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Quantum cloning and teleportation criteria for continuous quantum variables
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We discuss the criteria presently used for evaluating the efficiency of quantum teleportation schemes for
continuous variables. Using an argument based upon the difference between 1-to-2 quantum cloning (quantum
duplication) and 1-to-infinity cloning (classical measurement), we show that a fidelity value larger than 2/3
warrants that the teleported state is the best possible remaining copy of the input state. This value has not been

reached experimentally so far.
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I. INTRODUCTION

Quantum teleportation has emerged in recent years as a
major paradigm of theoretical [1] and experimental [2,3]
quantum information. The initial approaches using discrete
variables [1,2] have been extended to continuous quantum
variables [3—7]. However, various discussions have appeared
recently about the significance and the evaluation criteria of
real, and thus imperfect, teleportation experiments [5—11]. In
this article, we will reconsider the teleportation criteria for
continuous quantum variables, with emphasis on the telepor-
tation of coherent states [3]. Using an argument based upon
the no-cloning theorem [12,13], we will show that a telepor-
tation fidelity F,,;>2/3 warrants that the teleported state is
the best remaining copy of the input state.

In order to set the scene, it may be useful to come back to
[1], where Bennett et al. introduce and define the concept of
quantum teleportation. This quotation is taken from their pa-
per: ‘‘Below, we show how Alice can divide the full infor-
mation encoded in [the unknown quantum state] | ¢) into two
parts, one purely classical and the other purely non-classical,
and send them to Bob through two different channels. Hav-
ing received these two transmissions, Bob can construct an
accurate replica of |@). Of course Alice’s original |$) is
destroyed in the process, as it must be to obey the no-cloning
theorem. We call the process we are about to describe tele-
portation, a term of science-fiction meaning to make a person
or object disappear while an exact replica appears some-
where else.”’

From this definition it should be clear that teleportation
must not only beat the classical limits on measurement and
transmission, but must also reach the limit where the no-
cloning theorem is enforced, otherwise Bob may receive a
state that is better than any classical copy, but nevertheless it
will not be the teleported |¢). A crucial point is then that
there is a distinction between nonclonable quantum informa-
tion and classical information. This is best illustrated by con-
sidering the fidelity for cloning one copy of a coherent state
into M identical copies, which is F,_, ,,=2/(2+N°?), where
N%=2(M—1)/M, as shown by Cerf and Iblisdir [13] (N*¢
is an equivalent noise in the cloning process [9], that will be
discussed in more detail below). It is then clear that F;_,,,
=1/2, while F;_,,=2/3. The usual criterion about teleporta-
tion assumes correctly that a classical measurement is in-
volved in teleportation. However, it should not be concluded
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that the relevant limit is the one associated with a classical
measurement, F;_,.,=1/2. This conclusion is incorrect be-
cause the good question to ask is: what is the measured fi-
delity of Bob’s copy, as measured by the verifier Victor,
which warrants that no better copy of the input state can exist
elsewhere? (i.e., kept by a cheating Alice, or eavesdropped
by a malicious Eve). We will show below in detail, but it
should already be clear from the above cloning limit, that the
correct answer is F|_,,=2/3.

II. THE 1—2 AND 1—M CLONING LIMITS
A. Quantum duplication

We first give a simple demonstration that the fidelity limit
for making two copies of an input state is F_,=2/3, as it
was previously shown by Cerf er al. in [12]. Here we recover
the same conclusion by using simple techniques similar to
the ones used for evaluating quantum nondemolition (QND)
measurements, introduced in [14—16] and used in [6,9,10].

A 1—2 cloner or ‘‘duplicator’’ has one input mode and
two output modes a and b. Denoting by g and B the (linear-
ized) gains and noises for each channel, the quadratures of
the two output modes are related to the two input quadratures
X in and Yin by

X,=8xXintBx, Y,=gyYiutBy,

Xp=8x,XintBx,,» Yy=8y,YiyTBy,. (1)

Since a and b are two different field modes, any observ-
able of @ commutes with any observable of b, and in particu-
lar [X,.Y,]=0. Using Egs. (1), and assuming that the added
noises are not correlated to the input signals, we obtain

[Bxa’Byb]: _8X,18Yb[Xm’Ym]~ 2
The noises added by the duplicator verify therefore
ABx ABy,=|gx gv,INo, (©)

where N is the vacuum’s noise variance and A denotes the
usual rms dispersion.

It is convenient to define the variances of the equivalent
input noises [15] associated with the measurements

in:(AXi/|gxi|)2_(AXm)ZZ(ABxi”gxiDz,
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Ny =(AY/|gy )= (AY;,)?=(ABy /lgy D? (4

where i is either a or b. One thus obtains the symmetrical
inequalities

Ny Ny,=N;5, Ny, Ny =Ng. (5)

These inequalities are very similar to the ones that appear in
QND measurements [15], and they ensure that building two
copies of the input state will not allow one to work around
the Heisenberg inequality. Actually, the added noise is just
the one required to forbid to infer the values of X;, and Y,
with a precision better than Heisenberg limit, by measuring
X,and Y.

The equivalent noises can be easily related to the cloning
fidelity. It can be shown straightforwardly [9,10] that the
fidelity obtained when copying coherent states with unity

gain (gxl_=gyl_= 1) is given by

2

F, _ = .
S (24 Ny INg)(2+ Ny /Ng)

(6)

Assuming that the two copies are identical and have phase-
independent noise, the limit of Eq. (5) is reached for NXa

=Ny,=Ny =Ny =N, and corresponds thus to Fo =
=2/3. This is identical to the result obtained by Cerf et al. in
[12]. A ‘“‘duplicator’’ reaching the limit of Eq. (5), can be
easily implemented using a linear amplifier and a 50/50
beam splitter. Such a duplicator is a Gaussian cloning ma-
chine as defined by Cerf er al. [12]. Various implementations
of “‘cloners’” have been proposed recently [17], and may
allow, in particular, to arbitrarily share the noise between one
copy that is kept, and another one that is sent out.

B. The 1—-M cloning limit

We generalize here the above demonstration to copying
one input to M identical outputs. In order to directly recover
the result of Cerf and Iblisdir [13], we will assume that each
output channel has unity gain, and that all copies are identi-
cal in the sense that the variances are the same for all output,
and that the pairwise correlation does not depend on the pair
of outputs that is considered. More precisely, the quadratures
of the M outputs of a 1 —M cloner (M >2) obey

Xi:Xin—’_BXI-
()
Yi:Yin+BYi’
for every 1<i<M. We define Cy, Ny, and Ny as
CX:<BX,.BX/.> for every i #j,
NX=AB)2(_ for every i,

NY=AB§,1_ for every i. (8)

Like in Sec. II A, we have
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[Bxl.,BYj] =—[X;,,Y;,] foreveryi#j, 9)
[Bx.By]=0 foreveryi. (10)

We can define A for any real number A by

M
A:BX1+)\22 By. (11)

It follows straightforwardly from Egs. (9) and (10), that
[A.By, ]=—MM—=1D[X;,.Y,,]. (12)
For the variances, it implies
AAABy =|N(M—=1)N,. (13)

Computing AA? directly from Eq. (11), we have

M M
AAN?=ABY + 7\2;2 AB + 2>\§2 (B By)

i#j
+7A2 Y, (ByBy). (14)
ij>1 P

Using the definitions (8) in Eq. (14), we obtain
AAN?=[1+N>(M—1)]Ny
2N M —1)+N*(M—1)(M—2)]Cx. (15)
If \=—2/(M —2), this expression is simpler and becomes

A%= - N (16)
(M—2)>

which can be injected in Eq. (13) to obtain the 1 —M clon-
ing limit

2(M—1))2

NxNy=
XY( M

Nj. (17)
This limit is also valid for M =2 as written in Eq. (5) and for
the trivial case M =1.

Assuming that the M copies have phase-independent
noise, i.e., Ny/Ng=Ny/Noy=N=2(M—1)/M, it is simple
to show from Eq. (6) that the corresponding fidelity limit for
coherent state cloning is

e 2 M
= = .
1—-M 2+N”d 2M_1

(18)

As previously stated, a perfect 1 — M symmetrical cloner can
be implemented using a linear amplifier and M —1 beam
splitters [17].

C. The 1—< cloning and classical measurements

When a classical measurement is performed, the measure-
ment result can be copied an arbitrary number of times. It
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should thus be clear that the limit corresponding to a classi-
cal measurement is F;_,,,=1/2, or N%=2_ On the other
hand, making only two copies comes at a smaller price, and
corresponds to F;_,=2/3, or N*=1. We will show below
that this distinction is crucial as far as quantum teleportation
is concerned.

III. TELEPORTATION AND NO-CLONING
A. Quantum teleportation criteria

Suppose Alice (a) sends a quantum state to Bob (b), who
wants to be certain that Alice cannot have kept a better copy
of the input state than the one she has given to him. This
requirement means to be sure that Alice’s copy is destroyed,
i.e., that quantum teleportation according to [1] has occurred.
Alice will be able to cheat if her equivalent noise is smaller
than Bob’s, that is,

Nx,=NY" and Ny =Ny, (19)

where opt denotes the optimum result for Alice. Since the
best Alice can do is limited by the Heisenberg-like inequali-
ties (5), one has

Ny, =Ng/Ny, and Ny =Ng/Ny, (20)
and thus
Ny,Ny,=Nj. (21)

If Bob’s noise variances are symmetrical, i.e., N Xb:N y,» one

recovers the limit F'<2/3 for teleporting coherent states.
Thus the only way for Victor to warrant that Alice is not
cheating is to obtain a measured teleportation fidelity larger
that 2/3. It is worth noticing that when the associated condi-
tion Nx N Yb<N(2) is fulfilled, then Eq. (5) imposes that Ny,
<N X, and N yb<N Y, and thus Alice will have both quadra-
tures worse than Bob.

B. Security in quantum teleportation

It should be clear now that as long as F'<2/3, Alice can
cheat teleportation by keeping a better copy than the one Bob
has received. The simplest way to do that is first to duplicate
the input state, then to keep one copy, and to teleport the
other one to Bob. As an example, if Bob’s teleported output
has a fidelity F,=0.58, or N,=1.45, and if Alice has a per-
fect teleporter than she claims to be imperfect, she can keep
a copy with a fidelity F,=0.74, or N,=0.7. This is clearly
not acceptable according to the definition of [1].

We point out that the same condition applies when Alice
is honest, but when quantum teleportation is used to send a
quantum state from Alice to Bob for quantum cryptography
purposes. In that case, one must worry about the amount of
information that can be eavesdropped during the teleporta-
tion process. For simplicity, let us consider a teleportation
scheme using light beams exhibiting Einstein-Podolsky-
Rosen (EPR) correlations, with a finite degree of squeezing,
and transmission losses. It is assumed that Eve is able to
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Number of Local Remote
allowed copies operations  operations
1 Quantum Quantum
transfer |teleportation
> 2 Quantum Quantum |23
% cloning fax 12
[
- Classical Classical
copy fax
0

FIG. 1. Table illustrating the fidelity values associated to the
number of allowed copies of the input state. The value F=1/2
corresponds to the threshold for the use of quantum entanglement,
while the value F'=2/3 corresponds to the enforcement of no-
cloning. For distant operations, the region between F'=1/2 and F
=2/3 is called ‘‘quantum fax,”’ because the original kept by Alice
may have a higher fidelity than the teleported copy. The no-cloning
region F>2/3 corresponds to tranferring quantum states between
different systems for local operations, and to quantum teleportation
(as defined in [1]) for remote operations.

perfectly eavesdrop the classical channel, and that she has
full access to the losses along at least one ‘‘transmission
arm’’ of the EPR beam (this is a strong hypothesis, but it is
usually done for evaluating the security of standard quantum
cryptography). The simplest solution for Eve is to build her
own teleported state, and she will be successful if this state
has an equivalent noise smaller than the one achieved by
Bob. It can be shown simply, and it is physically obvious,
that as long as the EPR channel efficiency 7 is smaller than
1/2, Eve can obtain a teleported copy of the input state that is
better than the one obtained by Bob. More generally, this can
be also seen as a consequence of the 1 —2 cloning limit: if ¥
is larger than 2/3, Bob can be sure that a malicious Eve will
not be able to eavesdrop the teleported state [10]. Thus the
F>2/3 limit appears also as a crucial security condition if
teleportation is used as a quantum communication tool.

C. Discussion

In order to clarify the issues involved, it may be worth
summarizing the physics involved in the respective criteria
F>1/2 and F>2/3.

As said above, F=1/2 is actually a classical measurement
limit, associated with the 1—c cloning limit. It has been
shown in [18] that purifications procedure can be initiated as
soon as F>1/2, and may lead to high fidelity values. How-
ever, the purpose of teleportation criteria is to characterize a
given experiment, and not what it might be by adding puri-
fication procedures. We note also that recently demonstrated
entanglement criteria [19] are fully compatible with the F
=1/2 limit. It is thus clear that the F'>1/2 criterion charac-
terizes a threshold for the appearance of quantum effects,
related to entanglement in the teleportation process [5,7].

On the other hand, the main virtue of the F'>?2/3 criterion
is that it warrants that no other copy of the input state can
remain, that would have a better fidelity than the one Bob
has received. This has obvious advantages if quantum tele-
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portation is used as a secure way to transmit quantum infor-
mation. It is worth pointing out that the F>2/3 criterion is
more demanding technically, and can be fulfilled only when
the transmission of each beam distributing the entanglement
resource is higher than 50%, and enough squeezing is avail-
able [9,10,20].

In [9,10] it was argued that the F>2/3 criterion is also
related to the so-called EPR nonseparability argument, which
was introduced in [21] and implemented experimentally in
[22]. This argument requires that ‘‘conditional squeezing’” is
obtained on one EPR beam, given a measurement that is
done on its entangled partner. By changing the measurement,
one can get conditional squeezing in both quadratures, cre-
ating an apparent violation of Heisenberg’s relations [21,22].
It was shown in [9] that F>2/3 is a sufficient condition to
warrant that such conditional squeezing can be obtained on
the EPR beams. Though the status of this EPR-Heisenberg
argument is a subject of debates [9-11], these various re-
marks strongly suggest that the F=2/3 limit is related to
inferences made using conditional measurements, which play
an essential role both for QND measurements [14—16] and
for the noncloning theorem [12,13].

Finally, the status of the local or remote operations that
can be performed on the input state is summarized in Fig. 1.
The wording ‘‘quantum fax’’ for remote operations with a
fidelity between 1/2 and 2/3 means that a quantum entangle-
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ment resource must be used to reach that region, but never-
theless that the no-cloning theorem is not yet enforced.
Therefore, as in a fax machine, Bob has received something
that is not so bad, but a better copy may still exist some-
where. Obviously, this does not happen any more in the re-
gion above F'=2/3.

IV. CONCLUSION

As a conclusion, it should be clear that the criteria F
>1/2 and F>2/3 have different physical contents, and are
both legitimate. Based upon the definition given in [1], and
on the no-cloning theorem, we showed that in order to war-
rant the destruction of the initial state one should require F
>2/3. However, it should be clear that though the result
F,.,=0.58 reported in Ref. [3] falls below that value, this
experiment is nevertheless a very significant achievement in
defining and using the concept of continuous variables quan-
tum teleportation.
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