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Quantum clocks and the temporal localisability
of events in the presence of gravitating
quantum systems
Esteban Castro-Ruiz1,2,3✉, Flaminia Giacomini1,2,4, Alessio Belenchia 5 & Časlav Brukner1,2

The standard formulation of quantum theory relies on a fixed space-time metric determining

the localisation and causal order of events. In general relativity, the metric is influenced by

matter, and is expected to become indefinite when matter behaves quantum mechanically.

Here, we develop a framework to operationally define events and their localisation with

respect to a quantum clock reference frame, also in the presence of gravitating quantum

systems. We find that, when clocks interact gravitationally, the time localisability of events

becomes relative, depending on the reference frame. This relativity is a signature of an

indefinite metric, where events can occur in an indefinite causal order. Even if the metric is

indefinite, for any event we can find a reference frame where local quantum operations take

their standard unitary dilation form. This form is preserved when changing clock reference

frames, yielding physics covariant with respect to quantum reference frame transformations.
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Q
uantum theory allows us to predict the probabilities of
obtaining certain outcomes when we perform operations
on a physical system. These operations are specified by

laboratory procedures, including preparations, transformations
and measurements. Apart from these operational elements,
quantum theory relies on a definite space-time metric to make
empirical predictions. Indeed, the metric is often implicit in the
definition of an operation, and it determines the causal structure
of the space-time where the operations are performed.

According to general relativity, the space-time metric is
obtained by solving Einstein’s equations. Generically, a solution
to these equations depends on the matter distribution, which is
assumed to be classical. Understanding the consequences of
replacing gravitating classical matter by gravitating quantum
systems in general relativity is at the heart of the problem of
quantum gravity1,2. At the moment, a fully satisfactory and
broadly accepted theory of quantum gravity is lacking, and it is
far from clear how, if at all, the essential notions of quantum
mechanics and general relativity will be modified in the more
fundamental theory3,4.

In the absence of such a theory, making quantum mechanical
predictions when quantum systems act as gravitational sources is
an important challenge. This is because gravitating quantum
systems can lead to an indefinite spacetime metric, that is, a
metric whose values are not given a priori, independently of any
observations carried out on quantum systems. This gives rise to
well known difficulties5–11, which include the following: (i) The
dynamical law of quantum theory (the Schrödinger equation)
relies on a time parameter to specify the evolution of quantum
systems. What plays the role of such time parameter in the
absence of a definite metric? (ii) If the space-time metric is
indefinite, the causal order between different operations is also
indefinite. In this case, how are we supposed to apply the quan-
tum mechanical rules for calculating probabilities for measure-
ments corresponding to a set of observables? (iii) The physical
realisation of an operation on a quantum system typically relies
on “background” degrees of freedom, which are crucial for
defining the operation. For example, the pointer position of a
clock can define the time when the operation is applied12. If the
metric field is indefinite, the clock does not “know” how fast to
tick, due to an uncertainty in its time dilation13. (More precisely,
the clock gets entangled with the gravitating degrees of freedom.)
In this situation, how are we supposed to define the operation in
the first place?

In this work, we propose a method for tackling some aspects of
the above difficulties. We develop a framework for “time refer-
ence frames”, which are (quantum) reference frames associated to
quantum clocks. (Recently, clocks at the interplay between
quantum mechanics and general relativity have gained significant
attention14–19). The following paragraph summarises our findings
in the context of the difficulties mentioned above:

Regarding (i), we further develop a “timeless” approach20–24

according to which time emerges though correlations between
“what a clock shows” and the state of the system. We consider a
set of multiple clocks and describe the evolution of a quantum
system according to individual clocks from the set. In particular,
we consider cases in which the space-time metric is indefinite due
to gravitating quantum systems in a superposition of energy or
position eigenstates. We show that a notion of unitary time
evolution arises with respect to each of these clocks, even in the
presence of gravitating quantum systems. Moreover, the Schrö-
dinger equation is covariant (form invariant) under the trans-
formation from one time reference frame to another. This fact
constitutes a concrete implementation of the covariance of phy-
sical laws in quantum reference frames advocated for in ref. 25.

With respect to (ii), we introduce a local, operational definition of
an “event”, in which an operation is applied to a quantum system
conditioned on a clock reading a specific “time”, and for which
we can use the timeless approach to calculate its probability of
occurrence even in cases when the order between events is not
definite. Moreover, we study the temporal localisation of events
with respect to different time reference frames, and find that,
when quantum clocks interact with gravitating quantum systems,
the temporal localisability of an event becomes relative, depend-
ing on the time reference frame. This result provides a concrete
physical realisation, in terms of quantum systems which are
sources of the gravitational field, of the claim reported in
refs. 26,27, that the localisability of events is observer-dependent,
and that operations might be performed in time-delocalised
subsystems. We argue that this relativity characterises an indefi-
nite metric, which can lead to an indefinite causal structure of
events, where whether a given event is in the causal past, causal
future or is causally disconnected from another event is not a
factual property of the world. We illustrate this fact by using our
framework to analyse the gravitational quantum switch12. In view
of (iii), one might naively expect that the time evolution with
respect to a gravitationally interacting clock A is “noisy” or
decoherent. After all, A is expected to get entangled due to its
interaction, and its quantum state is expected to become mixed.
We show, however, that this view is (quantum) reference frame
dependent, and one can find a transformation to the time refer-
ence frame of A with respect to which time evolution is unitary.
This means, in particular, that if we define an “event” by applying
an operation to a quantum system when clock A shows a specific
“time”, this operation will be represented, in A’s time reference
frame, by its unitary dilation, like in ordinary quantum mechanics
with a fixed metric. Therefore, by “jumping” into a suitable time
reference frame, quantum operations take their usual form, even
if the metric is indefinite. This result resonates with the concept of
the “quantum equivalence principle” advocated by Hardy9,10, and
can be seen as another example of covariance of physical laws in
quantum reference frames25, in a case where the space-time
metric is indefinite.

Results
Reference frames for events and time evolution. The central
idea of this work is that of a time reference frame. By definition, a
time reference frame is a quantum temporal reference frame
associated to a quantum clock. An observer A uses a time
reference frame to define the temporal localisation of events and
describe the physics of a system S as it evolves in time, as defined
by the quantum clock. By events we mean any quantum opera-
tion performed on S. When there is no room for confusion, we
will use the same symbol to denote the observer and the clock. To
formulate this idea, we consider as a starting point the timeless
approach to quantum mechanics20,21,28, in particular the version
of ref. 21. In “Methods (Review of the timeless approach to
quantum mechanics)” we present summary of the latter for-
mulation (see also refs. 23,24 for similar approaches). Mathema-
tically, the evolution of S in the time reference frame of A is
encoded in the history state

Ψj i ¼
Z

dt tj iA � ψðtÞj iS: ð1Þ

Here, tj iA is an eigenstate of the time operator T̂A,

T̂A tj iA ¼ t tj iA, and corresponds to clock A showing time t. The
state ψðtÞj iS, called the reduced state, has the physical inter-
pretation of “the state of system S when clock A shows time t”.
According to the timeless formulation, Ψj i is subjected to a
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constraint

Ĉ Ψj i ¼ 0; ð2Þ
from which we obtain Ψj i.

We are interested in comparing the temporal localisation of
events and the time evolution of a system as “seen” by different
time reference frames. For this reason, we consider an extension
of the timeless formulation to include more than one clock, say A
and B, and a system of interest, S. In our framework, operations
on S define events, and each clock labels the temporal localisation
of these events and assigns a different time evolution operator to
S and the rest of the clocks. In “Methods (Changing time
reference frames)” we develop a general framework to change
from the evolution operator with respect to A to that with respect
to B. Our treatment is compatible with the fact that, in special and
general relativity, time is not absolute but rather is defined by the
reading of a clock moving along a specific world-line.

Despite our approach being motivated by relativistic physics, it
departs from the usual case of special and general relativity,
because we do not assume that the space-time metric is fixed.
Since a space-time is defined by a manifold and a metric, our
clocks and systems are not, strictly speaking, embedded in space-
time. Nevertheless, we insist on the operational definition of
events with respect to quantum clocks, associating to each clock a
reference frame by which we will define “evolution” and
“temporal localisation”.

The operational meaning of our framework is depicted in Fig. 1
and further explained in “Methods (Operational meaning of the
framework)”. Mathematically, by expressing the history state Ψj i
in either the reference frame of A or B, we will be able to track the
temporal localisation of events with respect to each reference
frame. Although in this paper we focus on the temporal
localisation of events, it is natural to assume that A and B have
access to an additional set of spatial degrees of freedom, which
allows them to operationally localise events in space as well. In
the present setup, the inclusion of such (quantum) degrees of
freedom can be carried out by the methods developed in ref. 25. In
the remaining of this work, whenever we mention the notion of
space or distance, we will do so having this context in mind.

Non interacting clocks. Let us illustrate the above ideas by means
of a simple example. Imagine that A and B have two clocks, which
interact neither with each other nor with anything else in the
experiment. The time measured by each clock corresponds to an

operator T̂ I, for I=A, B. We assume that A and B are perfect

clocks: ½T̂ I; ĤI� ¼ i, where ĤI is the Hamiltonian of the clock I,
for I=A, B. (see “Methods (Review of the timeless approach to
quantum mechanics)”). Suppose that A “sets up” an event by
means of an interaction between S and her ancilla, a. The event is

produced when A’s clock is in a sharp state of T̂A with eigenvalue
t�A > 0. A similar setting holds for B, with a corresponding time
t�B > 0 and ancilla b. Under these conditions, the constraint
equation describing the experiment is

ðĤA þ ĤB þ f̂ AðT̂AÞ þ f̂ BðT̂BÞÞ Ψj i ¼ 0: ð3Þ

Here, f̂ AðT̂AÞ ¼ δðT̂A � t�AÞK̂
ðAÞ

, where K̂
ðAÞ

is a hermitian
operator on HS �Ha, the Hilbert space of the system and A’s

ancilla. A similar statement holds for f̂ BðT̂BÞ ¼ δðT̂B � t�BÞK̂
ðBÞ

and the ancilla b. For simplicity of notation, we have left the tensor

products implicit in Eq. (3) and written, for example, ĤA � 1R

simply as ĤA (Here, R (the “rest”) denotes all the systems that
are not clocks, namely S, the system of interest, and the ancillas,
a and b). We follow this notation throughout the paper. We have
assumed that the free Hamiltonian for the system is trivial,

ĤS ¼ 0. In this paper we focus on the case where the events are
triggered when the state of the clocks are sharply peaked around
a given time. However, more general models are possible by sui-

tably choosing the hermitian-operator-valued functions f̂ IðT̂ IÞ, for
I=A, B.

The history state in the time reference frame of A reads (see
Supplementary Notes 1 and 2)

Ψj i ¼
Z

dtA tAj iA � e�itAĤB T e
�i
R tA

0
dsðf̂ AðsÞþf̂ BðsþT̂BÞÞ ψAð0Þ

�

�

�

�A
;

ð4Þ
where T denotes the usual time ordering operator, defined by

Tf̂ ðs1Þf̂ ðs2Þ ¼ Θðs2 � s1Þf̂ ðs2Þf̂ ðs1Þ þΘðs1 � s2Þf̂ ðs1Þf̂ ðs2Þ, for any
operator-valued function f̂ of s. Θ(s) is the usual Heaviside function,
equal to 1 if s > 0, 1/2 if s = 0, and 0 otherwise. ψAð0Þ

�

�

�

�A
¼

R

dt0B φðt0BÞ t0B
�

�

�

B
� χj iR is the state of all systems, except clock A,

conditioned on clock A being in the state t ¼ 0j iA. In this work,
�I, for I=A, B, . . . , denotes all subsystems except for subsystem I. We
use primed time variables to refer to the initial state of the clocks. It is
physically meaningful to assume that the support of the wave packet

b

S

S

S S

ba

a

A B A B

a b

Fig. 1 Description of the operational meaning of the framework. A and B

perform experiments on S in two stages. In the preparation stage (a), A and

B specify the states of their clocks, subsystems (depicted by a blue ball)

and ancillas (depicted by a red ball, a for A and by a green ball, b for B).

They do so by freely choosing the knob settings that control these systems.

S can be a composite system entangled between A and B. This is indicated

by the line joining A and B’s subsystems. A and B can program their clocks

so that an interaction between S and the ancillas, a and b, is turned on at a

specific local time, say t*. In the detection stage (b), A and B read the

measurement results by looking at the outcome of their clocks and ancillas.

By assumption, the choices made by A and B in the preparation stage do

not depend on the results obtained in the detection stage, even if the

experiments take place in an indefinite causal structure. As the figure

shows, we assume that both parties have access to all the data of the

experiment. With these data, A and B “map” the set of events into “space-

time”, which we depict as a manifold foliated by surfaces of constant time

according to A (dotted lines) and according to B (solid lines). The event

produced by A (B) is depicted by a red (green) star. In the case depicted

here, the two events are sharply localised in both A and B’s time reference

frames. This feature is consistent with a fixed space-time background,

where the time localisation of events is absolute. However, in this work

we show that there are situations involving gravitating quantum systems,

which lead to an indefinite metric background. In such backgrounds,

whether an event is sharply localisable in time or not depends on the

time reference frame.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16013-1 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2672 | https://doi.org/10.1038/s41467-020-16013-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


of clock B does not overlap with the time defining any of the events.
In Supplementary Note 2 we explicitly construct a wave-packet with
this feature.

The state ψAðtAÞ
�

�

�

�A
¼ th jA � Ψj i represents the state of all

systems except clock A, conditioned on clock A being in the state
tj iA. Because Eq. (4) contains all such conditional states for each
tA, the history state Ψj i contains all the information regarding the
time evolution and measurements made on system �A. Impor-
tantly, the history state represented in the time reference frame
of A describes the subsystem �A evolving unitarily from the

initial state ψAð0Þ
�

�

�

�A
, with the evolution operator ÛðtAÞ�A ¼

expð�itAĤBÞ T expð�i
R tA
0 ds ðf̂ AðsÞ þ f̂ Bðsþ T̂BÞÞÞ. By unitar-

ity, the normalisation of ψAð0Þ
�

�

�

�A
is preserved in tA.

In Eq. (4), the argument of f̂ A is a c-number. This means that,
in A’s time reference frame, the time at which operation A is
applied is always sharp —it happens at the well-defined time t�A.

By contrast, the argument of f̂ B in Eq. (4) depends on the

operator T̂B. When f̂ BðT̂BÞ acts on the initial state ψAð0Þ
�

�

�

�A
, the

argument of f̂ B becomes dependent on t0B, and is therefore
modulated by the wave packet φðt0BÞ. Assuming that φðt0BÞ is not
sharply peaked but rather has a finite width σ, this effect will lead
to an uncertainty, from the point of view of A, as to when the
operation triggered by clock B is applied. The larger the width σ,
the greater the uncertainty. This effect is easily seen if we write
down explicitly the conditional state ψAðtAÞ

�

�

�

�A
¼ tAh jA � Ψj i. For

simplicity, suppose that t�B < tA < t�A, so that we do not need to
discuss the operation triggered by clock A, which we already
know to be sharply localised in A’s time reference frame. A simple
calculation yields,

ψAðtAÞ
�

�

�

�A
¼
Z

dt0B φðt0BÞ T e
�i
R tA

0
ds f̂ Bðsþt0BÞ tA þ t0B

�

�

�

B
� χj iR:

ð5Þ

Equation (5) is nothing but a coherent superposition of quantum
states, each of them depending on t0B. The amplitudes of the
superposition are given by φðt0BÞ. For each of these amplitudes,

the (operator valued) function F̂BðtA; t0BÞ :¼
R tA
0 ds f̂ Bðsþ t0BÞ ¼

ΘðtA þ t0B � t�BÞK̂
ðBÞ

takes different values. In A’s reference frame,
B’s operation will already be applied at a given time tA only for
those amplitudes corresponding to a t0B such that tA þ t0B > t�B.
Because, given a time tA, B’s operation will already be applied
only for some amplitudes, this analysis clearly shows that the time
localisation of B’s operation is uncertain with respect to A. In
conclusion, A’s description of the experiment features two events:
one is sharply defined at time t�A, and the other one, which A
describes as triggered by B’s clock, is uncertain, due to the
uncertainty of B’s clock (see Fig. 2).

How does the experiment look like from the point of view of B?
As can be seen from the equations derived in “Methods
(Changing time reference frames)”, the history state in B’s time
reference frame is exactly the same as that in A’s, provided that
the wave-packet φðt0BÞ is symmetric under the operation t⟶ −t.
This is not surprising, given the symmetry of Eq. (3). The
important point is that B describes the initial state of A’s clock by
the same wave packet φðt0AÞ. As a consequence of the finite wave-
packet width, σ, the localisation of A’s operation in time, as
defined by B, will have an uncertainty modulated by φðt0AÞ (see
Fig. 2b). In contrast, the operation triggered by clock B will be
always sharp in B’s time reference frame.

To summarise, from the point of view of a given time reference
frame I, a measurement triggered by clock I is always localised in
time, while the measurements triggered by the other clocks are, in

general, delocalised with respect to tI, the local time of clock I. As
we will see in the following, this relativity of localisation in time is
not only a feature of a “poorly-chosen” initial state. Rather, it is
an unavoidable effect when clocks experience time dilation due to
their interaction with gravitating quantum systems.

Evolution with respect to gravitationally interacting clocks. In
the previous subsection we have seen how to describe the dyna-
mical evolution and events of a quantum experiment with respect
to different quantum clocks, A and B. In our analysis, we made
the important assumption that the clocks do not interact with
each other. However, practical reasons aside, this assumption
must fundamentally break down once the gravitational effects of
A and B become significant—gravity is universal and cannot be
shielded. Furthermore, the situation becomes all the more radical
when we consider the quantum properties of A and B: Any clock,
say B, must run in a superposition of different energies of its

Hamiltonian, ĤB
29. Because energy-momentum determines the

metric field via Einstein’s equations, each of these energies cor-
responds to a different metric background. Therefore, the fact

that the state of B is indefinite with respect to the observable ĤB

means that the metric background, determined by B, is indefinite,
too13. In this situation, how would another clock, say A, describe
the time evolution of a quantum experiment?

Here we aim to answer the above question from the point of
view of time reference frames. We will show that, even in the lack
of a definite space-time background, an operational notion of
time evolution can be defined if we “jump” into the time reference
frame of a given clock, say A. Importantly, A can interact

��

S S

a b

BB AA

a b

Fig. 2 Relative localisability of events for non interacting clocks with

unsharp initial states. This figure describes the history state Ψj i, solution
to Eq. (3), in the time reference frame of A (a) and of B (b). There are two

events, (depicted by a red and a green star), taking place in the experiment.

In the event depicted by a red star, the system S, (depicted by the blue

ball), interacts with A’s ancilla, a (depicted by a red ball). In the event

depicted by a green star, the system S interacts with the ancilla b (depicted

by a green ball), initially under the control of B. In A’s time reference frame

(a), the event depicted by a red star is sharply localised in time. In contrast,

the event depicted by a green star has an uncertainty, characterised by σ,

in its time localisation, due to the “fuzzy” initial state of clock B in A’s

time reference frame (see main text). The roles are reversed in the time

reference frame of B (b). In this frame, it is the event depicted by a green

star which is sharply localised in time (as defined by clock B), whereas the

event depicted by a red star exhibits some time uncertainty in B’s reference

frame. This uncertainty is due to the fact that, in B’s frame, the initial state

of clock A is “fuzzy”.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16013-1

4 NATURE COMMUNICATIONS |         (2020) 11:2672 | https://doi.org/10.1038/s41467-020-16013-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


gravitationally and get entangled with another clock, say B, from
the point of view of yet another observer, C. Because the state of
A is mixed in C’s frame, one may naively think that the time
evolution with respect to A is “noisy” or decoherent. However, we
will show that this needs not be the case. We will present a model
where, even if C “sees” clock A entangled with clock B due to
their gravitational interaction, a consistent notion of “local time”
exists in the time reference frame of A, with respect to which time
evolution is unitary. This fact is closely related to the result
reported in ref. 25, that entanglement and superposition are
(quantum) reference frame dependent features.

Let clocks A, B and C be subjected to the constraint

X

I

ĤI þ
1

2

X

I≠J

λIJĤIĤJ

 !

Ψj i ¼ 0: ð6Þ

Here, λIJ = −G/(c4xIJ), where G is the gravitational constant, c is
the speed of light, and xIJ is the relative distance between clocks I
and J. The indices take the values I, J = A, B and C. Eq. (6)
describes, to the first order in 1/c2, clocks interacting with each
other via their gravitational field. Note that, in principle, the
relative distances between the clocks, xIJ, (and therefore the λIJs)
are quantum operators as well. However, in this work we assume,
for simplicity, that the xIJs are c-numbers and that they are time
independent (with respect to any clock). This assumption means
that the clocks follow semiclassical trajectories and remain at the
same relative distance with respect to each other. Under this
condition, the λIJs are c-numbers as well. (This coupling between
quantum clocks was introduced in13 and was studied in a timeless
context in ref. 16).

Let us analyse how time evolution emerges from the point of
view of C. In order to do this, we act on Eq. (6) with τh jC. We
obtain

i 1þ λACĤA þ λBCĤB

� � d

dτ
ψðτÞj i�C ¼ ĤA þ ĤB þ λABĤAĤB

� �

ψðτÞj i�C:

ð7Þ
Note that Eq. (7) is not of the form of the Schrödinger equation,
and is not the description of time evolution with respect to the

proper time of clock C, due to the extra term iðλACĤA þ
λBCĤBÞ∂τ on the left hand side. Before we complete the "jump"
into C’s time reference frame, it is interesting to discuss
heuristically the physical meaning of Eq. (7). Consider first the
simpler situation of a single quantum system evolving on a fixed
space-time background given by the weak field metric ds2=
−(1 + 2Φ(x)/c2)c2dt2+ dx ⋅ dx. For a static observer, the state of
the system ψj i evolves under the Schrödinger equation
i∂t ψj i ¼ ffiffiffiffiffiffiffiffiffiffi�g00

p
Hrest ψj i, where g00=−(1+ 2Φ(x)/c2) and Hrest

is the Hamiltonian in the reference frame where the system is at
rest30,31. Note that, for this observer

ffiffiffiffiffiffiffiffiffiffi�g00
p ¼ _τ, where τ denotes

the proper time of the system and the dot denotes derivative with
respect to time t. Defining Hlab: ¼

ffiffiffiffiffiffiffiffiffiffi�g00
p

Hrest as the Hamilto-

nian in the laboratory reference frame, and using the fact that, for
a static observer, ∂t ¼ _τ∂τ , we can rewrite the evolution of the
system as

i
ffiffiffiffiffiffiffiffiffiffi�g00

p d

dτ
ψj i ¼ Hlab: ψj i: ð8Þ

Under the approximation
ffiffiffiffiffiffiffiffiffiffi�g00

p � 1þΦðxÞ=c2, we see that
Eq. (8) is precisely of the form of Eq. (7), for the case where the
gravitational potential Φ is sourced by a gravitating classical body.
We can therefore interpret Eq. (7) as a generalisation of Eq. (8)
for the case where the “gravitational potential” is sourced by a
gravitating quantum system. With this intuition, the operator in
brackets on the left-hand side of Eq. (7) can be interpreted as a
“redshift” operator, which, together with the (proper) time

derivative operator, forms a “d=dt̂” operator with respect to (an
operator-valued) coordinate time t̂. Then, explicitly,

d

dt̂
:¼ 1þ λACĤA þ λBCĤB

� � d

dτ
: ð9Þ

(For a rigorous definition of a derivative with respect to an
operator, see ref. 32.) This interpretation is tightly related to the
idea of a quantum reference frame25, where the set of symmetry
transformations is generalised to include reference frames
associated to quantum systems. Such transformations are obtained
by promoting the parameter associated to the transformation to
an operator acting on an additional Hilbert space. In “Methods
(Gravitational quantum switch)” and “Methods (Remarks on
coordinates for gravitating quantum systems)” we further discuss
and analyse the concept of an operator-valued, quantum
coordinate time and its transformations in the context of time
reference frames.

In order to complete the process of moving into C’s time
reference frame, we formally divide by the redshift factor operator
in Eq. (7), with the assumption that the energies of the state of the
system �C are small enough such that no divergences occur. In
“Methods (Remarks on coordinates for gravitating quantum
systems)”, we analyse physically the conditions under which
divergences do not appear. Under these assumptions, we obtain
the Schrödinger Equation in the time reference frame of C:

i
d

dτ
ψðτÞj i�C ¼ ĤA þ ĤB þ λABĤAĤB

1þ λACĤA þ λBCĤB

ψðτÞj i�C: ð10Þ

Eq. (10) shows that, in the time reference frame of C, the
evolution of clocks A and B is unitary, despite the fact that there
is a non-negligible interaction term between C and the clocks A
and B in Eq. (6). Importantly, in C’s reference frame, there is an
interaction between A and B, leading in general to entanglement
between A and B in the view of C. In order to make this point
clearer, let us assume that all λIJs are small. We obtain, to first
order in λIJ,

i
d

dτ
ψðτÞj i�C ¼ ~HA þ ~HB þ ~λAB ~HA

~HB

� �

ψðτÞj i�C; ð11Þ

where ~HI ¼ ĤIð1� λICĤIÞ, for I=A, B, and ~λAB ¼ λAB�
λAC � λBC. Eq. (11) is precisely the Schrödinger equation for
two gravitationally interacting clocks, A and B, to the first order
in 1/c2. Note that, because C is not infinitely far-away from A and
B, the Hamiltonians of A and B in C’s frame are blue-shifted from
the original Hamiltonians appearing in Eq. (6). In C’s frame, the
gravitational coupling between A and B in Eq. (11) is shifted
as well.

Nothing in principle prevents us from deriving an analogous
equation from the perspective of either A or B. Suppose we were to
“jump” into the time reference frame of A. Clearly, under similar
assumptions as for the case of C, we would obtain an evolution
equation of the form of Eq. (10) (or Eq. (11)) but with the indices
A and C interchanged. Because Eq. (10) is a Schrödinger equation,
the evolution of B and C in A’s time reference frame is also unitary,
even if A gets entangled with B in C’s reference frame. Therefore,
in this approach, each quantum clock constitutes a legitimate
temporal (quantum) reference frame for which a notion of
“evolution with respect to time τ” is available. Importantly, this
evolution is unitary, regardless of whether the clock is located far
away or not from gravitating quantum systems, or whether the
clock gets entangled with such gravitating degrees of freedom from
the perspective of yet another time reference frame. This result is
connected to the fact that, in a relational approach to physics,
quantum superposition and entanglement become relative
notions25,33. The fact that Eq. (10) maintains the same form when
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we change from C’s perspective to A’s perspective means that the
law for time evolution has a universal covariant form with respect
to changes of time reference frames.

Events with respect to gravitationally interacting clocks. As
discussed previously, each clock defines a time reference frame
with respect to which a notion of time evolution can be defined.
This is true even in the presence of gravitating quantum systems
that lead to an indefinite metric background. What is the dif-
ference, in terms of the time localisation of events relative to an
observer, between a situation with a definite metric background
from one where such background is not fixed? Here we address
this question by studying how the localisation of operationally
defined events depends on the time reference frame. Consider the
situation where A sets-up an event in her time reference frame by
applying an operation on the system S at a particular time
according to her clock. Suppose that the gravitational interaction
between A and B is non-negligible. Suppose, for simplicity, that
clock C is sufficiently far away from A and B so that we can
neglect its gravitational interaction with them. This situation
corresponds to the constraint

ĤA þ ĤB þ ĤC þ λĤAĤB þ f̂ ðT̂AÞð1þ λĤBÞ
� �

Ψj i ¼ 0; ð12Þ

where λ=−G/(c4xAB). Here, f̂ ðT̂AÞ denotes a hermitian-
operator-valued function modelling the interaction between the
system of interest, S, and an ancilla a, recording the result of a

measurement on S. The presence of the term ð1þ λĤBÞ, multi-

plying f̂ ðT̂AÞ, is due to the fact that making S and A’s ancilla
interact requires some energy, which will necessarily couple to B
due to the universality of gravity.

Let us first analyse the history state in the time reference of C.
As shown in Supplementary Note 2, this state is

Ψj i ¼
Z

dτC τCj iC � e�iτCðĤAþĤBþλĤAĤBÞ

Te
�i
R τC

0
dsð1þλĤBÞf̂ ðsð1þλĤBÞþT̂AÞjψCð0Þi�C:

ð13Þ

Here, we have used the notation τC to emphasise that this is the
time measured with respect to clock C, i.e., its proper time.
Eq. (13) shows that, with respect to C, the event corresponding to

the function f̂ is not sharply defined in time, due to the presence

of the operators in the argument of f̂ in Eq. (13). Indeed, even if
the initial state with respect to C is such that clock A is sharply

defined at t0A ¼ 0, the presence of the operator ĤB in the

argument of f̂ leads to an uncertainty in the time localisability of
the event. More precisely, suppose that the initial state in C’s
frame is given by ψCð0Þ

�

�

�

�C
¼ t0A ¼ 0
�

�

�

A
�
R

dt0B φBðt0BÞ t0B
�

�

�

B
�

χj iR (R denotes the subsystem formed by S and a). Because B is a

clock, it cannot be sharp in ĤB. Let 1/σ ≠ 0 be the characteristic
width of ~φBðωBÞ, the Fourier transform of φBðt0BÞ. The history
state of Eq. (13) is a coherent superposition, modulated by

~φBðωBÞ, of terms containing f̂ ðsð1þ λωBÞÞ for different values of
ωB. This case is mathematically similar to the case studied in the
section “Non interacting clocks”, with ωB playing the role of t0B.
Because the trigger of the measurement depends on ωB, different
values of ωB correspond to different times at which the event
happens (as described by C). Therefore, there will be an
uncertainty of order 1/σ in the time localisation of the event
(with respect to C). In fact, there is a type of uncertainty relation
between the accuracy of clock B and the temporal localisability of

events defined by clock A: The sharper clock B is localised in T̂B,
the “fuzzier” the events defined by clock A appear from the point
of view of C. This effect is depicted in Fig. 3.

We now change to the time reference frame of A. First, we
expand ψCð0Þ

�

�

�

�C
in the time basis and plug it into Eq. (13). Then,

we define the coordinate τAðτCÞ :¼ t0A þ τCð1þ λωBÞ and make
a change of variables to eliminate τC in favour of τA. In “Methods
(Remarks on coordinates for gravitating quantum systems)” we
discuss the physical significance of coordinate transformations of
this type, which can be understood as quantum coordinate
transformations, and analyse them from a geometrical point of
view. The history state in the reference frame of A reads (See
Supplementary Note 2)

Ψj i ¼
Z

dτA τAj iA� T e
�i
R τA

0
ds

ĤBþĤC
1þλĤB

þf̂ ðsÞ
� �

ψAð0Þ
�

�

�

�A
; ð14Þ

where the relation between the initial state with respect to A,
ψAð0Þ
�

�

�

�A
, and that with respect to C, ψCð0Þ

�

�

�

�C
, can be computed

as shown in Methods (General method for changing reference
frames). As in the non-interacting case, we assume that the
support of the wave packets of clocks B and C do not overlap with
the time defining the event.

As we can see from Eq. (14), the description of the history state
in the time reference frame of A is such that the event is always

sharp in τA—f̂ is a function of the c-number s only. By contrast,
Eq. (13) shows that the same event is not sharply localised from
the point of view of C. This comparison shows that, when clocks
interact gravitationally, the localisability of events in time is
relative, and depends on the time reference frame which defines
the events. Because it is not possible to “shield” gravity, this result
suggests that the relativity of event localisability is a general
feature of an operational definition of events in experiments with
gravitating quantum systems. Moreover, if the interaction
between the clocks were turned off, it would be possible to
sharply define the time localisation of any event with respect to
every time reference frame. The fact that we cannot do that,

1/�

�

�A = �B = 0

�A = �B = 0

A

B

S

a

b

a

Fig. 3 Gravitating quantum clocks from the point of view of C. In a

thought experiment, A (b) sets up an event, consisting in an interaction

between S (blue ball) and a (red ball), when her clock shows a certain time

t
�
A. A’s clock is influenced by a gravitational field sourced by the energy of

B’s clock (a). The initial quantum state of B’s clock (depicted by the green

Gaussian) has a characteristic width σ, which specifies its accuracy (the

smaller σ, the higher the accuracy). As a consequence, the energy of B’s

clock is not well defined—it has an uncertainty of 1/σ. Therefore, the

gravitational field sourced by B is not well defined either. As a consequence,

the time dilation of clock A becomes uncertain from the point of view of C.

This is shown by the “fuzzy” red wave packets representing A’s clock state.

By Eq. (13), this uncertainty leads to an indefiniteness in the localisation of

A’s event, as depicted by the “fuzzy” red stars on the bottom of the wave

packets.
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practical reasons aside, is precisely because we have an indefinite
metric background. This discussion suggests that, in this context,
we can characterise a definite metric if we can find a time
reference frame such that, with respect to it, every event (defined
sharply with respect to some clock as we do in this paper) is
sharply localised. This fact is deeply related to the result in ref. 27,
developed in connection to process matrix framework11. In ref. 27

it is shown that the localisability of local operations in a causal
reference frame is not absolute if and only if the corresponding
process matrix is causally non-separable. For a discussion
regarding time reference frames and local operations understood
in the context of the process matrix framework see “Methods
(Knob settings and external evolution)”.

Discussion
We have constructed a framework for temporal reference frames
that associates a quantum clock to each time reference frame.
Within this framework, we have shown that one can consistently
define a meaningful notion of quantum operation, time evolution
and localisation of events in time with respect to different
quantum clocks. Importantly, this is true even in the case where
these clocks interact gravitationally and the space-time metric is
indefinite. We have studied how these notions change when we
go from one time reference frame to another and found situations
where the physical description of time evolution is covariant
(form invariant) with respect to transformations between time
reference frames, in line with ref. 25. Our definition of an event
allowed us to show that there is a time reference frame where the
description of a given event assumes its familiar form in ordinary
quantum mechanics (in terms of a unitary dilation of a quantum
operation), even in cases where the metric field is indefinite. In
the cases studied, the operations which are not localised with
respect to the time reference frame acquire the form of a
“quantum controlled unitary dilation”, where the time parameter
is replaced by an operator. It would be interesting to know exactly
how our approach is related to Hardy’s implementation of a
“quantum equivalence principle”10, where he proposes that the
causal order can be made definite locally, around any given point.

We have used throughout the concept of a perfect clock.
Although unrealistic, perfect clocks allowed us to explore the
concepts of time evolution and time localisation of events without
the difficulties associated with more realistic clock models. In
experiments, these difficulties would clearly have to be taken into
account, but the conceptual framework laid out here is inde-
pendent of such problems. In fact, we consider our results as a
basis of a more complete framework to describe phenomena in
the absence of a well-defined space-time metric, especially suited
for promising experimental realisations, like those proposed in
refs. 34,35. In this respect, the formulation of the process matrix
framework in the form of ref. 27 leads one to speculate that such
framework might not even need the explicit consideration of
clocks.

An important effect occurs when quantum clocks interact
gravitationally. In this case, we have shown that whether an event
is localised in time or not depends on the time reference frame
chosen. We have argued that the impossibility to find a time
reference frame in which all events are local characterises, within
our framework, a situation where the metric field is indefinite.
This is relevant in the context of in refs. 26,27, where a connection
between causal reference frames (or time delocalised subsystems)
and pure process matrices36 was established. It would be inter-
esting to find out exactly how the frameworks of refs. 26,27 relate
to our work, especially with the goal of understanding if a
quantum violation of causal inequalities11 can be achieved with
gravitating quantum systems.

In this work, we have assumed that the spatial degrees of
freedom of the gravitating quantum systems were in a semi-
classical state, so that we could treat them classically. Although
this simplification is useful, it would be important to extend our
framework beyond this approximation. In a similar vein, it would
also be interesting to generalise our framework to cases where
terms of higher order in 1/c2 are included in the gravitational
interaction.

Finally, on a more speculative note, our analysis of the grav-
itational quantum switch in “Methods (Gravitational quantum
switch)” and its geometrical description in “Methods (Remarks
on coordinates for gravitating quantum systems)” points to the
fact that that, at least in the simplified case studied in this work,
time reference frame transformations can be thought of as
transformations on a space formed by a collection of manifolds,
one per each classical solution arising from a different state of the
gravitating quantum system. This observation suggests a new,
convenient mathematical “arena”, suitable for the analysis of
physics with an indefinite metric. It is commonly agreed that,
when quantum mechanics and general relativity are put together,
the concept of space-time would have to yield to “something
else”. We hope that, using operational reasoning along the lines of
the one presented in this paper, we can gain some insight into
what this “something else” might be.

Methods
Review of the timeless approach to quantum mechanics. Let us briefly review
the “timeless” approach to quantum mechanics. This approach was proposed by
Page and Wootters20 and further developed by Giovanetti, Lloyd and Maccone21.
Our review follows closely this latter version, which is particularly relevant to our
work. A similar approach is developed by covariant quantum mechanics23,24. The
basic starting point is the idea that time evolution “emerges” from relational
degrees of freedom of quantum systems. Although classical dynamics admits a
timeless formulation as well22,37, here we focus on the quantum description, which
is the one relevant to our work.

In the timeless formulation, one typically considers a total system composed of
a clock, A, and the system of interest (the rest), R. The joint quantum system
formed by A and R has a Hilbert space H ¼ HA �HR , where HA and HR , denote
the Hilbert spaces of A and R, respectively. The time evolution of R with respect to
A is encoded in the “history state”, Ψj i, which contains all the information about
the correlations between A and R, thus defining the dynamics of R with respect to

the clock A. In the timeless approach, Ψj i is subjected to a constraint, Ĉ, acting on
H, as indicated in Eq. (2). The space of all states satisfying Eq. (2) is called the
physical Hilbert space. Strictly speaking, it is not in general a subspace of the
kinematical Hilbert space H, because the inner product of the two spaces may
differ. A convenient way for obtaining the history state, which we will use later on,
is by “projecting” onto the physical Hilbert space, (see, e.g., ref. 38)

Ψj i ¼
Z

dα e�iαĈ φj i: ð15Þ

Eq. (15) gives a solution to Eq. (2) for any given φj i 2 H. P̂ :¼
R

dα e�iαĈ is not a
projector in the mathematical sense, hence the quotation marks. In this paper, all
integrals without specified limits are to be understood as integrals over R.

In order to explain how time evolution emerges from Eq. (2), we analyse the
simplest case, in which reading time tA on clock A corresponds to measuring the

eigenvalue tA of an observable T̂A , acting on HA in the same way the position
operator acts in ordinary quantum mechanics. The joint system A + R obeys the
constraint

ðĤA þ ĤRÞ Ψj i ¼ 0; ð16Þ

where the Hamiltonian of the clock, ĤA , is canonically conjugate to T̂A ,

½T̂A; ĤA� ¼ i, and ĤR acts on HR .
The ket ψðtÞj i :¼ th jA � Ψj i is called the reduced state, and has the physical

interpretation of “the state of system R when clock A shows time t.” It is easy to see
that, by acting on Eq. (16) with th jA�, the Schrödinger equation for ψðtÞj i with
respect to time t follows21,28. (Alternatively, we can find Ψj i directly by means of
Eq. (15) and show that the reduced state undergoes a unitary time evolution.) It is
in this sense that time evolution is recovered from the “timeless” condition given by
Eq. (2). Eq. (16) describes a situation in which time evolution is specified by a
“perfect clock”. By definition, a perfect clock is a system satisfying the following: (i)

It is associated with an operator T̂A, acting on an infinite dimensional Hilbert space

HA. (ii) Its Hamiltonian, ĤA , is canonically conjugate to T̂A . Although not realistic
(its Hamiltonian is unbounded from below), a perfect clock is a convenient
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idealisation for the purposes of this paper. It can be considered (although it need
not be) as an approximation of an n-level finite-dimensional system in the limit
where n is very large39. In this work we use the concept of a perfect clock as a
convenient abstraction, which will help us to capture the essential features of the
time-ordering of events and time evolution in the presence of gravitating quantum
systems. By using this abstraction, we can circumvent the difficulties associated to
defining the time localisation of events with realistic clocks40, and focus on the
status of the notion of an event and its “space-time” localisation in the absence of a
definite gravitational field.

Describing measurements performed at multiple times in the timeless
framework is a subtle issue. Naively applying the projection postulate of quantum
mechanics to Ψj i would, in general, produce a post-measurement state that violates
Eq. (2). However, as noted in refs. 21,24, a consistent way of describing multiple
measurements in a timeless framework is to “purify” them. This means dividing the
subsystem R into the system of interest, S, and a set of ancillary systems {ai}. The
ancilla ai acts as measurement device that records the information about the i-th
measurement performed on S. The purification consists in modelling the
measurement on S by explicitly including an interaction Hamiltonian between S

and the ancillary systems ai in the constraint Ĉ. After the interaction, the result of
the measurement is revealed by independently measuring in the state of the
ancillas. For example, a simple model of a multiple-time measurement, happening
at times t1 and t2, with t1 < t2, corresponds to the constraint equation

ðĤA þ ĤS þ δðT̂A � t1ÞK̂
ð1Þ þ δðT̂A � t2ÞK̂

ð2ÞÞ Ψj i ¼ 0: ð17Þ

Here, ĤS is the free Hamiltonian of the system of interest, S, δ denotes the Dirac

delta distribution, and K̂
ðiÞ
, for I= 1, 2, is an operator acting on HS �Hai

, where

Hai
is the Hilbert space associated to the i-th ancilla. The history state describes

measurement interactions between the system S and the ancillas ai. These
interactions are sharply localised at times t1 and t2. At times where the interactions
are turned off, S evolves freely under the Hamiltonian HS

21.
The probabilities for the results of measurements are given by projecting the

history state only once. For example, the probability for obtaining a result a1,
corresponding to the measurement performed at t1, and a result a2, corresponding
to the measurement performed at t2, given that clock A shows a time t > t2, is21:

pða1; a2jt > t2Þ ¼ j th jA � a1h j � a2h j � Ψj ij2: ð18Þ
By assumption, the state ψðtÞj i :¼ tjΨh i is normalised to one. Note that there is
nothing special about the choice of time t > t2. If one wishes, one can also compute
the probabilities for the outcome of the first measurement only, by projecting at a
time t1 < t < t2. Moreover, if one is interested in measurements at times t01 and t02 ,
different from t1 and t2, one can simply replace t1 and t2 by t01 and t02 in Eq. (17),
and compute the desired probabilities by means of Eq. (18).

Changing time reference frames. Here we develop a method for computing the
history state for one observer, say A, given the history state with respect to another
observer, say C. In Supplementary Note 2, we find all the history states studied in
this paper by group averaging—using Eq. (15). This leads to the “perspective
neutral” representation of Ψj i, which we use to “jump” into the time reference
frame of A. The perspective neutral representation offers an approach for changing
from the time reference frame of A to that of B. Moreover, it underscores the
interesting fact that “jumping” into a (classical or quantum) reference frame

amounts to fixing the redundant degrees of freedom imposed by the constraint Ĉ
(see refs. 17,41–45). It may happen that one wishes to change from the time reference
frame of A to that of B without explicitly computing the perspective neutral
representation of Ψj i, as we do in Supplementary Note 2. Here, we find explicit
equations that allow us to do so. Note that the two ways of computing the history
state give the same result. This fact was pointed out recently in ref. 46, which builds
upon the method for changing relational quantum clocks via a sequence of “tri-
vialisation maps” developed in ref. 17.

As noted in the main text, the timeless approach is based on a constraint given
by Eq. (2). We can obtain Ψj i, the solution to Eq. (2), by “projecting” an arbitrary
state φj i onto the space of solutions of Eq. (2), as done in Eq. (15). That is

Ψj i ¼ P̂ φj i; ð19Þ

where P̂ ¼
R

dα expð�iαĈÞ. Strictly speaking, P̂ is not a projector: it maps the
kinematical Hilbert space H onto a physical Hilbert space formed by solutions of
Eq. (2). As mentioned before, the physical Hilbert space is, in general, not
isomorphic to the kinematical one, because the inner products of each space might
be different to each other.

We can extract operationally meaningful physical predictions from Ψj i by
expressing it in a specific time reference frame (say A or C, for concreteness). As we
have seen in the main text, there are interesting cases where the time evolution with
respect to either A or C is unitary. In these cases, we have

th jI � P̂ � t0j iI ¼ Û�Iðt � t0Þ; ð20Þ
where I can be either A or C (the time reference frames analysed in the main text),

and Û�Iðt � t0Þ is the evolution operator in the time reference frame of I. This
operator is unitary and acts on all degrees of freedom except for I’s. Like all

evolution operators, it satisfies the composition property:

Û�Iðt � t0Þ ¼ Û�IðtÞÛ�Ið�t0Þ ¼ Û�IðtÞÛ
y
�I ðt0Þ. We will focus on the cases where

Eq. (20) holds.

We can express Ψj i it in the time reference frame of C by plugging φj i ¼
R

dt0C t0C
�

�

�

C
� ψCðt0CÞ
�

�

�

�C
into Eq. (19), and then inserting a resolution of the

identity, 1 ¼
R

dtC tCj i tCh jC on the right hand side of P̂. Using Eq. (20), we obtain

Ψj i ¼
Z

dtC tCj i � Û �CðtCÞ ψCð0Þ
�

�

�

�C
; ð21Þ

where

ψCð0Þ
�

�

�

�C
¼
Z

dt0C Û
y
�Cðt0CÞ ψCðt0CÞ

�

�

�

�C
: ð22Þ

Note that we have used the composition property of Û �C in order to write down
Eqs. (21) and (22). Note also that, when introducing the resolution of identity, we
have assumed that, in the physical Hilbert space, the integration measure in the
position (or rather time) representation is given by dtC. This is the case in all
instances considered in this work and we will assume it in the following. In more
general cases, one simply has to consider the specific form of the integration
measure when inserting resolutions of identity in the time representation. In

general, because the state ψIð0Þ
�

�

�

�I
evolves unitarily with respect to an arbitrary

clock I, its normalisation is preserved in time with respect to this arbitrary frame.
We can obtain Ψj i in the time reference frame of C in different ways. For

example, we can obtain first Ψj i in a “perspective neutral” representation, by
computing explicitly the integral with respect to α in Eq. (19), and afterwards, by
using the methods of refs. 17,41,45, we can “jump” into the reference frame of C.
Alternatively, we can carry out explicitly the computations leading from Eq. (19) to
Eq. (21), or we can act with tCh jC� on Eq. (2) and solve the resulting differential
equation. In any case, suppose we are given Ψj i in the time reference frame of C,
that is, in the form of Eq. (21), and we would like to change the representation to
the time reference frame of A. We can do so directly by noting that

P̂ ¼
Z

dtC dt0C tCj i t0C
	 �

�

C
� Û �CðtC � t0CÞ: ð23Þ

Therefore, by Eq. (20), we have

Û �AðtA � t0AÞ ¼
Z

dtC dt0C tCj i t0C
	 �

�

C
� tAh jAÛ �CðtC � t0CÞ t0A

�

�

�

A
: ð24Þ

Note that Eq. (24) allows us to obtain the (unitary) evolution operator in the time
reference frame of A directly from the evolution operator in the reference frame of
C. All we need to obtain Ψj i in the time reference frame of A is an equation for the

initial state with respect to A, ψAð0Þ
�

�

�

�A
, in terms of that of C. But this is easy

because, by definition, ψAð0Þ
�

�

�

�A
¼ tA ¼ 0h jA � Ψj i. Then, by Eq. (21), we have

ψAð0Þ
�

�

�

�A
¼
Z

dtC tCj iC � tA ¼ 0h jAÛ �CðtCÞ ψCð0Þ
�

�

�

�C
: ð25Þ

Equations (24) and (25) are all we need to change the time reference frame
representation of Ψj i. Note that, in principle,

ŜAC ¼
R

dtC tCj iC � tA ¼ 0h jAÛ �CðtCÞ, which transforms between the initial
states of C and A in Eq. (25), need not be unitary. In the simplest case, where

Ĉ ¼ ĤA þ ĤC þ ĤS , we have

ŜAC ¼ PACe
iT̂AĤS ; ð26Þ

where PAC :¼
R

dtC tCj iC �tCh jA is the parity-swap operator between C and A.
Note that this transformation matches exactly the transformation introduced in
ref. 25, for transforming between two spatial quantum reference frames.

Finally, if we wish to change from the reduced state at time tC in C’s frame,

ψCðtCÞ
�

�

�

�C
¼ tCh jC � Ψj i, to the reduced state at time tA in A’s frame, ψAðtAÞ

�

�

�

�A
¼

tAh jC � Ψj i, we simply have to put together Eqs. (21) and (25):

ψAðtAÞ
�

�

�

�A
¼ Û �AðtAÞŜACÛ

y
�AðtCÞ ψCðtCÞ

�

�

�

�C
: ð27Þ

In general, this transformation is not unitary, because ŜAC is not always unitary.

Operational meaning of the framework. Here we explain in detail the operational
meaning of our framework, described briefly in Reference frames for events and
time evolution. In Fig. 1, two observers, A and B, perform experiments on a
quantum system S. Each of them possess a clock and an ancilla, labeled a for A and
b for B.

The experiment has two stages, “preparation” and “detection”. In the preparation
stage, A and B prepare the states of their clocks, ancillas and systems. They can,
for example, choose to set their clocks at t= 0, and set S in a particular state. S
can be a composite system with subsystems accessible to A and B, and the observers
can prepare S in an entangled state in the partition defined by these subsystems.
In the detection stage of the experiment, A and B analyse the measurement results
by looking at the outcome of their clocks and ancillas. For example, they might be
interested in checking whether the ancillas are in a certain state at a given time, as
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defined by one of the clocks. Alternatively, they might project one of the clocks, say
A, in a specific basis, which need not be the time basis f tAj iAg.

The clocks and ancillas allow A and B to produce events localised in time, as
defined by the reading of their own clocks. For the purposes of this work, an event
consists in any quantum operation performed on a quantum system, conditioned
on one of the clocks being in a state which is sharply localised around a specific
time. For example, A can perform an experiment such that, when her clock shows

time t�A , an entangling unitary Û between S and a occurs, recording information of
S in a. If the outcome of a reveals information about S, the event corresponds to a
measurement of S by means of a. An event is not necessarily a measurement. For
example, the application of a unitary operation on S alone is also an event.
However, in order for this event to be defined operationally, the information that
such unitary took place has to be recorded in a physical system (a counter) to
which A and B have access in the detection stage. For example, the counter can be a
two-level system which shows 1 if the unitary has been applied and shows 0
otherwise. Our definition of “event” is adapted to the features of general relativity,
where diffeomorphism invariance means that points in space-time have no
physical meaning on their own, and events have to be defined via coincidences of
physical fields8,47.

In this work we insist on such an operational definition of events even in the
case where no space-time background is assumed. That is, we consider the general
case where A and B do not assume that the experiments take place in a specific,
well-defined causal structure. This could be because of practical reasons—they
might have only a probabilistic knowledge about the space-time geometry where
the experiments take place—or because of fundamental reasons—they might do
experiments involving gravitating quantum systems, which can lead to situations
with indefinite causal structure12. In any case, A and B know that they can make
quantum mechanical predictions by using the timeless approach to quantum
mechanics, and are able to verify which is the constraint equation and the history
state corresponding to their experiments. By keeping track of the different events in
the experiment, and comparing the times at which these events occur with respect
to their own clocks, A and B can assign a time coordinate to each event. In this
way, they can define a “mapping” of the set of events into “space-time”, as shown in
Fig. 1.

After repeating the experiment several times, A and B will be able to track the
time, relative to their respective clocks, at which the events occur. For example, B

can find that the aforementioned unitary Û takes place sharply when his clock
shows the time t�B, which in general differs from t�A. In the case where the event
corresponds to a measurement, B can identify such event in terms of a statement
like “at time t�B a measurement was performed on S yielding the result ‘up’”.

Gravitational quantum switch. In this section we analyse the gravitational
quantum switch12 from the perspective of time reference frames. The gravitational
switch is a thought-experiment where a gravitating body put in a quantum
superposition of positions leads to an indefinite causal order of events. The
experimental set up is as follows (see Fig. 4). Two parties, A and B, perform
operations on a quantum system S (one operation each party). Each operation
happens when the corresponding local clock shows time t*. Apart from A and B’s
clocks, there is a mass M, prepared in a superposition of two different position

eigenstates, labeled by L (left) and R (right), as described in the reference frame of
C. Note that here R stands for “right”, in contrast to the rest of the paper, where it
stands for “rest”. We assume that the superposition has the same weight for L and
R. Each amplitude L and R leads to two different metric fields, and therefore to two
different space-times. It is useful to keep track of the two different space-times

explicitly, by denoting them MðCÞ
L (for the mass on the left) and MðCÞ

R (for the
mass on the right). The experimental set up is such that, for the amplitude cor-
responding to L (R), M is closer to A (B). Because of gravitational time dilation, in

the spacetime MðCÞ
R (MðCÞ

L ), the event where A’s clock shows t* and A acts on S is
in the past (future) light cone of the event where B’s clock shows t* and B acts on S.
Thus, the gravitational switch leads to a superposition of causal orders. For sim-
plicity, we assume that the distance between M and A in the configuration given by
L is the same as the distance between M and B in the configuration given by R, and
the distance between A and B is constant.

We now use the framework of time reference frames to analyse and give
a geometric description of the gravitational switch. We proceed by writing
down the constraint describing the experiment and then comparing the history
state in the reference frame of C to that in the reference frame of A (the case
of B is analogous to that of A). The Hilbert space of the whole system is
H ¼ HA �HB �HC �HS �Ha �Hb �HM, where A, B, and C denote the
clocks of the three different time reference frames, S is the system on which A and
B perform operations, and a and b are the ancillas that record the measurement
outcomes of A and B, respectively. M denotes the relative degrees of freedom
between the massive system and the clocks. For simplicity, we focus on the
subspace generated by relative position eigenstates, labeled by Q= L, R, denoting
“mass close to A” and “mass close to B”, respectively. In the framework of time
reference frames, this experiment is described by the constraint equation

X

I

ĤIð1þ Φ̂IÞ þ
X

I

f̂ IðT̂IÞð1þ Φ̂IÞ
 !

Ψj i ¼ 0; ð28Þ

where I takes the values A, B and C. We consider sharply localised measurements,

f̂ AðT̂AÞ ¼ δðT̂A � t�ÞK̂ðAÞ
Sa , with an analogous definition for B. By assumption,

f̂ C ¼ 0. Here, Φ̂I ¼ �GM=ðc2x̂IMÞ denotes the gravitational potential, M is the
mass of the system put in a superposition of locations, and x̂IM is the relative

distance operator between the mass and clock I. By definition, the operator Φ̂I acts

on HM as Φ̂I Qj iM ¼ Φ
Q
I Qj iM. Note that HM is generated by the eigenstates of the

operators x̂IM , for I = A, B, C. The states Qj iM are therefore eigenstates of each x̂IM ,
for I = A, B, C. For simplicity, we assume that C is located equidistant from both

locations of the mass, so that ΦL
C ¼ Φ

R
C ¼: ΦC .

Let us now find the history state, Ψj i, of Eq. (28) in the reference frames of A
and C. In this case it is instructive to find first Ψj i in a “perspective neutral”
representation, and then use this representation to move to the time reference

frames of A and C. By inserting the constraint Ĉ of Eq. (28) into Eq. (15) we find
(see Supplementary Note 1)

Ψj i ¼
Z

dα e
�i
P

I¼A;B;C
ĤIð1þΦ̂IÞ T e

�i
P

I¼A;B

R α

0
ds 1þΦ̂Ið Þf̂ sð1þΦ̂IÞþT̂Ið Þ φj i: ð29Þ

The description of the quantum switch given in Eq. (29) can be roughly interpreted
as the quantum state seen by a distant observer who uses the coordinate α as
parameter time. (More precisely, if we introduce yet another party, which is
sufficiently far away that it effectively does not interact with the rest, the
description of the quantum switch would be given by Eq. (29) plus the additional
degrees of freedom of the non-interacting party). However, this interpretation is
not physically rigorous, because the constraint (28) implies that there is no external
time parameter according to which the systems evolve. For this reason, we write
down the history state from the perspective of C. In order to do so, we expand φj i
in the t0A; t

0
B; t

0
C

�

�

�

ABC
� Qj iM � χj iSab basis and follow the steps outlined in

Supplementary Note 2. The result is

Ψj i ¼
Z

dτC τCj iC � T e
�i
P

I

R τC

0
dsΔ̂ðI;CÞ ĤIþf̂ IðsΔ̂ðI;CÞþT̂ IÞð Þ ψCð0Þ

�

�

�

�C
; ð30Þ

where the sum is over I=A, B. We have defined Δ̂ðI; JÞ :¼ ð1þ Φ̂IÞ=ð1þ Φ̂JÞ, for
I, J=A, B, C. Note that Δ̂ðI; JÞ is the operator version of the usual redshift factor,
formed by the ratio of the proper time of clock I to that of clock J. We denote the

eigenvalues of Δ̂ðI; JÞ by ΔQ(I, J), where Δ̂ðI; JÞ Qj iM ¼ Δ
QðI; JÞ Qj iM . In this way,

ΔQ(I, J) is the ratio of the proper time of clock I to that of clock J in the mass

configuration Q. As in previous cases, we assume that the initial state, ψCð0Þ
�

�

�

�C
,

has both clocks A and B sharply localised around tA= tB= 0. The reason for this
assumption is simply that we are more interested in the effects due to the
gravitating quantum system M than in those due to the “fuzziness” of the initial

state. The relation between φj i and the initial state ψCð0Þ
�

�

�

�C
is given in

Supplementary Note 2.

The fact that Δ̂ðI;CÞ is an operator acting on HM has important consequences
for the localisation of events in the reference frame of C. Indeed, the time ordering
operator in Eq. (30) enforces that the operations of A and B are applied in different
orders for the amplitudes corresponding to Q= L and Q= R. Specifically, for Q=
L (Q= R) we have ΔL(A, C) < ΔL(B, C) (ΔR(A, C) > ΔR(B, C)), so that A’s operation

A B A B

M M

SS

b

b

a

a

a b

Fig. 4 Experimental set up of the gravitational switch. The mass M can be

either close to A (a) or to B (b). A (B) applies an operation on the system S

by means of an ancilla a (b). A’s operation is in the causal future (past) of

B’s operation when the mass is on the left (right). This fact is depicted by

the system traveling from B to A (a) and from A to B (b). In the quantum

switch experiment, the mass is put in a superposition between being close

to A and close to B, leading to a superposition of causal orders.
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is applied after (before) B’s. Note that, for simplicity, we are working in an
approximation where a given event is in the causal past of another one if the time
associated to the former is earlier than the time associated to the latter. In
Supplementary Note 2 we comment on a possible way of taking a more complete
approach, in terms of the light cones emanating from each event. In the present
case, our simplification just means that, by assumption, the event triggered by clock
A in the configuration Q= L (Q= R) is in the future light cone (past light cone) of
the event triggered by clock B.

We now compute the reduced state of system �C, ψðτf Þj i�C :¼ τfh jC � Ψj i, at a
time τf > t*/ΔR(A, C)= t*/ΔL(B, C), when both operations have already occurred
in C’s time reference frame. From Eq. (30), we have

ψðτf Þj i�C ¼ 1
ffiffiffi

2
p
Z

dt0Adt
0
Bdt

0
C

1þ ΦC

φðt0A; t0B; t0CÞð ϕL
�

�

�

AB
� Lj iM � Û

A

aSðt�=ΔLðA;CÞÞÛB

bSðt�=ΔLðB;CÞÞ

þ ϕR
�

�

�

AB
� Rj iM � Û

B

bSðt�=ΔRðB;CÞÞÛA

aSðt�=ΔRðA;CÞÞÞ χj iabS;
ð31Þ

where ϕQ

�

�

�

E

AB
¼NI¼A;B t0I þ Δ

QðI;CÞðτf � t0CÞ
�

�

�

I
, for Q = L, R. Here, the operator

Û
A

aS ¼ expð�iK̂
A

aSÞ represents the interaction by which the outcome of the event
“the system S is measured when clock A shows t= t*” is recorded in the ancilla a.
Although this operator is time independent, we have written in both amplitudes
the time, in C’s reference frame, at which it was applied. This is in order to
emphasise the time labelling of events in this reference frame. Similar remarks hold
for the case of B. The state of Eq. (31) is nothing but the familiar description of the
quantum switch48 after the local operations of A and B have been performed and
before the control system, formed in this case by the mass and the clocks of A and
B, is recombined.

The description of the experiment according to the time reference frame of C is
depicted in Fig. 5, where we have used two different manifolds to depict the two

different space-times MðCÞ
L and MðCÞ

R . As the figure shows, no event happens
sharply localised in time according to C. Rather, the event corresponding to A
occurs in a superposition in time between τC= t*/ΔR(A, C) (early) and τC= t*/ΔL

(A, C) (late), with a similar statement applying to the case of B. Note that,
according to our framework and its physical interpretation, the claim that the
events in the switch experiment “involve 4 spacetime points” is a frame dependent
statement—valid for C in this case. This is the natural picture of the gravitational
switch that emerges if one imagines the experiment as seen by an observer far-away
from the mass. However, note that, in our analysis, no assumptions regarding the
distance from C to M were needed in order to obtain this description. Of course, we
work with states on HM such that no divergences in the redshift factors ΔQ(I, J))
occur. This is ensured as long as xIM >GM/c2 (the order of magnitude of the
Schwarzschild radius corresponding to a mass of magnitude M.)

Let us now turn to the description of the experiment in the time reference frame
of A (the case for B being completely analogous). From Eq. (29), the quantum

controlled change of coordinates α �! τA :¼ tA þ αð1þ ϕQAÞ gives the history

state in A-representation

Ψj i ¼
Z

dτA τAj iA � T e
�i
R τA

0
ds f̂ AðsÞþ

P

I
Δ̂ðI;AÞ ĤIþf̂ IðsΔ̂ðI;AÞþT̂IÞð Þð Þ ψAð0Þ

�

�

�

�A
;

ð32Þ
where the index I in the exponent takes values I = B, C. The relation between

ψAð0Þ
�

�

�

�A
and the state φj i is found explicitly in Supplementary Note 2.

Note that the argument of f̂ A in Eq. (32) does not depend on any redshift factor,
classical or quantum. This means that, according to A, her operation is always
localised in time. This fact can be seen clearly when writing down the conditional
state ψðτf Þj i�A :¼ τfh jA � Ψj i for a time τf > t*/ΔR(B, A):

ψðτf Þj i�A ¼ 1
ffiffiffi

2
p
Z

dt0Adt
0
Bdt

0
C

1þ Φ̂A

φðt0A; t0B; t0CÞ ϕj iC � ð ϕL
�

�

�

B
� Lj iM � Û

A

aSðt�ÞÛ
B

bSðt�=ΔLðB;AÞÞ

þ ϕR
�

�

�

B
� Rj iM � Û

B

bSðt�=ΔRðB;AÞÞÛA

aSðt�ÞÞ χj iabS:
ð33Þ

For simplicity of notation, we have written τf to refer to the “final” time when
analysing the experiment both from A’s (Eq. (33)) and C’s (Eq. (31)) perspective.

However, these two times need not be the same. Note that here ϕj iC ¼
t0C þ ΔðC;AÞðτf � t0AÞ
�

�

�

C
factors out from the mass degrees of freedom due to the

assumption Φ
L
C ¼ Φ

R
C. On the other hand, the state of clock B is entangled with the

mass. The important point is that, in Eq. (33), the operation Û
A

aS depends only on
t* in both amplitudes Q= L, R. As noted before, this means that the operation
happens sharply at t* in the reference frame of A, independent of where the mass

is. However, the operation Û
B

bS occurs before (after) Û
A

aS for the configuration Q=
L (Q= R). Therefore, for A, events in the vicinity of her clock are always well
defined in time, whereas events outside this vicinity are “spread out” in her time27.
As noted in the previous Section, this is a signature of an indefinite metric field. An
indefinite metric field can lead to an indefinite causal order of events if, like in this
case, the events are suitably chosen.

The situation described by Eqs. (32) and (33) is depicted in Fig. 6, where a
geometric description of the experiment from the point of view of A is given. As
noted before, A’s operation takes place at time t* in both amplitudes.

Remarks on coordinates for gravitating quantum systems. Let us make a few
(speculative) remarks regarding our treatment of coordinates:

1. (Reference frames associated with a set of manifolds.) The geometric
picture of the gravitational switch shown in Figs. 5 and 6 suggests that a
time reference frame should not be considered as “attached” to a single
space-time manifold. Rather, a time reference frame should be defined

A B

A B

t* − �

t* + �

t* + �

t*

t* − �

t*

M
(C)
L

M
(C)
R

Fig. 5 Space-time diagram for gravitational switch thought experiment as

described in the time reference frame of C. The event in which A (B) acts

on S is depicted by a red (green) star. These events are delocalised in time

from C’s point of view. In the spacetimeMðCÞ
R (MðCÞ

L ), the massM is on the

right (left), implying that A acts before (after) B. (For clarity, the worldline

of M is not shown.) In MðCÞ
R (MðCÞ

L ), A’s action happens at time t*/ΔR

(A, C)≈ t*− δ (resp. t*/ΔL(A, C)≈ t*+ δ) and B’s action happens at t*/ΔR

(B, C)≈ t*+ δ (resp. t*/ΔL(B, C)≈ t*− δ), for δ ¼ ðΦL
C � Φ

L
AÞ=t�. The

dashed red (green) line joining A’s (B’s) event in both spacetimes is drawn

to emphasise that this is the same event, even though we have used two

red (green) stars, one per spacetime, to depict it.

A B

A B
M

(A)
L

M
(A)
R

t* – �
t* + �

t*

t*

Fig. 6 The gravitational switch thought experiment as described in the

time reference frame of A (local observer). The event in which A acts on

S is depicted by a red star. This event is perfectly localised in time from A’s

point of view. However, as in the previous case, in the spacetime MðAÞ
R

(MðAÞ
L ), the mass M is on the right (left), implying that A acts before (after)

B. The causal order is conserved, for each spacetime amplitude, after the

change of perspective. In both MðAÞ
R and MðAÞ

L , A’s action happens at time

t*, whereas B acts at t*/ΔR(B, A)≈ t*+ ϵ (resp. t*/ΔL(B, A)≈ t*− ϵ) in

MðAÞ
R (MðAÞ

L ), for ϵ ¼ ðΦL
B �Φ

L
AÞ=t�. Note that the dashed red line joining

A’s event in both spacetimes is now parallel to the dashed black line joining

t* in both spacetimes. This means that we are in the time reference frame

where the event happens at a precise, sharp time. In contrast, the dashed

green line joining B’s event in both spacetimes is not parallel to the black

dashed one, showing that the time localisation of B’s event is not sharp in

A’s time reference frame.
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“transversally”, by “piercing” through the different manifolds. This resonates
with Hardy’s idea10 of quantum coordinate systems as an identification of
points along different manifolds (this is depicted by the black, dashed lines
in Figs. 5 and 6, which identify the time t* in the two different space-times).

2. (Hypersurfaces of constant t.) The previous remark suggests that, when
writing a history state in the form Ψj i ¼

R

dt tj i � ψðtÞj i, the ket ψðtÞj i
should not be interpreted as a state living on (the Hilbert space
corresponding to a spatial slice of) a single spacetime, but rather on the
hypersurface of “constant t” that “pierces” through the set of manifolds. The
state on a single manifold is obtained by restricting ψðtÞj i to a single
spacetime. (For the gravitational switch, this restriction would correspond
to, roughly speaking, “projecting” into the subspace corresponding to the
spacetime where the mass is, say, on the right.)

3. (Signature of an indefinite metric and robustness of the global causal
structure) We emphasise that, in experiments involving gravitating
quantum systems, the fact that events are delocalised in time with respect
to some observers is a signature of an indefinite metric field—ignoring
uncertainties due to “fuzzy” clock pointers and measurement interactions
extended in time. More specifically, if the metric field is indefinite, one
cannot, in general, change to a time reference frame where all events are
localised in time. For example, in the gravitational switch, localising the
event of A means that the event of B is uncertain in time. However, time
reference frame transformations cannot change the global causal structure
of the events in an experiment (either form A’s or C’s perspective, there is an
amplitude where A’s event is in the past of B’s and an amplitude where A’s
event is in the future of B’s). In other words, the localisability of a single
event in time is a relative concept, whereas the global causal structure of
events is an absolute one. This is reminiscent of what happens in the case of
process matrices, where continuous and reversible transformations do not
modify the global causal order of a process matrix49.

4. (Geometric “arena” for superpositions of semiclassical states.) We point out
that the above geometric picture, with multiple manifolds identified by time
reference frames “piercing” through them, suggests a new suitable geometric
“arena” in which phenomena with “superpositions of spacetimes” can be
studied mathematically, at least in the case where the gravitating quantum
systems are in a quantum superposition of semiclassical states. It would be
interesting to investigate if an extension of this geometric picture can be
useful beyond this case as well.

5. (Quantum coordinates.) It is interesting to note that we can understand the
application of operations in Eq. (13) as being done with respect to a
“quantum coordinate”. Specifically, following the definition of an integral
with respect to an operator given in non commutative analysis32, we note
that the integral part of the exponent in Eq. (13) can be written as
R τC
0
dsð1þ λĤBÞ f̂ ðsð1þ λĤBÞ þ T̂AÞ ¼

R τC
0
dτ̂A f̂ ðτ̂AÞ, where τ̂A ¼ sð1þ

λĤBÞ þ T̂A is the “quantum coordinate” upon which the integral is defined.
This is the integral version of the “derivative” with respect to a quantum
coordinate expressed by Eq. (9).

6. (Quantum-controlled change of coordinates.) Now we comment on the
change of coordinates that eliminates τC in favour of τA, leading from
Eq. (13) to Eq. (14). Although mathematically very simple, this change of
variables has an important physical interpretation. Because it associates a
different τA to different amplitudes of the state of clock B, this change of
coordinates is quantum-controlled by the state of B. Note that B is a source
of the gravitational field, and is in a state which contains different
amplitudes corresponding to different energies. Importantly, each of these
energies corresponds to a different metric field, and therefore, to a different
space-time. Then, the change of coordinates that goes from C’s to A’s frame
associates different values of τA to different metric fields, each of which
corresponds to a different amplitude in B’s state. In this sense, it is more
general than the usual coordinate transformations in general relativity,
where there is a fixed metric and therefore a single amplitude.

7. (No-divergence condition.) Finally, as in “Evolution with respect to
gravitationally interacting clocks”, we assume that the wave packet of B’s
clock is such that no divergences occur in the denominator 1þ λĤB . It is
easy to check that the condition for no divergences implies that ξxAB > l2P ,
where ξ= cσ is the characteristic with of the wave packet φB in units of
length, and l2P ¼ _G=c3 is the Planck area. The fact that the divergences
occur at the Planck length is consistent with the widely-held view that, at
this scale, typical quantum gravity effects become predominant.

Knob settings and external evolution. It is important to distinguish two different
types of terms playing different roles in the constraint equations appearing in the
main text. For example, consider Eq. (3), which has two different type of terms. On

the one hand, Eq. (3) has the term Ĥext: :¼ ĤA þ ĤB, acting only on the clocks
degrees of freedom. The clocks allow A and B to acquire information about “when”
the operations take place. Roughly speaking, these degrees of freedom (together
with the spatial ones25) correspond to the external, relative "spatiotemporal loca-
lisation of the local laboratories" in which events take place. On the other hand, the

term Ĥloc: :¼ f̂ AðT̂AÞ þ f̂ BðT̂BÞ describes the operations on the system located at

the time defined by the clocks. Roughly speaking, they correspond to the “local
operations” happening inside of the local laboratories. Motivated by the framework
of process matrices11, we make this correspondence explicit.

For the sake of generality, we consider a constraint of the form

Ĉ ¼ Ĥext: þ Ĥ loc: , where Ĥext: is a function of the (possibly interacting)

Hamiltonian of the clocks and Ĥloc: includes the interventions made on the system.
All the constraints studied in this paper have this form. Dropping, for simplicity of
notation, the dependence on x, y, . . . , z and a, b, . . . , c, Eq. (18) reads

p ¼ jE Ψj ij2

¼ TrEyE Ψj i Ψh j

¼ TrEyE

Z

dα dα0 e�iαðĤext:þĤloc:Þ φj i φh jeiα0ðĤext:þĤloc:Þ

¼ TrEyE

Z

dα dα0 VðαÞe�iαĤext: φj i φh jeiα0Ĥext:Vyðα0Þ

¼
Z

dα dα0Tre�iαĤext: φj i φh jeiα0Ĥext:Vyðα0ÞEyEVðαÞ

¼ TrWM;

ð34Þ

where E is a measurement operator acting on the clocks and the ancillas, W has

matrix elements Wðα; α0Þ ¼ e�iαĤext: φj i φh jeiα0Ĥext: , M has matrix elements

Mðα0; αÞ ¼ Vyðα0ÞEyEVðαÞ, and VðαÞe�iαĤext: ¼ e�iαðĤext:þĤloc:Þ.
We have therefore shown that it is possible to write down the Born rule for the

probability p, Eq. (18), in the form

p ¼ TrWM; ð35Þ

where W depends only on the spatiotemporal part, corresponding to Ĥext: , and M
encodes the information about the operations inside the local laboratories,

corresponding to Ĥloc: . M can depend on the spatiotemporal part as well (although
this is not the case for non interacting clocks).

Data availability
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