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Quantum clocks observe classical and quantum
time dilation
Alexander R. H. Smith 1,2✉ & Mehdi Ahmadi 3✉

At the intersection of quantum theory and relativity lies the possibility of a clock experiencing

a superposition of proper times. We consider quantum clocks constructed from the internal

degrees of relativistic particles that move through curved spacetime. The probability that one

clock reads a given proper time conditioned on another clock reading a different proper time

is derived. From this conditional probability distribution, it is shown that when the center-of-

mass of these clocks move in localized momentum wave packets they observe classical time

dilation. We then illustrate a quantum correction to the time dilation observed by a clock

moving in a superposition of localized momentum wave packets that has the potential to be

observed in experiment. The Helstrom-Holevo lower bound is used to derive a proper time-

energy/mass uncertainty relation.
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What allowed Einstein to transcend Newton’s absolute
time was his insistence that time is what is shown by a
clock1:

“[Time is] considered measurable by a clock (ideal periodic
process) of negligible spatial extent. The time of an event
taking place at a point is then defined as the time shown on
the clock simultaneous with the event.”

Bridgman highlighted the significance of this definition of
time2:

“Einstein, in seizing on the act of the observer as the essence
of the situation, is actually adopting a new point of view as
to what the concepts of physics should be, namely, the
operational view.”

Extending the operational view to quantum theory, one is led to
define time through measurements of quantum systems serving as
clocks3. Such descriptions of quantum clocks have been developed
in the context of quantum metrology4–7. In this regard, time
observables are identified with positive-operator valued measures
(POVMs) that transform covariantly with respect to the group of
time translations acting on the employed clock system8,9. This
covariance property ensures that these time observables give the
optimal estimate of the time experienced by the clock; that is, they
saturate the Cramer–Rao bound10. Furthermore, covariant time
observables allow for a rigorous formulation of the time-energy
uncertainty relation4–7, circumvent Pauli’s infamous objection to
the construction of a time operator11,12, and play an important
role in relational quantum dynamics13–17.

Given that clocks are ultimately quantum systems, they too are
subject to the superposition principle. In a relativistic context, this
leads to the possibility of clocks experiencing a superposition of
proper times. Such scenarios have been investigated in the context of
relativistic clock interferometry18, in which two branches of a matter-
wave interferometer experience different proper times on account of
either special or general relativistic time dilation19–26. Such a setup
leads to a signature of matter experiencing a superposition of proper
times through a decrease in interferometric visibility. Other work has
focused on quantum variants of the twin-paradox27,28 and exhibiting
nonclassical effects in relativistic scenarios29–36.

We introduce a proper time observable defined as a covariant
POVM on the internal degrees of freedom of a relativistic particle
moving through curved spacetime. This allows us to consider two
relativistic quantum clocks, A and B, and construct the probability
that A reads a particular proper time conditioned on B reading a
different proper time. To compute this probability distribution we
extend the Page–Wootters approach37,38 to relational quantum
dynamics to the case of a relativistic particle with internal degrees
of freedom. We then consider two clocks prepared in localized
momentum wave packets and demonstrate that they observe on
average classical time dilation in accordance with special relativity.
We then illustrate a quantum time dilation effect that occurs when
one clock moves in a superposition of two localized momentum
wave packets: On average, the proper time of a clock moving in a
coherent superposition of momenta is distinct from that of the
corresponding classical mixture, see Fig. 1. We describe the
average quantum correction to the classical time dilation observed
by such a superposed clock. In addition, our description of proper
time as a covariant POVM allows for both proper time and par-
ticle mass to be treated as dynamical quantum observables, leading
to a time-energy/mass uncertainty relation.

Results
Page–Wootters description of a relativistic particle with an
internal degree of freedom. In adhering to the operational view

espoused earlier, we employ the Page–Wootters formulation of
quantum dynamics in which time enters like any other quantum
observable. One considers a state Ψij i 2 Hphys of a clock C and a
system S that lives in the physical Hilbert space Hphys. This
Hilbert space is defined as the Cauchy completion of the set of
solutions to the constraint equation:

CH Ψij i ¼ HC þHSð Þ Ψij i ¼ 0; ð1Þ
where HC 2 LðHCÞ and HS 2 LðHSÞ denote the Hamiltonians of
C and S. One then associates with C a time observable defined as a
POVM:

TC :¼ ECðtÞ 8t 2 G j IC ¼
Z
G
ECðdtÞ

� �
; ð2Þ

where ECðtÞ ¼ tj i th j is a positive operator on HC known as an
effect operator, G the group generated by HC, and tj i will be
referred to as a clock state associated with a measurement of the
clock yielding the time t. What makes TC a time observable is that
the effect operators transform covariantly with respect to the
group generated by HC

5–7,9

Eðt þ t0Þ ¼ UCðt0Þ EðtÞ Uy
Cðt0Þ ð3Þ

where UCðtÞ :¼ e�iHCt. This covariance condition implies that
t þ t0j i ¼ UCðt0Þ tj i. One then defines a state of S by conditioning
Ψij i on C reading the time t

ψSðtÞ
�� �

:¼ th j � IS Ψij i: ð4Þ
It then follows from Eqs. (1) and (3),

i
d
dt

ψSðtÞ
�� � ¼ HS ψSðtÞ

�� �
; ð5Þ

which describes the evolution of S relative to C.
As described in the “Methods” section, a relativistic particle

with an internal clock degree of freedom can be described by the
Hilbert space Ht �Hcm �Hclock, where Ht ’ L2ðRÞ,
Hcm ’ L2ðR3Þ, and Hclock are Hilbert spaces associated respec-
tively with the temporal, center-of-mass, and internal clock
degrees of freedom of the particle. When the relativistic
particle has positive energy, the physical state satisfies Eq. (1)

== ==BA

⎟ pA〉 +⎟ pA〉′⎟ pB〉

Fig. 1 Quantum time dilation. Two clocks are depicted as moving in
Minkowski space. Clock B is moving in a localized momentum wave packet
with average momentum �pB, while clock A is moving in a superposition of
localized momentum wave packets with average momentum �pA and �p0A.
Clock A experiences a quantum contribution to the time dilation it observes
relative to clock B due to its nonclassical state of motion.
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with HC= Pt equal to the momentum operator on Ht and

HS ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

m2c2
þ 1þ Hclock

mc2

� �2
s

; ð6Þ

where P2 := ηijPiPj, ηij the Minkowski metric, and m the rest mass
of the particle. Equation (5) then becomes the relativistic
Schrödinger equation and the state jψSðtÞi may be interpreted
as the state of the center-of-mass and internal clock of the particle
at the time t, interpreted as the time of an inertial frame observing
the particle with respect to which the center-of-mass degrees of
freedom are defined. With this identification, the dynamics
implied by the Page–Wootters formalism is in agreement with
previous descriptions of a relativistic particle with internal
degrees of freedom19,31,39.

We note that in the “Methods” section the above analysis in the
Page–Wootters formalism is generalized to the case of a
stationary curved spacetime and in Supplementary Note 1 the
Klein–Gordon equation is recovered. Further justification of the
Page–Wootters formalism is provided in Supplementary Note 2.

Proper time observables. We now make precise how the internal
degrees of freedom of the relativistic particle introduced in the
previous section constitute a clock by introducing a proper time
observable. We define a clock to be the quadruple:

Hclock; ρ;Hclock;Tclockf g; ð7Þ
the elements of which are the clock Hilbert space Hclock, a fiducial
state ρ, Hamiltonian Hclock, and time observable Tclock. Similar to
the definition of TC above, Tclock is defined as a POVM that
transforms covariantly with respect to the group action
UclockðτÞ ¼ e�iHclockτ . The physical significance of the covariance
condition in Eq. (3) is that it implies the time observable satisfies
the following two physical properties commonly associated with a
clock, which we state in a theorem.

Theorem 1 (Desiderata of physical clocks) Let Tclock be a
covariant time observable relative to the group generated by
Hclock, ρ be a fiducial state such that hTclockiρ ¼ 0, and

ρðτÞ :¼ UclockðτÞ ρ Uy
clockðτÞ. The following two physical proper-

ties of such a time observable follow:

1. Tclock is an unbiased estimator of the parameter τ such that
hTclockiρðτÞ ¼ τ.

2. The variance of the time observable is independent of the
parameter τ, i.e., hðΔTclockÞ2iρðτÞ ¼ hðΔTclockÞ2iρ.

Proof Statements 1 and 2 follow directly from the covariance
property of Tclock; see Supplementary Note 3.

This theorem justifies interpreting Tclock as a time observable:
when a time observable is measured on a quantum clock, we
expect on average that it estimates the elapsed time τ unitarily
encoded in ρ(τ). Also, the variance of this measurement should be
independent of the time τ being estimated.

Taking this notion of a clock and applying it to the relativistic
particle model introduced in the previous section, we may
construct a proper time observable that transforms covariantly
with respect to the internal clock Hamiltonian Hclock of the
particle. As explained in the “Methods” section, such a
Hamiltonian generates a unitary evolution of the internal clock
degrees of freedom of the particle, and thus a time observable
Tclock that transforms covariantly with respect to the group
generated by Hclock will measure the particle’s proper time.

Proper time-energy/mass uncertainty relation. For an unbiased
estimator, like the proper time observable Tclock introduced in the
previous section, the Helstrom–Holevo lower bound4,5 places the

fundamental limit on the variance of the proper time measured
by the clock

hðΔTclockÞ2iρ ≥
1

4hðΔHclockÞ2iρ
; ð8Þ

where hðΔHclockÞ2iρ is the variance of Hclock on the fiducial state
ρ. Equation (8) is a time-energy uncertainty relation between the
proper time estimated by Tclock and a measurement of the clock’s
energy Hclock. Now consider the related mass observable defined
by the self-adjoint operatorMclock: = m + Hclock/c2 (e.g.,19). From
Eq. (8), an uncertainty relation between this mass observable and
proper time follows

ΔMclockΔTclock ≥
1
2c2

; ð9Þ

where ΔA :¼ hðΔAÞ2i1=2ρ denotes the standard deviation of the
observable A. This inequality gives the ultimate bound on the
precision of any measurement of proper time.

The time-energy/mass inequality above can be saturated using
the optimal proper time observable provided that the effect
operators Eclock(τ) defining Tclock are proportional to “projection”
operators

EclockðτÞ ¼ μ τj i τh j; ð10Þ
for μ 2 R such that ∫G Eclock(dτ) = Iclock, where Hclock is the
generator of proper time translations, and τj i is the clock state
corresponding to the proper time τ. Here the motivation is that
measurements not described by one-dimensional projectors have
less resolution6, however, note that the clock states τj i are not
necessarily orthogonal, hτjτ0i ≠ 0.

It turns out that covariant observables satisfying Eq. (10)
constitute an optimal measurement to estimate the parameter τ
unitarily encoded in the state ρ(τ):= Uclock(τ)ρUclock(τ)†, provided
that the fiducial state is pure ρ ¼ jψclockihψclockj and

ψclock

�� � ¼ Z
G
dτ ψclockðτÞ
�� ��eiτhHclockiρ τj i; ð11Þ

where ψclockðτÞ :¼
ffiffiffi
μ

p hτjψclocki and ψclockðτÞ
�� �� is a real function

of τ such that hTclockiρ ¼ 06. Such a proper time observable Tclock
is optimal in the sense that it maximizes the so-called Fisher
information10, which quantifies how well two slightly different
values of proper time can be distinguished given a particular
quantum measurement. For the effect operatrors Eclock and the
fiducial state in Eq. (11), we have

F½τ; ρðτÞ� ¼ 4hðΔHclockÞ2iρ: ð12Þ
The covariance condition, τ þ τ0j i ¼ Uclockðτ0Þ τj i, ensures that
the Fisher information is independent of τ.

Let us point out a connection between our above construction
of a proper time observable and quantum speed limits. From the
fact that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F τ; ρðτÞ½ �p

=2≤ΔH40, together with Eq. (12), we can
conclude that the covariant proper time observable in fact
saturates the so-called Mandelstam and Tamm inequality. That is

τ? ¼ ΔTclock ¼
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F τ; ρðτÞ½ �p ¼ π

2ΔMclock
; ð13Þ

where τ⊥ is the time that passes before the initial state of a system
evolves under the Hamiltonian Hclock into an orthogonal state.

We remark that in this construction both proper time and
mass are treated as genuine quantum observables; the former as a
covariant POVM Tclock and the latter as a self-adjoint operator
Mclock. Such a formulation of proper time and mass in the regime
of relativistic quantum mechanics has been argued as necessary
by Greenberger41,42.
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Classical and quantum time dilation. Let us now consider two
relativistic particles A and B, each with an internal degree of
freedom serving as a clock, fHclock

A ; ψclock
A

�� �
;Hclock

A ;TAg and
fHclock

B ; ψclock
B

�� �
;Hclock

B ;TBg. Suppose these clocks move through
Minkowski space and are described by the physical state Ψij i,
which satisfies two copies of Eq. (1), one for each clock, as
detailed in the “Methods” section. To probe time dilation effects
between these clocks we consider the probability that clock A
reads the proper time τA conditioned on clock B reading the
proper time τB. This conditional probability is evaluated using the
physical state Ψij i and the Born rule as follows

prob TA ¼ τA jTB ¼ τB½ � ¼ prob TA ¼ τA &TB ¼ τB½ �
prob TB ¼ τB½ �

¼ hhΨjEAðτAÞEBðτBÞ Ψij i
hhΨjEBðτBÞ Ψij i

: ð14Þ

To evaluate this probability distribution note that the clock
states defined below Eq. (2) form a basis dense in Ht, and thus a
physical state may be expanded as

Ψij i ¼
Z

dt tj i ψSðtÞ
�� �

¼
Z

dt tj i
O

n2fA;BgUnðtÞ ψcm
n

�� �
ψclock
n

�� �
;

ð15Þ

where UnðtÞ :¼ e�iHnt , Hn is the Hamiltonian given in Eq. (6),
and in writing Eq. (15) we have supposed that the conditional
state at t = 0 is unentangled, ψSð0Þ

�� � ¼ ψA

�� �
ψB

�� �
. Further

suppose that the center-of-mass and internal clock degrees of
freedom of both particles are unentangled, ψn

�� � ¼ ψcm
n

�� �
ψclock
n

�� �
,

where ψcm
n

�� � 2 Hcm
n is the initial state of the center-of-mass of the

particle. Suppose that Hclock
n ’ L2ðRÞ, so that we may consider

an ideal clock such that Hclock
n ¼ Pn and Tn are the momentum

and position operators on Hclock
n . Such clocks represent a

commonly used idealization in which the time observable is
sharp, that is, the clock states are orthogonal hτijτ0ii ¼ δðτ � τ0Þ
and so outcomes of different clock measurements are perfectly
distinguishable. Note that Tn;H

clock
n

	 
 ¼ i, from which it follows
that the effect operators satisfy the covariance relation
τ þ τ0j i ¼ Uclockðτ0Þ τj i. We employ such clocks for their
mathematical simplicity in illustrating the quantum time dilation
effect, however we stress that for any covariant time observable,
on account of Eq. (14), a quantum time dilation effect is expected
(e.g., see ref. 43).

By substituting Eq. (15) into Eq. (14), the probability that A
reads τA conditioned on B reading τB can be evaluated to leading
relativistic order in the center-of-mass momentum 〈Pn/mc〉 and
internal clock energy hHcm

n =mc2i
prob TA ¼ τA jTB ¼ τB½ �

¼ e�
ðτA � τBÞ2

2σ2ffiffiffiffiffi
2π

p
σ

1þ hHcm
A i � hHcm

B i
2mc2

1� τ2A � τ2B
σ2

� �� �
;

ð16Þ

where hHcm
n i :¼ ψcm

n

 ��P2
n ψcm

n

�� �
=2m is the average nonrelativistic

kinetic energy of the nth particle and we have assumed the
fiducial states of the clocks ψclock

n

�� �
to be Gaussian wave packets

centered at τ = 0 and have a width σ in the clock state (i.e.,
position) basis. As described by this probability distribution, the
average proper time read by clock A conditioned on clock B
indicating the time τB is

hTAi ¼ 1� hHcm
A i � hHcm

B i
mc2

� �
τB; ð17Þ

and the variance in such a measurement is

hðΔTAÞ2i ¼ 1� hHcm
A i � hHcm

B i
mc2

� �
σ2: ð18Þ

As might have been anticipated, the variance in a measurement of
TA is proportional to σ2, which quantifies the spread in the
fiducial clock state.

Now suppose that the center-of-mass of both clocks are
prepared in a Gaussian state localized around an average
momentum �pn with spread Δn > 0,

ψcm
n

�� � ¼ 1

π1=4
ffiffiffiffiffiffi
Δn

p
Z

dp e
�ðp��pnÞ2

2Δ2n pnj i ¼: �pnj i; ð19Þ

for which hHcm
n i ¼ �p2n

2m þ Δ2
n

4m. It follows that the observed average
time dilation between two such clocks is

hTAi ¼ 1� �p2A � �p2B þ 1
2 ðΔ2

A � Δ2
BÞ

2m2c2

� �
τB: ð20Þ

If instead the two clocks were classical, moving with momenta
�pA and �pB corresponding to the average velocity of the
momentum wave packets of the clocks just considered, then to
leading relativistic order the proper time τA read by A given that
B reads the proper time τB is

τA ¼ γB
γA

τB ¼ 1� �p2A � �p2B
2m2c2

� �
τB; ð21Þ

where γn :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �p2n=m

2c2
p

. Therefore, upon comparison with
Eq. (20) and supposing that ΔA = ΔB, quantum clocks whose
center-of-mass are prepared in Gaussian wave packets localized
around a particular momentum agree on average with classical
time dilation described by special relativity.

It is natural to now ask: Does a quantum contribution to the
time dilation observed by these clocks arise if the center-of-mass
of one of the clocks moves in a superposition of momenta? To
answer this question, suppose that the center-of-mass state of A
begins in a superposition of two Gaussian wave packets with
average momenta �pA and �p0A,

ψcm
A

�� � � cos θ �pAj i þ eiϕ sin θ �p0A
�� �

; ð22Þ
where θ ∈ [0, π/2), ϕ ∈ [0, π], and �pAj i and �p0A

�� �
are defined

in Eq. (19). Further, suppose that the center-of-mass
degree of freedom of clock B is again prepared in a Gaussian
wave packet with average momentum �pB as in Eq. (19).
Using Eq. (17), the average time read by A conditioned on B
reading τB is

hTAi ¼ γ�1
C þ γ�1

Q

� �
τB; ð23Þ

where

γ�1
C :¼ 1� �p2Acos

2θ þ �p02Asin
2θ � �p2B

2m2c2
� Δ2

A � Δ2
B

4m2c2
; ð24Þ

leads to the classical time dilation expected by a clock moving
in a statistical mixture of momenta �pA and �p0A with probabilities
cos2θ and sin2θ, and

γ�1
Q :¼

cos ϕ sin 2θ �p0A � �pA
� �2 � 2 �p02A � �p2A

� �
cos 2θ

h i
8m2c2 cosϕ sin 2θ þ exp

�p0A��pAð Þ2
4Δ2

A

� �� � ;

ð25Þ
which quantifies the quantum contribution to the time dilation
between A and B. As expected, if either θ 2 f0; π2g or �pA ¼ �p0A,
then the quantum contribution vanishes, γ�1

Q ¼ 0. This is
expected given that in these cases the center-of-mass of the
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clock particle is no longer a superposition of momentum wave
packets; see Eq. (22). From Eq. (24) it is clear that choosing
ΔA = ΔB and �p2B ¼ �p2Acos

2θ þ �p02Asin
2θ results in γ�1

C ¼ 0, and
thus any observed time dilation between clocks A and B would
be a result of the quantum contribution γ�1

Q .
To illustrate the behavior of quantum time dilation stemming

from the nonclassicality of the center-of-mass state of clock
A, the quantity γ�1

Q is plotted in Fig. 2. For simplicity the one-
dimensional case is exhibited by supposing �pA ¼ ð�pA; 0; 0Þ and
�p0A ¼ ð�p0A; 0; 0Þ with �p0A > �pA. Figure 2a shows the behavior of
γ�1
Q as a function of the difference �p0A � �pA

� �
=mc in the average

momentum of each wave packet comprising the momentum
superposition in Eq. (22) for different values of their total
momentum �p0A þ �pA

� �
=mc. It is seen that quantum time

dilation can be either positive or negative, corresponding to
increasing or decreasing the total time dilation experienced by
the clock compared to an equivalent clock moving in a classical
mixture of the same momenta wave packets. Further, there is an
optimal difference in the average momentum of the two wave

packets popt; as the total average momentum of the wave
packets �p0A þ �pA

�� ��=mc increases, the magnitude of γ�1
Q and popt

increase.
Figure 2b is a plot of γ�1

Q as a function of θ quantifying the
weight of each momentum wave packet comprising the super-
position in Eq. (22) for a fixed value of the difference in average
momentum of each wave packet �p0A � �pA

� �
=mc. It is observed

that when �p0A þ �pA
� �

=mc ¼ 0, γ�1
Q is positive for all values of θ

and reaches its maximum value at θ = π/4. As the total average
momentum increases, γ�1

Q decreases for 0 < θ < π/4 and increases
for π/4 < θ < π/2 with the largest negative value at θ ≈ π/8 and
largest positive value at θ ≈ 3π/8.

Quantum time dilation in experiment. Consider the two clock
particles to be 87Rb atoms, which have a mass of m = 1.4 × 10−25

kg and atomic radius of r = ℏ/ΔA = 2.5 × 10−10 m. Suppose
these clock particles can be prepared in a superposition of
momentum wave packets such that �p0A þ �pA

� �
=mc ¼

�p0A � �pA
� �

=mc ¼ 6:7´ 10�8, corresponding to each branch of the
momentum superposition moving at average velocities of
�vA ¼ 5 m s−1 and �v0A ¼ 15 m s−1. We note that (classical) special
relativistic time dilation has been observed with atomic clocks
moving at these velocities44,45, and perhaps the momentum
superposition can be prepared by a momentum beam splitter
realized using coherent momentum exchange between atoms and
light46,47. Supposing that θ = 3π/4 and ϕ = 0 results in
γ�1
Q � 10�15. Assuming that the resolution of the clock formed by
the internal degrees of freedom of the 87Rb atoms is 10−14 s,
corresponding to the resolution of 87Rb atomic clocks48, it is seen
from Eq. (17) that the coherence time of the momentum super-
position must be on the order of 10 s to observe a quantum time
dilation effect. We note that the required coherence time is
comparable to coherence times of the superpositions created in
the experiments of Kasevich et al.49, which are on the order of
seconds.

Concretely, one might imagine observing quantum time
dilation in a spectroscopic experiment using the width of an
emission line, which is inversely proportional to the lifetime of the
associated excited state, as a quantum clock. Indeed, it has recently
been shown that the lifetime of an excited hydrogen-like atom
moving in a superposition of relativistic momenta experiences
quantum time dilation in accordance with Eq. (25)43. Alterna-
tively, Bushev et al.24 have proposed to use the spin precession of a
single electron in a Penning trap as a clock to observe nonclassical
relativistic time dilation effects, and it is conceivable that such a
clock might be able to witness the quantum time dilation effect
discussed here. Similar remarks apply to the ion trap atomic clock
discussed in the ref. 32.

Discussion
We considered the internal degrees of freedom of relativistic
particles to function as clocks that track their proper time. In
doing so we constructed an optimal covariant proper time
observable which gives an unbiased estimate of the clock’s proper
time. It was shown that the Helstrom–Holevo lower bound4,5

implies a time-energy uncertainty relation between the proper
time read by such a clock and a measurement of its energy. From
this relation, we derived an uncertainty relation between proper
time and mass, which provided the ultimate bound on the pre-
cision of any measurement of proper time. This yielded a con-
sistent treatment of mass and proper time as quantum
observables related by an uncertainty relation, resolving past
issues with such an approach41,42. The approach adopted here
differs in that we construct a proper time observable Tclock in
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Fig. 2 Magnitude of quantum time dilation. The strength of the quantum
time dilation effect γ�1

Q is plotted in a as a function of the momenta
difference ð�p0A � �pAÞ=mc, where �pA ¼ ð�pA;0;0Þ and �p0A ¼ ð�p0A;0;0Þ denote
the average momentum of the wave packets comprising the superposition
state in Eq. (22) for θ = π/8, and in b as a function of superposition weight
θ for ð�p0A � �pAÞ=mc ¼ 0:17. Different values of the average total momentum
ð�p0A þ �pAÞ=mc are shown and ΔA/mc = 0.01 in all cases. The thin black line
in plot a traces the trajectory of the optimal momentum difference �popt for
different total momentum �p0A þ �pA

� �
=mc.
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terms of a covariant POVM rather than a self-adjoint operator.
Using the standard Born rule, the conditional probability dis-
tribution that one such clock reads the proper time τA condi-
tioned on another clock reading the proper time τB was derived in
Eq. (14).

We then specialized to two such clock particles moving
through Minkowski space and evaluated the leading-order rela-
tivistic correction to this conditional probability distribution. It
was shown that on average these quantum clocks measure a time
dilation consistent with special relativity when the state of their
center-of-mass is localized in momentum space. However, when
the state of their center-of-mass is in a superposition of such
localized momentum states, we demonstrated that a quantum
time dilation effect occurs. We exhibited how this quantum time
dilation depends on the parameters defining the momentum
superposition and gave an order of magnitude estimate for the
size of this effect. We conclude that quantum time dilation may
be observable with present day technology, but note that the
experimental feasibility of observing this effect remains to be
explored.

It should be noted that the conditional probability distribution
in Eq. (14) associated with clocks reading different times was a
nonperturbative expression for clocks in arbitrary nonclassical
states in a curved spacetime. It thus remains to investigate the
effect of other nonclassical features of the clock particles such as
shared entanglement among the clocks and spatial super-
positions. In regard to the latter, it will be interesting to recover
previous relativistic time dilation effects in quantum systems
related to particles prepared in spatial superpositions and each
branch in the superposition experiencing a different proper time
due to gravitational time dilation18–20,34,50. We emphasize that
the quantum time dilation effect described here differs from these
results in that it is a consequence of a momentum superposition
rather than gravitational time dilation. Nonetheless, it will be
interesting to examine such gravitational time dilation effects in
the framework developed above and make connections with
previous literature on quantum aspects of the equivalence prin-
ciple51–53. We also note that while we exhibited the quantum
time dilation effect for a specific clock model, based on the pre-
ceding analysis in terms covariant time observables it is expected
that any clock will witness quantum time dilation. Given this, it
will be fruitful to examine our results in relation to other models
of quantum clocks that have been considered3,32,54–57 and
establish whether quantum time dilation is universal, affecting all
clocks in the same way, like its classical counterpart.

Another avenue of exploration is the construction of relativistic
quantum reference frames from the relativistic clock particles
considered here15,58–61. In particular, one might define relational
coordinates with respect to a reference particle and examine the
corresponding relational quantum theory and the possibility of
changing between different reference frames62–69. Related is the
perspective-neutral interpretation of the Hamiltonian constraint
in terms of which a formalism for changing clock reference sys-
tems has recently been developed35,70–72.

Methods
Constraint description of relativistic particles with internal degrees of free-
dom. We present a Hamiltonian constraint formulation of N relativistic particles
with internal degrees of freedom. A complementary approach has been taken in
ref. 31.

Consider a system of N free relativistic particles each carrying a set of internal
degrees of freedom, labeled collectively by the configuration variables qn and their
conjugate momentum Pqn

(n = 1, …, N), and suppose these particles are moving
through a curved spacetime described by the metric gμν. The action describing such
a system is S = ∑n∫ dτn Ln(τn), where

LnðτnÞ :¼ �mnc
2 þ Pqn

dqn
dτn

� Hclock
n ; ð26Þ

is the Lagrangian associated with the nth particle, τn and mn denote respectively this
particle’s proper time and rest mass, and Hclock

n ¼ Hclock
n ðqn; Pqn

Þ is the Hamiltonian
governing its internal degrees of freedom. We use these internal degrees of freedom as
a clock tracking the nth particle’s proper time. Note that Eq. (26) specifies that Hclock

n
generates an evolution of the internal degrees of freedom of the nth particle with
respect to its proper time. Let xμn denote the spacetime position of the nth particle’s
center-of-mass relative to an inertial observer, see Fig. 3.

The differential proper time dτn along the nth particle’s world line xμnðtnÞ,
parametrized in terms of an arbitrary parameter tn, is

dτn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gμν _x

μ
n _x

ν
n=c

2
q

dtn ¼
ffiffiffiffiffiffiffiffiffi
� _x2n

q
dtn; ð27Þ

where the over dot denotes differentiation with respect to tn and we have used the
dimensionless shorthand _x2n :¼ gμν _x

μ
n _x

ν
n=c

2. In terms of the parameters tn the
action takes the form

S ¼
X
n

Z
dtn

ffiffiffiffiffiffiffiffiffi
� _x2n

q
LnðtnÞ: ð28Þ

This action is invariant under changes of the world line parameters tn, as long as
there is a one-to-one correspondence between tn and τn. This invariance allows for
the action to instead be parameterized in terms of a single parameter t, which is
connected to the nth particle’s proper time through a monotonically increasing
function fn(τn): = t. Expressed in terms of the single parameter t73, the action in Eq.
(28) is S = ∫ dt L(t), where

LðtÞ :¼
X
n

ffiffiffiffiffiffiffiffiffi
� _x2n

q
�mnc

2 þ Pqn
_qnffiffiffiffiffiffiffiffiffi

� _x2n

q � Hclock
n

0
B@

1
CA: ð29Þ

This Lagrangian treats the temporal, spatial, and internal degrees of freedom as
dynamical variables on equal footing described by an extended phase space
interpreted as the description of the particles with respect to an inertial observer.

The Hamiltonian associated with L(t) is constructed by a Legendre transform of
Eq. (29), which yields

H :¼
X
n

gμνP
μ
n _x

ν
n þ Pqn

_qn

h i
� LðtÞ

¼
X
n

gμνP
μ
n _x

ν
n þ

ffiffiffiffiffiffiffiffiffi
� _x2n

q
mnc

2 þ Hclock
n

� �� �
;

ð30Þ

where Pμ
n is the momentum conjugate to the nth particle’s spacetime position xμn

defined as

Pμ
n :¼ gμν

∂LðtÞ
∂ _xνn

¼ _xμnffiffiffiffiffiffiffiffiffi
� _x2n

q Mn; ð31Þ

where we have defined the mass function Mn :¼ mn þ Hclock
n =c2, comprised of the

nondynamic rest mass mn and the dynamic mass Hclock
n =c2 implied by mass-energy

Internal clock
degree of freedom

Temporal
degree of freedom

(x0
n , P

0
n)

Spatial/momentum
degrees of freedom

(x i
n , P

i
n)

n

(qn , Pqn
)

Fig. 3 Degrees of freedom of nth particle. The temporal degrees of
freedom ðx0n ; P0n Þ and center-of-mass degrees of freedom ðxin; PinÞ of the nth
relativistic particle are depicted. This particle carries an internal degree of
freedom ðqn; Pqn Þ that is used to construct a clock which measures the nth
particle’s proper time.
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equivalence. Upon substituting Eq. (31) into the Hamiltonian H, we see that each
term in Eq. (30) is constrained to vanish

Hn ¼ gμν _x
μ
n _x

ν
nffiffiffiffiffiffi

� _x2n
p Mn þ

ffiffiffiffiffiffiffiffiffi
� _x2n

q
mnc

2 þ Hclock
n

� �
¼ _x2nffiffiffiffiffiffi

� _x2n
p mnc

2 þ Hclock
n

� �� mnc
2 þ Hclock

n

� �	 

� 0;

ð32Þ

where ≈ means Hn vanishes as a constraint74. Furthermore, using Eq. (31), the N
constraints in Eq. (32) can be expressed as

CHn
:¼ gμνP

μ
nP

ν
nc

2 þM2
nc

4 � 0: ð33Þ
This is a collection of primary first class constraints, which are quadratic in the
particles’ momentum and are a manifestation of the Lorentz invariance of the
action defined by Eq. (26).

Similar to70,71, each of these constraints may be factorized as CHn
¼ Cþ

n C
�
n ,

where C ±
n is defined as

C ±
n :¼ ðPnÞ0 ± hn; ð34Þ

and

hn :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ijP

i
nP

j
nc

2 þM2
nc

4
q

: ð35Þ
In Eq. (34) we have assumed the time-space components of the metric vanish,
g0i = 0. Such an assumption is not necessary, however, to illustrate the quantum
time dilation effect we consider clocks in Minkowski space for which this is the case
and hence we make this assumption for simplicity.

By construction, the momentum conjugate to the nth particle’s spacetime
coordinates satisfy the canonical Poisson relations fxμm; Pν

ng ¼ δμνδmn. This implies
that the canonical momentum Pμ

n generates translations in the spacetime
coordinate xμn. Moreover, if it is the case that C ±

n � 0, it follows that ðPnÞ0 ¼ ±hn,
which is the generator of translations in the nth particle’s time coordinate. Said
another way, ±hn is the Hamiltonian for both the center-of-mass and internal
degrees of freedom of the nth particle, generating an evolution of these degrees of
freedom with respect to the time x0n ¼ t, interpreted as the time measured by an
inertial observer employing the coordinate system xμ.

In what follows, we will employ Dirac’s canonical quantization scheme74–76. We
promote the phase space variables of the nth particle to operators acting on
appropriate Hilbert spaces: x0n and ðPnÞ0 become canonically conjugate self-adjoint
operators acting on the Hilbert space H0

n ’ L2 Rð Þ associated with the nth
particle’s temporal degree of freedom; xin and ðPnÞi become canonically conjugate
operators acting on the Hilbert space Hcm

n ’ L2 R3� �
associated with the nth

particle’s center-of-mass degrees of freedom; and qn and Pqn
become canonically

conjugate operators acting on the Hilbert space Hclock
n associated with the nth

particle’s internal degrees of freedom. The Hilbert space describing the nth particle
is thus Hn ’ H0

n �Hcm
n �Hclock

n .
The constraint functions in Eqs. (32) and (33) become operators CHn

and C ±
n

acting on Hn. The quantum analog of the constraints is to demand that physical
states of the theory are annihilated by these constraint operators

CHn
Ψij i ¼ Cþ

n C
�
n Ψij i ¼ 0; 8 n; ð36Þ

where Ψij i 2 Hphys is a physical state that is an element of the physical Hilbert
space Hphys

77,78. The physical Hilbert space is introduced because the spectrum of
CHn

is continuous around zero, which implies solutions to Eq. (36) are not
normalizable in the kinematical Hilbert space K’ N

nHn. To fully specify Hphys a
physical inner product must be defined, which is done in Eq. (39). Note that
because ½Cþ

n ;C
�
n � ¼ 0, it follows CHn

Ψij i ¼ 0 if either Cþ
n Ψij i ¼ 0 or

C�
n Ψij i ¼ 0.

The Page–Wootters formulation of N relativistic particles. In this subsection,
we recover the standard formulation of relativistic quantum mechanics with
respect to a center-of-mass (coordinate) time using the Page–Wootters formalism.
To do so, the physical state Ψij i of N particles is normalized on a spatial hyper-
surface by projecting a physical state Ψij i onto a subspace in which the temporal
degree of freedom of each particle is in an eigenstate state tnj i of the operator x0n
associated with the eigenvalue t 2 R in the spectrum of x0n, x

0
n tnj i ¼ t tnj i. Expli-

citly,

Πt � IS Ψij i ¼ tj i ψSðtÞ
�� �

; ð37Þ
where IS denotes the identity on HS ’

N
nHcm

n �Hclock
n , Πt :¼ tj i th j is a projector

onto the subspace of H in which the temporal degree of freedom of each particle is
in a definite temporal state tj i :¼Nn tnj i associated with the eigenvalue t. Equa-
tion (36) defines the conditional state

ψSðtÞ
�� �

:¼ th j � IS Ψij i 2 HS; ð38Þ
which describes the state of the center-of-mass and internal degrees of freedom of
N particles conditioned on their temporal degree of freedom being in the state tnj i.

We demand that this state is normalized 〈ψS(t)∣ψS(t)〉 = 1 for all t 2 R. This
implies that the physical states are normalized with respect to the inner product14

hhΨjΨiiPW :¼ hhΨjΠt � ISjΨii ¼ hψSðtÞjψSðtÞi ¼ 1; ð39Þ
for all t 2 R.

Note that the set Πt; 8 t 2 Rf g constitutes a projective valued measure (PVM)
on the Hilbert space

N
nH0

n, since htjt0i ¼ δðt � t0Þ and ∫ dt Πt = I0, where I0 is the
identity on

N
nH0

n. Given this observation and the definition of the conditional
state in Eq. (38), it is seen that the physical state Ψij i is entangled relative to
Hcm

n �Hclock
n ,

Ψij i ¼
Z

dt Πt � IS

� �
Ψij i ¼

Z
dt tj i ψSðtÞ

�� �
: ð40Þ

We emphasize that this entanglement is with respect to a partitioning of the
kinematical Hilbert space K, and thus is not physical (i.e., not gauge invariant)16.

We consider physical states that satisfy

Cþ
n Ψij i ¼ ðPnÞ0 þ hn

	 

Ψij i ¼ 0; ð41Þ

for all n, where hn is the operator equivalent of Eq. (35). This amounts to
demanding that the conditional state of the system has positive energy as measured
by hn.

We now show that the conditional state ψSðtÞ
�� �

, defined in Eq. (38), satisfies the
Schrödinger equation in the parameter t. Recall that ½x0n; ðPnÞ0� ¼ i, and hence the
operators P0

n generate translations in x0n,

t0n
�� � ¼ e�iðt0�tÞðPnÞ0 tnj i; ð42Þ

where tnj i and t0n
�� � are eigenkets of the operator x0n with respective eigenvalues t

and t0 . Now consider how ψSðtÞ
�� �

changes with the parameter t:

i
d
dt

ψSðtÞ
�� � ¼ i

d
dt

�n tnh j � ISð Þ Ψij i

¼
X
m

th jðPmÞ0 � I0:m � IS

 !
Ψij i;

ð43Þ

where I0:m denotes the identity operator on all of the Hilbert spaces H0
n for which

n ≠ m and the derivative with respect to t was evaluated using Eq. (42). The
constraint Cþ

n Ψij i ¼ 0 can be rewritten as

ðPmÞ0 � I0:m � IS Ψij i ¼ �I0 � hm � IS:m Ψij i; ð44Þ
for all m, where hm is the operator equivalent of Eq. (35) acting on Hcm

m �Hclock
m

and IS:m is the identity on
N

n≠mHcm
n �Hclock

n . Substituting Eq. (44) into Eq. (43)
yields

i
d
dt

ψSðtÞ
�� � ¼ X

m

th j � hm � IS:m

 !
Ψij i

¼
X
m

Z
dt0 htjt0ihm � IS:m ψSðt0Þ

�� �
¼
X
m

hm � IS:m ψSðtÞ
�� �

;

ð45Þ

where the second equality is obtained using Eq. (40). Equation (45) asserts that the
conditional state satisfies the Schrödinger equation

i
d
dt

ψSðtÞ
�� � ¼ HS ψSðtÞ

�� �
; ð46Þ

where HS :¼
P

mhm � IS:m is the relativistic of all N particles.

Leading relativistic expansion of the conditional time probability distribution.
The Hamiltonian in Eq. (35) can be expressed as

hn ¼ Hclock
n þ Hcm

n þ Hint
n ; ð47Þ

where we have specialized to Minkowski space, dropped an overall constant mc2,
and defined the center-of-mass Hamiltonian Hcm

n :¼ P2
n=2m and the leading order

relativistic contribution

Hint
n :¼ � 1

mc2
Hcm

n � Hclock
n þ Hcm

n

� �2� �
; ð48Þ

which is derived by expanding Eq. (35) in both Pn/mc and Hclock
n =mc2.

Let us define the free evolution of the center-of-mass and internal clock degrees
of freedom respectively as

�ρcmn ðtÞ :¼ e�iHcm
n tρcmn eiH

cm
n t ; ð49Þ

and

�ρnðtÞ :¼ e�iHclock
n tρne

iHclock
n t ; ð50Þ
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for n ∈ {A, B}. Then the reduced state of the clock to leading relativistic order is

ρnðtÞ ¼ trcm e�iHint
n t�ρcmn ðtÞ � �ρnðtÞeiH

int
n t

� �
¼ �ρnðtÞ þ it

hHcm
n i

mc2
Hclock

n ;�ρnðtÞ
	 


:
ð51Þ

Using Eq. (51) the integrands defining the conditional probability distribution in
Eq. (14) may be evaluated perturbatively

trðEnðτnÞρnðtÞÞ ¼ trðEnðτnÞ�ρnðtÞÞ þ it
hHcm

n i
mc2

trðEnðτnÞ Hclock
n ; �ρnðtÞ

	 
Þ: ð52Þ
Suppose that the fiducial state ψclock

n

�� � 2 Hclock
n of the clock is Gaussian with a

spread σ, then the first term in Eq. (52) is

tr EnðτnÞ�ρnðtÞ
� � ¼ τnh je�iHclock

n t ψclock
n

�� ���� ���2

¼
Z

R
dτ0hτnjτ 0i

e�
ðτ0�tÞ2
2σ2

π
1
4
ffiffiffi
σ

p
������

������
2

¼ e�
ðτ�tÞ2
σ2ffiffiffi
π

p
σ
;

ð53Þ

where we used the orthogonality of the clock states, hτnjτ0i ¼ δðτ � τ0Þ, which
holds for an ideal clock.

Defining ψclock
n ðtÞ�� �

:¼ e�iHclock
n t ψclock

n

�� �
, the trace in the second term of Eq. (52) is

tr ETn
ðτnÞ Hclock

n ;�ρnðtÞ
	 
� �

¼ τnh j Hclock
n ; �ρnðtÞ

	 

τnj i

¼ τnh jHclock
n ψclock

n ðtÞ�� �hψclock
n ðtÞjτni

� hτnjψclock
n ðtÞi ψclock

n ðtÞ ��Hclock
n τnj i

¼ τnh jHclock
n ψclock

n ðtÞ�� �� ψclock
n ðtÞ ��Hclock

n τnj i� �
´
e�

ðτ�tÞ2
2σ2

π
1
4
ffiffiffi
σ

p :

ð54Þ

It follows from the covariance relation in Eq. (3) that the clock states satisfy

ðτ þ τ0Þn
�� � ¼ e�iHclock

n τ0 τnj i; ð55Þ
which implies that Hclock

n � �i∂=∂τ is the displacement operator in the τnj i
representation10. This observation allows us to evaluate the probability amplitudes in
Eq. (54)

τnh jHclock
n ψclock

n ðtÞ�� � ¼ �i
∂

∂τ

e�
ðτ�tÞ2
2σ2

π
1
4
ffiffiffi
σ

p

¼ i
e�

ðτ�tÞ2
2σ2

π
1
4
ffiffiffi
σ

p τ � t
σ2

;

ð56Þ

which simplifies Eq. (54) to

tr EnðτnÞ Hclock
n ;�ρnðtÞ

	 
� � ¼ 2i
e�

ðτ�tÞ2
σ2ffiffiffi
π

p
σ

τ � t
σ2

; ð57Þ

and together with Eq. (53), Eq. (52) reduces to

tr EnðτnÞρnðtÞ
	 
 ¼ tr EnðτnÞ�ρnðtÞ

	 
þ it
hHcm

n i
mc2

tr EnðτnÞ Hclock
n ; �ρnðtÞ

	 
	 


¼ e�
ðτ�tÞ2
σ2ffiffiffi
π

p
σ

þ it
hHcm

n i
mc2

2i
e�

ðτ�tÞ2
σ2ffiffiffi
π

p
σ

τ � t
σ2

0
@

1
A

¼ e�
ðτ�tÞ2
σ2ffiffiffi
π

p
σ2

1� 2
hHcm

n i
mc2

tðτ � tÞ
σ2

� �
:

ð58Þ

Using Eq. (58) the conditional probability defined in Eq. (14) can be evaluated,
yielding Eq. (16)

prob TA ¼ τA jTB ¼ τB½ � ¼
R

dt tr EAðτAÞρAðtÞ
	 


tr EBðτBÞρBðtÞ
	 
R

dt tr EBðτBÞρBðtÞ
	 


¼ e�
ðτA�τB Þ2

2σ2ffiffiffiffiffi
2π

p
σ

1þ hHcm
A iþhHcm

B i
2mc2 � hHcm

A i�hHcm
B i

2mc2
τ2A�τ2B
σ2

1þ hHcm
B i

mc2

¼ e�
ðτA�τB Þ2

2σ2ffiffiffiffiffi
2π

p
σ

1þ hHcm
A i � hHcm

B i
mc2

σ2 � τ2A þ τ2B
2σ2

� �
:

ð59Þ

Had we instead considered the particle to be a two-level atom, the clock would
have been defined by Hclock ’ C2 ¼ spanf 0j i; 1j ig, Hclock = Ωσz, and the
covariant time observable with respect to the group generated by Ωσz, i.e.,
fEðτÞ ¼ τj i τh j; 8τ 2 ð0; 2π=Ω�g, where τj i ¼ 1ffiffi

2
p 0j i þ e2iΩτ 1j ið Þ. For such clock

states, we have hτjτ0i ¼ 1
2 ½1þ e2iΩðτ

0�τÞ�, leading to a modification of the last

equality in Eq. (53) and the results that follow. Nonetheless, a similar analysis
should lead to an analogous quantum time dilation effect that will be modified by
the specific details of the clock. The details of clocks described by discrete spectrum
Hamiltonians and the associated covariant time observables have recently been
discussed in a related context16.
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