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Quantum-Classlcal Correspondence for the Fourler Spectrum of a Trajectory

Eric J. Heller
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In thls paper, we shall address the question of classical-quantum
correspondence of the Fourler spectrum of a classical varlable. An example

of such a variable from classical mechanics 1is

X = — S e!®t x, dt, . (1)

where X¢ ls the x-coordinate as a function of time. In systems of

interest, X Is but one of severa! coordinates, and the dynamics may be
integrable or chaotic . Such Fourler spectra are often used as qualitative
Indicators of chaos, because In the quasiperiodlc region, only N fundamental
frequencles (wpq --- wgy) and the thelr overtones and combinations may

appear In Xw:

-~ - =

X, = O X, Slw-mew) (2)
m

whereas In the chactlc domaln, no such restrictlons apply.

A quantum analog of Eq. (1) Is obtained by replaclng X¢ with X, 0
where X? = XKy = <wt|x|wt>. It Is an Interesting exerclse to discover how
the classical limlt, Eq. (2) s recovered from the quantum mechanlcs as

hro, and how the classlcal chaos Is reflected In the quantum spectra.

In urder to correspond Lo the classical sltuatlon of setting all the
Inltlal conditions o7 the coordinates and momenta to some specifled values,
and "running a trajectory" to determlne Xy, we take the Inftlal wave-
functlon ¥, to be as locallzed as possible In phdase apace. An ldeal way

to do thls is wlth the coherent states (gaussian wavepackets) 'qO(XO,PO)),

which are minimum uncertalnty stdtes with



X

<gO'§|qO> (o)

p (3)
o

1

“0,17]95>

Ehrenfest's theorem tells us that Xt and X% will be nearly the same
for some reasonable time, this time becoming longer as % +n. This simple
fact already implies a limited kind of quantum-classical spectral
correspondence, because of a certain property of the Fourler zonvolution
theorem which we might call "enveloping." Consider two trajectories, Xy and

X? for which we may say
t v [t]<e (4)
For .t}>r, suppose no clalm is made as to the proximity of Xt and X?.

Now consicer

X = — j T (5)

with a simllar equation for XS, and

£ = S el C, A, dt (6)

with a simildar equation for ig y and where Ct has the property



A

Ce = 1 |t|<r (7
= 0 ltl >

With the «onditions (4) and (7), we have immediately

7«0
X, o X (8)

The Fourier convolution theorem dictates

- _ 1 o
X, = de D (9)

with an analogous equation for iw.

The Fourier transform of Cy, namely C,, has a spectral width of Au =

2n /1. Equations (8) and (9) thus dictate that, whatever the differences in
the detailed, high resolution X, and XS, the smoothed (convoluted)

versions iw and RS have to agree with each other up to 2 resolution buw,

if X; and Xg agree up to a time T, where AwT = 2w,

In a loose sense, we may say that the srectrum X, must be consistent
peak its low resolution analog, %,, in whick accumulations of intensity
may be smoothed into bands at lower recolution.

Figure 1 with help to illustrat tte situation. The ieft sequence show
the quantum spectrum 28 for T increasing downward, the right sequence show
the classical spectrum, iw. For t longer than T, X, and X? start to dev..te,

and the quantum spectrum starts to show sub-bands not preseut in the

rlassical spectrum. The classical spectrum simply narrows around the allowed

Fourier components of the quasiperiodic motion.



So far, we have only required Fourier analysis and Ehrenfest's theorem,
and a certain spectral similarity of X, and ig has been noted.
To understand the sub-structure present in the higher resolution quantum
sp;ctrum X8, we must introduce a little quantum (or at least semiclassical)
mechanics. Tws features are present in each of the quantum clusters of
lines: 1) The width of the cluster, 2) the number of peaks in each cluster.
Evidently, the width of the cluster, 8w, is directly related to the
time, T, after which the classical and quantum dynamics X andQXt
start to differ; i.e., 8w T = 27, However, this observation is more
tautology than anything else. What 1s needed is a basis for understanding or

predicting the magnitude of T or Aw.

Specializing tc one degree of freedom we examine

Qg
X, <gt'x.gt> (10a)
- < 'elduﬁ X e—lHt/ﬁ ; (10b)
) 0
. -i(E L, -E )t/
= :E: f X ,f' e n (10c¢)
: n nn''n
nn
* .
where < go|n > = fn etc.,, and |n> are eigenstates. Also,
Q m * b, ' ' ) -
X Z' £ Xnn'f 6w = b ) (1)

nn
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where A, 1 (Eq'-Ep)/f. The factors contributing to the overall

appearance of X, are the quantities f,, E,, and Xpn'. We examine

each of these in turn.



In one degree of freedom for a bound potential, the main qualitative
feature of the f,'s is a smoothly peaked pattern of intensity. The f;'s
for & harmonic oscillator potential follow a Poisson distribution, tending to

Gaussian as the displacement oflgo> gets greater.2 The overall energy

spread is

dav .
AE - ( Ix [;ﬁ_ (12

X=X mw
o] C

where the gaussian g, is of the form

o ow 12 JTE (x-x )’
go(x) = (;¥rd
and V(x) is the potential energy. The distribution of fn's always becomes
gaussian as h+o0, or as the displacements get lz.ge.
Now consider the energies E, of the states. Let us take an energy

near the center of the f, distributions, call this E.. The action” of

this state 1is

. 1
Jp (p+ 7)h (13)
The hamiltoniaa H is expandable in term of the action as

RO = G+ BR/35| L. (=j)

(o]
‘2 azn/ajzh_jo (5= )7+ vee (14a)
= EG ) + V() GRi)
vy ol Geipt e e, (140
i=i,

where V ia the classical frequenc’ of moticn. Applying thgse relations to

the present situation we have, semiclassically,



2
E =E +hu (n-p) + Bwl(n-p)? + +oe (15)
n p p P 2 “p 7P
where H(j ) = E_, w(j )= w_, h 39 z w'
P P P P 35 e P
=3,

Note that because of the factor h in the definition of w', w'*o, as h+o,

sir~e w{j) is a purely classical quantity. Thus Eq. (15) is a statement of

the Bohr Correspondence Principle, namely,
E - E_ = hu-
r n

nel (16)

where w= 1s the classical frequency of motion at the average value of the

action

C o (nsle el )
j = 2 h = (n+l)h (17)

The last quantity we nced to study is Xpp'.

Standard semiclassical

tricks {See the Appendix) give

/% st
- e X, dt (18)

where W is the frequency at the average action j and Xy is the

classical trajectory. As 'n-n'i gets large, X' 1s expected to get small,

since the Fourier frequeucy, 8pn' = (En-Eq) /4 = w(n-n'), gets large.




The spectral features corresponding to n'-n =m are distinct for each m.

Let us consider m=1 first (the "fundamental'). ¥For n'=n+]l (n'=n-1 is the

negative frequency range), we have

Q _ ~ * e —w  (emad
X, L fn Xnn+l fml&(w wp wp(n p*?)) (19)
n

For small %, f:fn+l = Ifn'2 since the f,'s vary smoothly, and from Eq.

(18) we have

xnml = X, (20)

where X] is the classical fundamental intensity. These observations yicld,

for this fundamental,

Q . 2 (-t —w'(nops L
X, = X ‘;“nl §(u-w v (n=p+ 7)) (21)

Already some interesting facts are emerging. First, since E Ifn'2 = 1, the

integral intensity of the quantum fundamental band equals the classical

intensity of the fundamental. Second we can calculate the width of the

quantum fundamental band of lines as follows From Eqs. (12) and (14) we have

dv 'ﬁ
bE = (50 i
Xo (o]

x=

(22)

= VvV Aj = Wp(n+-n_) ;

= fw An
P
where n* and n~ are the values of the quantum number n at the FWHM of the
Ifn|2 distribution. Equation {22) gives



—_ .ﬁU; (23)

Aw = hi(=) An (24)

This gives, for Auw,

dw dav -1
A‘=L’;‘ = = v
v mmo (dj).z. (dx)x=x
=i, o
The time at which X, and XS start to differ by the arguments gives above,

4

is
T = 2n/Aw

We see that

-1 -1
‘L- « v , (i\i) , (d_(b) W 1/2’ F] 1/2
p’ dx dj . . o}
X=X D

=

That is, the correspondence between the classical and the quantal x; and

xy lasts longer if 1, .he classical frequencies is higher, 2) the potential
slope near the wavepacket is smaller, 3) the rate of change of classical fre-
quency with aztion is smaller, 4) a larger w, is used in the wavepacket,

and 5) h+o. All thes¢ trends will hold in the h+o limit. Now, from Eq.

(23) we see that 4On a h’l/z, i.e., the quantum number e<rread of the wave-

packet is increasing as h+o, and Aw « hl/z, i.e., the frequency spread of

the fundamental quantum based of lines is decreasing as hl1/2 ag h+o.
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From Eq. (21), we see that

xg f‘-’-gyxm , (24

since the intensity, the frequency, and the width of the overtone ! -°nd all
agree with the classical result as h-*o.

The inalysis for an overtone band, m=2,3,... is much the same as for the
fundamental band just presented.

The extension of the present result to two and more degrees of freedom
is quite e 'sy in the quasiperiodic domain of the clissical mechanics. The
results are the same; arcund each sharp classical fundamental, overtone, or

combination line a quantum cluster of lines exist. The number of lines in

. -1/2
the cluster increases as h /

as Ko, but the width of these cluster
decreases as ﬁl/z .

For an anharmonic n- dimensional system, a particular classical trajec-
tory of a given energy E and action variables j1,j2,...jny has a given
discrete set cf fundamental frequencies w); ... wy. These frequencies, and
their overtone and combinations, aprear in X, . However, at the same
energy, another set of actions j1',j2' ... jnN' would give in general a
different set of classical frequencies, w)',...,wy'. In a certain sense,
there are "missing" frequencies in a Fourier spectrum of any qive=n
quasiperiodic classical trajectory because the N actions 11...jN, are
conserved in the dynamics, preventing other frequencies from making an
appearance. As h»o these statements apply to the quantum clusters of lines:
The clusters bunch around the discrete allowed classical frequencies for the
given actions j1,..., JN-

In the classically choatic regions the Fourier spectrum X, fills in,

perhaps completely. No finite set of fundamentals can conspire to yield all

the complexity in the spectrum, and indeed no set of actions is constant
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during the dynamics of a single trajectory. In a sense, the trajectory is
able to sample all the frequencies now, since the actions are not conserved,
thus the filling in of the Fourier spectrum X,. We now conclude with a few
a;éuments to show chat X8 has qualitatively the same behavior, namely many
mere "lines" in the spectrum, and approaching the classical continuum
stectrum as h +o.

A wavepacket 'g> placed in a choatic region of classical phase space
still has a smooth energy envelope, but now far more "lines" appear under the
envelope,3 because the chofatic wavefunctions of appropriate energy all sample
the vicinity of the wavepacket. Thus, many more f,'s are nonzero in the
chdatic region, compared to a similar wavepacket of in a quasiperiodic
domain, for the same number of degrees of freedom. Furthermore, since the

eigenstates |n> in the chg@atic region are globally distributed, the matrix

element X ,' will follow a random-like distribution as a function of n and
n; and the energies E,' likewise will not be derivab’e from any regular
spacing formula such as Eq. (15). Such a lack of systematic behavior in each
of the quantities f,, Xpn' and 8,4t in Eq. (11) implies no separation

into fundamental, overtones, etc. 1s possible. Indeed, for fixed }, Eq (11)
evidently gives a very wild and random filling in of what were the "empty"
regions between the clusters. This 1s because there are manv, many possible
d,n' values, and unothing to distinguish them from each other because f,
Xpn, etc. refuse to follow a "pattern'". The only systematic aspect of the
spectrum XQ is that it does cut off at large frequencies, since the fn's
have to fall of at large n, corresponding to the finite energy width of the

wave packet [g>.
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We thus have the qualitative trends:
Quasiperiodic Regime: Many "missing" frequencies

Chaotic fififi:/;ﬁ

B {Filling in of the spectrum, no systematically missing lines.

These statements are true for both X, and Xg. They are in exact
accord with the spectral features of molecular electronic transition
discussed in earlier work.> Indeed, a quantitative criterion for the extent
of quantun chaos was constructed from the observation that missing lines
correspond tc quasipeviodic mot ion. >

In this paper, we have examined the correspondence between X, and
X8, using a displaced, initially localized a wavepacket to determine XS
as an expectation value. We have found certain similarities and differences
between X, and X8. Earlier, Marcus and co-workers” had examined the
Fourier spectrum of a single (but specially selected) classical trajectory
and associated it directly with one and two quantum transitionsin a vioratiag
molecule, This idea has it roots in the carliest days of quantum mechanics,
when it was noticed that classical frequencies correspond to quantum energy
level spacings (Bohr Correspondence Rule) (see Eqn. (14)). Using this idea,
one is able to get intensities and frequen: o5 of transition between states
of similar quantum numbers® (i.e. large quantum jumps cannot be gotten so
well with classical mechanics, unless h+o). In any case, the viewpoint of
Refs. (4) is complerentary to our own, in that we have used wavepackets to
create an X?, and in so doing we rely on Ehrenfests' theorem for an h+o
correspondence. Marcus and co-workers' have on the other hand relied more
Leavily upon the Bohr correspondence rule (Eq. (14)). Both approaches
provide insight into the relationship between classical and quantum

mechanics.
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APPENDIX

A semiclassizal, WKB wavefunction in one dimension is of the form

x
- WKB . 1 . i/t j pn(x')dx'
n 7/p_Ix)

\

n

(A1)

where p,(x) is the momentum at position x of a classical particle of energy

Ep.  The matrix element X,,' reads

X_, = Iw:(x) X ¥_, (x)dx (A2)

X

X )

~-i/h J- pn(x')dx‘ + ti/y j pn.(x')dx'

- dx £ X
j V’pn(x) pn.(x)

We now make the approximation

] or .

Ppx') - p i (x") = SR . (n-n") -,3_-’], J_ h(n-n") (A3)
where '

- LN+ 1

] 7 '5) h
Next, we note that

g.lll =D g_"JiI e (AG)

T p 1 3= p

The integral in the exponent of (A3) nnow reads

. X - . t
-L(nn")n _lv- dx = - 1 (n-n')hv de’
) p(x) k

= i A ,t (AS)
nn
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Then if we approximate /pn1x5pn.(x5 by P(x)

we have

iAnn.t'
]
xnn, - e xt,dt

the desired result.

(a6)
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Figure Captions

In the left column we see the quantum spectrum and in the right, the
classical, at increasing resolution as we move down the column. The
classical and gquantum spectra agree until the thlrd case from the top.
After that, the differences persist, showing the quantum spectrum to
have band structure not present In the classical spectrum. This is the
case in the classically quasiperiodic region,



QUANTUM
I
)_(8 lj\fA
w-.-

TSR

CCCCCCCCC




