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Instead of the usual asymptotic passage from quantum mechanics to classical
mechanics when a parameter tended to infinity, a sharp boundary is obtained for
the domain of existence of classical reality. The last is treated as separable em-
pirical reality following d’Espagnat, described by a mathematical superstructure
over quantum dynamics for the universal wave function. Being empirical, this
reality is constructed in terms of both fundamental notions and characteristics
of observers. It is presupposed that considered observers perceive the world as a
system of collective degrees of freedom that are inherently dissipative because of
interaction with thermal degrees of freedom. Relevant problems of foundation of
statistical physics are considered. A feasible example is given of a macroscopic
system not admitting such classical reality.

The article contains a concise survey of some relevant domains: quantum
and classical Bell-type inequalities; universal wave function; approaches to quan-
tum description of macroscopic world, with emphasis on dissipation; spontaneous
reduction models; experimental tests of the universal validity of the quantum the-
ory.
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I do not believe in micro- and macrolaws,
but only in (structural) laws of general validity.

A. Einstein
3

Introduction

Sixty years have gone by since N. Bohr read his historic Como lecture[29],
where the Copenhagen interpretation of quantum theory was given, and
fifty years since A. Einstein, B. Podolksy, and N. Rosen published their
basic paper[70] where a fundamental inconsistency of quantum and clas-
sical ideas on correlations came to light and doubts were expressed as to
the completeness of the quantum theory, whose signal success has since
become overshadowed by “accursed questions” on the relation between
quantum and classical descriptions. To construct a quantum theory of
the macroworld was considered impossible. At the same time, one failed
and still fails to find any definite limitations for the applicability of the
first principles of quantum theory. Initially stated in the domain of atomic
spectroscopy, those principles brilliantly passed the most varied tests made
using rapidly progressing technical means[2, 246, 186]. Today the con-
struction of a micro- and macroworld quantum theory is considered an
important goal, increasingly attractive to theoretical and experimental
physicists. In this context, intensive discussions and re-interpretations of
quantum theory’s foundations are taking place[1, 186, 156, 92, 157, 120,
200, 63, 59].

Following the publication of [29, 70], the mutual opposition of various
classical concepts (Newtonian particle dynamics, Maxwellian field dynam-
ics, Einsteinian geometrodynamics) has moved into the background, while
their joint opposition to quantum concepts has been put in the forefront.
Corpuscles, waves, and even determinism are only details, the chief thing
being a generalizing notion introduced in [70], namely, local elements of a
physical reality. Einstein persistently strove for a universal theory which
should be completely based on such elements, and considered the quantum
theory as a tentative deviation from this concept—pointing out[71] that
among the known facts none excluded, in principle, a return to it. Mean-
while, such a fact was predictable, not far from the thought experiment
proposed in [70], and was discovered by J. Bell[22] in 1964 as a result of
his deep revision of the classical concept which now began speaking not
only in words but in formulas.

3Quoted in [87, p. 26].
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The Copenhagen interpretation requires a combined application of two
intrinsically alternative ways—classical and quantum—of describing the
physical world. Accordingly, the world is represented as broken in two by a
“conceptual gap,” so that stages of preparing and registering the quantum
objects require classical (rather than quasi-classical) apparatuses. Bell ex-
pressed his attitude toward the situation [20, p. 177] by the words “the
infamous boundary.” Progress in modern technology permits observation
of some quantum effects for macro-objects (see reviews [167, 174]) which
makes it necessary to discuss fundamental problems of quantum theory
from a less academic standpoint. (It is interesting to recall some confer-
ence titles[186, 120], such as “The foundations of quantum mechanics in
the light of new technology.”) The rehabilitation of a unified interpretation
of the physical world and the solution of basic problems of quantum-theory
foundations would be possible if, acknowledging this theory to be appli-
cable to all objects of the physical world (“principle of presumption of a
quantum description”), one could demonstrate that, given suitable con-
ditions and objects, one obtains a classical (rather than quasi-classical)
description within the quantum theory (a “reconstruction of the classical
world”). In this case Bell’s inequalities could be used as a criterion for
the applicability of the classical description. The present article is largely
concerned with possible approaches toward such a solution of the funda-
mental problems of quantum theory. Within these approaches there exist
real macroscopic quantum effects and we give an explicit indication as to
the conditions (low temperatures in particular) where they occur. If veri-
fied, such effects will fundamentally change our picture of the macroscopic
phenomena that surround us—which have so far been described only clas-
sically. It is difficult to overestimate the potential for quite new practical
applications—and perhaps for explaining, within quantum theory, the bi-
ological phenomena which possess an essential wholeness peculiar also to
quantum phenomena.

The point of this article is, above all, to join the following three ideas:
(1) quantum theory is universally applicable, and classical reality may
be reconstructed (reconstituted) from quantum dynamics; (2) the charac-
teristic of classical reality is independent existence of objects, absence of
quantum correlations between them, and fulfillment of classical Bell-type
inequalities; (3) dissipation is the fundamental relationship between col-
lective degrees of freedom, admitting the classical description, and thermal
degrees of freedom constituting the environment.

The first result of this conjunction was unexpected. Instead of the
usual asymptotic passage from quantum mechanics to classical mechanics
when a parameter tended to infinity, a sharp transition was obtained at
some value of the parameter. It seems that until now such a situation has
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occurred only in phase transition theory. The exact wording is given in
Section 4. Here we outline only one of our final formulas with minimal
explanation: the classical description is applicable when

A

ΓT
≤ 2

kB

h

here A is the coefficient of elasticity, measuring a potential interaction of
two bodies: U(q1, q2) = 1

2A(q1 − q2)
2; Γ is the drag coefficient measuring

a dissipative interaction of the body with its environment: Ffric = −Γq̇;
T is the temperature of the environment; kB is Boltzman’s constant, and
h is Planck’s constant. Note the sign ≤ instead of the usual sign ≪.

Each of the three ideas above has its history, briefly dealt with in
Sections 1–3. Section 1 surveys investigations of correlation functions
related to Bell-type inequalities. A part of Section 3 is a survey of rel-
evant investigations of dissipation. Special attention is paid to the idea
of reconstructing classical reality (Sections 2 and 3). The fact is that for
the last decade, discussions of the quantum/classical correspondence as-
sumed a somewhat evasive character: authors keep developing formalisms,
but evade explicitly accepting a certain interpretation. This is seemingly
a response to developments in former decades, when the interpretation
problem was repeatedly proclaimed solved, but nevertheless is still con-
sidered unsolved (see Section 3). Concerning the origin of this situation,
we agree with D’Espagnat[58] that it is the indistinct status of the notion
of “classical reality”: whether it is treated as absolute or relative (inde-
pendent or empirical, in terms of [58]). In other words, whether “real”
means “real in itself” or “real relative to a class of observers”. In order to
reconstruct absolute (independent) reality, defining this notion in terms
of fundamental notions only is necessary. However, this scheme seems to
fail. A notion of relative (empirical) reality needs to be defined using both
fundamental notions and characteristics of observers. We meet the chal-
lenge of D’Espagnat and think that the title of his article could fit ours as
well (his question mark being replaced by an exclamation mark): Toward
a separable empirical reality!

One can easily get a contradiction if one confuses concepts belonging
to essentially dissimilar approaches. For instance, one can reject our rea-
soning, claiming that a quantum system does not became classical just
because it satisfies Bell’s inequality in some specific situation. To avoid
such misunderstandings, we consider it necessary to give an introduction
to the “relative reality approach.” Starting with the most general subjects
concerning the universal wave function (Section 2), we proceed gradually
to concrete tasks (Section 3). Thereby we hope to convince the reader
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that our contribution to posing and solving these concrete tasks may be
considered a contribution to general problems, as well. We hope also that
the reader will not be alienated by the fact that our sections are quite
different in style. Thus, in Sections 1, 4, and 6 the emphasis is on rigorous
statements, using well-known formalisms. Sections “without formulas”
(i.e., Sections 2, 5 and partly 3) are concerned with discussions of first
principles. Section 4 mainly contains our new results. Other sections
discuss works published earlier, from the classical to the contemporary.

Unfortunately, the wide scope, resulting from the combining nature of
this work, forces the review sections to be concise. If the reader is not
acquainted with the areas discussed, he will hardly became so by reading
our review sections. They are intended for a reader familiar with some of
the areas and interested in others. Such a reader should be able to use our
review as a guide to the literature. To understanding the meaning of our
new results (presented in Section 4) one needs only to come to grips with
the essential ideas of each section, rather than studying each in detail.
The details would hopefully be useful for further work in this area (which
is as yet far from complete).

Some recent attempts to restore absolute (independent) reality by re-
placing unitary quantum dynamics with some hybrid quantum/classical
ones are considered briefly in Section 5. In contrast, we are not intending
to touch up unitary quantum dynamics. Accordingly, to avoid a circular
proof, statistical physics used for describing dissipation needs a founda-
tion without approximations which misrepresent quantum dynamics by
transforming pure states into mixed ones. An approach free from such
approximations is considered in Section 6. The last section, Section 7, is
concerned both with experiments on verifying the classical Bell inequalities
or their quantum analogs and with possible experiments on macroscopic
quantum effects. Under very careful, but undoubtedly feasible isolation
of the collective degrees of freedom from the thermal ones, quantum cor-
relations can arise and be conserved for long periods of time, even in the
mechanical motion of macroscopic bodies. The required degree of isolation
may be calculated by the criterion given in Section 4.

1 Kinematics and Dynamics of Correlations

Before 1964, the investigations initiated by Einstein, Podolsky, and
Rosen [70] were pursued only by “atypical theoreticians,” or those in “an
atypical state” outside the quantum paradigm (see the review in [21]). Af-
ter Bell’s pioneering work[22], the problem was dealt with by some experi-
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mentalists (see the reviews [112, 7], which contain also an elementary intro-
duction). However, “typical theoreticians” took Bell’s work as a “calculus
of chimeras,” as in a subjunctive mood: if there existed hidden variables,
the integration over them would result in some (incorrect!) inequalities.
Does it pay to master the art of estimating integrals over hidden variables
which do not and cannot exist? In 1978 one of us (Tsirelson) reported
on Bell’s inequalities to a seminar whose chairman, A. M. Vershik, asked
him the question, “Are similarly general inequalities possible in the quan-
tum theory?” This question was answered in [51], which contains quantum
analogs of Bell’s inequalities (later rediscovered[227]) obtained by an oper-
ator technique that is far from a “chimera.” The classical Bell inequalities
can be considered as those for commuting operators[51]. Another situation
to which they apply within the quantum theory was known; namely, they
are fulfilled for factorized states and their mixtures (the first indication
of this fact known to us can be found in [216]; see also[228, 11]). Thus,
after Bell’s inequalities had played a historic role in rejecting local hidden
variables, they found a second life within the quantum theory as one of
the “crystallization centers” of a quantum correlation theory (see [51, 227]
and [228, 11, 235, 147, 160, 161, 162, 229, 230, 146, 158, 159, 93, 241]).

In this scantily explored field some selected problems are under study,
while others await investigation. There are problems within the framework
of general principles of quantum theory, that of the axiomatic local quan-
tum field theory, and that of the free-field theory. There are, of course,
other variants. Note especially two, namely one lying beyond the frame-
work of the quantum theory, and one embedded in the classical theory;
these will be dealt with below. Another important classification feature is
presented by single-time and multiple-time problems. We relegate them
to the kinematics and dynamics of correlations, respectively. The content
of these particular branches of science, as we see it to date, is presented
in this section. We will start with kinematics of correlations within the
framework of the principles of general quantum theory.

Let commuting subalgebras Ai be singled out inside the algebra of
quantum observables, and consider some observables Aij from each Ai.
So, Ai1j1 and Ai2j2 must commute when i1 6= i2 but must not if i1 = i2.
Suppose for simplicity that each Aij has a discrete spectrum. Denote its
eigenvalues as aijk and spectral projections as Pijk. Fixing some quantum
state (here and below it is not explicitly indicated in many cases, but only
implied in the notation 〈. . .〉 for mean value of an observable), one will
obtain a probability distribution

P k1k2...
j1j2... = 〈P1j1k1

P2j2k2
. . .〉 (1.1)
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This many-indexed value is the probability of a coincidence of the following
events: the measurement of the observable A1j1 has given the result k1,
that of the observable A2j2 the result k2, etc. The problem is to determine
all those general conditions which are fulfilled for any system which can
be described in this way. This, of course, is an enormous task. In practice,
much more restricted problems are studied.

Let each index i, j, k take on only two values. This is the simplest
nontrivial case. It is convenient to assume that aijk = ±1, i.e., A2

ij = 1.

The set of 24 (=16) numbers obtained from (1.1) is easily reduced to one
of eight numbers involving four mean values 〈Aij〉 and four correlations
〈A1j1A2j2 〉. Finding a complete system of inequalities for those numbers is
equivalent to describing the proper geometrical figure in eight-dimensional
space. Nobody has succeeded in obtaining its explicit equations. There is
an implicit description (Theorems 2 and 3 in [51]) which is cumbersome,
but at least is expressed by a finite number of scalar equations rather
than operators of an indefinite kind in a Hilbert space. The inequalities
for the general case turn out[51] to be indistinguishable from the case of
correlated spin- 1

2 particles, which is well known to both theoreticians and
experimentalists. To simplify the problem further, we shall look for the
restrictions on correlations while regarding mean values as arbitrary (or
assume mean values equal to zero; these two cases are equivalent[51]). In
other words, we are required to find a four-dimensional figure which is
a projection (or, which is the same in this case, a section) of the above-
mentioned eight-dimensional figure. An explicit solution of this prob-
lem, expressed in sixth-degree polynomials, was suggested by one of the
authors[235]. Another explicit solution independently found by Lawrence
Landau[158] takes a surprisingly simple form when the correlations are
written as cosines of certain angles. If we take into account the geomet-
rical interpretation of such angles indicated in [51, point 4 of Theorem
1], the question will reduce to a theorem of spherical geometry on the
existence of a spherical quadrangle with sides of a given length.

The combination of four correlations considered in [48],

R = 〈A11A21〉 + 〈A11A22〉 + 〈A12A21〉 − 〈A12A22〉 (1.2)

merits attention for reasons which will be elucidated below. There is a
known inequality [51],

|R| ≤ 2
√

2 (1.3)

which may be obtained from the general relations mentioned above. There
are also several direct proofs which we shall list now. Suffice it to show
that the spectrum of the operator C = A11A21+A11A22+A12A21−A12A22
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lies on the segment [−2
√

2, 2
√

2]. The first proof (close to that given in
[51]) follows from the equality

2
√

2 − C =
1√
2
(A2

11 +A2
12 +A2

21 +A2
22) − C

=
1√
2

(

A11 −
A21 +A22√

2

)2

+
1√
2

(

A12 −
A21 −A22√

2

)2

(1.4)

The second proof[147, 160] is based on the equality

C2 = 4 − [A11, A12] · [A21, A22] (1.5)

and the trivial bound‖Ai1Ai2 − Ai2Ai1‖ ≤ 2. The third proof, recently
found by Landau,4 is based upon the equality C2 +D2 = 8, where

D = A11A21 +A11A22 −A12A21 +A12A22. (1.6)

It is well known[48] that the equality R = 2
√

2 is attained in a spin-
correlation experiment following Bohm’s scheme [25, point 22.16]. Are
there other cases of attaining the equality in relation (1.3)? Essentially,
no. The situations unitarily equivalent to the situation above and their
direct sums (with the possible addition of unimportant direct summands)
exhaust all cases of obtaining the equality[235].

Returning to more general cases, let i and k assume two values as be-
fore, but let j run through any finite set of values (possibly depending
on i). There are results on the correlations 〈A1j1A2j2〉 with unspecified
or, which is equivalent, zero mean values. The corresponding class of
correlation matrices was described[51, 235] in terms of scalar products of
unit vectors in Euclidean space (instead of operators in the Hilbert one).
This class of matrices will not be affected if the observables Aij are sub-
jected to canonical anticommutation relations, i.e., if we require that all
symmetrized products Aij1 ◦Aij2 be scalar multiples of the unit operator.
Thus, a proper generalization of Pauli spin matrices is given here by the
Clifford algebras rather than the higher spins, as one might have thought.
The result mentioned above, which defines the spin observables as the
only (in principle) solution of the extremal quantum correlation problem,
is also generalized to the Clifford algebras[235], the term “extremal” being
understood in a more general sense.

For the case where i takes on three values, and j, k two values each,

4We are obliged to L. Landau for communicating this result to us.
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there are only a few special results [235, 189, 231]. D. M. Palatnik[189]
has considered the following analog of (1.2) for triple correlations5:

R3 = 〈A11A21A32〉 + 〈A11A22A31〉 + 〈A12A21A31〉 − 〈A12A22A32〉 (1.7)

having found that a proper choice of observables and state may give
the equality R3 = 4 [for pair correlations, this value is forbidden by
inequality (1.3)]. This fact opens the way for “Bell’s theorem without
inequalities”[93]. One of the several results obtained in [235, Sect. 5] is

R2 ≤ 8 − 2(〈A2j2A3j3 〉)2 (1.8)

for any j2, j3. This shows that an extremal correlation between two sub-
systems becomes impossible if at least one of them is correlated with a
third subsystem.

The kinematics of correlations, as treated in the framework of ax-
iomatic local quantum-field theory, was born in 1985 in the work of Sum-
mers and Werner[227], taking shape in 1987 by the works of the same
authors[230] and Landau[160, 162]. The commuting algebra Ai we have
used is that of local observables which correspond to spacelike separated
regions in Minkowski spacetime. This in itself is not new[51, 227, 147] but
the results of [51, 147] are independent of the notions and methods spe-
cific to field theory, such as Lorentz invariance, vacuum state, spectrality
condition, mass gap, Reeh-Schlieder theorem, etc., and thus are related
to the more general class we have already considered. The main results
of [227], depending on field theory, are obtained for free fields, and are
related to a more particular class which will be treated separately.

The Schlieder property (see, for example, [148, pp. 27, 64, 77, and 80]
combined with equality (1.5) allows us to prove[160] the equality

‖C‖2 = 4 + ‖[A11, A12]‖ · ‖[A21, A22]‖

The relation R = ‖C‖ can always be obtained by a proper choice of
the state. Further, in any noncommutative C∗ algebra, A11 and A12 can
be selected[160] so that one has ‖[A11, A12]‖ = 2. In that manner, the
proper choice of state and observables can give the equality R = 2

√
2 (see

also [22, Sect. 5]) whatever the sizes and shapes of the regions and their
separation[160]. As to the vacuum state, taking into account its cluster
properties, one will obtain[227] the inequality |R| ≤ 2+ε, where ε→ 0 with
the increased spacing of the regions. In the presence of the mass gap, ε is

5We are thankful to him for this communication.
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exponentially small when the spacing is large compared to the Compton
wavelength regardless of the choice of observables. When there is no mass
gap, ε decreases as the inverse square of the separation, the coefficient
being dependent on the choice of the observables. If, in contrast, we
draw together the regions, it is natural to expect a reinforcement of some
correlations in the vacuum (and, what is more, in any non-pathological)
state. The case of complementary wedges (see, for example, [148, pp. 36,
227, and 241]) whose spacing is equal to zero (there are common boundary
points) is examined in detail. In that case the presence of correlations is
necessary (any factorized state is not normal; see [148, p. 75]). And now
the equalityR = 2

√
2 can be obtained by a proper choice of the observables

rather than of the state[230]. For regions separated by a positive spacing,
one notes[230] that the “funnel property” (see [148, pp. 57, 74, and 266])
establishes the existence of factorized states—for which, of course, we have
|R| ≤ 2. On the other hand, using the Reeh-Schlieder property (see, for
example, [148, pp. 30 and 34]) one can prepare almost any state from the
vacuum by means of the selection of some (rare) local events. Due to this,
the relation R ≈ 2

√
2 can be “simulated” in a vacuum too (and in any

of a wide class of states), but now for conditional probabilities[162] (the
condition itself may be very rare).

The kinematics of correlations embedded in the free-field theory is dis-
tinguished by the use of canonical commutation or anticommutation re-
lations (CCR or CAR) for the field operators. Summers and Werner[227,
228, 229] have shown that R ≈ 2

√
2 in the vacuum state if proper ob-

servables are selected from local algebras of free boson or fermion fields
(massive or massless), and two regions in the spacetime are selected as mu-
tually complementary wedges. It is obvious that this is a particular case
of the result considered above from [230]. The vacuum state of the free
boson field itself proved to be similar to the state considered by Einstein,
Podolsky, and Rosen[70]. One can indeed select four observables[229], lin-
ear in the field operators, P1, Q1 localized in the first region, and P2, Q2

in the second one, such that

[Q1, P1] = i
[Q2, P2] = i

〈(P1 + P2)
2〉〈(Q1 −Q2)

2〉 ≪ h2

(these are mean values in the vacuum state). After that, one is able
to construct[229] observables Aij , giving R ≈ 2

√
2. However, those ob-

servables are no longer linear in the field operators. They have neither
a simple algebraic nature nor a simple operational sense. A trick of
[229] employs a good state but poor observables. There is another trick
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[147, p. 444] with good observables but a poor state. The application
of the discontinuous sign function to the CCR operators Pi and Qi gives
‖[sign(Qi), sign(Pi)]‖ = 2, from which one deduces, through equality (1.5),
that R = 2

√
2 for a particular state. The latter is explicitly written in

[147] but has no simple operational sense [as opposed to the observables
sign(Qi) and sign(Pi)]. But if good observables are employed (the op-
erators obeying canonical commutation relations, and their spectral pro-
jections) combined with a good state—a Gaussian one, in particular a
vacuum state, a coherent one (including “squeezed” ones), or a Gibbs
state for the quadratic Hamiltonians—then one would have |R| ≤ 2 (see
[18, 161]).

The kinematics of correlations lying beyond the scope of quantum the-
ory was introduced in 1985 by the present authors[147] and Rastall[204]
(see also [209]). Returning to (1.1), one can say that here the right-hand
side, which depended on the pecularities of quantum theory, is dropped;
the left-hand side is treated as before; and the question is raised of how
we may express in these terms the causality principle forbidding faster-
than-light signals. Rastall[204] has confined himself to the case when
each of the indices i, j, k, takes on only two values, indicating that the
equality R = 4 can be satisfied without a causality violation. In the
quantum theory this is forbidden by inequality (1.3) (but allowed for
triple correlations [189, 93]). From (1.2) it is easy to see that R = 4
in only one case: i.e., when 〈Aij〉 = 0 and there are perfect correlations:
A11 = A21, A11 = A22, A12 = A21, A12 = −A22. There is no inconsis-
tency here because the observablesAi1, Ai2 are complementary ones unlike
A1j1 , A2j2 which are compatible (see [204] and Section 4 of [158]). Simul-
taneously with Rastall, R = 4 was examined by the present authors[147,
p. 451] along with a number of examples which illustrate how we have
axiomatized the causality principle covering any number of values of the
indices i, j, k and more general situations. Summers and Werner[228] have
treated pair correlations beyond the quantum scope from the angle of ob-
servable algebras more general than C∗ algebras. If at least one of the
two algebras is C∗, then inequality (1.3) remains valid[228], and the con-
ditions for its reducing to the equality are close to those obtained[235] in
the quantum domain.

The kinematics of correlations treated as embedded in classical the-
ory was introduced, of course, by Bell[22] in 1964. The bibliography on
this question is vast. There are several reviews: Home and Selleri[112], De
Baere[60], Spassky and Moskovsky[223], Grib[95], Clauser and Shimony[47],
and others. We confine ourselves to remarks. In our view, the question
is, as before, that posed near (1.1); however, now the observable algebra
is assumed to be commutative. Mathematically this is a great simplifica-
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tion. In the quantum case, as we saw, a substantial task which we have
formulated with reference to (1.1) is completely solvable only in the sim-
plest situations. In the classical case this task is solvable, though not in
the form of a general formula but in an algorithm giving a precise solu-
tion for a finite set of i, j, k values in a finite number of steps. This was
recognized in l981 by Froissart[78], who has implemented the algorithm
by computer for some situations (see also [84, 82, 173]). In the simplest
situation, where i, j, k take on two values each, the solution is given by
the inequality |R| ≤ 2 (obtained in [48] and known as CHSH or Bell-
CHSH inequality), together with three similar inequalities obtained from
it with the use of obvious symmetries. We see now how expression (1.2)
is distinguished among all other linear combinations of four correlations.
Geometrically, the equality R = 2 is the equation of a face of the corre-
sponding polyhedron. Therefore, the use of the quantity R is reasonable
in such classical or quasi-classical cases when |R| ≤ 2 or |R| ≤ 2+ε. In the
quantum case, instead of a polyhedron there occurs a convex body, the
equality R = 2

√
2 being that of the plane tangential to this body at one of

the points of its surface. From the quantum point of view, inequality (1.3)
is only one of a continuum of linear inequalities. This fact is taken into
account in [51, 235, 158], though the same cannot be said for [227, 228]
and [160, 161, 162, 229, 230]. Note once more that in the classical case
we have R3 ≤ 2 [cf. (1.7)] [189]. Finally, there is a theorem on the com-
parison of quantum and classical correlations, obtained by one of us[235]
for the case where i takes on two values, and j, k as many as one wants.
If the matrix M is that of quantum correlations, then the matrix θM is
that of classical correlations provided that the positive number θ satisfies
the condition θKG ≤ 1, where KG is Grothendieck’s constant (the latter
being an exact constant for the mentioned theorem). This constant has
been studied by mathematicians since 1956, but as yet it is only known
that KG ≈ 1.68 ± 0.11. The role that Grothendieck’s constant plays in
correlation matrices of any size is the same role that

√
2 plays in 2 × 2

correlation matrices. This surprizing physical meaning of KG encourages
mathematicians to search for an example where quantum correlations ex-
ceed classical ones by more than

√
2 times. It appears unexpectedly hard.

Fishburn and Reeds[77] found a matrix of size 20 × 20 giving the ratio
1.428 >

√
2 . Note that nothing like this is known for triple correlations.

To complete the review on kinematics of correlations, we want to em-
phasize that it utilizes several commuting algebras, which correspond to
several spacelike separated regions in spacetime; we hope that this kine-
matics is just a prologue to a more substantive multiple-time theory, i.e.,
to the dynamics of correlations.

In this more general theory we have no initial formula so simple, gen-
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eral, and indisputable as is (1.1) for the kinematics of correlations. The
latter can be confined to the interaction of a quantum system with ob-
servers who have to select what observables are measured but cannot affect
the system. The inevitable influence of measurements on the quantum
system is not caught by the kinematics of correlations, which does not
take into account the state of the system upon making a complex of syn-
chronous measurements. As an alternative to the picture of the system
and observers guided by kinematics, dynamics pictures a system and ex-
perimenters whose interaction with the system is of a bilateral nature.
In this case, both the system and the experimenters are distributed in
spacetime and interact locally. One may speak of a collection of local
experimenters or a series of local experiments. But this is always a termi-
nological question. Of course, the experimenters are described classically.
While the concept of observer is traditional in physical theory, the same
cannot be said of an experimenter provided with free will.6 This innova-
tion of principle provoked serious discussions in the 1970s (republished as
[23]), and has been discussed again more recently (see [161, Sect. 5.2] and
[193, 187, 31]).

It is possible that (1.1) should be interpreted as dynamically guided
if the measuring equipment is included in the system in question. (The
permissibility of such an approach will be discussed in the next section).
Let the local experimenter i be thought of as pressing key ji on his control
panel. After some time he will perceive that indicator lamp ki has fired.
Previously, one would have said that pressing the key had given rise to
measuring a corresponding observable. Upon including the equipment in
the system one would say otherwise: by pressing on the key, the experi-
menter has affected the system. By looking at the lamps, the experimenter
has taken a measurement. The observable is the number of the lamp that
fired; the index j disappears into the notation of the observable Aij .

Now it is clear how the multiple-time generalization of the left-hand
side of (1.1) can be given. The index imust run through a partially ordered
set which is interpreted as a set of local chronologically ordered experi-
ments. The index ji sets the influence upon the system, exerted in the
ith local experiment; the index ki, the system’s response to this influence
(and to others, as far as the causality principle allows), measured in the ith
local experiment. However, the further the theory is developed, the more
inconvenient the notation inherited from a simpler situation becomes. Let
us go over to the notation proposed by us in [147]. In [147] there is in
fact a much more general formalism permitting a continuous spectrum of

6Interestingly, N. Bohr, while a student, looked for a mathematical solution of the
free-will problem [54, p. 13].
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values for i, j, k, nonlocal (e.g., loop) observables, etc. But such a gen-
eral formalism requires that the reader possess a previous familiarity with
such elements of modern probability theory as flows of σ-algebras and reg-
ular conditional probabilities. Taking into account that physicists rarely
make use of that language (excluding, perhaps, specialists in constructive
quantum field theory), we will formulate less general definitions.

Let a finite set S of “world points” be given which is partially ordered
by the relations s1 < s2, meaning that it is possible to send a signal from
s1 to s2. Further, let two finite sets Ω0(s) and Ω1(s) be given for each
s ∈ S. Ω0(s) is interpreted as a set of possible local influences; Ω1(s),
that of possible local responses. The integral influence is the function ω0

on S such that ω0(s) ∈ Ω0(s) for each s. Similarly, define the integral

response ω1. In addition, we will need a discrete analog of the spacelike
surface dividing the future from the past. To this end, let us define an
ideal as a subset t of the set S, having the following property: if s1 < s2
and s2 ∈ t, then s1 ∈ t. It is understood that t is interpreted as a region
of the past. By restricting one’s attention to the points in t, one defines
in an obvious way the notion of a “t-integral influence” and a “t-integral
response” (denote them, respectively, as ωt

0 and ωt
1).

We define a stochastic behavior as a functional p(ω0, ω1) of the integral
influence ω0 and integral response ω1 such that: (a) as a function of ω1 at
any fixed ω0, it yields a probability distribution, i.e.,

p(ω0, ω1) ≥ 0;
∑

ω1

p(ω0, ω1) = 1

(b) for any ideal t and any t-integral response ωt
1, one has

p(ω0, ω
t
1) = p(ωt

0, ω
t
1)

Here p(ω0, ω
t
1) =

∑

p(ω0, ω1) and the sum is performed over all integral
responses ω1 coinciding with ωt

1 at the points from t; in other words, the
summation is performed over the variables ω1(s) for all s outside of t. The
origin of condition (b) lies in the fact that the mentioned sum, regarded
as a function of ω0, is really independent of ω0(s) for s outside of t.

Condition (b) expresses the principle of causality: the probabilities of
the responses in the past do not depend on the influences in the future.
In this manner, the definition of stochastic behavior gives an axiomatic
foundation for formulating problems beyond the scope of quantum theory
as well. The scope of a classical theory can be axiomatized as follows.

A deterministic behavior is a stochastic one which satisfies the “con-
dition of determinism,” i.e., for any ω0 and ω1, the number p(ω0, ω1) is
equal either to zero or one.
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A hidden deterministic behavior is a convex combination of the deter-
ministic behaviors

p(ω0, ω1) =
∑

ckpk(ω0, ω1)

each pk being a deterministic behavior, and the coefficients ck such that
ck ≥ 0,

∑

ck = 1.

With regard to mathematics, the situation here is no more compli-
cated than in the kinematics of correlations. Froissart’s considerations
[78] remains valid. The set of all stochastic behaviors is a convex polyhe-
dron in an appropriate finite-dimensional space. The equations of its faces
are known; therefore, a finite number of algorithmic steps give its vertex
points, which represent extremal stochastic behaviors. The set of all hid-
den deterministic behaviors is another convex polyhedron (lying inside the
first one). Its vertices are known; therefore, a finite set of algorithmic steps
gives the equations of its faces, which are nothing but multiple-time Bell
inequalities. To return to the kinematics of correlations, it is necessary
simply to take S with the trivial ordering when there is no one pair s1,
s2 such that s1 < s2. If in so doing S consists of two points only, one
will obtain |R| ≤ 4 once again for the stochastic behaviors, and |R| ≤ 2
for the hidden deterministic ones [R being defined by (1.2)]. It is natural
to expect that |R| ≤ 2

√
2 for the quantum behaviors if this notion is de-

fined in the right way. One may give the definition of a projection-valued

behavior P (ω0, ω1), which literally repeats that of the stochastic behav-
ior with no other difference than that P (ω0, ω1), at the given ω0, ω1, is
not a number but a Hermitian projection in the Hilbert space. Given a
projection-valued behavior and a quantum state, one obtains a stochastic
behavior,

p(ω0, ω1) = 〈P (ω0, ω1)〉 (1.9)

We can see that this formula, if we take into account the inclusion of
the equipment in the quantum system, shows that quantum theory may
describe only those stochastic behaviors p which permit representation
(1.9) via some P and some state. In this respect, the presentation in the
form (1.9) is a necessary quantum condition. Is it a sufficient one? We
do not know. A detailed discussion of this question is given in [147]; see
also [241]. In the kinematics of correlations, (1.9) turns into (1.1), the
necessary condition proving to be sufficient. Note also that (1.9) does not
leave the class of stochastic behaviors. Quantum theory does not permit
faster-than-light signals. This has been shown many times. A number
of references (and one more proof) can be found in [205]. However, an
exhaustive analysis was given by Schlieder[213] in 1968 (see also [99, 105]).
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The study of the dynamics of correlations in the framework of a general
quantum theory was begun in [51] and continued in [147]. Two equivalent
forms of the necessary quantum condition was given (one as above, another
in terms similar to a scattering theory). A further analysis of various
definitions of this kind is given in the work of Vershik and Tsirelson[241]
intended for mathematicians. If a conjecture made in [241] is proved true,
a way will have been opened toward “boson Bell-type inequalities” valid
for any system of interacting Bose fields but violated by Fermi fields!

All of the above problem settings are expressed in terms of probabil-
ities. If we refer directly to the Hilbert space without the mediation of
probabilities, we can relate to the kinematics of correlations the applica-
tion of the Schmidt canonical form

ψ =
∑

k

√
pkφk ⊗ Φk (1.10)

to express an arbitrary state vector ψ of a composite system via orthogonal
sets of state vectors {φk}, {Φk} of two of its subsystems (see [242, Sect. 6.2]
and [79, 243]). In contrast to the trivial expansion of the form

∑

λklφk ⊗
Φl, in (1.10) the vector ψ determines uniquely the numbers p0 ≥ p1 ≥
· · · ≥ 0, and if all pk are different, then φk, Φk are determined uniquely,
as well. A connection with Bell inequalities is pointed out qualitatively by
Home and Selleri[112, sect. 2.1.4] and quantitatively by Tsirelson[234]:

R ≥ 2p0 + 2
√

2(1 − p0)

for some Akl and some state [see (1.2)]. A change in ψ according to
the Schrödinger equation gives rise to changes in φk, Φk, by the proper
equations of motion found in Kubler and Zeh’s work[154], which thus
may be related to the dynamics of correlations. One more branch of
this discipline, i.e., a dissipative dynamics of correlations, is presented in
Section 4.

2 Universal Wave Function

Historical successes of classical physics have called into being an as-
sumption on the universal applicability of the most general features of the
classical description. Subjected to the impact of quantum theory, this as-
sumption has undergone a number of refinements now to be crystallized in
the form of a hypothesis on hidden deterministic behavior (see Section 1)
according to which only behavior of the type noted above can be observed
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by experience. Experimental results leave practically no doubt (see Sec-
tion 7) that this hypothesis is false. The successes of quantum theory have
given rise to a similar assumption that the quantum description principles
possess universal applicability. Neither Bohr nor Heisenberg initially re-
garded quantum theory as a universal physical theory; however, it proved
to be much more viable than they expected at the time, as Weizsacker
writes [247, p. 285].

What does it mean to the experimenter? How does one test universal
applicability of quantum theory? We know of two relevant trends (see
Section 7): macroscopic quantum phenomena and quantum Bell-type in-
equalities.

A negative result of some test on macroscopic quantum coherence (that
is, absence of such coherence when quantum theory predicts it) would
reveal applicability of the classical theory in some domain, and apparently
would result in establishing some hybrid quantum/classical theory, such
as spontaneous measurement theories (see Section 5).

A negative result of some test on quantum Bell-type inequalities (that
is, violation of such inequality when quantum theory predicts its fulfill-
ment) would reveal a restriction on applicability of quantum theory, and
likewise of any hybrid quantum/classical theory of the above-mentioned
type (see Section 5).

Thus, in the first case the position of classical theory would become
stronger at the expense of the position of quantum theory. In the second
case, by contrast, the position of any possible “quantum/classical alliance”
would became weaker, regardless of alignment of forces within the alliance.

The idea of universal applicability of quantum theory led to the con-
cept of “universal wave function,” which describes all systems at a single
level (without separating them into objects and instruments), and never
undergoes reduction. Indeed, existence of this function may only be pos-
tulated; it fails to be well founded via the usual arguments concerning
preparations, measurements, ensembles, probabilities, states, observables,
and so on; see Woo [252]. However, neither can the usual “microscopic”
wave function be well founded in this way. It is enough to have heuris-
tic indications of an appropriate formalism and successful accounting for
facts on the basis of this formalism. As long as no experiment violates a
quantum Bell-type inequality, their universal validity may be considered
as a fact calling for an explanation, and the universal wave function as a
concept providing such an explanation. One may say that the universal
wave function is not essential here, the usual “Copenhagen” one being
enough. However, as Stapp [226] stresses, the Copenhagen interpretation
allows one to apply quantum theory, strictly speaking, only under spe-
cial conditions where some part of the universe is first separated from its
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surroundings, left (almost) isolated during some finite time, and then re-
united with it. In chemistry, especially in biochemistry, there often appear
situations where microscopic degrees of freedom are continuously included
in long chains of (not too weak) interactions which eventually span the
gap up to the macroscopic world.

If quantum theory is indeed applicable only to temporarily isolated
systems, then, what theory should to be applied to other, nonisolated
systems? If a reduction in isolation may indeed result in a deviation
from quantum laws, then, in what direction? Possible answers follow: (1)
toward an essentially new, yet unknown theory; (2) toward a hybrid quan-
tum/classical theory; (3) no deviation; the quantum theory is always ap-
plicable, if formulated properly. Variant (1) will be applicable in the event
of violation of a quantum Bell-type inequality in some “physico-chemical,”
“physico-chemico-biological,” or other experiment. Variant (2) will apply
in the event of a negative result of some test on macroscopic quantum co-
herence. As long as this is not the case, variant (3) is preferable provided
there is a formulation of quantum theory not restricted to temporarily
isolated systems. The hope of finding such a formulation stimulates a
number of works, including Stapp’s and ours. Before discussing available
proposals, let us answer one objection to the universal wave function.

Macroscopic systems, as a rule, fail to be isolated to the extent required
for their quantum description. Upon including one macroscopic device
into the universal wave function, one is forced to include in it the entire
Universe. Specialists on quantum cosmology approve of this (see, e.g.,
[116, 256, 33, 102]), but the same cannot be said of other physicists. We
think that to use the universal wave function it is necessary to use an
astronomical rather than a cosmological scale. This conclusion is related
to the speed of light. In the framework of the Copenhagen interpretation
the spacetime domain “occupied” by a quantum system can be regarded
as a cylinder. Preparation corresponds to the lower base, measurement to
the upper base of this cylinder, and isolation from the environment to the
lateral surface. Permitting curvilinear spacelike surfaces as bases, one can
get rid of the lateral surface entirely, and thus the question of isolation
itself! The possibility of such a description “curvilinear in time” is well
known in quantum field theory.7

Now we proceed to well-known interpretations of universal wave func-
tion.

First, in 1952, D. Bohm[26] set up an interpretation he named “ob-
jective” or “causal.” In the one-particle case it conforms to earlier ideas

7 Generally speaking, the initial state in the given spatial region is of course cor-
related with the state outside the region. This is, however, not a great obstacle. One
must simply consider the dynamics of the relative state inside the region when fixing a
state outside it.
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of de Broglie on the so-called pilot wave. There is, however, substantial
interest in the many-particle closed system, possibly including in itself
macroscopic instruments. Dynamics is described by two mathematical
objects: the wave function (obeying a conventional Schrödinger equation)
and the “classical state,” i.e., a set of coordinates and velocities of all par-
ticles (deterministic equations of motion are postulated for them which
are dependent on the wave function via a non-local “quantum potential”).
This interpretation can be rebuilt for the field theory instead of mechanics.
Its present-day state is presented in [17, 27, 210].

Second, in 1957 Everett[74], supported by Wheeler[249], set up a “rel-
ative state” interpretation (see also [63, 258, 4, 61, 255, 257]). The state of
a closed system (including the macroscopic apparatus itself) is described
by a wave function obeying the conventional Schrödinger equation (or,
maybe, its geometrodynamical generalization). It is of major interest for
this interpretation to consider the case when the system contains sub-
systems capable of storing information. In that case the wave function
is dynamically decomposed into orthogonal summands which evolve in-
dependently of each other; phase relations between them do not manifest
themselves. The relative state interpretation is not the same as the “many
worlds” interpretation (see, e.g., [63, 250]). Ideas close to the relative state
concept have been expressed [185, 79] much earlier than in 1957 and much
later than Everett [150].

Finally, in 1967, Pearle[192] pointed out that the Everett-Wheeler ap-
proach rests upon two theses which may be used separately. The first the-
sis: instruments must (not only may) always be included in a state vector;
this enables the reduction to be eliminated from dynamics. The second
thesis is adopted from the Copenhagen interpretation: a state vector de-
scribes an individual physical system completely. An alternative thesis
was supported by Einstein[72], Mandelstam[178], and others: a state vec-
tor describes an ensemble of identically prepared systems. Uniting this
with the first thesis, Pearle obtained a “statistical interpretation.” For its
further development see Ballentine[13, 12]. For various treatments of the
notion “ensemble,” see [28, 6].

It is of no particular importance to us whether the wave function de-
scribes an individual system or an ensemble, since we do not know how to
discriminate between these two principles by a feasible experiment (now
or in the foreseeable future), if both principles are properly applied to the
universal wave function. Note common features of the above interpreta-
tions:

(a) quantum dynamics is accepted as it is, without any man-made devia-
tion toward classical dynamics (see Section 5 about such deviations);
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(b) there are no classically described physical systems, but there is a
classical reality.

Let us consider the relationship between quantum dynamics and classi-
cal reality from a formal point of view. In the relative state interpretation,
classical reality arises from classical events. Each of these events consists
of decomposing the state vector into a sum of some “fragment” vectors
which are not only orthogonal but “hereditarily orthogonal,” in the sense
that a further evolution of various summands (with a further decomposi-
tion into smaller fragments) takes place in various subspaces orthogonal to
each other. It is convenient to regard a set of fragments as a phase space
of a Markov process. When the fragment is decomposed further, a random
point jumps to one of the “offspring fragments,” and the probabilities are,
naturally, set to be the squared vector length. The path of such a random
process is interpreted as the classical history. The latter is discrete in time
(from event to event); this fact results from the assumed discreteness of
information storing systems, and is not a matter of principle. It is rather
a matter of principle that the very existence of classical reality and its
character depends on existence and properties of these storage systems.

The “objective” interpretation uses, at first sight, quite another math-
ematics. However, just now, in passing from mechanics to field theory,
it loses its initial obviousness, the abstract “skeleton” of the applied con-
structions becoming clearer in return (and the arbitrariness contained in
them becomes more noticeable). At each instant the state vector is pre-
sented in the proper way in the form of a sum of orthogonal summands,
i.e. expanded in the eigenvectors of a singled-out complete system of com-
muting operators. There is a probability distribution on the set of these
summands. Then, based upon the constructed single-time distributions,
one selects a way of constructing the many-time distributions. This leads
to a random process. Finally, one randomly given path of that random
process is proclaimed to give an objective description for the evolution of
the physical world.

The resemblance to the Everett interpretation is evident in such a
description. The difference is, first of all, the absence of a hereditary
orthogonality. Fragments are not only “decomposed” but “recombined,”
and rather intensively. A deeper difference follows. In the Everett in-
terpretation classical reality rests on dynamic properties of the quantum
system (its capability of receiving and retaining information, no matter
in what form and in what medium). The “objective” interpretation rests
on kinematic structures. Namely, it has postulated for mechanics an ex-
clusive role of coordinate observables, and for field theory an exclusive
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role of infinitesimally localized observables. The contrast is striking for
the vacuum state. According to the Everett interpretation, no classical
events occur in vacuum (as there is no accumulation of information). The
“objective” interpretation ascribes to vacuum a rich-in-contents classical
reality (“hard boiling”). We cannot make exact statement about this,
since the field version of this interpretation is weakly developed, and the
“usual” quantum field theory is far from being rigorous. However, it is
clear that observables, localized in infinitesimal domains, certainly have
infinitely large fluctuations resulting, at best, in very complicated classical
configurations. The “objective” interpretation takes as a basis a structure
rather than a function (“anatomy rather than physiology”), namely the
spatial arrangement of (“bare”) elementary particles. This makes it pos-
sible to introduce “classical reality” with enviable clearness, but at the
cost of imagining the unobservable microscopic classical reality. We do
not follow this trend.

There is a school of opinion that Everett simply introduced a bizarre
terminology, calling reality what was formerly called the collection of pos-
sibilities. On the other hand, his interpretation is often called “many
worlds,” with the understanding that the coexistence of many worlds is
in the same sense as when one says that subsystems of one physical sys-
tem coexist. We have to emphasize that the construction of the universal
wave function is expressed, by Everett, in terms of two mathematical op-
erations: tensor multiplication and superposition (addition with complex
coefficients). The meaning of the tensor multiplication is rather clear: it
describes the coexistence of subsystems. The meaning of the superposi-
tion which joins alternatives (“worlds”) is quite different and substantially
nonclassical. It approaches the classical idea on “possibilities” insofar as
the interference between the alternatives can be neglected.

Everett’s work[74], as was rightly noted by the author himself, is a
meta-theory rather than a physical theory. It is no more (however, no less)
than a research program intended for building a new interpretation. The
scenario of state vector decomposition into “fragments” has been obtained
on an a priori assumption that quantum theory is actually capable of
describing, in such a way, the physical world together with macroscopic
instruments and even observers. We appreciate Everett’s work as a call
for reconstructing the classical world from quantum dynamics, on the
basis of an analysis of dynamic characteristics of big quantum systems. A
number of works on this trend, from Everett until today, will be discussed
in Section 3.

All interpretations of the universal wave function correlate the clas-
sical description with the quantum one in a quite new manner against
the Copenhagen interpretation. The last requires for each case to di-
vide the relevant physical systems into those described as quantum and
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those described (for this case) as classical. A joint application of both
description modes to one system is senseless in the Copenhagen frame-
work. By contrast, the universal wave function is always used for a joint
quantum/classical description (not to be confused with a hybrid dynam-
ics in the sense of Section 5), the quantum description being primary, and
dynamically independent of the classical one, the latter being now a super-
structure over the former. There is no point in opposing them in the spirit
of Copenhagen. To explain what we mean by “superstructure”, let us list
several other examples of it (see also Clarke[46]). (a) A representation of a
group or an algebra in a Hilbert space is a superstructure over this Hilbert
space. When someone says that a system is described by a representation
of the commutation relation PQ − QP = −ih, no one objects that only
one thing may by fundamental, either the Hilbert space, or the abstract
algebra generated by P,Q. (b) A Riemannian metric is a superstructure
over a smooth manifold, that turns it into a Riemann space. Also the
smooth manifold is a topological space with an overstructure, namely, the
smooth structure. And the topological space, in its turn, is a set pro-
vided with a topology. When someone says that space-time is described
with a Riemann space, no one treats it as several competing fundamental
descriptions.

So, we strive to reconstruct the classical world as a superstructure over
quantum dynamics.

3 Reconstruction of the Classical World: Ap-

proaches to the Problem

Is there a criterion for applying the classical description within the
quantum theory? If so, then one can reconstruct a classically described
macroscopic world embedded in a more fundamental quantum description,
thereby supporting the idea of the universal wave function. If not, the
departure point of the Copenhagen interpretation remains valid: quantum
theory must be constructed on a preliminary classical theory not only
historically but logically.

The Copenhagen interpretation takes classical physics as a given, but
limits its use to situations where all representative quantities having the
dimensions of action are large compared to Planck’s constant. It is inter-
esting that as early as half a century ago Teller questioned Bohr as to why
the accepted classical concepts could not be replaced by others. Develop-
ing this idea, Teller assumed that irreversibility is the sole property of the
macroscopic apparatus important for quantum theory. Bohr, however, did
not believe it was correct to make first principles dependent on a “partic-
ular theory such as thermodynamics.” We have discovered this from the
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paper of Weizsacker[248], who supported Teller on this point. It looks as
if Teller anticipated two ideas which have become indispensable for the
universal wave function to be interpreted. First, the meaning of the term
“classical description” considered in the context of the quantum theory
foundations can differ from that of the same term used in the history of
physics. Second, the most important element of the classical description
for a quantum viewpoint is that of thermodynamic irreversibility.8

“Can the quantum theory stand on its own feet?” It is in these terms
that the problem often appears in the discussions which have go on for
decades, and whose participants included the great physicists, and mak-
ers of quantum theory (Einstein, Bohr, Schrödinger, de Broglie). This
problem is resurfacing with new strength at present. The quantum de-
scription of macroscopic systems which are used as instruments attracts
great attention from the “optimists,” who have made a number of impor-
tant observations and stated more than once that a positive solution of the
problem has been found. However, all the suggested solutions were met
with criticism from the “pessimists,” who emphasize a failure in resolving
the problem so posed. We enumerate some ideas of this kind.

Wakita[244] pointed out that a macroscopic collective degree of free-
dom, as a rule, strongly influences the numerous microscopic degrees of
freedom coupled to it; this causes a fast propagation of quantum correla-
tions, that is, an “entanglement of the wave function.” Dynamical “disen-
tanglement” is prevented by thermodynamical irreversibility. At the same
time, the macroscopic interactions are described by the observables which
are decomposed into sums of summands each of which depends on few
degrees of freedom. It is therefore very difficult to distinguish between
a strongly “entangled” wave function and a mixture. The macroscopic
information can be said to exist in many “copies,” some small part being
transferred usually by the macroscopic interaction.

Daneri, Loinger, and Prosperi[52, 53] have analyzed a number of typ-
ical ways of taking quantum measurements to demonstrate that in each
case the device transits from a metastable state to a stable one—the pa-
rameters of the latter containing the measured result. The macroscopic
interaction of the device with its surroundings is described by observables
that do not mix together various stable states; otherwise the regular ther-
modynamic behavior of the device would be violated. Jauch, Wigner,
and Yanase[115] objected that the limitation of the class of observables
for a device does not result from the first principles of quantum theory
(see also [114, 208, 34, 175]). Both in [53] and [115] it is noted that
the use of the master equations is a promising way to describe the quan-

8The problem of irreversible statistical physics (and thermodynamics) foundation
in the scope of quantum theory is discussed in Section 6.
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tum/classical correspondence (see also [20, p. 177]). The simplest pattern
of ideal measurement[242] was generalized by the notion of “operation”
(see Haag and Kastler[99], Schlieder[213], Hellwig and Kraus[106, 105],
and Kraus[151]); for the continuous case, both in time and in the spec-
trum of measurement outcomes, see Davies[56] and Davies and Lewis[57];
for further investigations we refer the reader to the survey [35]; see also
[42] and [172].9

Hepp[107] has demonstrated the applicability of the classical descrip-
tion in the situation where the information from the readings of the instru-
ments is propagated without limit in the environment, while the macro-
scopic interaction of instruments with other (secondary) ones is described
by local observables. Bell[19] objected that this limitation for the class of
observables does not result from first principles, all the more so because
information can propagate only a finite distance in a finite time.

The “delocalization” of quantum correlations is undoubtedly impor-
tant for quantum theory, throwing light on a number of questions. Why
are molecules of ammonia usually observed in states of definite parity and
those of sugar in states of a definite chirality? Why are microscopic oscil-
lators usually observed in states of definite energy and macroscopic ones
in states more like coherent states? Why does one of the two correlated
particles in the EPR thought experiment contain information of both a co-
ordinate and momentum of the other particle while the instrument, upon
interacting with the object, possesses the information only on one definite
observable? Why are macroscopic bodies usually observed in states having
a slight dispersion of coordinate and momentum, in spite of the fact that a
non-well-integrable dynamics, as a rule, increases this dispersion exponen-
tially? Why do the coordinates and momenta of macroscopic bodies obey
the classical equations of motion which are often treated as asymptotic
consequences of the Schrödinger equation, while the Schrödinger equation
itself cannot be satisfied by such objects even by a crude approximation,
due to the strong (on a quantum scale) interaction with the environment?
How do these facts affect the limiting process h → 0? Finally, why is
the spacetime metric observed as classically definite and obeying the clas-
sical Einstein equation? These and related questions are considered in
[259, 116, 117, 146], and [260, 15, 266, 265, 118, 119, 263, 262].

Let us interrupt the enumeration of ideas in order to analyze the
origin of the discord between “optimists” and “pessimists”. To begin

9 “The problem is that we are implicitly trying to apply the quantum measurement
nostrums developed in the 20’s and 30’s . . . to experiments of a type only feasible in
the 90’s (if then!) where we seriously wonder about the effects of quantum mechanics
on macroscopic bodies”[172].
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with, note that the quantitative difference between the microworld and
the macroworld is great but finite. There are quite a few opportunities
for reconstructing a classical world from a quantum one through a limit-
ing procedure, when a parameter of a quantum system tends to infinity
[244, 107, 177]; thereby, effectively classical degrees of freedom (or events)
emerge. It can be said that classical systems are infinite (in a special
sense) quantum systems. Thus, finite systems are described via their re-
lation to imaginary infinite systems. Such a description is considered to
give a satisfactory approximation for the relation of small (microscopic)
systems to large (macroscopic) ones.

A serious flaw in the above approach lies in the fact that the limiting
procedure makes the picture qualitatively more scanty, sometimes leading
away from essential points. Thus, classical dynamics transform a point of
the phase space to a point, and it may be treated as the simplest asymp-
totics for the movement of a localized wave packet. However, usually tra-
jectories diverge exponentially, and the considered time interval exceeds
the time of diverging. In the case the above asymptotics needs the unre-
alistic assumption that parameters of the system are not only large, but
also exponentially large in comparison to Planck’s constant. A realistic
analysis of large finite systems has led to the realization of the principal
role of delocalization of quantum correlations. Macroscopic bodies are
not only large, but also essentially coupled with their environment. The
present criticism concerns also the Copenhagen interpretation describing
finite quantum systems via their relation to classical ones. One may object
that classically described macroscopic bodies are not considered infinitely
massive; their coordinates and momenta are acknowledged to be defined
up to small uncertainties obeying Heisenberg’s relation. However the point
is that these uncertainties are assumed necessarily small just by virtue of
the classical nature of the body, and thereby the problem of wave packet
spreading is abandoned a priori.

So we consider it unsatisfactory to substitute infinite (or necessarily
classical) systems for macroscopic ones. In this regard we agree with the
“pessimists.” Even so we do not reject the arguments of the “optimists.”
Let us explain how it is possible, starting with a digression.

In olden times the question “where are we in the Universe?” admitted
a short, exact, and clear answer: at the center of the Universe, that is,
at the point, around which the Universe rotates. Nowadays, the answer
is necessarily lengthy and vague; it involves a lot of details about specific
galaxies, etc. If someone considered this situation a great loss, he would
readily find a few opportunities to embroider the picture of reality (the
world view). For example: let all the Universe be stitched with coordinate
lines (woven from ether) that are unobservable to us, but for nature itself
they perform important duties: they fix the positions of all (classical)
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bodies! (This is a parody on the “objective” interpretation). Another
example: let Newton’s equations of motion be supplemented by a new
term describing a “spontaneous movement,” always directed at a certain
point (the center of the Universe), but too slow to be detected in our time.
(This is a parody on “spontaneous measurement” theories; see Section 5).

It is easy to speak ironically of concepts given up long ago. It is hard
to adopt the idea that our classical reality is singled out not by nature
in itself, but by our specific position within nature. However, it is this
idea that seems to be the next step away from our anthropocentrism.
We acknowledge that another observer may disagree with us not only on
the meaning of “up” and “down”, but even on the meaning of “classical
reality”.10 One may object that such a different observer would necessarily
be beyond the reach of our communication, so it is pointless to consider
him an observer. We answer: but an observer within a black hole is out
of reach of our communication, as well.

So, we agree with D’Espagnat[58] that the origin of the disagreement
between the “optimists” and the “pessimists” is the fact that the “opti-
mists” investigate the emergence of classical reality relative to a class of
observers, whereas the “pessimists” acknowledge only absolute (indepen-
dent) classical reality.

As far as we know, the first “optimist” was Teller, who proposed ther-
modynamically irreversible systems for the role of the observers, and the
first “pessimist” was Bohr, who objected that the notion of classical real-
ity is more fundamental than thermodynamics. We consider works of the
“optimists” as progress rather than a collection of mistakes and misunder-
standings, and perceive nothing reprehensible in using statistical physics
for the foundations of quantum theory, as well as for other areas, bearing
in mind that, thereby, these foundations became dependent on problems
of the foundation of statistical physics. Also, we perceive, in principle,
nothing reprehensible in taking account of the observer’s size, lifetime and
so on, provided that it is really essential.

In classical theory an exact description of the observed object goes
together well with an extremely idealized one of the observer, owing to the
concept of an undisturbing measurement. Acknowledging the influence of
the observer on the object to be inevitable, quantum theory has made
itself responsible for describing a real (nonideal) observer. In practice,

10 This is not a modern idea. Remember the Wigner friend paradox [251]. Moreover,
the Schrödinger cat [212] is a candidate for the role of another observer. Otherwise why
did Schrödinger use such an eccentric example of a macroscopic device as a cat?. . . For
a modern discussion see [257, 256, 94].
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the quantum observer is of course idealized as well.11 And this leads to
some errors in describing the object and to a “gap” between a “working”
quantum theory and its foundations and to the appearance of “accursed
questions.”

The classical observer is capable of directly perceiving the spacetime
relations. This capability is simply postulated along with an unlimited
resolving power, as well as an unlimited memory capacity and reliability.
This leads to a classical picture of reality. In the quantum domain it is im-
possible to provide the observer with a high resolving power together with
a good memory without the dynamics of the object being distorted beyond
recognition. The Copenhagen interpretation attributes to the observer an
ideal memory but a low resolving power (he sees only macroscopic bodies).
The “objective” interpretation, on the contrary, imputes to the ideal ob-
server an infinitely high resolving power but absolutely no memory for the
storing of past observations. This, of course, is not true of real observers.
They are treated as some complicated material systems to be described in
the scope of the picture of reality given by an ideal observer. The relative-
state interpretation was originally formulated[74] for an observer having
ideal memory, permitting us to weaken this requirement[258, 154].

To describe a real observer in quantum theory, various alternatives
and combinations of several interrelated concepts have been used: de-
composition of the physical Universe into subsystems and of the Hilbert
space into a tensor product[74, 244, 258, 266, 265], singling-out of collec-
tive degrees of freedom[244, 266, 265] or thermodynamic parameters[52];
propagation of the quantum correlations at a distance exceeding the char-
acteristic sizes of an observer[244, 260, 15, 107]; “duplication” of macro-
scopic information[244, 266, 265]; and so on (it is difficult to single out
independent components in these entangled concepts). When discussing
merits and demerits of such ideas, it is important to keep in mind that an
absolutely exact formulation is surely unattainable; there is an obstacle of
fundamental, almost epistemological level. That is, on the one hand, the
physical theory is in need of the concept of a generalized observer deprived
of individual features, and on the other hand, idealizing the real observer
in quantum theory inevitably misrepresents the dynamics of an observed
object!

Until recently, the processing of information was believed to be neces-
sarily dissipative. Now the possibility in principle of creating a nondissi-
pative computer is admitted[76, 62, 194, 179]. Can such a computer be

11The Copenhagen interpretation prescribes the “reduction of the state vector.” But
at the same time it reserves the possibility of decreasing errors by means of shifting the
quantum/classical boundary.



906 Khalfin and Tsirelson

regarded as an observer?12 If so, must its physical picture of reality be
the same as ours? We scarcely know how we ourselves process informa-
tion; nevertheless our sense organs, as well as our means of intercourse,
are obviously dissipative—opaque to quantum coherence. In this regard
we are dissipative observers. By fixing this point in the first principles of
the theory, we shall discriminate against some observers. At the expense
of this, the accuracy (or rather the fundamental boundary of attainable
accuracy13) of our theory will be increased. “Macroscopic systems are
inherently dissipative”—by these words from the paper of Caldeira and
Leggett[36] is our approach to the problems of the quantum/classical cor-
respondence determined.

Dissipation, considered on the quantum level, of course, is not a result
of attempts to quantize the friction force point-blank (see [224]). Instead
it is a manifestation of the delocalization of quantum correlations. The
most obvious example is a photon radiated or reflected by a macroscopic
body and flying away to infinity. It is, however, useful to keep in mind, for
instance, that the friction between a solid black body and the thermal radi-
ation filling up the surrounding space influences the quantum-mechanical
motion of this body in roughly the same way as does the friction between
this body and the thermal radiation locked up in its internal cavity (if
any). In particular, in both cases the equations of the next section are
applicable. The “propagation” of correlations and “locality” of observ-
ables must be understood in a thermodynamical rather than geometrical
sense. Zurek[266] emphasizes this by the term “built-in environment.”
The Poincaré time for a finite system consisting of a macroscopically large
number of particles far exceeds the duration of any feasible experiment.
In this respect, it can be said that there exists an essentially irreversible
propagation of correlations in a spatially bounded system. On the other
hand, no quantum-mechanical system can be regarded as isolated from
outer fields for such long times[265]; this returns us to the ideas of spatial
infinity, continuous spectrum, and “true” irreversibility.

The problem of the foundations of stat-physical (and thereby ther-
modynamical) irreversible descriptions in the scope of quantum theory is
discussed in Section 6. The thermal radiation locked in (or rather, nearly
locked in) the internal cavity is a buffer capable of readily “absorbing”

12This question was discussed in [4, 195]. For such an observer the concept of reduc-
tion caused by the digitization of information by the observer, would be in order[117].
The continuous reduction presented in the next section is more natural for us.

13Many investigators regard some inaccuracy in setting an observer or his environ-
ment’s state and hence the Universe as a whole to be basically necessary[196, 202]. An
opposite point of view is characteristic of the objective interpretation.
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the quantum correlations so as to then progressively “radiate” them away
to infinity. The thermodynamical delocalization of correlations is always
eventually related to a spatial one, but can occur much faster than the
latter. On the other hand, the spatial delocalization of correlations can
be partially reversible, and thereby become many times larger than the
thermodynamical delocalization, as was pointed out by Joos[118] (see also
[168, 169]). We can attribute to the reversible delocalization of correlations
the elastic deformation of the environment induced by a gravitating body,
the reversible polarization of the environment by an electrically charged
body (see also [238, Sect. 6A]), the dressing of bare particles, etc. The
criteria for the applicability of the classical description within quantum
theory must rest only upon irreversible processes. Unfortunately, some
works[260, 154, 116, 117] do not always give due consideration to sepa-
rating the elastic and dissipative processes; as a consequence the results
of some definite estimates, when uncritically interpreted, can lead to a
grossly exaggerated picture of the rate of thermodynamical delocalization
of correlations. There is now a solid foundation for calculating this rate.

The fluctuation-dissipation relations (FDR) were obtained in a pio-
neering Callen and Welton 1951 work [40] generalizing the Nyquist for-
mula for voltage noise in electrical circuits. They are applicable to a wide
class of physical systems near thermal equilibrium, such as the motion of
a solid body in a liquid, that of an electrically charged particle in a ther-
mal electromagnetic field, and others. Attention was chiefly given to the
environment (liquid, field) described at the quantum level. The mechan-
ical system served only as a “probe particle” to be described classically.
Senitzky[218] put more emphasis on the mechanical system and gave a
quantum description of its motion in the presence of a slight interaction
with the environment. He has shown that for the approximation used, the
environment can always be described by means of the canonical commu-
tation relations (CCR), regarding its Hamiltonian as quadratic and the
interaction Hamiltonian as linear in the environment variables.

Thus, mechanical systems with friction came within the reach of the
quantum description, though a number of more delicate points were made
more precise later (see, in particular, [155, 101, 207, 238]), and some of
them are still poorly understood. It can be said that the environment
affects the body via a sum of two forces. One, fluctuational, is random
and has zero mean value and a definite covariance function; another, dissi-
pative, is integrally dependent on the preceding body pathway, the kernel
of the integral (Green function) being related to the covariance function
of fluctuations through FDR. Both functions are localized on the time
scale characteristic of microscopic processes in the environment. Usually
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the motion of the mechanical system is relatively slow. This allows us to
return to a Langevin equation local in time. Agarval[3] found out that in
such a situation the quantum dynamics is formally identical to the clas-
sical one, when written in the form of the Markov master equation for
the Wigner distribution function. It is a partial differential equation of
the Fokker-Planck type (see the next section). A closed derivation of the
equations of quantum dynamics (non-Markovian to begin with, and then
Markovian ones) for a system of collective degrees of freedom slightly inter-
acting with thermal ones is contained14 in our work [146]. Our treatment
is for a rather general case, with an explicit analysis of initial assump-
tions but without seeking full mathematical rigor (see also [80, 81]). The
environment-induced non-Hamiltonian effects, dissipation and fluctuation,
exist against a background of (usually larger-magnitude) Hamiltonian ef-
fects (renormalization of the mass and other mechanical parameters). This
is nothing but the above-discussed difference between the reversible and
irreversible delocalization of correlations.

Collisions of heavy ions[108, 109, 261] have become a remarkable test-
ing ground for this theory. The objects here are small enough to require
the quantum description, and at the same time large enough to entail dis-
sipation and fluctuations. In [108] the description which is local in time is
given by a system of differential equations the order of which is dependent
on properties of the environment. It is noted[108, 109, 261] that usually
the environment also possesses low-frequency collective modes which cause
an essential delay. Some effects are discussed which are usually negligible
in macroscopic situations: the influence of mechanical motion on the envi-
ronment temperature, a nonadiabatic reaction of the environment on the
mechanical motion, and so on. For FDR in mesoscopic domain see [85].

A new wave of interest in the quantum description of dissipative pro-
cesses had already arisen in the early 80’s in connection with the problems
of the quantum/classical correspondence[168, 36, 167, 174, 119, 263, 146]
and [37, 38, 245, 211, 68, 65, 184]. There is some hope of realizing exper-
imentally the quantum behavior of a macroscopic degree of freedom, e.g.,
the magnetic flux in a SQUID or a phase order parameter in a Joseph-
son junction[149, 5]; the corresponding experiments will be discussed in
Section 7. Such systems are of value not only because of their small dissi-
pation, but also because of the availability of microscopically small details
of the potential pattern, that is, wells and barriers. The quantum motion

14 Unfortunately, in [146] there is some inconsistency in the notation. The following
corrections should be made: a factor of h/2 before the function g, and before the three
indexed value C in Section 4.7 and 4.8. In addition. the third integral in (8) is taken
over t1 > t2 rather than t2 > t1. We regret the inconvenience.
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in such a potential can be quite different from the above-mentioned quasi-
classical motion with dissipation and fluctuations, because the former in-
cludes tunnel transitions. It is, however, also different from that described
by the WKB method, for the latter does not allow us to take into account
dissipative effects. New methods, predicting new phenomena, have been
developed[214, 44, 96, 167]. We will not dwell on these interesting ques-
tions, as we are not sure one should call “macroscopic” a degree of freedom
whose potential pattern has microscopically minute details essentially af-
fecting the motion. More important for our purposes is to conclude that
the description of the environment using CCR (in other words, with the
use of harmonic oscillators) is widely applicable[215, 36, 97]. In nonlinear
optics the possibility of creating and detecting superpositions of macro-
scopically different states has recently been recognized[254, 232, 121].

The lack of manifestations of quantum coherence in the macro-world
can thus be understood as the result of the delocalization of quantum cor-
relations due to interactions with the environment, and this interaction
can usually be calculated with FDR. Does this mean that a certain dimen-
sionless “quantalness coefficient” for a given macroscopic process can be
calculated? What would serve as such a coefficient? In 1979 Wotters and
Zurek[253] quantitatively analyzed the double-slit interference experiment
where, going back to Einstein, a particle and its environment interacted
rather weakly so that the fringe pattern was not too spoiled. They have
shown that such an interaction can be sufficient for an indirect measure-
ment of the coordinate, giving incomplete but considerable information on
which slit the particle has gone through. The influence of the environment
may be estimated by the destructive effect which it has on one or another
manifestation of quantum coherence. While the interference pattern was
chosen in [253], in our 1985 work[147] the violation of Bell’s inequalities
was chosen for that purpose. Assuming that the environment introduces
into the coordinate and momentum of a particle fluctuations which are
independent, normally distributed random variables with standard devia-
tions ∆q,∆p, we have shown that the highest possible value of a violation
of Bell’s inequalities is small when ∆p∆q ≫ h. In this case Bell’s in-
equalities are considered for quite arbitrary two-valued observables. The
interaction with the environment is assumed linear in the coordinates and
momenta; however, later, when the measurements are made, the linear
functions in the coordinates and momenta are not singled-out among the
nonlinear ones. The expression “the highest possible violation of Bell’s
inequalities” implies an optimization (finding a maximum) both in initial
states and measured observables. This requires more general mathemati-
cal methods than those necessary to calculate a particular effect, e.g., an
interference pattern.
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Dissipation has taken its place in investigations since 1985[38, 119, 245,
211, 263]. Caldeira and Leggett[38] have considered the harmonic oscilla-
tor whose initial state is assumed to be the superposition of two strongly
different coherent states, ground (fixed) and shifted (oscillating). Each
time the oscillating wave packet comes close to a zero point, the proba-
bility distribution for the coordinate develops fringes due to interference.
The destructive influence of a dissipative environment on this interference
is studied quantitatively with the use of FDR, as a function of six param-
eters: the environment (reservoir) temperature T , the friction coefficient
Γ, the oscillator frequency, its mass m, the initial shift of the oscillating
wave packet, and the upper frequency of the reservoir. The presence of
four dimensionless parameters changing within wide limits makes investi-
gation [38] rich in content, but its results difficult to perceive and utilize.
In the works of Joos and Zeh[119], Walls and Milburn[245], Savage and
Walls[211], and Zurek[263] the number of parameters is reduced to four
(two are dimensionless) at the cost of the substitution of an oscillator by
a free particle and the utilization of a Markov approximation adequate at
not-so-low temperatures. The delocalization rate of quantum correlations
is characterized by the quantity Λ = h−2kBTΓ, of dimensions [l−2t−1] (for
details, see the end of next section). The parts of a wave packet which are
spaced ∆x apart lose their coherence after a time of the order Λ−1(∆x)−2.
This is some reply to the question used by Zurek as a title of [263], “Re-
duction of the wavepacket: how long does it take?” In our 1987 work[146]
the same question was answered differently, with no ∆x parameter: the
coherence vanishes within a time of order

√

hm/(kBTΓ). The difference in
the results is accounted for by different ways of formulating the problem.
The absence of extra parameters like ∆x in our approach, which is based
on Bell’s inequalities, is concerned with the already-mentioned optimiza-
tion in the observables and states. The time given by us serves not only
coordinate observables but momentum ones as well, or any functions of
coordinates and momenta.

No matter how the “quantalness coefficient” is defined, it is natural
to expect it to tend to zero when the fluctuational influence of the en-
vironment tends to infinity. Quasi-classical methods have trained us to
think that the quantum corrections to the classical predictions happen
to be small but not zero. It is from this position that we discussed in
[147] the quantum corrections to Bell’s inequalities. Here, a welcome sur-
prise awaited us! These corrections proved[146] to vanish exactly, when
∆q∆p ≥ h. This means that the characteristic time of destroying the
coherence can be understood not only as the time for the essential weak-
ening of the quantum effects but rather as that of their utter vanishing.
At this length of time the environment engenders a change in the quan-
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tum state that is equivalent to the absorption and reemission of the given
quantum system by some classical apparatus. In other words, it is equiv-
alent to a sequence “measuring/preparing,” which transforms quantum
states into quantum ones, as contrasted with the usual sequence “prepar-
ing/measuring,” which transforms classical states into classical ones. An
exact definition of this notion of “classical factorization” was given in [146]
and will be discussed in the next section. Such a process completely de-
stroys any quantum correlations of the given system with other systems
(of course, not including in itself the environment having caused the fac-
torization); this leads to Bell’s inequalities being satisfied.

Thus, in some situations the quantum corrections utterly vanish. Does
this mean that the system in such situations can be described classically
in the sense explained in Section 2 (admitting a classical superstructure
over quantum dynamics)? Yes, there is such a possibility, as was indicated
in 1987 by Diosi[68] and by us[146]. Our approach[146] is as follows: the
evolution of the system during a time longer than that of classical factor-
ization can be presented as a sequence of alternating acts of measuring
and preparing. The measurement outcomes form a “dotted-in-time” clas-
sical description. There is no classical determinacy, but also no quantum
interference. In [146] we indicated a way to estimate the time of classical
factorization of various particular models. As a rule, it is close to the
above-mentioned value

√

hm/kBTΓ (see Sections 4 and 7). As for the
approach of Diosi[68, 65] see the next section, which shows that its unifi-
cation with the approach of our work[146] is not only possible but fruitful.

4 Dissipative Dynamics of Correlations

The previous section pointed to the necessity of considering the quan-
tum dynamics of a macroscopic system by taking into account the fluctua-
tion forces acting on it from the environment and obeying the fluctuation-
dissipation relations. Let us stress that the classically looking fluctuation
force results from a quantum interaction with a quantum environment (see
Section 3). Below we shall consider how the influence of the fluctuation
forces is manifested in the investigation of the problem of reconstructing
the classical world within the quantum description, using a method which
develops the approach of Diosi[68, 65] and ours [146]. (See also works of
Barchielli, Lanz, Prosperi, and Lupieri cited in [65, 35, 203], and Section
3 of Ghirardi, Rimini, and Weber’s work[88] and [245, 211].)

Let us begin with the simplest case. Let there be one collective degree
of freedom, namely, the coordinate q and the momentum p of a body of
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mass m. The body is affected by the environment through a fluctuation
force Ffluc proportional to a white noise,

〈Ffluc(s)Ffluc(t)〉 = λ2δ(s− t) (4.1)

The fluctuation-noise intensity, dependent on the environment tempera-
ture and the friction coefficient (see the end of this section), can be de-
scribed by the constant λ or by the following value having the dimensions
of time:

τfluc =

√
hm

λ
(4.2)

Other forces are assumed to be absent. The classical equations of motion,
ṗ = Ffluc, q̇ = p/m can be written in the form of stochastic differential
equations (about this notion see, for example, [176])

dp = λdb

dq = (1/m)p dt
(4.3)

where b(t) is the Wiener random process whose derivative is the white
noise: 〈ḃ(s)ḃ(t)〉 = δ(s−t). The proper evolution equation for the classical
probability density w(p, q, t) in phase space is well known:

(

∂

∂t
− λ2

2

∂2

∂p2
+

1

m
p
∂

∂q

)

w(p, q, t) = 0 (4.4)

The same equation describes the dynamics of the quantum density ma-
trix if w(p, q, t) denotes a Wigner distribution function (in other words,
a Weyl symbol of the density matrix); see, e.g., [24]. Thus, Eq. (4.4) de-
termines the quantum dynamics of a macroscopic body in the presence of
fluctuation forces.

Let the distribution w be Gaussian (i.e., the exponent of a second-
degree polynomial of in p and q) at some moment; it will then remain Gaus-
sian at all later moments. Pure Gaussian quantum states are also known as
coherent states, and mixed ones as Gibbs states for the quadratic Hamilto-
nians. The Gaussian distribution (and hence the Gaussian quantum state)
is unambiguously determined by the first and second moments 〈p〉, 〈q〉,
〈p2〉, 〈pq〉, 〈q2〉. The central second moments 〈p2

0〉, 〈p0q0〉, 〈q20〉 are more
convenient to consider than the original second moments 〈p2〉, 〈pq〉, 〈q2〉.
Here and below,

p0 ≡ p− 〈p〉
q0 ≡ q − 〈q〉
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The dynamics of the moments, corresponding to Eq. (4.4), is more con-
veniently calculated from (4.3)—but keeping in mind the rules of the Ito
stochastic differential calculus: (db)2 = dt, dbdt = 0, (dt)2 = 0, and also
〈fdb〉 = 0 for any nonanticipating functional f of b (see, e.g., [176].) We
obtain

d

dt
〈p〉 = 0

d

dt
〈q〉 =

1

m
〈p〉

d

dt
〈p2

0〉 = λ2

d

dt
〈p0q0〉 =

1

m
〈p2

0〉

d

dt
〈q20〉 =

2

m
〈p0q0〉

(4.5)

All quantum states obey a known inequality for the discriminant

〈p2
0〉〈q20〉 − 〈p0q0〉2 ≥ h2

4
(4.6)

This is, of course, one of the forms of the uncertainty relation (see, e.g.,
[110]). Equality is attained for pure Gaussian states. The dynamics (4.4)
transforms pure states into mixed ones and enlarges the discriminant.
Thus, it follows from (4.5) that

d

dt

(

〈p2
0〉〈q20〉 − 〈p0q0〉2

)

= λ2〈q20〉

It is convenient to represent each Gaussian state by an ellipse on a
phase plane— known in probability theory as a concentration ellipse. The
point (p1, q1) belongs to this ellipse if |ap1 +bq1 +c| ≤ 1 for any a, b, c such
that 〈ap+bq+c〉 = 0 and 〈(ap+bq+c)2〉 ≤ 1. The area of the concentration
ellipse is proportional to the square root of the discriminant. For a pure
state, it is equal to πh/2. A mixed Gaussian state can be presented as a
mixture of pure Gaussian ones by the formula

w1(p, q) =

∫

w0(p− p′, q − q′)γ(p′, q′)dp′dq′ (4.7)
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where γ is an appropriate Gaussian distribution, 〈p〉1 = 〈p〉0+〈p〉γ , 〈p2
0〉1 =

〈p2
0〉0+〈p2

0〉γ , and similar relations hold for q, p0q0, and q20 . Expansion (4.7)
with the given w0, w1 exists if the concentration ellipse for w0 lies inside
that for w1. It is clear that for a given w1 there is a great arbitrariness in
the choice of w0.

We shall realize an idea suggested in the 1987 work of Diosi[68] which,
using the notation introduced above, can be formulated as follows. Take
as w1 the mixed Gaussian state obtained from the given pure Gaussian one
w0 by the use of evolution (4.4) for an infinitesimal time dt. Now decom-
position (4.7) shows that the evolution of a quantum state is reduced15 to
its shift on the phase plane by a Gaussian random vector (p′, q′) with the
parameters

〈p′〉γ = d〈p〉

〈q′〉γ = d〈q〉

〈p′20 〉γ = d〈p2
0〉

〈p′0q′0〉γ = d〈p0q0〉

〈q′20 〉γ = d〈q20〉

(4.8)

which according to (4.5) are equal to

〈p′〉γ = 0

〈q′〉γ =
1

m
〈p〉dt

〈p′20 〉γ = λ2dt

〈p′0q′0〉γ =
1

m
〈p2

0〉dt

〈q′20 〉γ =
2

m
〈p0q0〉dt

(4.9)

Integrating these differentials we obtain for the evolution of the quantum
state a description which will be called a diffusional-coherent one:

w(p, q, t) = Ew0(p− pcl(t), q − qcl(t)) (4.10)

15Of course, a mixed state can be decomposed into a mixture of pure states in various
ways. We shall limit ourselves to the Gaussian states. For other possibilities, see [66].
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Here E denotes averaging over the classical random process pcl(t), qcl(t)
on the phase plane— a diffusion process with the parameters obtained as
follows from (4.9):

E dpcl = 0

E dqcl =
1

m
pcl dt

(dpcl)
2 = λ2 dt

(dpcl)(dqcl) =
1

m
〈p2

0〉 dt

(dqcl)
2 =

2

m
〈p0q0〉 dt

(4.11)

where the averages on the right-hand sides are taken over the pure Gaus-
sian state w0 used in (4.10).

Not all pure Gaussian states can be used for the diffusional-coherent
description, but only those for which, for all a and b,

d

dt

∣

∣

∣

∣

t=0

〈(ap0 + bq0)
2〉 ≥ 0. (4.12)

In other words, a change of the distribution w0 (or its concentration ellipse)
following (4.4) must be an expansion in all directions. Condition (4.12) is
fulfilled if, and only if,

d

dt

∣

∣

∣

∣

t=0

〈p2
0〉 ≥ 0

d

dt

∣

∣

∣

∣

t=0

〈q20〉 ≥ 0

(

d

dt

∣

∣

∣

∣

t=0

〈p0q0〉
)2

≤
(

d

dt

∣

∣

∣

∣

t=0

〈p2
0〉

) (

d

dt

∣

∣

∣

∣

t=0

〈q20〉
)

(4.13)

Using (4.5), we obtain the condition

〈p2
0〉 ≤ 2mλ2〈p0q0〉 (4.14)

What does the dynamics of correlations have to do with the above?
The answer becomes clear as soon as the diffusional-coherent description
is applied to a system possessing several degrees of freedom. The point is
that a state of the form

w(p1, q1, p2, q2, t) = Ew
(1)
0 (p1 − pcl

1 (t), q1 − qcl1 (t))

×w(2)
0 (p2 − pcl

2 (t), q2 − qcl2 (t)) (4.15)
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belongs to a class of decomposable states (the term is taken from [11]),
i.e., to that of factorized states and their mixtures. But for such quantum
states, as mentioned in Section 1, the classical Bell inequalities are valid.
Formula (4.15) is obtained by an obvious generalization of the diffusional-
coherent description to systems with several degrees of freedom, provided
that a supplementary condition is fulfilled, namely that the coherent state
of all the system w0 is factorized, that is, equal to the tensor product of

two states, w
(1)
0 and w

(2)
0 , each related to one degree of freedom. Any

diffusional-coherent description satisfying this condition (whose feasibility
will be analyzed below) will be called a diffusional-coherent decomposition.

We emphasize that state (4.15) is not at all factorizable. There are cor-
relations between the two subsystems, but classical rather than quantum
ones, in the sense that they can be reduced to the correlations between
classical random processes (pcl

1 (t), qcl1 (t)) and (pcl
2 (t), qcl2 (t)). For macro-

scopic low-dissipation systems, this correlation is in many cases so strong
that it becomes close (at the classical level) to a functional dependence be-
tween (pcl

1 (t), qcl1 (t)) and (pcl
2 (t), qcl2 (t)). But, however strong, the classical

correlation cannot lead to any violation of Bell’s inequalities even by the
slightest amount. This explains our interest in diffusional-coherent decom-
positions, an interest that is not diminished by an arbitrariness existing in
the choice of decomposition parameters; because in the Bell inequalities
the arbitrariness no longer exists.

The conclusion on missing quantum correlations is of interest when
there is an interaction. Consider a Hamiltonian of the form

H(p1, q1, p2, q2) =
1

2m1
p2
1 +

1

2m2
p2
2

+
1

2
k1q

2
1 +

1

2
k2q

2
2 + k12q1q2 (4.16)

Adding the fluctuations and assuming for simplicity that the fluctuation
forces which affect different degrees of freedom do not correlate with each
other, we obtain instead of (4.3) the following equations of motion:

dp1 = −k1q1dt− k12q2 dt+ λ1 db1

dq1 = (1/m1)p1 dt

dp2 = −k2q2 dt− k12q1 dt+ λ2 db2

dq2 = (1/m2)p2 dt

(4.17)

Calculating d/dt |t=0 〈(a1p1 + b1q1 + a2p2 + b2q2)
2〉 and holding, for sim-

plicity, the first-order moments to be equal to zero, we obtain a condition
of fitness of a factorized state for the diffusional-coherent decomposition;
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namely, for all a1, b1, a2, b2,

(λ2
1 − 2k1〈p1q1〉)a2

1 + (λ2
2 − 2k2〈p2q2〉)a2

2

+ 2

(

1

m1
〈p2

1〉 − k1〈q21〉
)

a1b1 + 2

(

1

m2
〈p2

2〉 − k2〈q22〉
)

a2b2

+
2

m1
〈p1q1〉b21 +

2

m2
〈p2q2〉b22

− 2k12(〈p1q1〉 + 〈p2q2〉)a1a2 − 2k12〈q21〉b1a2

− 2k12〈q22〉a1b2 ≥ 0 (4.18)

Simultaneously, the “uncertainty relations”

〈p2
1〉〈q21〉 − 〈p1q1〉2 =

h2

4

〈p2
2〉〈q22〉 − 〈p2q2〉2 =

h2

4

(4.19)

must be fulfilled. It would be surprising if the nonnegativity of the four-
variable quadratic form (4.18) were as simply expressed as in (4.12)–(4.14).
Nevertheless, the issue of the existence of the diffusional-coherent decom-
position is finally settled by the following

Theorem 1. The inequality

|k12| ≤
1

h
λ1λ2 (4.20)

is a necessary and sufficient condition imposed on m1, m2, λ1, λ2, k1, k2,
k12 for the existence of moments 〈p2

1〉, 〈p1q1〉, 〈q21〉, 〈p2
2〉, 〈p2q2〉, 〈q22〉 that

satisfy equalities (4.19) and ensure a nonnegative form (4.18).

The proof will be published [234]. In the “extreme” case where (4.20)
becomes an equality, the unknown moments obey the equations

〈pnqn〉
〈q2n〉2

=
mnλ

2
n

h2

h

2〈qnpn〉
− 2〈qnpn〉

h
=

2hkn

λ2
n

(4.21)
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which, in conjunction with (4.19), unambigously determine these mo-
ments. The state determined by equalities (4.19) and (4.21) ensures the
diffusional-coherent decomposition over all our range (4.20) for k12. Out-
side this range condition (4.18) cannot be satisfied for factorized quantum
states, whether pure or mixed. It is noteworthy that (4.20) does not con-
tain k1, k2.

Now, the dynamics (4.16)–(4.17) permits a decomposition of the form
(4.15), provided that condition (4.20) is fulfilled. This follows from the
above, provided, however, that the initial state of the system can be pre-
sented as a mixture of proper-form coherent states. And what if the initial
state is arbitrary? The diffusional-coherent decomposition is applicable in
this case as well, but from a definite later moment on, rather than from
the initial moment. The fact is that the dynamics considered transforms
an arbitrary quantum state to a mixture of coherent states in a finite time.
We will discuss this in more detail.

The transformation of a quantum state at finite time t according to
the dynamics (4.4) may be decomposed into the product of two trans-
formations: the first is the unitary operator which corresponds to the
linear canonical transformation (deduced from (4.4) if λ is substituted by
zero); the second, in the language of Wigner distributions, has the form
of convolution [as in (4.7)] with a definite Gaussian measure γt, whose
parameters satisfy Eqs. (4.5) with zero initial (t = 0) conditions. The
first (unitary) transformation transforms the arbitrary initial state into
another one which is also arbitrary. The important thing is that the sec-
ond transformation (which, obviously, transforms pure states into mixed
ones) takes place. Its properties depend on the parameters of the measure
γt. All of this remains valid in a more general situation such as (4.17),
provided of course, that Eqs. (4.5) are appropriately generalized. The
measure γt coincides with the probability distribution for the state of the
classical counterpart of the given quantum system.

Consider the case of one degree of freedom in the presence of a quadratic
potential:

dp = −kq · dt+ λ · db

dq =
1

m
p · dt

(4.22)

Solving the corresponding equations for moments

(d/dt)〈p2
0〉 = −2k〈p0q0〉 + λ2

(d/dt)〈p0q0〉 = (1/m)〈p2
0〉 − k〈q20〉

(d/dt)〈q20〉 = (2/m)〈p0q0〉
(4.23)

under zero initial conditions, we find the parameters of the measure γt.
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For k > 0, we obtain

〈p2
0〉 =

λ2t

2

(

1 +
τmech

2t
sin

2t

τmech

)

〈p0q0〉 =
λ2t2

2m

(

τmech

t
sin

t

τmech

)2

〈q20〉 =
λ2t

2m2
τ2
mech

(

1 − τmech

2t
sin

2t

τmech

)

(4.24)

where τmech =
√

m/k. When k < 0, the formulas are similar, with the
sines being hyperbolic. This latter case, known as an “upside down” oscil-
lator, has recently attracted a great deal of attention [98, 91, 100, 238, 262].
Understood literally, it corresponds to an energy spectrum unbounded
from below. However, it is useful for the approximation near the potential-
energy maximum. Indeed, the approximating Hamiltonian H(p, q) =
(1/2m)p2 + 1

2kq
2 with k < 0 differs from a true Hamiltonian Htrue(p, q) =

(1/2m)p2 + U(q), inf U(q) > −∞, by an unbounded difference in poten-
tials U(q) − 1

2kq
2. Doubts may be raised that the approximation is ade-

quate. So let us show how the error can be estimated for the non-stationary
problem when the approximating wave packet remains mainly in the region
where U(q) ≈ 1

2kq
2. The estimations below hold for any k ∈ (−∞,+∞).

Let ih(d/dt)ψtrue(t) = Htrue(t)ψtrue(t), ih(d/dt)ψ(t) = H(t)ψ(t) (time-
dependent Hamiltonians include the potential of the fluctuation force);
then ih(d/dt)(ψtrue(t) − ψ(t)) = Htrue(t)(ψtrue(t) − ψ(t)) + (Htrue(t) −
H(t))ψ(t). The inequality for norm follows:

h
d

dt
|ψtrue(t) − ψ(t)| ≤ |(Htrue(t) −H(t))ψ(t)|

The operator Htrue(t) − H(t) is a function of the coordinate operator,
the function U(q) − 1

2kq
2 being O(q2) for large q and o(q2) for small

q. The distribution of the observable q for the state ψ(t) coincides with
the distribution of a linear combination of p, q for the initial state ψ0 =
ψ(0) = ψtrue(0) due to the quadratic nature of H(t). Now it is easy to
find conditions for ψ0 (in terms of distributions of p, q ) ensuring that
|ψtrue(t) − ψ(t)| ≪ 1 for moderate t [namely for t ≤ τf ; see (4.29) below].
We restrict ourselves again to quadratic Hamiltonians.

Theorem 2. If the Gaussian measure γ satisfies the inequality for the
discriminant

〈p2
0〉γ〈q20〉γ − 〈p0q0〉2γ ≥ h2

4
(4.25)
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then the transformation of the convolution with the measure γ transforms
any Wigner distribution function into a non-negative function.

The proof given by us in [146] shows that this theorem is essentially
a reformulation of the known relation between Weyl and Wick symbols
(see, e.g., [24]).

Theorem 3. Let w0 be a Wigner distribution function of a pure
Gaussian state and let γ be a Gaussian measure satisfying the inequalities

〈p2
0〉γ ≥ 〈p2

0〉w0

〈q20〉γ ≥ 〈q20〉w0
(4.26)

(〈p2
0〉γ − 〈p2

0〉w0
)(〈q20〉γ − 〈q20〉w0

) − (〈p0q0〉γ − 〈p0q0〉w0
)2 ≥ h2/4

Then the transformation of convolution with the measure γ transforms
any Wigner distribution function w into a function of the form

w1(p, q) =

∫

w0(p− p′, q − q′) · f(p′, q′)dp′dq′ (4.27)

with a non-negative function f .

Proof. Represent γ as a convolution of w0 and Gaussian measure γ0;
take for f the convolution of w with γ0; note that non-negativity of this
function is assured by Theorem 2.

If we do not want to fix a priori w0, but seek a representation in the
form (4.27) with some w0 and f , then the condition

〈p2
0〉γ〈q20〉γ − 〈p0q0〉2γ ≥ h2 (4.28)

can be utilized instead of (4.26). The second moments for γ are twice
as large as those for w0, i.e., γ0 = w0. This is a particular case (for one
degree of freedom) of Theorem 3.4 from [146].

The transformation of a quantum state which is expressed in Wigner
distribution language as a convolution with a Gaussian measure satisfying
condition (4.28) belongs to the class of classically factorizable operations,
which we have introduced in [146], and which was discussed in the pre-
vious section. Such a transformation transforms any quantum state into
a decomposable one, and this implements the classical Bell inequalities.
The time during which dissipative dynamics leads to such a result is that
of the classical factorization τf . See [146] for some precise definitions and
theorems.
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Substituting (4.24) into (4.28), one can estimate the order of magnitude
of τf for the dynamics (4.22):

τf ∼ τfluc when τfluc ≪ τmech

τf ∼ τ2
fluc

τmech
when τfluc ≫ τmech and k > 0

τf ∼ τmech log
τfluc

τmech
when τfluc ≫ τmech and k < 0

(4.29)

However, it is desirable to obtain the mixture of such states as are deter-
mined by relations (4.21), (4.19), rather than of some coherent states. We
limit ourselves to a “symmetrical” case:

m1 = m2, λ1 = λ2, k1 = k2

Then the normal modes

q± = (q1 ± q2)/
√

2

p± = (p1 ± p2)/
√

2

evolve independently of each other, and the dynamics of each mode has
the form (4.22) with the same m and λ as for the initial degrees of freedom
but with a different k, that is, k± = k∓k12. It remains to substitute (4.24)
into (4.26), defining w0 through (4.21). At first sight, one has no doubts
that when t is large enough the required inequalities are satisfied inde-
pendently of the properties of w0, because the right-hand sides of (4.24)
increase without bound as t→ ∞. There is, however, an “obstacle.” Con-
sider the concentration ellipse corresponding to (4.24). As t→ ∞, this el-
lipse expands without bound in all directions (though nonuniformly), and
therefore sooner or later covers the concentration ellipse for w0, whatever
the properties of the latter. However, the limit of the concentration ellipse
at k < 0 is a band of finite width[238, 262] rather than the entire plane.
Indeed, from the hyperbolic analog of (4.24) there follows the equality

〈((−km)−1/4p0 − (−km)1/4q0)
2〉 =

λ2

−2k

(

1 − exp

( −2t

τmech

))

(4.30)

In this case the criterion for fulfilling inequalities (4.26) at large t has
the form

〈((−km)−1/4p0 − (−km)1/4q0)
2〉w0

< −λ
2

2k
(4.31)
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Theorem 4. Let k < 0 , |k12| ≤ λ2/h, and let the pure Gaussian state
w0 have the second central moments determined by the equalities

〈p0q0〉
〈q20〉2

=
mλ2

h2

h

2〈p0q0〉
− 2〈p0q0〉

h
=

2h(k + k12)

λ2

Then the state w0 satisfies inequality (4.31).

The proof will be published elsewhere. Theorem 4 guarantees that in
the “symmetrical” two degree of freedom case the arbitrary initial state
goes at finite time into a coherent-state mixture which permits applying
the diffusional-coherent decomposition. It can be shown that the required
time again has the order of magnitude expressed in (4.29). Note that,
unlike (4.20), expression (4.29) essentially depends on k (through τmech).

To conclude this section, consider the fluctuation-dissipation relation
relating the intensity of fluctuation-noise λ to the friction coefficient Γ and
the environment temperature T ,

λ2 = 2ΓkBT (4.32)

where kB is Boltzmann’s constant. The criterion

|k12|
ΓT

≤ 2
kB

h
(4.33)

results from (4.20) and (4.32) when Γ1 = Γ2 and T1 = T2. This criterion
was announced in the Introduction (with k12 denoting by A and assumed
positive). It may also be written as

τfluc ≤ τmech (4.34)

with τfluc =
√
hm/λ [see (4.2)] and τmech =

√

m/|k12|. Note that, using
four quantities h,m,Γ, kBT , one can form one dimensionless combination

ε =
hΓ

mkBT

and any three of these four values allow us to form one and only one
combination of any desired dimension. Good examples are the thermal de
Broglie wavelength

λtherm = h/
√

2πmkBT
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used in [119, 263], the wave-packet length

(
h3

2mλ2
)1/4 =

√
πλthermε

−1/4

obtained with (4.21) at k = 0, the relaxation time

τfric =
m

Γ

the characteristic period of thermal oscillations

τtherm =
h

kBT

and the time τfluc introduced by (4.2). Due to relation (4.32), we obtain

2τ2
fluc = τtherm · τfric

(see formula (21) from [146]). Other examples are the classical diffusion
coefficient Dclass = kBT/Γ (Einstein equation) and the quantum diffu-
sion coefficient Dquant = h/m deduced from (4.11) when 〈p0q0〉 = h/2.
The dimensionless combination ε = τtherm/τfric = Dquant/ Dclass is small
in the thermal (high-temperature) case and large in the quantum (low-
temperature) one. The Markovian approximation used in this section [cf.
(4.1)] is applicable in the thermal case only. In this (the usual) case,
the destruction (delocalization) of quantum correlations occurs far faster
than the energy dissipation [38, 263, 146]; that is why we have omitted
the frictional force in the equations of motion (4.3), (4.4). Here, Λ in [119]
becomes λ2/2h2; αλh2 from [88] becomes 2λ2 for us. The quantity D from
[41] becomes h2/2λ2, and π in [263], and γ from [262] is denoted here by
Γ/m.

5 In Search of Alternative Theories

The tenacious problems of the foundation of quantum theory could
be very easily and naturally solved if quantum dynamics enabled one to
transform pure states into mixed ones. Hamiltonian dynamics alone, of
course, cannot do it. Is Hamiltonian dynamics only an approximation to
reality? There is no experimental evidence indicating that, but one finds
a hint of the missing Hamiltonian features already in the existence of the
classically described macroworld. Hypothetical non-Hamiltonian features
corresponding to quantum dynamics are limited by the experimental facts.
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Corrections keeping within these limitations can be quite sufficient to pre-
vent the penetration of quantum coherence into the macroworld. The
freedom to construct such theories as an alternative to the conventional
Hamiltonian theory will exist until all kinds of experiments on macroscopic
quantum coherence become available. Usual macroscopic degrees of free-
dom are presently within the range only of observations for which the
interaction with thermal degrees of freedom which introduces fluctuations
is sufficient for the quantum coherence to be suppressed (see Sections 3 and
7). The perturbations which follow the usual macroscopic measurements
in virtue of the uncertainty principle are imperceptible against the back-
ground of thermal fluctuations. And hence there remains a full range for
hypotheses on “spontaneous measurements” as yet unknown, which take
place permanently and quite independently of human activity. In this case,
more or less physical reality can be attributed to “instruments” making
these spontaneous measurements; they can be treated as a mathematical
abstraction; or, alternatively, they can be identified with the observable
classical macroworld as unique reality, interpreting the quantum state as
a mathematical abstraction. We know of three such hypotheses.

First, in 1986 Ghirardi, Rimini and Weber[88, 87] advanced a hypothe-
sis on a “spontaneous localization” of particles, i.e. spontaneous measure-
ments of the particle coordinates occurring with a finite accuracy at def-
inite moments to be selected randomly. The results of these spontaneous
measurements, “centers of spontaneous localization,” form a discrete set
of spacetime points which is nothing but a “history” of the classical world.
For a single particle, the spontaneous localizations occur astronomically
rarely (and hence usually escape observation); however, the path of a
macroscopic body is recorded by dense clusters (“galactic,” as expressed
by Bell[16]) of spontaneous localization centers, which form its classical
determinacy. This approach is mathematically worked out on the level of
“effects” and “operations,” that is a well-known way of a formal descrip-
tion of the quantum/classical relationship [35]. A relativistic field mod-
ification, “continuous spontaneous localization,” is investigated[86, 64].
For a solid body intensity of momentum fluctuations which are caused by
the “spontaneous localizations” of its particles is connected by a definite
universal relation with the intensity of angular-momentum fluctuations of
this body (caused by the same point); see [67]. This relation is not satis-
fied for the thermal fluctuations due to the body’s interactions with the
environment.

Secondly, in 1987 Diosi[69] suggested solving the problem of a quan-
tum measurement in common with that of gravitational-field measurabil-
ity. The question of the limits of the gravitational-field’s measurability
and of whether it must in principle be quantized has been discussed for
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many decades (see, e.g., [32, 206, 197, 233]), but now seems debatable.
Diosi maintained that the gravitational field is, in principle, not subject
to quantizing, and its interaction with quantized matter affects the state
of matter as noise whose intensity corresponds (in the order of magnitude)
to the limits of gravitational-field measurability, which can be estimated
by thought experiments. Here there is still no study on the level of “ef-
fects” and “operations.” Furthermore, only the nonrelativistic mechanics
of massive particles has been considered, the order of magnitude of the
predicted effects being expressed through the combination of gravitational
and Planck constants. In this quantitative determinacy the given hypoth-
esis is advantageously distinguished from that on spontaneous localization
introducing new physical constants, yet beyond an experimental determi-
nation. Note that Diosi’s fluctuations are qualitatively distinguished from
the thermal fluctuations caused by the interaction of a massive particle
with the gravitational finite-temperature field.

The third hypothesis historically preceeds the two mentioned above,
but was recently rejected as erroneous. The quantum “evaporation” of
black holes predicted by Hawking in 1975 leads to the assertion that at
finite time some degrees of freedom lose forever any relationship with the
world on this side of the event horizon. Thus, our entire world proves to
be a nonclosed system, and a pure initial state goes into a mixed final
one. Developing the ideas of quantum gravity, Hawking has arrived at
the notion of the virtual process of creating and “evaporating” black holes
on the Planck spacetime scale. On a not so minute scale this gives rise,
according to [102], to non-Hamiltonian dynamics for the quantum fields.
This question was discussed, in particular, in [73, 14, 104, 164]. How-
ever, one has good reason to reject the conclusion on non-Hamiltonian
dynamics, as obtained by an illicit combination of quantum and classical
ideas[49, 89, 103] (however, see [237] for an opposing opinion).

It is interesting that the hypothesis on spontaneous localization pre-
dicts gas self-heating [88]. This self-heating occurs at a rate ∼ 10−22K/sec
for those parameters which were selected by the authors of [88]. Diosi’s
gravitational fluctuations also give rise to heating of a body, its rate be-
ing ∼ hGk−1

B ρ, where ρ is the density of the body. For instance, when
ρ ∼ 103kg/m3, one obtains a rate 10−18K/sec. The corresponding ther-
mal fluctuations are sufficient to suppress the quantum coherence in the
macroscopic motion of the body. It is, however, clear that it is extremely
difficult to detect so slight a heat release. It is possible that the scattering
of starlight on the noncoherent gravitational Diosi’s fluctuations might be
a more valuable source of observational limitations.

Will the results presented in Section 1 remain valid if the mentioned
hypotheses give rise to some non-Hamiltonian quantum theory, which, say,
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replace the traditional one? The question is one of the kinematics and dy-
namics of correlations within the scope of the general principles of quan-
tum theory. A positive answer seems evident for kinematics, since only
dynamics is affected by the probable change. However, the formulation of
the question in operator terms as in Section 1 is believed to be inadequate
for a theory with “spontaneous measurements.” The question must be one
of probabilities of “objective events,” and hence of correlations between
the results of “spontaneous” (rather than “external”) measurements, and
this is concerned with dynamics.

We believe that the answer is positive both in kinematics and dynam-
ics, i.e. that the “spontaneous fluctuation” theories cannot go beyond
the scope of the class of behaviors determined by (1.9), and hence do not
enable the quantum analogs of Bell’s inequalities to be violated. Indeed:
first, each quantum measurement given in the form of “effects” and “op-
erations” can be represented as an indirect one by means of expanding the
Hilbert state space by a new tensor factor describing the device (consid-
ered here only as mathematical abstraction), as was shown by Kraus[151].
The device initially was in the prescribed pure state. Its interaction with
the object is described by the unitary operator in the tensor product.
Further, the prescribed ideal measurement is performed on the device.
Second, there is the possibility of localizing the mentioned construction
by assuming that each small region of spacetime is associated with its
own device which is connected in some way to “our” spacetime, interacts
with the known fields within a proper small region, and afterwards is dis-
connected. We do not know a well-developed theory of such a kind, but
in [106, 236] some results were obtained. Local devices which attach to,
and then detach from, our Universe resemble Hawking’s process (semi-
classical rather than virtual). Apparently any spontaneous measurement
(or spontaneous fluctuations) theory permits representation via the uni-
versal wave function in a definite expanded spacetime, which can have
“poor” metric and topological properties. However, as is the conventional
Minkowski spacetime, this expanded spacetime is still partially ordered by
the chronological relation “earlier/later.” Such a theory cannot go beyond
the scope of the class of quantum behaviors.

6 Relationship to the Problem of the Foun-

dations of Statistical Physics

Prominent in the method of obtaining the classical behavior within
quantum theory, presented in Sections 4 and 5, was a stat-physical descrip-
tion of the environment of a macroscopic quantum system. It is natural
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that the question of deducing the stat-physical (“secondary”) description
from the purely dynamical (“primary”) one leads to a fundamental prob-
lem of theoretical physics, i.e., that of the foundations of statistical physics.
Since it is not possible to go into this problem here, we shall limit ourselves
to essential results and comments, referring the reader to the literature for
more details[191, 152, 239, 240, 201, 141, 137, 138, 135, 133, 129, 125].

Though this problem is often discussed in the context of classical me-
chanics,16 we, judging by the principle of “quantum description presump-
tion,” discuss this problem as embedded in the quantum theory.17 This
approach originates from a pioneering work of Pauli[191], with further de-
velopments particularly in the works of Krylov[152], Van Hove[239, 240],
Prigogine et al. (see bibliography in [201]), and one of us (Khalfin)[141,
137, 138, 135, 133, 129, 125]. Specifically, the problem of statistical physics
arises among the general problems of the quantum theory is as follows.

Let H be a Hamiltonian operator of a closed conservative dynamical
system independent in time. Consider the following nonstationary Cauchy
problem:

H |ψ(t)〉 = ih
∂|ψ(t)〉
∂t

|ψ0〉 = |ψt=0〉
〈ψ0|ψ0〉 = 1

(6.1)

where the only dependence on time is isolated in the state vector[153]. Let
A be the Hermitian operator which defines the problem of the statistical
physics of interest, that is, the associated statistical collective (ensemble):

A|ξk〉 = ak|ξk〉, 〈ξk|ξn〉 = δn
k (6.2)

For simplicity, we will, without loss of generality, consider the operator A
with a discrete spectrum. The goal of statistical physics is the description
of the set of probabilities {Pk(t)}:

Pk(t) = |pk(t)|2

pk(t) = 〈ξk|ψ(t)〉 = 〈ξk|e−iHt/h|ψ0〉
(6.3)

If the set {Pk(t)} is known, all usual questions of statistical physics can be
answered; in particular, {Pk(t → ∞)} will determine an equilibrium dis-
tribution. If one could succeed in showing, by solving the corresponding

16The most advanced results for classical billiard systems were obtained in the work
of Sinai[221].

17In the context of quantum theory, the primary probability structure of statistical
physics does not resemble the hidden deterministic behavior (see Section 1) which is
assumed in discussing the problem of the foundations of statistical physics in classical
theory.
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Cauchy problem (6.1), that the Pk(t) obeyed the balance equations (“mas-
ter equations,” Chapman-Kolmogorov equations) of a Markov chain

dPk(t)

dt
=

∑

n

[Pn(t)Wnk − Pk(t)Wkn] (6.4)

where Wnk (Wkn) are the probabilities of the transitions n → k, (k → n)
in unit time, which satisfy the condition of dynamical reversibility Wnk =
Wkn and are positive, the problem of the foundation of statistical physics
would be solved once and for all. As proven in probability theory[45],
all basic predictions of axiomatic statistical physics are valid for such
Markovian chains (processes) (irreversible entropy-increasing tending to
the equilibrium state at t → ∞, ergodicity, intermixing, exponential de-
creasing of correlations at t → ∞, the standard description of the equi-
librium distributions, and so on). A positive solution of the problem of
the foundations of statistical physics would be an important contribution,
in that statistical physics correctly describes an immense number of dif-
ferent physical phenomena—from thermodynamics and hydrodynamics to
the kinetics of chemical reactions, processes of self-organization, and so
on. Such a solution can only take place with definite limitations on the
operators H,A and the initial vector |ψ0〉. At first sight, the problem of
obtaining irreversible behavior from the quantum time-reversible theory
appears to be a basic impediment to obtaining the predictions of statistical
physics. However, we recall that methods are already available to describe
the time-irreversible decay of unstable states (elementary particles, nuclei,
atoms and so on) in the scope of time-reversible quantum theory.

This analogy with the quantum decay theory underlies the approach
to the problem of foundations of statistical physics in the works of one
of us (Khalfin)[141, 137, 138, 135, 133, 129, 125]. The fact is that there
exist solutions behaving irreversibly among the nonstationary solutions of
the Cauchy problem for a time-reversible Schrödinger equation (6.1), i.e.,
there is a possible spontaneous violation of reversibility (t-invariance) in
quantum theory. We have

p(t) = 〈ψ0|ψ(t)〉 = 〈ψ0|e−iHt/h|ψ0〉

=
∑

k

|ck|2e−iEkt/h +

∫

Spec(H)

|c(E)|2e−iEt/h dE

H |φk〉 = Ek|φk〉, 〈φk|φi〉 = δi
k

H |φE〉 = E|φE〉, 〈φE′ |φE〉 = δ(E′ − E)

|ck| = |〈φk|ψ0〉| = |〈φk|ψ(t)〉|
|c(E)| = 〈φE |ψ0〉| = |〈φE |ψ(t)〉|

(6.5)
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on the basis of the fundamental Fock-Krylov Theorem[153]. In order to
have solutions |ψ(t)〉 that behave irreversibly, i.e., such that

lim
t→∞

|p(t)| = lim
t→∞

|〈ψ0|ψ(t)〉| = 0 (6.6)

it is necessary and sufficient[153], as follows from (6.5), that: (a) the
operator H should have an absolutely continuous spectrum, and (b) the
initial vector |ψ0〉 (and hence |ψ(t)〉) should have no weight (ck = 0 for
all k) on the discrete spectrum. In this case, it follows from (6.5) that

p(t) =

∫

Spec(H)

|c(E)|2e−iEt/h dE (6.7)

where ω(E) ≡ |c(E)|2 is the density of the energy distribution (invariant
of the motion) for the nonstationary quantum system considered. But
if some ck 6= 0, then there follows at once from (6.5) a quantum ana-
log of Poincaré’s recurrence theorem. If, as is usually done, a quantum-
mechanical system of a finite number of particles interacting through some
potential in a finite volume is considered as a physical system of statistical
physics, then condition (a) above is evidently violated, and there exist no
solutions that behave irreversibly because of the quantum analog of the
Poincaré’s recurrence theorem. However, such a quantum mechanical po-
tential model is obviously approximate from the point of view of quantum
field theory, and there exist solutions behaving irreversibly if we give up
this approximation. The operatorA can be used for a finite number of par-
ticles in a finite volume, which particles determine a statistical mechanical
ensemble. However, the interactions of particles with each other and with
the walls of the volume V are given through the interaction of the fields
given in a infinite space, the quanta of which are not introduced into the
description of the operator A, but which are important for the operator
H . If we take into account the quantum field which gives an absolutely
continuous spectrum to the operator H , we obtain, according to (6.6), the
irreversibly behaving solutions which solve the problem of irreversibility.
However, to choose such irreversible solutions which correspond to the
problems of statistical physics, one must select definite initial vectors in
accord with the operators H and A. The subsequent presentation is es-
sentially concerned with taking into account the spectral principle of the
quantum theory, i.e., the assumption of the boundedness from below of
the spectrum. Taking, without loss of generality, the vacuum state energy
to be zero, one obtains

p(t) =

∫ ∞

0

ω(E)e−iEt dE

pk(t) =

∫ ∞

0

c∗(E)αk(E)e−iEt dE

αk(E) = 〈φ(E)|ξk〉

(6.8)
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As shown in [141, 144, 142], the condition of spectrality leads to analytical
properties of the amplitudes p(t), pk(t) in the complex-t half-plane, from
which follows a violation of the Markovian property, because p(t), pk(t)
have nonexponential terms[141, 144, 143, 142] which are irremovable for
any initial vector |ψ0〉. This implies the nonexistence of transition proba-
bilities per unit time which are independent of time, i.e., it implies a nonho-
mogeneity in time. Nonexponential terms, as shown in [141, 144, 143, 142],
are analytic functions in the complex-t right half-plane Re(t) > 0. There-
fore, they are nonzero in any time interval. However, they are important
(larger than the exponential Markovian type terms) only for very small or
very large times, and are unimportant for “intermediate” times. For exam-
ple, let we choose definite interrelated choice18 of H , A such that[141, 129]

〈φE′ |AφE〉 = b(E′)δ(E′ − E) + g(E′, E)

c(E) ≈ (E − E0 − iΓ)−1
(6.9)

where b(E′), g(E′, E) are sufficiently smooth functions of their arguments.
For such a choice, the main (exponential) term in pk(t) gives rise to the
Markovian features, and hence to the description according to the axioms
of statistical physics, so that Eqs. (6.4) are satisfied. At the same time, the
nonexponential terms (principally irremovable) lead to differences, in the
domain of quantum theory, from the predictions of the usual axiomatic
statistical physics: violation of Markovian properties, “infinite” memory,
violation of ergodicity, intermixing, nonexponential decrease of the corre-
lation functions, deviation of the equilibrium distributions from the stan-
dard ones (the dependence on the relaxation time), and so on. In this
case, the influence of the nonexponential terms proves to be non-uniform
for various effects.

Now, the problem of the foundations of statistical physics in the do-
main of quantum theory received, contrary to widespread expectations,
a negative solution. Generally speaking, the predictions of the usual ax-
iomatic statistical physics do not follow from the quantum theory. How-
ever, for conventional physical systems, the basic predictions of the usual
axiomatic statistical physics give a very good approximation for the “in-
termediate” times usually considered. Thus, the nonexponential (non-
statistical-physical) terms have the order o(N−2) (where N is the num-

18The conditions thus formulated in the spectral language do not explicitly depend
on the number of particles, which makes difficult their testing for real systems. On the
other hand, these conditions can be fulfilled for some systems having a small number
of particles which behave for moderate times in accordance with the usual axioms of
the statistical physics.
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ber of particles) for a sufficiently weak interaction responsible for the
nonequilibrium properties (instability). Therefore, for systems with a
sufficiently great number of particles, the basic predictions of statisti-
cal physics are fulfilled to a tremendous—practically infinite—accuracy.
At the same time, the difference between the predictions of the quantum
theory and those of statistical physics can be important for some “del-
icate,” “deep” problems. These differences have already been observed
experimentally[75]; for example, the corresponding velocity correlation
functions decrease nonexponentially in spite of a perfectly well fulfilled
diffusion law (Einstein law for a Brownian particle).

The well-known works of Van Hove, Prigogine, and others dealt with
the quantum-mechanical potential model, so that the irreversibility was
accomplished at the expense of taking the thermodynamic limit

N → ∞,

V → ∞,

N/V = const,

and the equations of Markovian type (6.4) were deduced by selecting def-
inite U,H = H0 + U, A = H0, [H0, U ] 6= 0 and |ψ0〉 in the additional
two-dimensional limit

λ → 0,

t → ∞,

λ2t = const

This additional limit makes H = H0+λU explicitly depend on time (since
λ = λ(t)), which is unsatisfactory from the point of view of first principles.
It was shown (in [141, 137, 138, 135, 133, 129, 125]) that all nonexponential
(“nonstatistical-physical”) terms in this limit vanish, which explains how
one obtains the Markovian “master equation” in [239, 240, 201].

7 Experimental Tests of the Universal Va-
lidity of the Quantum Theory

It was shown in the preceding sections that the classical Bell inequali-
ties and their quantum analogs permit the immediate comparison of var-
ious physical theories, or to be precise, of the fundamental principles of
these theories. This makes it possible to compare such qualitatively dif-



932 Khalfin and Tsirelson

ferent concepts as the classical (including a hidden deterministic one in
terms of Section 1) and the quantum concepts of the physical world.

The classical Bell inequalities, as is well known, evolved from discus-
sions of thought experiments (now real experiments[47, 8, 9, 10, 198]) on
observing quantum correlations at macroscopic distances, originally pre-
sented in the famous Einstein, Podolsky, and Rosen (EPR) paper[70].
In the EPR work, coordinate-momentum observables19 (with continuous
spectrum) were used for the correlation experiments. On the other hand,
Bell’s inequalities in Bell’s pioneering work[22] are related to the spin (with
discrete spectrum) version of the EPR experiment, which was proposed
by Bohm[25, item 22.16]. Recall that the spin experiment enables us to
select the correlation functions in such a way[47] that the quantum theory
predicts the extremal value equal to 2

√
2. This makes the experiment a

distinguished one insofar as the difference in the predictions of the clas-
sical and the quantum theories cannot be larger in any other correlation
experiment. As shown in Section 1, the quantum analogs of Bell’s in-
equalities are limited by the same extremal value 2

√
2; therefore, the spin

experiment can be also regarded as testing the quantum analogs of Bell’s
inequalities. Among the real experiments for testing Bell’s inequalities (for
more information on these experiments see [8, 9, 10]) the most accurate
are equivalent to “Bohm spin” experiments using the polarized photons
in the cascade decay of excited atomic levels. Of course the real exper-
iments are accompanied by some technical (less than 100% efficiency of
the photodetectors, and so on) and non-technical problems (see [7, 112],
and [180, 181, 83, 182, 111, 190]). For those reasons, such experiments
are not quite “pure” from the theoretical point of view. In any case, the
undoubted violation of the classical Bell inequalities (or Bell-CHSH in-
equalities) and the confirmation of the quantum mechanical predictions
in the experiments[8, 9, 10, 188, 219], in spite of their nonideality, can be
considered as the unconditional death of all admissible alternatives (the
local theories with a hidden parameters) which Einstein had sought.

The quantum analogs of Bell’s inequalities, which were first derived
in [51], are model-independent predictions from the first principles of the
quantum theory, of the same generality as the classical Bell inequalities
for the classical theory. Therefore, the experimental testing of the quan-
tum analogs of Bell’s inequalities is as necessary in the new area of higher
energies and for new classes of physical objects (and not only for new
elementary particles) as the experimental testing of other fundamental

19The correlation experiments are discussed from the point of view of the corre-
sponding Bell inequalities with the use of the original EPR formulation through the
coordinate-momentum observables in recent works[147, 113, 43, 18, 93].
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predictions of the theory, such as the famous conservation laws. It is
important to note that the quantum analogs of Bell’s inequalities are non-
trivial, because, as was shown in Section 1, these inequalities (and all the
more so the classical Bell inequalities) can be violated for the class of the
stochastic behavior.

As mentioned above, it follows that the experimental testing of the
classical Bell inequalities for the extremal spin version will be also tested
at the same time as the quantum analogs of Bell’s inequalities. But real
experiments with polarized photons in the decay cascade of atomic levels
[8, 9, 10], and also experiments like [188, 219], are unlikely to be of interest
from this point of view. It is difficult to believe that the validity of the
quantum concept would be violated in investigations of low-energy photons
in the decay of the exciting atomic levels.

Experiments with K◦-K̄◦, D◦-D̄◦, and B◦-B̄◦ mesons, and with their
possible future analogs for the extremal energies of existing accelerators
and for higher energies in the future (like the SSC accelerator) are of evi-
dent interest. From this point of view, experiments with these mesons for
testing classical Bell inequalities were discussed in [165, 222, 217, 134, 55].
In [134], such experiments were discussed from the point of view of the
quantum analogs of Bell’s inequalities. Specifically, the experiments with
storage rings like e+e− → φ → K0K̄0, e+e− → ψ(3700) → D0D̄0,
e−e+ → γ(4s) → B0B̄0 in the meson factories were discussed. For
the description of the time evolution of K0-K̄0, D0-D̄0, B0-B̄0 mesons,
in order to take into account the CP-violation it is necessary to use a
theory[140, 139, 136, 132, 130, 126, 127, 123] beyond the Weisskopf-Wigner
approximation, as in the usual theoretical consideration[166].

The experimental investigations of macroscopic quantum effects were
induced by theoretical works of Leggett et al.[36, 37, 38, 170, 171], in which
were discussed both the possible experiments on macroscopic quantum
tunneling (MQT) and macroscopic quantum coherence (MQC). MQT ef-
fects for the macroscopic degree of freedom—the phase-order parameter in
the Josephson transition—were experimentally investigated (see [183, 90]
and other works mentioned in [90]). The results of these experiments
for sufficiently low temperatures are well explained by the corresponding
MQT effects. But, as was noticed by the authors of those works, such
experimental results are not unconditional proof of the existence of MQT
effects, because it is possible, in principle, to find another explanation
due to some other effects, which are not taken into account in the usual
theoretical consideration. One such possibility was discussed in recent
work[225]. In connection with this, it will be very interesting to repeat
the experiments of [90] (and the analogous experiments of other works
mentioned in [90]) but with the new high-temperature superconductors.
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In fact, if the results of the experiments of the type of [90], but with
high-temperature superconductors, are the same as for the ordinary (low-
temperature) superconductors, it will strongly suggest that the previously
observed effects[90] are not real macroscopic quantum effects (MQT), but
are some new specific effects of the type investigated in [225]. This state-
ment follows from the fact that real macroscopic quantum effects are pos-
sible only for sufficiently low temperature and cannot exist for the high
temperatures which characterize modern high-temperature superconduc-
tivity. At the same time, if these effects are not observed, it will mean
that the previously observed effects are real macroscopic quantum effects
(MQT).

It is also necessary to mention that theoretical results which were de-
rived in [36, 37, 38, 170, 171] and in many subsequent studies (cf. [170])
and which describe MQT effects, are based on using the Euclidean ap-
proach (Langer-Polyakov-Coleman instanton method[163, 199, 39, 50]) in
the evaluation of the corresponding path integrals. But as was recently
proven ([131, 128, 124]) by one of us (Khalfin), unfortunately this method
is in the best case without proof, and for some of the more interesting
cases (like the asymmetrical potential with two walls) false.

Real experiments on MQC up to now have not been performed.

Now we discuss possible experiments connected with macroscopic quan-
tum effects which follow from the theoretical considerations in Sections 3
and 4 and which do not have the defects mentioned in connection with
other macroscopic effects (see above). If the time of the classical factor-
ization τf is sufficiently small, then the commonly investigated “interme-
diate” times t are bigger than τf—and for this reason the exact classical
description of the dynamics of the corresponding physical systems will be
true. But if τf is sufficiently large then the usual “intermediate” times
will be less than τf , and this gives the possibility of seeing macroscopic
quantum effects in the time evolution of the corresponding physical sys-
tems. It is essential that the time of the classical factorization was defined
not only by the parameters of the considered physical system but also by
the parameters of the environment (temperature, friction force, pressure
of the gas, and so on). By choosing various values of these environment
parameters for the same physical system, it will be possible to arrange
that the corresponding time of the classical factorization will be small
so that the dynamics will be exactly classical and macroscopic quantum
effects cannot be present under these conditions. For a different set of
environmental parameters the time of classical factorization will be large
and then macroscopic quantum effects will be observable in the dynam-
ics. We shall give only one concrete example, without going into technical
details (see [146]).
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Let us investigate a solid body with linear dimension l, immersed in
a rarefied gas at temperature T and in thermal electromagnetic radiation
with the same temperature. The intensity of the fluctuation noise for the
translational degrees of freedom can be estimated by the formula

λ2 ∼ l2[ρm
−

1

2

0 (kBT )3/2 + ch2l−9
therm min(l4, l4therm)] (7.1)

where ρ is the density of the gas, m0 the mass of the gas molecules,
ltherm ∼ ch/kBT the characteristic wavelength of the thermal radiation,
and λ the value which was introduced in (4.1). Formula (7.1) is deriv-
able by direct calculation[119] and also via the fluctuation-dissipation
relations[146]. If we know λ, it is possible to define τfluc [see (4.2)], which is
closely connected with τf [see (4.29)]. For a body of size ∼1 cm and mass
∼1 g, within a rarefied gas with density ∼ 10−26 kg/m3 and temperature
∼1 K and thermal radiation at the same temperature as was derived in
[146], the estimate τfluc ∼ 106 sec clearly gives a macroscopic time! For
the rotational degrees of freedom the dissipation can be even smaller. But
the translation degrees of freedom, in contrast to the rotational degrees
of freedom, are easy to use for the construction of nontrivial dynamical
systems with small dissipation by using the Coulomb interaction. In this
case new sources of dissipation play a role: variable deformations lead
to nonuniform heating, thermal exchange, and so on. The estimates of
these effects, which were derived by us[146] for a sapphire crystal starting
from experimental data[30], gave τfluc ∼ 105 sec when the Hamiltonian
dynamics associated with Coulomb interaction was characterized by the
time τmech ∼ 1 sec. In light of the results of Section 4 [see (4.34)], this
presents the possibility of a dynamical origin of quantum correlations be-
tween crystals. In [146] we do not estimate the Ohmic dissipation which
follows from the nonzero sapphire conductivity. In reality these losses
are as important as the corresponding electromagnetic forces of Nyquist
noise, which cause fluctuations of the electromagnetic field in the near
zone around a crystal. However, these losses could be isolated by a thin
metal casing (cover) around each crystal.

Thus, if we are very careful, so as to practically realize the isolation of
collective degrees of freedom from the thermal ones, quantum correlations
can appear dynamically due to the mechanical motion of macroscopic
bodies and as a result of macroscopic interactions, and they can exist
for a macroscopically long time. In this way macroscopic quantum effects
become possible. An experimental observation of these effects would allow
us to disprove alternative variants of the quantum theory that have been
considered in Section 5.

The experimental observations of macroscopic quantum effects could
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essentially change and add to our notion (and understanding) of the sur-
rounding macroscopical phenomena, which up to now we have described
(and understood) as purely classical phenomena. Likewise, modern bi-
ology (biochemistry, biophysics) and computer logic have been based on
classical ideas (even quantum computers of the type of [76] entirely real-
ize a classical logic). The results of quantum theory are used there only
in an auxiliary role, that is, for calculation of the corresponding classical
parameters. The observation of real macroscopic quantum effects could
make possible quite new applications (for example, a new logic of pure
quantum computers), and also the understanding, within the quantum
theory, of the strange problems of biology, for which wholeness (indivisi-
bility) is so typical—as well as for specific quantum phenomena. Moreover,
such macroscopic quantum effects may be the consequences of very deep
microscopic quantum phenomena, which are connected with the physics
of elementary particles.

8 Conclusions

We have made the next attempt of reconstructing classical reality as a
superstructure over quantum dynamics. The difference from early works
[185, 74, 244, 52, 107] is the use of dissipation, which is typical of works
of the last decade [168, 36, 263, 245, 65]. The newness of our way of
posing the question is the use of ideas originating in Bell’s inequality. The
newness of our results is a sharp boundary for the domain of existence of
classical reality. Besides this, we endeavor to give forerunners their due,
and stimulate further investigations by way of elucidating the context.

It would be worth achieving a better understanding of what collective
and thermal degrees of freedom are, and what dissipation is. Usually one
begins with two individual systems, one (mechanical) having few degrees
of freedom, the other being a reservoir (heat bath), and then introduce
an interaction between them, resulting in dissipation. In so doing, some
degrees of freedom of the reservoir “dress” the given “bare” mechanical
degrees of freedom, forming collective ones. It would be worthwhile to be
able to find collective degrees of freedom in a given whole system. Note
that in reality each collective degree of freedom involves all fields (including
gravitation). In this respect the “collective approach” is opposed to the
“electromagnetic approach” [226] as well as the “gravitation approach”
[69].

Why we do not expect the notion of classical reality to admit the only
true, short, exact and clear definition, even in principle, was explained
in Section 3. It may well be true for the notion of collective degrees of
freedom, as well.
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Though we proclaim, in principle, that the quantum dynamics is taken
as it is, without any approximation, in practice, we apply an approxima-
tion, taking the relaxation time of the thermal environment as infinitesi-
mal, and hence the evolution of the mechanical system as Markovian. Of
course, this is a drawback. We think that it will be possible to generalize
our approach to a non-Markovian case, but the proposed mathematical
technique will need a re-making.
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Barbera, Firenze (1979).

[234] Tsirelson, Boris, “In comparison to what is the Planck constant small?” (to
appear).

[235] Tsirelson, Boris, “Quantum analogs of Bell’s inequalities: the case of two space-
like separated domains,” in Problems of the theory of probability distributions
IX, Math. Inst. Steklov (LOMI) 142 (1985), 174–194 (in Russian).

[236] Tsirelson, Boris, “On a formal description of quantum systems that are similar
to systems of stochastic automata,” in Proceedings II School-Seminar on lo-
cally interacting systems and their application in biology (R.L. Dobrushin, V.I.
Kryukov, A.L. Toom, ed.) (1979), 100–138 (in Russian).

[237] Unruh, W. G., “Quantum coherence, wormholes, and the cosmological con-
stant,” Phys. Rev. D 40:4 (1989), 1053–1063.

[238] Unruh, W. G., and Wojciech H. Zurek, “Reduction of a wave packet in quantum
Brownian motion,” Phys. Rev. D 40:4 (1989), 1071–1094.

[239] Van Hove, Leon, “Quantum-mechanical perturbations giving rise to a statistical
transport equation,” Physica 21:6 (1955), 517–540.

[240] Van Hove, Leon, “Energy corrections and persistent perturbation effects in con-
tinous spectra 2. The perturbed stationary states,” Physica 22:4 (1956), 343–
354; “The approach to equilibrium in quantum statistics” 23:6 (1957), 441–480;
“The ergodic behaviour of quantum many-body systems,” 25:4 (1959), 268–276.

[241] Vershik, A. M., and B. S. Tsirelson, “Formulation of Bell-type problems and
‘noncommutative’ convex geometry,” to appear in: Advances in Soviet Mathe-
matics 9, 95-114, AMS.

[242] von Neumann, John, Mathematische Grundlagen der Quantenmechanik,
Springer-Verlag (1932). English translation: Mathematical foundations of quan-
tum mechanics, Princeton University Press(1955).
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