), we have

For small ~, f~fn+l ‘ f 2
n

since the fn’s vary smoothly, and from Eq.

(18) we have

x = xl,nn+ 1

(19)

(20)

where Xl is the classical f~ndamental intensity. These observations yield,

for this fundamental,

XQ = xl ZNl f2
6(UJ-OJp-U~(n-p+

u +))
n

n
(21)

Already some interesting facts are emerging. First , since ~ f 2 = 1, the
n n

integral intensity of the quantum fundamental band equals the classical

intensity of the fundamental. Second we can calculate the width of the

quantum fundamental band of lines as follow From ~q~o (12) and (14) We h~~~

AE = (~) ~~ (22)
x.)( o

0

+-5 V/Jj= (AJ (n -n);
P

s ~j(opAn

where n+ and n- are the values of the quantum number n at the FWHN of the

~2
n distribution. Equation !22) gives
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The frequency spread of the band is

Ab = h(~) An

j=jp

(23)

(24)

This gives, fcr AL,

The time at which x+ and x? start to differ by the arguments gives above,
4

is

We see that

-1

T=V ~, (+) , ($1 , bol’2, $-1’2 .
x“x

o j=jp

That is, the correspondence between the classical and the quantal xt and

x! lasts longer if 1; ,he classical frequencies is higher, 2) the potent~al

slope near the wavepacket is smaller, 3) the rate of change of classical fre-

quency with action is smaller, 4) a larger W. is used in the wavepacket,

and 5) %+0. All thes( trends will hold in the%+o limit. Now , from Eq.

(23) we see that An a h-1/2, i.e., the quantum number ~~read of the wave-

pa~ket is increasing as ~+o, and AU = hi/2, i.e., the frequency sp~e~~ of

the fundamental quantum based of lines is decreasing as hi/2 as h+o.
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From Eq. (21), we see that

(24)

since the intensity, the

agree with the classical

The ~nalysis for an

frequency, and

result as ~+o.

overtone band,

the width of the overtone }-ridall

m=2, 3,... is much the same as for the

fundamental band just presented.

The extension of the present result to two and more degrees of freedom

is qujte e:sy in the quasiperiodic domain of the cl~ssical mechanics. The

results are the same; ar~und each s}~arp c~assical fundamental, overtone, or

combination line a quantum cluster of lines exist. The number of lines in

th~ cluster increases as %
-1/2

as %+0, but the width of these cluster

decreases as
#/2 ,

For an enharmonic n- dimensional system, a particular classical trajec-

tory of a given energy E and action variables jl,j2,. ..jN has a given

discrete set cf f,4ndamental frequencies LU1 ... Wq. These frequencies, and

their overtone and combinations, appear In ~. However, at the same

energy, another set of actions jl ‘,j2’ ... jN’ would give in general a

different set Of ClaSSiCal frequencies, QJI’,....UN’. In a certain sense,

there are “missing” frequencies in a Fourier spectrum of any qi-~e-,

quasiperiodic classical trajectory because the N actions jl...jN, are

conserved in the dynamics, preventing other frequencies from making an

appearance. As h+o these

The clusters bunch around

given actions j~,..., jN.

statements apply to the quantum clusters of lines:

the discrete allowed classical frequencies for the

In the classically choatic regions the Fourier spectrum b fills in)

perhaps completely. No finite set of fundamentals can conspire to yield all

the complexity in the spectrum, and indeed no set of actions is constant
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during the dynamics of a single trajectory. In a sense, the trajectory is

able to sample all the frequencies now) since the actions are not conserved,

thus the filling in of the Fourier spectrum ~. We now conclude wi.~.ha few

Qarguments to show chat ~ has qualitatively the same behavior, namely many

more “lines” in the spectrum, and approaching the classical continuum

spectrum as ~+oo

A wavepacket g> placed in a choatic region of classical phase space

still has a smooth energy envelope, but now far more “lines” appear under the

3
envelope, because the cho$tic wzvefunctions of appropriate energy all sample

the vicinity of the wavepacket. ~~ls , many more fnls are nonzero in the

ch~tic region, compared to a similar wavepacket of in a quasipeliodic

domain, for the same number of degrees of freedom.3 Furthermore, since the

eigenstates n> in the ch~atic region are globally distributed, the matrix

element Xnnt will follow a random-like distribution as a function of m and

n; and the energies En? likewise will not be derivab?.e from any regl~lar

spacing formula such as Eq. (15). Such a lack of systematic behavior i.?each

of the quantities fn, ~nl and Ann! in Eq. (11) implies no separation

into fundamental, overtones, etc. is possible. Indeed, for fixed%, Eq (11)

evidently gives a very wild and random filling in of what were the “empty”

regions between the clusters. This is because there are manv, many possible

Ann 1 values, and Ilothing to distinguish them from each other because fn,

x nn, etc. refuse to follow a “pattern”. The only systematic aspect of the

spectrum N is that it does cut off at large frequencies, since the fnts

have to fall of at large n, corresponding to the finite energy width of the

wave packet g>.
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We thus have the qualitative trends:

~uasiperiodic Regime: Many “missing” frequencies

Chaotic Regime:

2
<Filling in of the spectrum, no systematically missing lines.

These statements are true for both ~ and $. They are in exact

accord with the spectral features of molecular electronic transition

discussed in earlier work.3 Indeed , a quantitative criterion for the extent

of quantum chaos was Constrr.ictcclfrom the observation that missing lines

3
correspond to quasipe~iodic motion.

In this paper, we have examined the correspondence between Xu and

X$, using a displaced, initially localized a wavepacket to determine X:

as an expectation value. We have found certain similar{.ties and differences

between ~} and ~. Earlier, Marcus and co-workersh had examined the

Fourier spectrum of a single (but specially selected) classical trajectory

and associated it directly with one and two quantum transition~in a viDrating

molecule, This idea has it roots in the earliest days of quantum mechanics,

when it was noticed that classical frequencies correspond to quantum enerzv

level spacings (Bohr Correspondence RtJle) (sre Eqn. (14)), Using this idea,

one is able to get intensities and frequent ,Js of transition between states

of similar quantum numbers “ (i.e. large quantllm lumps cannot be gotten so

well with classical mechanics, unless %+0), In any casf’, tile‘:iewpoint of

Refs. (4) is complerr~ntary to our own, in thar we h~vr used w~vepackets tn

create an X~, and in so doing wrYrely on Ehrenfests’ th~orern for an fl+o

correspondence, Marc~ls and co-workers” have on th~ othpr hand relied morf’

F,eavily upon the Bohr correspondence rule (13q,(14)), Roth approaches

provide insight into the relationship between classical and quantum

mechanics.
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APPENDIx

A semiclassical, WKB wavefunction in one dimension is of the form

x

1
i /lj

+:B(x) - — J
pn(x’)dx’

e
qx )

(Al)

where pn(x) is the nmraentum at position x of a classical particle of energy

En“ The matrix element XnnI reads

x“ J{(x) x V@ddxnn’

K

-J
-i/$

s
Pn(x’)dx” +

J

til~ x pn,(x’)dx’

dx e —x
fpn(x) p“,(x)

We ROWmake the approximation

pn(x’) - I: “-n” + y h(n-n’)
J

where

j - i~~- + ;) h

Next , we note that

~=maE‘+1 I

- mV
.l ; ~lim; ~,jm; ,.

The inteRral in thr exponent of (Al) nnw reads

1

x
-~ (n-n’) h mU

\

t
.— d~ m - ~ (n_nl)h~ dt ‘
;(x)

(A2)

(A3)

=iAlt
nn
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Then if we approximate 4pn(x)pn, (x) by ;(X)

we have

!

iA ,t’
x nn

e
nn’ -

Xt, dt’ ,

the desired result.

(A6)
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Figure Captions

1. In the let’t column we see the quantum spectrun and in the riqht, the
classicdl, at increasing resolution as we move down the column. The
classical and quantum spectra aqree until the third case from the top.
After that., the differences persist, showing the quantum spectrum to
have band structure not present in the classical spectrum. This is the
case in the classically quasiperiodic region.
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