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QUANTUM COADJOINT ACTION 

C, DE CONCINI, V. G. KAC, AND C. PROCESI 

O. INTRODUCTION AND NOTATIONS 

0.1. This paper is a continuation of the paper [DCK] on representations of 
quantum groups at roots of 1. We give a solution to most of the conjectures 
stated in [DCK, §5] on the center and on the quantum coadjoint action (some 
of the conjectures needed modification to be correct). 

As in the case of Lie groups, "simply connected" quantum groups are nicer 
than the more popular "adjoint" quantum groups. The primary object of the 
present paper is the simply connected quantum group, the adjoint quantum 
group being the subalgebra of invariants of the center of the corresponding 
simply connected Lie group. 

The classical orbit method relates representations of a Lie group to the orbits 
of the coadjoint action of this group in the dual of the Lie algebra. The basic 
observation of the present paper is that representations of a quantum group at 
roots of 1 are closely related to the orbits of the action of the corresponding 
group on itself by conjugation. 

0.2. Let us first introduce the necessary notations. Fix an n x n indecomposable 
matrix (a i) with integer entries such that au = 2 and aij ::; 0 for i i- j and a 
vector (d l , .•• , d n ) with relatively prime positive integral entries d i such that 
the matrix (diaij ) is symmetric and positive definite. 

Let P be a free abelian group with basis Wi' i = 1, ... , n, and let 
n 

a j = Laijwi 
i=1 

(j=l, ... ,n). 

Let Q = "'. Za., Q = '" Z a. For p = "'. k.a E Q let ht p = '" k be L.J1 I + L.J 1 + I L.J1 I I L.J1 I 

the height of p . 
Define a bilinear pairing P x Q -> Z by (Wi I a) = Judj . Then (a i I a) = 

diaij , giving a symmetric Z-valued bilinear form on Q such that (a I a) E 2Z. 
Note also that 2(Wi I p) E Z since 2p E Q. 

Define automorphisms Si of P by Si(W) = Wj - JiPi (i, j = 1, ... , n). 
Then si(a) = a j - aUai . Let W be the (finite) subgroup of GL(P) generated 
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152 C. DE CONCINI, V. G. KAC, AND C. PROCESI 

by SI' •.. , sn. Then Q is W-invariant and the pairing P x Q ---- Z IS W-
invariant. Let 

TI= {ai' ... , an}' R= WTI, R+ =RnQ+. 
Then, of course, R is the root system corresponding to the Cartan matrix (a j ) , 

Q is the root lattice, W is the Weyl group, R+ is a set of positive roots, TI 
the corresponding set of simple roots, etc. 

Given a lattice M, we denote as usual by M* = Homz(M, Z) the dual 
lattice. For example, p* may be identified, using the bilinear form (·1·), with 
the coroot lattice QV = EjZa~, where a~ = dj-Ia j . 

0.3. Let q be an indeterminate and let qj = qd; . The simply connected quantum 

group is the C(q)-algebra Up on generators Ej' Fj' Lj' L;I (1::; i::; n) and 
the following defining relations: 

(1) LjLj = LjLj , LjL;1 = L;I L j = 1; 
(2) -I 15 -I -15. 

LjEjLj = qj 'J Ej' LjFjLj = qj 'J Fj ; 

(3) EjFj - FjEj = l5ij(Kj - Kj-I)/(qj - qj-I) , 

where for p = E m/JJj E P we let Kp = TI j L7j , and let K j = Ka; ; 
(4) certain Chevalley type relations between the E j and between the F j 

(see, e.g., [DCK, (1.2.4 and 5)]). 
The quantum group of Drinfeld-limbo is the subalgebra of Up over C(q) 

generated by the Ej' Fj' Kj' K j- I (i = I, ... , n). More generally, for any 
lattice M between P and Q one may consider the intermediate quantum 
group UM generated by the Ej' F j (i = 1, ... ,n) and the Kp with P EM. 
In this paper by a quantum group we mean one of these algebras. We denote by 
U+ , U- , and UO the C(q)-subalgebra of UM generated by the Ej' the Fj' 
and the Kp respectively, and by U + and U- the two sided ideals of U+ and 
U- generated by the E j and the F j respectively. We shall sometimes add the 
subscript M to emphasize the dependence on M, like U!, etc. 
0.4. As usual, for n E Z and dEN we let 

dn -dn d -d 
[n]d = (q - q )/(q - q ), [n]d! = [1]d[2]d··· [n]d· 

Given sEN we shall write E;S) and F?) for E:/[s]d! and Ft/[S]d! respec-, , 
tively. 

Due to [L] we have an action of the braid group gg with generators T I , ... , 

Tn (see §2.1 for its definition) by automorphisms of UM defined as follows: 
-a,j 

T.E. = ~(_1)s-ajjq~sE(-ajj-s)E.E(S) if i...J. J' 
I ] ~ I I ] I r, 

s=o 
-ail 

T.F. = ~ (-1 )s-aij q ~s F(s) F.F( -ajj-s) if i =1= j, 
I ] ~ I I ] I 

s=o 
TjKp = K Sjp . 
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0.5. Now let I be an odd integer greater than 1 and relatively prime to all the dj 

(this condition, imposed throughout the paper, comes from the use of formulas 
in [L, DCKD, and let e be a primitive lth root of 1. We denote by UM,e the 
algebra over C obtained from U M by specializing q to e, and by Ue+, Ue- , 
etc. the specializations of the subalgebras U+, U- , etc. More precisely, we let 
.w = q q , q -I] and denote by U M N the .w -subalgebra of U M generated by 
the Ej' Fj' Kp ' and (Kj - K;I)/(dj - qj-I); then UM,e = UM,N/(q - e), etc. 

Let cj = (ed; - e-d;)1 and consider the elements 
I I Yj = cjFj , zp = Kp (P E M), Z. = Z • 

I U i 

These elements lie in the center Ze of UM,e [DCK, §3.1]. Denote by Zo the 
smallest .5W-invariant subalgebra of Ze containing all these elements. 

Our first main result is a description of the .5W-algebra Zo by generators and 
relations (§3.5). In the simply laced case, i.e., when (a j ) is symmetric, the 
result is: 

Let zg be the subalgebra of Zo spanned by the Z p (P E M) with the 
.5W-action given by Tjzp = zs;p. Then Zo is a commutative .5W-algebra over 
the .5W-algebra zg on generators TY j (T E .5W, i = 1, ... ,n) and defining 
relations 

2 2 (1) Tjyj=zjYj' 
(2) TjYj = Yj if a jj = 0, 

(3a) TjTjY j = Yj if a jj = -1 , 
(3b) TjYj + TjY j = YjYj if a jj = -1. 
It is interesting to note a close connection of this with the well-known action 

of .5W on the simple Lie algebra 9 associated to the matrix (a jj ) (Proposition 
4.2): 

Let D be the smallest .5W-invariant subalgebra in S(g) (the symmetric al-
gebra over g) containing the Chevalley generators 1;" ... , In (root vectors 
attached to negative simple roots). Then D is a commutative .5W-algebra over 
C on generators T I; (T E .5W, i = 1 , ... , n) and the "homogenized" defining 
relations of Zo 

2 Tj I; = 1;, TJj = fj if au = 0, 
TjTjl; = fj and Tjfj + Tjl; = 0 if ajj = -1. 

0.6. Let G be the connected complex Lie group whose Lie algebra is 9 and 
such that any maximal complex torus of G has character group M (so that 
CenterG = M/Q). Let T be a maximal torus of G, and let U+ (resp. U_) be 
the maximal unipotent subgroup of G corresponding to R+ (resp. to -R+). 
Note that T = Spec zg with the usual W -action. 

Our main construction is the map 1C of aM := Spec Zo to the "big cell" 
GO := U _ T U + constructed as follows. Fix a reduced expression J of the longest 
element of W : Wo = Sj Sj .. 'Sj . Let TLI = Tj ... Tj (k = 1, ... , N), 

I 2 N I k-I 
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To = T~ , and consider the elements 
J J 

Yk = Tk IYi E Zo, - k 

Let Z; (resp. Z;) be the subalgebra generated by the yt (resp. Toyt), k = 
I , ... , N. These are polynomial algebras (independent of the choice of J; see 
§3.3) and we have 

- 0 + 
Zo = Zo ® Zo ® Zo ' 

so that OM ~ CN X T X CN (noncanonically). Define the maps 
+ X: SpecZo -+ U+, Z:T-+T 

as 
J J J J J J 

Y = (exPYN! N)(exPYN_I! N-I)'" (exPYI! I)' X = To(Y), 

Z(t) = t2 , t E T. 

Here!B acts in the obvious way: Ti(·· ·exPY!···) = .. ·exp((Tiy)(TJ)) ... , 
Y E Zo'! E g, where its action on 9 is the usual one (see §4.1). We show that 
the maps Y and X are independent of the choice of J , and we let 

o 
7C = YZX: 12M -+ G . 

This is an unramified cover of degree 2n • 
In §4 we study the interplay between the map 7C and the action of the braid 

group !B on OM and on G. 
0.7. The primary object of our study is the quantum coadjoint action defined 
as follows [DCK]. We have derivations ~i and L of UM,e (i = I, ... , n) 
defined by 

~Ju) = lim[E~1) , u], 
q ...... e 

We denote by G the (infinite-dimensional) group of analytic automorphisms 
of the variety OM generated by the I-parameter groups exp t~i and exp tL 
(tEC, i=l, ... ,n). 

The key calculations of the paper are the following formulas relating the 
Chevalley generators ei and f; to the derivations f.i and L (Theorems 5.4 
and 5.5) 

(!) f.i = zif;, L = -ziei' 

Here by ei and f; we understand the pullback via the covering 7C of the Killing 
vector fields on G defined by the ei , f; E g. 

The proof of the formulas (!) is rather straightforward, but requires heavy 
computations. For simplicity of the exposition, we present all details of the 
calculation in the simply laced case, leaving out the details in other cases. 

We use these formulas to describe the orbits of the group G on OM (§6). 
In order to state the result we need one more construction. 

Let Gc be the simply connected cover of G, so that G = GjC, where 
C ~ P/M. We let G' = GjC2 • This is an unramified C/C2-cover ¢: G' -+ G 
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of G. The map 7C factors through G', i.e., there exists a unique unramified 
, n ,0 , cover 7C : U,M ---+ G such that 7C = ¢ 0 7C • 

Let ~ be a conjugacy class in G' of a noncentral element and let ~o = 
~ n G'o. We show that (7C')-I~O is a G-orbit in OM and these are all orbits 
of nonfixed points of G; all the fixed points are points of the fibers of 7C' over 
central elements of G' (Theorem 6.6). 

The study of the orbits of G on Spec Ze and Spec Zo is important for the 
following reason rOCK]. Let Spec U M, e denote the set of all equivalence classes 
of finite-dimensional irreducible representations of U M , e. The group G acts 
on Spec U M , e in a natural way. Associating to an irreducible representation its 
central character gives a surjective G-equivariant map x: Spec U M , e ---+ Spec Ze 
that is generically bijective. The inclusion Zo c Ze induces a finite (hence 
surjective) map r: Spec Ze ---+ Spec Zo. Thus, we obtain a sequence of canonical 
surjective maps 

Spec UM e ~ SpecZe ~ SpecZo · 

Representations from the same G-orbit in Spec U M e are practically the same. 
Thus in order to describe Spec U M , e ' it suffices for each orbit to describe the 
fiber of X. The structure of representations from the fiber should be intimately 
related to geometric properties of the orbit (see, e.g., Conjecture 6.8). 

The first important application of the description of the orbits of G in OM is 
the "triangulizability" of any 7C E Spec UM : there exists an automorphism a ,e 
and a nonzero vector v in the representation space of 7C such that 7C(a(E))v = 
o for all i. 

0.8. Denote by Q~ the subgroup of T consisting of elements exp 7C ia, a E 
v * ~ v Q eM, and let W = W P< Q2 • It follows from §O.7 that two nonfixed points 

of T c Q M lie in the same orbit of G if and only if they lie in the same orbit 
of W. This leads to a Chevalley type restriction theorem (Theorem 6.7): 

The restriction homomorphism induced by inclusion T c Q M gives an iso-
morphism of algebras of invariants: Z~ ~ zgw . (One can actually show that 
h· d . h· ZG ~ UOw ) t IS exten s to an Isomorp Ism e ---+ e . 

0.9. Let Z be the center of the quantum group UM . In rOCK] an explicit 
isomorphism h: uOw ~ Z was constructed (only the case M = Q was con-
sidered there, but the construction and the proof extend to arbitrary M). We 
show that h can be specialized to q = e to give an injective homomorphism 
he: Ueow ---+ Ze (Proposition 6.2). We denote the image of this homomorphism 

by ZI. One can show in fact that ZI = ZeG (Theorem 6.7(c)). 
Our next important result (Theorem 6.4(a)) states that the subalgebras Zp,o 

and Zp,1 generate the center ZP,e (for arbitrary M this may be false). The 
proof of this theorem is roughly as follows. Consider the sub algebra Z M e 
generated by Zo and Z\. It is easy to see for arbitrary M that the quotierit 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



156 C. DE CONCINI, V. G. KAC, AND C. PROCESI 

fields of ZM,B and ZM,8 coincide. Also it was shown in [DCK] that ZM,B 
is integrally closed (this again holds for arbitrary M). Thus, we have to show 
that Zp 8 is integrally closed. We show that Zp 8 is a complete intersection 
ring that is smooth in codimension one and hence (by Serre's theorem) is in-
tegrally closed. We therefore deduce that Spec Z p , 8 is a complete intersection 
(Theorem 6.4(b)). 

At the same time, we obtain a simple geometric construction of the center 
Zp,8. Let G be simply connected. Denote by PI the map g I-> i of G 
into itself. Let C[ G]G be the algebra of invariant polynomials on Gunder 
conjugation, let Gj jG denote the corresponding affine variety, and let (J: G ~ 
G j j G be the quotient map. Then Spec Z p , 8 is an unramified cover with the 
Galois group ! Q v j Q v of the fiber product 

o 
(Gj jG) x G/ /G G , 

where the first map is induced by PI and the second map is the restriction of 
(J to the big cell. We show that this fiber product may be obtained using the 
Stein factorization of the lth power map in G (§6.5). Note that this is the only 
instance where I enters in the geometric picture. We derive from this result a 
description of the action of G on Spec Z p 8 and of the fibers of the map T 

(Corollary 6.4). ' 
0.10. In § 7 we interpret our results in the language of Poisson algebraic groups. 
Explicitly, we show that OM has a canonical structure of a Poisson algebraic 
group, which turns out to be isomOlphic to the dual of the celebrated Sldyanin-
Drinfeld Poisson Lie group. The G-orbits are precisely the symplectic leaves 
of this Poisson structure. The map 1C and the action of ~ have a simple 
description in this framework. 

It is worth mentioning here that the Hopf and Poisson structures of the ~
algebra Zo (defined by generators and relations in §0.5) can be easily calculated 
using that ~ is a Poisson map and that the Poisson structure is ~-invariant. 
For example in the case when (aij ) is symmetric, it suffices to use the following 
formulas (where Xi = TiYi) : 

-I 
~Yi=Yj®Zi +1®Yi' 
~z", = z",® z",; 
{z""zp}=O, {yi,z",}=!(a!ai)yjz"" 
{Yi' Yj } = 0 if ajj = 0, 

{Yi' Yj } = !YiYj - TjYj if aij = -1, 
-I 

{ZiXj' Yj } = r}ij(Zi - zi ). 
0.11. We would like to thank the referee whose severe criticism considerably 
improved the exposition. 

1. THE LONGEST ELEMENT OF THE WEYL GROUP W 

1.1. Recall that W is a Coxeter group on generators Si (i = 1, ... , n) and 
defining relations 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUANTUM COADJOINT ACTION 157 

S; = 1 and (Sjs)mjj = 1 when i =1= j, 

where mjj = 2, 3, 4, or 6 for ajjajj = 0, 1, 2, or 3 respectively (i =1= j) . 
Recall that any element of W has a length I (w) that can be defined as 

the length of a shortest expression of w as a product of Sj and equals the 
cardinality of Rw := {P E R+ I w(P) < O}; such an expression is called a 
reduced expression of w. Recall that 

I(wsj) = I(w) + 1 if w(a j) > 0 and I(ws;) = I(w) - 1 if w(a;) < O. 

1.2. Since W acts transitively on the bases there exists a unique element Wo 
of longest length N such that wo(R+) = -R+. Of course Wo = W~1 and 
n = -wo(n). Let us denote by j I--t ] the permutation of 1, 2, ... ,n such 
that ay = -wo(a). 

We have that sJ'wo = wos-J" More precisely, writing Wo = sJ.Sj Sj ... Sj = 
I 2 N-I 

S· S . .. ·S· s-, we deduce 
II 12 IN_I J 

Lemma. s. S. ···S. (a-,) = a .. 
II 12 IN_I J J 

Proof. s. s· .. ·s· (a-,) = s.wo(a-,) = s.(-a.). 0 
II 12 IN_I J J \ J J J 

If w = ab E W is such that I(w) = I(a) + I(b) we will say that this is a 
reduced decomposition. 

Given an element w E W we set w := WOWW~1 (so that Sj = Sy) . 

1.3. If w is not the longest element there must exist a simple root a j such 
that w(a j) > 0; thus any reduced expression Sj Sj ... Sj can be completed to 

12m 
a reduced expression Sj Sj ... Sj of wo' 

I 2 N 

In particular given an element a E W there exist b, a' E W such that 
Wo = ab = ba' are reduced decompositions. In this case we clearly have 

Lemma. a' = a. 

2. THE BRAID GROUP ~ 

2.1. Recall that the braid group is an infinite group ~ on generators Tj' i = 
1, ... , n, and the braid relations: for i =1= j we take the word of (even) length 
(T;Tj)mjj, split it in half and impose that the first half be equal to the second 
written in reverse order. Of course the Weyl group W is the quotient of ~ 
under the further relations T j

2 = 1 . 
It will be convenient to use the abbreviated notation, 

(m factors). 

F 1 h b 'd l' d T(m) T(m) 'f . ...J.. • or examp e, t e ral re atlOns rea: jj IJ = jj JIll -rJ . 

2.2. The main tool of the computations to follow is a result of Matsumoto and 
Steinberg. 
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Theorem. If Si Si ... Si is a reduced expression of an element W E W, then the 
12m 

element Tw := Ti Ti ... Ti in go depends only on W (and not on its reduced 
12m 

expression). Moreover, the different reduced expressions of W can be transformed 
into one another by the braid relations. 

This means that we define a canonical section W -+ Tw of W in go; of 
course, this section is not multiplicative but Ta Tb = Tab if I (ab) = I (a) + I (b) . 
Going back to the longest element we set To := Tw and will often use the 

o 
following 

Lemma. If a E W we have Ta To = To T(j. 

Proof. From § 1.3 there exists b such that Wo = ab = ba are reduced decom-
positions. We thus have To = TaTb = TbT(j. So TaTO = TaTbT(j = ToT(j' 0 

Recall another well-known useful fact. 

Proposition. If Wo = Si Si ... Si is a reduced expression of wO' then one gets 
I 2 N 

the following ordering of the set of positive roots: 

R+ = {a. ,S. (a.), s· s. (a.), ... , s. ···s. (a. H. 
II II 12 II 12 13 II IN-I IN 

2.3. One of the difficulties in working with quantum groups occurs due to the 
existence of nontrivial W E W such that w(aJ = a h • To deal with this 
difficulty, we need a fact on root systems. Consider a simple root a h and the 
set Ah formed by all the pairs (w, i) such that WE Wand w(a) = ah . We 
make this set into a graph by joining (w, i) with (wsj , i) if m ij = 2, with 
(wsjsi , j) if m ij = 3, with (ws/isj , i) if m ij = 4, and with (WSjSiSjSiSj' i) 
if m ij = 6. We have 

Lemma. The graph Ah is connected. 

Proof. We connect any given element (w, i) with (1, h) as follows. Fix a 
reduced expression of w. Then, by §1.1, wSi is also a reduced expression 
and by §1.3 we can complete it to a reduced expression Wo = WSiW I • By 
Proposition 2.2 we have: R+ = { ... , w(a) = ah , ••• }. On the other hand, 
taking a reduced expression of Wo that starts with sh' we get an ordering of 
R+ that starts with ah • Now we pass from the first reduced expression to the 
second one using braid relations. Then at each step either the braid relation 
lies entirely in W or WI and then the presentation of a h does not change, or 
ah becomes an element of the form a h = w'(a) where (w', j) is joined with 
(w, i) in Ah . At the last step the presentation of ah becomes ah = l(ah ). 0 

Theorem. Let go act on a set Y, and let u I ' ••• , un E Y be elements with 
the properties: 

Then 
(a) 
(b) 

T (2) ;, 3 d T(mij-I) ;, 2 4 6 
ij ui = uj IJ m ij = an ij uj = uj lj mij = , ,or . 
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Proof. (a) is just a restatement of the lemma using the relations of the theorem. 
As for (b) we have To = TjTw = TwTI where W = SjWO and so w(O!I) = 

2 O!j. Thus Tj(u) = TjTw(uI) = To(uI)' so Tj (u j) = ~To(uI) = To1]-(uI) = 
2 To(u). 0 

In particular we can apply the theorem to the action of the braid group on a 
quantum group and the elements u j = E j or uj = Fj . In this case the relations 
of the theorem are easily verified (see [L, 5.1)). Thus, we have: if O!j' O!j are 
two simple roots and W E W is such that w(O!J = O!j then Tw(E) = Ej . We 
also have 

3. A UNIVERSAL CONSTRUCTION ASSOCIATED TO THE BRAID GROUP 

3.1. Let U M e be a quantum group at a primitive Ith root of unity e, 1 odd. In 
order to expiain our next general construction let us introduce some notations 
and prove some identities in UM,e. Let cj := (ed; - e-d;)1 and consider the 
following central elements of U M, e : 

(P E M), 

(i=I, ... ,n) 

(one should remark on the difference in notation used in [DCK)). 
By Theorem 2.3 we have Tj(y j) = To(YI)' which implies 

(0) Xj = -CjE:Z;1 . 
The following formulas are now immediate by [DCK, (3.3.3 and 4)]: 

2 (I) Tj(x) = zjY j , Tj(yj) = x j , Tj(zp) = zs;p. 
In order to write down further relations, we introduce one more notation: 

(m) T(m) ·f . dd d (m) T(m) ·f . Yij = ij Yj 1 m IS 0 an Yij = ij Yi 1 m IS even. 

We have the following formulas (i i- j) : 
(mij-I) 

(2) Yij = Yj . 
(3) (mij-2) (I) - ·f 3 d - 1 Yij + Yji - YiYj 1 mij ~ an aij - - . 
(4) (mij/2-1) (mij/2) _ 2 2 (I)·f 4 d - 1 Yij - Yji - YiYj - Yji Yi 1 mij ~ an aji - - . 
(5) (I) (4) 3 3 2 (I) 3 (3) (3) (2) 3 2 3 2 (I) Yij + Yji = YiYj - YiYji + YiYji ' Yij - Yji = YiYj - YiYjYji + 

3yiy;:)2 - 3y;:)y;;) + YjY;;) if mij = 6 and aji = -I. 
Formula (2) follows from 2.3. The remaining formulas are deduced from [L, 

5.3-5.5; DCK, (3.4.14)], §5.1, and the identity 
I-I J 
'" j e- C -I -I I 
L.,.(-I) [j]![/_j]! = 2(1-1 ), wherec= (e-e ) 
j=1 
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(which follows easily from the Gauss binomial formula: see e.g., [DCK, (1.1.1)]). 
Recall that we also have an involution w, defined by wEj = Fj' wKp = 

K_p . It commutes with the braid group and we have w( Z p) = z _p and w(xJ = 
-zjyj . 

In view of the previous identities we start the following construction. 

3.2. Denote by zg the algebra with basis Z p (P E M) and multiplication 
zazp = za+p' The Weyl group, and hence the braid group, acts on zg by 
Sj(zp) = ZSjP' Consider the polynomial algebra over zg in the indeterminates 
TYj' as i = 1,2, ... ,n and T E g; we write Yj := lYj' We extend the 
action of g from zg to this polynomial algebra by 

TI (T2yJ := (TI T2 )yj · 

We define a quotient algebra of this polynomial algebra by the smallest ideal of 
relations, stable under g and containing the following relations: 

2 2 (1) Tj Yj = zjYj , 
(2) (mjj-I) - ·f·..J..· Yij - Yj 1 1;- ] , 
(3) relations (3)-(5) from §3.1. 

Denote by Zo the resulting algebra. Remark that relations (1) and (3) are not 
homogeneous, and we can also consider the associated homogeneous relations: 

(1') T j
2 (yJ = Y j , 

(3') the left-hand sides of (3)-(5) are zero. 
In this case we can ignore the variables Z j and consider the algebra Dover C 
generated by the TY j (T E g, i = 1, ... , n) and the relations (1'), (2), and 
(3') . 

3.3. Next given an element W E W we need to consider the set of all possible 
reduced expressions J of w. If J: W = s· s· ... s· is such a reduced expres-

II 12 1/ 

sion we define J- 1 : w -I = s. s. . .. s. a reduced expression of w -I. For 't 't-I 'I 
k = 1 , . .. , t we also set 

J 
wk := Sjl Sj2 •.. Sjk ' 

J J Pk := s· s· .. ,s· (a.) = wk_l(a. ). 
II 12 Ik_1 Ik Ik 

By Proposition 2.2, the elements p[ are distinct positive roots. In fact we 
-I J J- I 

have w (Pk ) = Sj Sj ... Sj Sj Sj .•. Sj (a j ) = -Pt - k+1 • Thus we get a total 
/ /-1 I 12k-I k 

ordering of the set RW-I • 

We can apply this analysis to the element Wo and the set of all positive roots. 
In this case for a given reduced expression J we can construct another reduced 
expression 1: Wo = s~ s~ ... s~ . It is clear that pkJ = -wO(PkJ ) • 

II 12 IN 

We now define in g and in Zo the elements 

J Tk 1:= T. T. ... T. , 
- II 12 Ik_1 

J J Yk := T. T. ... T. (y.) = Tk_l(y· ). 
II 12 Ik_1 Ik Ik 
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Let US choose a reduced expression J: W = Sj Sj ... Sj of an element w. 
I 2 t 

Denote by ZJ the Zg-subalgebra of Zo generated by the elements Yf, and 
let ZJ be its augmentation ideal. 

Proposition. One has: yf = ±yf' mod(ZJ)2. In particular, ZJ and ZJ are 
independent of the choice of the reduced expression J of w . 
Proof. Since one can pass from one expression to another by the use of braid 
relations we may by induction restrict to the case where J' is obtained from J 
by a single braid relation. We give a proof in the cases mjj = 2 and mjj = 3. 
(In the remaining cases the proof is similar.) 

(1) w = asjsi = asjsjb; SjSj = s/j (mjj = 2), 
(2) w = asjs/jb = asjsjsjb; SjSjSj = s/jSj (mjj = 3) . 

J J' Let k - 1 = l(a). In case (1) we remark that Yh = Yh if h =I- k, k + 1, 
J J'.. J J' Yk = Ta(y j) = TaTj(Y j) = Yk+1 ' and simllarly Yk+1 = Yk . In case (2) we get 
J J'. J J' Yh = Yh If h =I- k, k + 1, k + 2, Yk = Ta(Yj) = TaTjTj(Yj) = Yk+2' and 
.. J' J J J' J J' 

simllarly Yk = h+2; Yk+1 = TaT;(Yj) = Ta( -Tj(Y) - YjY) = -Yk+1 - YkYk = 
J' J' J' 

-Yk+1 - Yk+2Yk· 0 

3.4. The previous proof and Theorem 2.3 have an important 

Corollary. (a) Iffor a given J and k, pf = O:j is a simple root then yf = Yj . 
2 (b) Tj(x) = zjYj. 

(c) If pf = p{ then yf = ±y{ + P where P is a polynomial in the elements 
y{ involving only the indices i for which pt has height strictly less than that 
of p{ 
Proof. (a) This is a special case of Theorem 2.3(a). 

(b) This follows directly from Theorem 2.3 and the defining relations 3.2. 
(c) This follows from the proof of Proposition 3.3. 0 

Remark. The construction and statements of §§3.2-3.4, as well as the first state-
ment of Theorem 3.5 below, hold over Z. 

3.5. We will now denote Z;: = ZJ and Z; := To(Z;:) , and let xl := To(yf). 
If w = Wo is the longest element we will simply write Z~ , Z; . 

Theorem. The algebra Zo is the tensor product Z~ 181 zg 181 Z; and, given a 
reduced expression J of wo' it is the polynomial ring 

o J J Zo [Yk ' xk ; k = 1 , ... , N]. 
Thus this algebra coincides with the subalgebra Zo of the center of the quantum 
group U M e studied in [DCK]. 

Proof. First of all we will show that the subring S := zg[Yf, xf ; k = I, ... , N] 
is stable under the action of ~ , which will prove that it is the entire algebra; 
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then we will see that the 2N given elements are algebraically independent by 
using the quantum groups. Let us begin with the first claim. We need to show 
that, for a given j, TiS) c S. 

From the independence of S from J we can choose a reduced decom-
position J of Wo so that Sj appears on the extreme left. Then we have 
Tj(Y~) = Y~+1 unless k = N; in the latter case TiY~) = TO(Yi) = xiN • 

Now Tj(x[) = TjTo(Y~) = ToTy(Y~). Again Ty(Y[) is in Zo- and so Tj(x[) 
is in Z; unless Y~ = Yy, in which case we use 3.2(1) and get Tj(xy) = z>j as 
desired. 

Next we have to verify the algebraic independence. This follows from the 
fact that the same statement is true for the subalgebra Zo of the center of the 
quantum group, and this is a consequence of the existence and the form of a 
PBW basis (cf. [DCK]). 0 

4. THE BIG CELL 

4.1. In this section we want to make the link between our formal constructions 
and the actual Lie algebras and Lie groups. Fix once and for all a sublattice M 
of P containing Q. 

Consider the simple Lie algebra g corresponding to the Cartan matrix (aij ) , 
let ~ be a Cartan subalgebra, and let g = ~ EB (EBoER go) be the root space 
decomposition. We denote by ei , 1;, hi the usual Chevalley generators. Let 
G be the corresponding connected algebraic group, and let T be the maximal 
complex torus of G corresponding to ~ whose group of characters is the lattice 
M. Let U+ and U_ denote the unipotent subgroups of G corresponding to 
positive and negative roots, and let GO = U _ T U + be the big cell of G (this is 
a Zariski open dense subset of G). We set 

ti := exp(l;) exp( -e) exp(l;) E G. 
One knows the following facts that go back to Tits (see, e.g., [KP]): 

(1) The mapping Ti 1-+ ti extends to a homomorphism of ~ to G, hence 
an action of ~ on g. 

(2) If J is a reduced expression, setting I~ = T: I (I; ), we have that Ii 
- k 

is a root vector relative to the negative root - p[ . 
4.2. Let us now consider the action of ~ on g. We verify directly the following 
relations: 

(1') Ti2(f) = 1;. 
(2') TijmiJ-ll(fj) = fj if mij = 2, 4, or 6. 
(3') TjTJfj) = 1;, Ti(fj) + Tj(l;) = 0 if mij = 3. 
(4') Ti(fj) = TjTi(fj) if mij = 4 and aji = -1. 
(5') (mi"-2l 1') I' ·f 4 d / Tij J (Ji + Tj(J;) = 0 1 mij 2: an aji = -1. 
(6') Tijl(l;) = T};l(l;) , TJfj) + T}:\fj) = 0, Ti'jl(fj) = T};\fj) if mij = 6 

and aji = 1. 
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We can take these relations to define a commutative algebra D with a ~-action. 

Proposition. The subalgebra generated in S(g) by the ~-translates of the 1; is 
~ -isomorphic to the algebra D. 

Proof. The ~-equivariant mapping sending Yi to 1; is well defined since the 
relations defining D hold in our ring. D is generated by the elements Y[ 
and x[ that map to the corresponding vectors f~ and e[ . These vectors are 
linearly independent (in g) and this finishes the proof. 0 

4.3. We return now to the algebra Zo = Zo- Q9 zg Q9 Z; , and let OM = SpecZo 
be the algebraic variety of its IC-valued points. Thus OM is a product of the 
N-dimensional affine space Spec Z; , the complex torus T = Spec zg (we 
identify zg with Ueo = qT] via the map za f-+ K), and the N-dimensional 
affine space SpecZ; . The group ~ acts on OM algebraically. We act with ~ 
on G by inner conjugation by the elements ti: Ti(g) := tigt;1 . We consider 
the set !T of (regular) maps F: OM -+ G and act on !T with ~ in the 
obvious way: (TiF)(p):= Ti(F(Ti-I(P))). We construct now some special 

o maps OM -+ G , 
Yk = exp(ykfk ): p f-+ exp(Yk(p)fk ); 

for a reduced expression J, 
J J J Yk := exp(ykf k); 

and finally the map Z that is trivial on the first and the third factors and is 
induced on the second factor by the map P f-+ 2P, P EM. 

Since Y[ = TLI (Yi ) and f~ = t[_1 (1; ) we get from the definition of the 
k k 

braid group action on !T that 

Lemma. If p[ = a i is a simple root we have Y: = Yi . 

Proof. This follows from Corollary 3.4 and the analogous statement for the 
action of ~ on the root vectors. 0 

4.4. Lemma. (1) YiTi(Yj ) = YjTiY) if mij = 2. 
(2) YiTj(Y)Yj = YjTi(Y)Yi if mij = 3. 
(3) YiTjTJY)Tj(Y)Yj = YjTiTj(Yi)Ti(Y)Yi if mij = 4. 
(4) Yi(Tj~)Y)(Tj;) Yi)(Tj;)Y)(Tj Y)Yj = Yj(Tij4) Y)(T/J) Y)(T/J) Yi)(TiY)Yi 

if mij = 6. 

Proof. By direct calculation. (1) is clear and as for (2) we can compute in SL3 . 

With the usual notation of elementary matrices we have 

Y I = 1 + Y Ie 21 ' 

tl = -e12 + e21 + e33 , 
Y2 = 1 + Y2e32 ' 
t2 = ell - e23 + e32 . 
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Hence we get 

and 

so 

while 
Y2TI (Y2)YI = 1 + y l e21 - TI (Y2)e31 + Y2e32 + YIY2e31; 

thus the relation follows from 3.1(3). The proofs of (3) and (4) is similar. 0 

4.5. We define now, for J: W = S,' S,' •• ·s· the maps 
1 2 I, 

J J J J J J 
Y := ~ ~_I'" YI ' X:= To(Y ). 

Proposition. (1) yJ and XJ are independent of J; we denote them: Yw and 
XUi" 

(2) If W = ab is a reduced decomposition then 

Yw = Ta(Yb)Ya and Xw = Ta(Xb)Xa· 

(3) Yw can be thought of as an algebraic isomorphism between the affine 
space with coordinates yt and the unipotent group w-I(U+) n U_. 

Proof. (1) It suffices to do it for yJ . Again it is enough to do it for two reduced 
expressions which differ by a single braid relation. In this case we see that the 
factors in the two products coincide except for two or three, etc. consecutive 
ones. Then Lemmas 4.3 and 4.4 finish the proof. 

(2) This is clear from the definitions for the Yw and follows from Lemma 
2.2 for the Xw' 

(3) Yw is the product of the root subgroups relative to the roots - Pt and 
these are the negative roots that w maps to positive roots. 0 

We shall refer to Y and X instead of Yw and Xw . We shall also write 
o 0 

X,, in place of Xs = exp( -x.e.). 
i I I 

4.6. Proposition. Tj(Y) = Tj(Y;)YYj-l, Tj(X) = T;(X;)XXj-1 , and Tj(Z) = 
Z. 

Proof. Let Wo = sjw = WSj so that, from Proposition 4.5(2), we have Y = 
Tw(Yj)Yw = Tj(Yw)Yj ' But, since w(aj) = a j , from Lemma 4.3 we have 
Tw(Yj ) = Yj and so 

Furthermore, 
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Finally, the statement for Z is clear from the definitions. 0 

4.7. Theorem. Tj(YZX) = XjYZXXj- 1 • 

165 

Proof. From Proposition 4.6 we have Tj(YZX) = Xjyyj- I ZTj(Xj)XXj- 1 , so 
we need to show that Z = ~-I ZT;(X) or Z-l yjZ = Tj(X). We write 
Tj(Xj) = exp( -Tj(x)tj(eJ) = exp(z~YJJ. But by the definition of the map Z 
we have that Z-I exp(yj.!;)Z = exp(z~Yj.f;). 0 

Corollary. The map YZX of Q M onto the big cell U_ x T x U+ is of degree 
2n , and the functions on the group G invariant under conjugation pullback to 
functions on Q M invariant under ~ . 

Proof. The first part is clear from the definitions. If we restrict a G-invariant 
function f from G to the open cell we have 

Tj(f(YZX(p))) = f(YZX(Tj-l(p))) = f(tj(YZX(Tj-l(p)))t;l) 

= f(Tj(YZX)(P)) = f(XjYZXXj-I(p)) = f(YZX(p)). 0 

Corollary. For WE W we have Tw(YZX) = XwYZXX:I. 

Proof. This is an immediate consequence of the theorem and Proposition 4.5(2) 
using induction on the length of w. 0 

In particular To(YZX) = XYZ , and since X = To(Y) , we have To(X) = 
Z-l yZ . 

Remark. One can connect the formulas with the Cartan involution (J in G 
and the transformation w. In fact (J w( Y:) = exp( Z fit xf ef) so (J w( Y) 
ZI/2 XZ- I / 2 • 

5. THE QUANTUM COADJOINT ACTION 

5.1. As in [DCK, §3.4] suppose one has an element b E U M ~ with the property 
that [b, a] E [/]UM ~ for all a E UM ~. Then when we set q = e, we have 
that b is central in' U M ,e but one can' also define the derivation Db of U M ,e 

by Db(a) := [bj[l] , a]q=e' In particular for b = E; we have the derivations r..j 
of UM,e given by r..j(a) := [E}l) , a]q=e' The following formulas can be derived 
from [L, 5.3-5.5; DCK, §3.4] (with our change of notations): 

r..j(z,.) = (0: I O:)Zo.+o.xJ(O:j I O:j) ; 
2 I 

r..j(Xj) = -ZjXj ; 
r..j(x) = ZiXj~ji-2) if i -:j:. j and I ajj I :::; I aji I ; 
r..j(x) = -ajjzjTj(x) if ajj = -1; 
r..j(TiXj)) = 0 if mjj = 3; 
r..j(Tj(x)) = zjTjTj(x) , r..j(TjTj(x))=zjTj(x) if mij=4 and ajj = -1; 
r..j(Tj(x)) = Zj(TjT;(x))2, r..j(TjTj(xj )) = 0 if mjj = 4 and ajj = -1; 
r..j(TiXj)) = 2zjxj~) , r..j(xj~)) = zjxj:) ; 
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~j(xj;)) = 3z jxj:)2 if mjj = 6 and ajj = -1 ; 
~j(xt)) = 0 if mjj = 6 ; 
~j(xj:)) = zjxj:)3 , ~j(xj;)) = zjx]j ; 
~/Tj(xJ) = 3zjxj:)xj;) - Zjxj;) if mjj = 6 and ajj = -1; 
~j(Yj) = Jij(Zj - z;'); 
~j(Tj(Y)) = zjYj if ajj = -1 ; 
~j(Tj(Yj)) = -ajjzjTjTj(Yj) if ajj = -1; 
~j(TjT/YJ) = zjY] if mjj = 4 and ajj = -1; 
~j(yg)) = 3Zjy~;)2 , ~j(Y~])) = 2zjY~;) ; 

~j(Y~;)) = ZjYj if mjj = 6 and ajj = -1; 
~j(YW) = zjyJ, ej(Y~;)) = zjyJ ; 
~j(Y~J)) = -ZjY~;) + 3zjYjY~J) if mij = 6 and aij =-1. 

Finally, if cp is any automorphism of UM e we obviously have cpDbCP-' (a) = 

D¢(b)(a) or in other form (substituting cp-l(~) for a), cp(Db(a)) = D¢(b)(cp(a)). 
An important case is when OJ' OJ are two simple roots and W E W is such 
that w(oJ = OJ so that Tw(EJ = Ej . Thus we have, taking cp = Tw ' 

Tw(~j(a)) = ~j(Tw(a)). 

In order to perform our computations we need some preliminary steps. 

5.2. For SL2 we have the elements 

x = (b -:) 
and their product 

A:= (:Y _ZX~Z: Z-,) . 

We apply the operator ~ to A and get by the formulas in §5.1, 

~(A) = (2 z2X2 1 O2 ) = [ze2, , A]. 
Z xY+ Z - -z x 

(We have dropped the subscript 1 in all formulas.) 

5.3. Next, we show that for G = SL3 , again if A = YZX then 

~,(A) = [z,e2" A]. 

We have by Proposition 4.5(2), Y = YY" where Y = T, (Ys s) and X = 
2 I 

Ts s (X2)Xs s = X, X, where X = Xs s ' since the longest element of W is 
2 1 2 1 2 1 

S,S2S, = S2SIS2. We also decompose Z = Z,Z , where Z is the kernel of 0, 
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m T. Explicitly, 

tl = -e12 + e21 + e33 , t2 = ell - e23 + e32 , to := tl t2tl = e31 - e22 + e13 ; 
Ys s = T2(YI )Y2 = 1 + Y2e32 + T2(y l )e31 ; 

2 1 

Y = 1 - TI (Y2)e31 + Y2e32 ; 
Z d· (2 -2 -2 2) - d' (2 2 -4) 

I = lag z w Z w ,z w ,z w' Z = lag z w ' Z w ' Z w ; 
1212 222 

XI = tOY2 tO = 1 - x lel2 , X2 = tOYI to = 1 - x2e23 ; 
X = T2(XI )X2 = 1 - T2(x l )e13 - x2e23 . 

Using §5.1, we obtain 

~I (Y) = - z l Y2e31 = [z l e21 ' Y]; 
~I (X) = - zl T2(x l )e23 = [z l e21 , X]; 

~I(Z) = 0 = [z l e21 , Z]. 

Finally since A = Y(YIZIXI)ZX and the derivations ~I and z l ade21 coincide 
on all four factors by the above formulas and (a version of) §5.2, we deduce 
that they coincide on A. 

5.4. Consider again the big cell GO = U_TU+ and the mapping YZX that 
is an unramified covering: OM --+ GO. Thus given a vector field on G we 
can pull it back to OM' We will do this with the elements of the Lie algebra 
g, in particular with the Chevalley generators ej , hj' and J;. We consider a 
representation p of G and its Lie algebra g. In a given basis the entries of the 
matrix p(g) are functions on G and if a E 9 the entries of [a, p(g)] are the 
derivatives of the entries of p(g) according to the vector field a. A mapping 
f of OM in G can be composed with p to get a map to matrices. We will 
drop the symbol p if there is no ambiguity. For the pull back a* of a we have 
of course the same formula [a, p(f(g))] = a*(p(f(g))). We wish to show that 

Theorem. ~j = ZjJ;. 
Proof. We have made the computation for SL2 and SL3 . Similar but length-
ier calculations for the four-dimensional representation of C2 and the seven-
dimensional representation of G2 show that the formula hold for all rank 2 
groups as well. We will reduce the general case to these cases. 

For each a E R+ pick Wo; E W such that a = wO;(a), a j En, and let 

Yo; = Tw YJ·, 
" 

x = Tw x .. a rr } 

Since, by Corollary 3.4(c), the elements XO; and Yo; generate Zo over zg and 
since the derivatives ~j and ZjJ; coincide on zg by the rank 2 calculations, it 
suffices to show that 

(1) e .(x ) = z· '(x ), -I a IJj Q 
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Given two nonproportional roots 0: and p, we denote by Ra , p the inter-
section of the Z-span of 0: and P with R and let R:, p = Ra, p n R+ . Then 
Ra , p is a rank 2 root system with R:, p being a subset of positive roots. 

There exist two simple roots, say, 0:,,0:2 En, and w E W such that 

wR+ = R+ and wo:, = 0:/. (0: need not be equal to W(0:2)). 
U 1 'U2 Ct;,a 

Fix a reduced expression w = Si .. ·Si . Let w~ = S,S2S,·· ·SB' where e = I or 
1 k 

2, be the reduced expression l' of the longest element of the Weyl group of 
Ra"a2 ' and let m = l(w~). Then the expression ww~ = Si l ••• Sik S,S2··· SB is re-
duced; this is easily checked by using § 1.1. Complete to the right this expression 
to a reduced expression J of wo. Let {P" ... , PN} be the corresponding or-
dering of R+ associated to this reduced expression (see Proposition 2.1). Then 
R+ breaks into four pieces: , 

R := {P" ... , Pk } = RW-" Pk +, = O:i' 
2 + 3 

R := {Pk +2' ... , Pk +m} = Ra;>a \{o:J, R = {Pk +m+" ... , PN }· 

Furthermore, let g~ = ffil'ERi Ce±l' , i = 1, 2, 3. It is easy to see that 
these are subalgebras of the Lie algebra 9 normalized by the three-dimensional 
subalgebra Cei + Chi + CJ; .Indeed, we have to show that for S = 1 and 3, the 
R S are additively closed subsets of R+ such that R n (Rs ± 0:) c R S • Since 
R' = RW-' ,it is additively closed. If PER' and P±O:i E R, then P±O:i E R+ 
since O:i is simple and w-'(P±o:)=w-'(p)±o:, E-R+ since 0:, is simple. 
Furthermore, R3 = R+\R f _I and hence is additively closed. If P E R3 and WOW 
P±O:i E R, then, as above, P±O:i E R+ and w-'(P±o:) = w-'(P)±o:, E R+; 
hence w~w-'(P ± 0:) = w~w-'(P) ± w~(o:,) E R+ since -w~(o:,) is simple. 
Let U~ be the subgroups of U ± corresponding to the g~. 

We tum now to the map YZX. We have the decompositions of Y and X 
according to the above decomposition of R+ 

YZX = Y3 Y2(exPYiJ;) Y,ZX, (exp -xie)X2X3 
= Y3Y2Y; ((exPyiJ;)Z(exp -xie))X;X2X3, 

where Y; = (exPYiJ;)Y, (exp -YiJ;) c U~ and X; = (exp -xie)X, (expxie) E , 
U+. 

Consider the subalgebra Z~' 2 of Zo generated over zg by all xl' and Yl' 
with Y E R+ . We want to prove 

at ,02 

(2) 

This formula implies (1). Indeed using the formula at the end of §5.1 and the 
calculation in the rank 2 case, we have for a E Z~,2, g)Tw(a)) = Tw~,(a) = 
Tw(zJ; (a)). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUANTUM COADJOINT ACTION 169 

In order to prove (2) note that the action of zJ; on Zo may be calculated 
as follows. Write for tEe 

1 N II J J II J J (exptzjJ;)YZX(exp -tzj.f;) = (expys (t)f s )Z(t) (expxs (t)es ). 
s=N s=1 

Then ZjJ;(x:) = ftx: (t) I t=O' and similarly for y. 
But xa (resp. Ya) occurs only in X 2 (resp. Y2) andallotherfactorsof YZX 

lie in the subgroups normalized by exp tzjJ; and having trivial intersection with 
V~ (resp. V:). Thus, it suffices to perform the calculation in V~ (resp. V:). 
We have 

k+m m, , II expx: (t)e: = (exp tzjJ;) II exp Tw(x: e: )(exp -tzjJ;) 
s=k+2 s=2 

= Tw((exptzl!t)(rr expx:'e:') (exp-tzl!t)) , 
s=2 

and we can use again the calculation in the rank 2 case. This proves (2). 0 

In the next section we shall need the following result. 

Lemma. Let P E R+ and let P E Z+ be such that p + pa j E R+ but p + 
(p + 1)aj rt. R+. Then for suitable choices of xp and xP+a; one has 

gj(xp) = PZjXp+a; . 

Proof. If P E R+ for some simple roots 0. 1 and 0.2 , and i = 1, the lemma 
°l,el2 

holds due to §5.1. This case implies the general one if we take w E W such 
that wR+ = R+ P' and wa l = a, and apply T . 0 

(};1,0:2 ai' I W 

5.5. Let 

As in §2.3, we have 
-I L = TjgjTj . 

As in §5.4, it suffices to verify the following formula in the rank 1 and 2 cases 
where we verify it as in §5.3. 

Theorem. L = -zjej . 

Recall that given functions f, g and vector fields V, V, one has 

[fV, gV] = fg[V, V] + fV(g)V - gV(f)V. 

Using this, we immediately deduce the 
2 2 Lemma. (a) h.:= [e., f.] = z.h. + z·x·e + y.!. 

-I -I -I I I I I I I I 

(b) [gj , [gj , [... ,[gj , gj ] ... ] = zp [J; , [J; , [... ,[J; ,J;] ... ] + f, 
I 2 k-I k I 2 k-I k 

where P = a· + ... + 0. 1' and f is a linear combination of vector fields (with 
II k 
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coefficients functions) corresponding to root vectors attached to roots -a such 
that a E R+ and hta < htp. 

Let 9 be the Lie algebra of vector fields on Q M generated by the vector fields 
~j and L, i = 1, ... , n. Recall that using the map Y Z X , the Lie algebra 
9 also can be viewed as a Lie algebra of vector fields on Q M' generated by 
the vector fields ej and 1;, i = 1, ... , n. Using Lemma 5.5, we obtain the 
following important corollary of Theorems 5.4 and 5.5. 
Corollary. At every point of QM the spaces consisting of vectors of all vector fields 
from 9 and from 9 coincide. 
Remark. (a) As in [DCK,§3.4] introduce the derivations Kj of Ue by 

k -1 (I) 
_j(u) = cj [K j ,u]q=e' 

Then one easily checks the following formula: 
k. = z.h.j2. -I II 

(b) The derivation L is different from the derivation 1; introduced in 
[DCK, §3.4], which (in order to avoid confusion) we denote here by f...~. It fol-
lows from [DCK, (3.4.7)] that L = -zd; - YjKj , and hence f...; = -!yjhj +ej . 

5.6. Recall that the quantum group U M and its specialization U M e are Hopf 
algebras with comultiplication Ll, antipode S, and counit 17 defined by 

-1 SEj = -Kj Ej' SFj = -FjKj , SKo; = K_o;' 
17Ej = 0, 17Fj = 0, 17Ko; = 1. 

Lemma. Let x E UM,e be such that Ll(x) E Ze ® Ze. Then for s = 1, ... , n 
one has 

Ll(~s(x)) = (~s ® 1 + Zs ® ~s - Ks ® zsxs)Ll(x). 
Proof. We compute in UM , 

(/) (/) '(/) Ll([Es ,x]) = [Es ® 1 + Ks ® Es + ... , Ll(x)] , 
where dots refer to elements that are regular at q = e and hence can be ignored. 
Let Ll(x) = Lj a j ® b j ; we have 

""' (/) (/) 'b ' (/) b Ll(~s(x)) = L../[Es ,aj] ® b j + [Ks ,aj] ® Es j + ajKs ® [Es ' ;1) + .... 

Specializing at q = e completes the proof. 0 

Let Z>o = zg Z; and Z<o = zg Z; ; these are Q+ -graded subalgebras of 
Zo' For -a E R+ let Zo; (r~sp. Z:) = zg[xy lYE R+, Y ::; (resp. <) a]; 
we let Z: = ° if a Ell. These are Q+ -graded subalgebras of Z>o' whose 
y-component coincides with that of Z>o if y ::; (resp. <) a. Similarly, we 
define subalgebras Z_o; and Z~o; of Z:o' Let I = Ker 17 be the augmentation 
ideal of Z?:o' -
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Proposition. (a) L.\(x ) = x 18> Z + 1 18> x + P , where P E Z+ 18> Z+ . 
Q 0: -a 0: a a a a 

(b) Let a E R +' j E {1, ... , n}, and let r a, j = max {k I a - ka j E R +} . 

Then for a suitable choice of Xa we have mod [2 18> Z~o + Z~o 18> [2 , 

L.\xa = Xa 18> Z_a + 1 18> Xa + x a_aj 18> Xj if a = a i + a j ; 

L.\xa = Xa 18> Z_a + 1 18> Xa + L ra, iXa-a j 18> Xi 
i 

+ L Cp,yXp 18>Xy ifhta> 2, 
p, yER+ \ll 

p+r=a 

where c p , a E C . 
(c) Z±a and Z;a are Hopfsubalgebras of UM,e' 

(d) Zo' Z~o' and Z::;o are Hopf subalgebras of U M, e . 

Proof. (c) and (d) follow from (a). 
We prove (a) and (b) by induction on a E Q+. 
For a E II, (a) is clear. Otherwise, by Lemma 5.4 we have for suitable 

choices of xa and xP' provided that {3 = a - a i E R+ : xa = p-I z;lg)Xp). 
Applying Lemma 5.6, we obtain 

-I -I -I 
L.\(xa) = p (Zi 18> zi )(f.i 18> 1 + zi 18> f.i - k i 18> ziX)L.\(Xp)' 

(a) follows by induction. Substituting L.\(xp) given by the inductive assump-
tion in (b) and using that f.i(z_p) = -({31 a)z_P+a/j(ai I a) and ki(xP) = 
({31 ai)xpzj(ai I a i) proves (b). 0 

It follows from Proposition 5.6 that Spec Zo is a connected algebraic group 
and that Spec Z>o and Spec Z<o are its connected normal subgroups whose in-
tersection is the torus Spec zg ~nd whose product is Spec Zo' Let L, L + , L - , 
and LO be the Lie algebras of these groups respectively. We have L = L + + L -
(sum of ideals) and L 0 = L - n L + . 

We shall calculate below the structure of Lie algebras L + and L - . We may 
assume that M = Q. Recall that L + = (I / [2)* , and that, denoting by x 
the class in [/[2 of x E [, the bracket in L + can be calculated as follows 
(qJI,qJ2EL+, xEI): 

[qJl' qJ2](X) = L(qJl (a i - rJ(a))qJ2(bi - rJ(bi)) - qJl (bi - rJ(b))qJ2(ai - rJ(a)). 

Here L.\(x) = l:i ai 18> bi , where ai' bi E Z>o· 
Note that by Corollary 3.4, xa up to a -sign is independent of the choice of 

the xa' The elements zi - 1 (i = 1, ... , n), xa (a E R+) form a basis of 
[/[2; let hi (i = 1, ... , n), Sa (a E R+) be the dual basis of L+. In order 
to calculate brackets of these elements, we use Proposition 5.6(b). 

A straightforward calculation shows that 
2(Wi I {3) 

[hi,Sp]= ( I )Sp. a i a i 
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It follows that 

[Sa' Sp] =mapSa+p if a + P E R+ . 

Again, it is straightforward to show that 

m p = rp . + 1 if a. + P E R+. 
ai' ,I I 

Similar formulas hold for L -. It follows that L ° and the Sa (resp. S_a) 
generate L + (resp. L -) and that the Chevalley-Serre relations hold for the~. 
Hence we obtain the following 

Theorem. L + (resp. L -) is isomorphic to a Borel subalgebra b of the Lie al-
gebra g. 

This result has been announced recently by N. Reshetikhin (MIT seminar). 
In §7 we calculate the group Spec Zo more explicitly, along with its Poisson 
structure. 

Remark. Let 7f.i E Spec U M e (i = 1, 2) be two irreducible representations, 
and let gi (i = I, 2) be the corresponding elements of Spec Zo' It is clear 
that if 7f.1 (97f.2 and 7f.2 (9 7f.1 are equivalent, then glg2 = g2 g1 in the algebraic 
group Spec Zo' To what extent is this condition sufficient? 

6. THE GEOMETRY OF THE QUANTUM COADJOINT ACTION 

6.1. It is proved in [DCK, §3.5] that the derivations f.i (and hence 1) of the 
algebra Zo integrate to global I-parameter groups of analytic automorphisms 
expsf.i (resp. exps[) of the algebraic variety Q M = SpecZo ' Denote by G 
the (infinite-dimensional) group generated by the groups expsf.i and expsL, 
i = 1 , ... , n . The action of G on Q M is called the quantum coadjoint action 
[DCK]. 

Let, as before, GO = U _ T U + be the big cell of G, and let 7f. denote the map 
YZX: Q M --+ GO. Recall that Q M = SpecZo- x T x SpecZ; is an unramified 
(algebraic) Galois covering with the group 1 M / M. Let F = 7f. -I (Center G) = 
{XETcQMlx(zp)=±1 for all PEQ}. 

Given a conjugacy class & in G, it always intersects GO in a smooth con-
nected variety &0. Theorems 5.4 and 5.5 and Corollary 5.5 immediately give 
us 
Proposition. (a) The connected components of the variety 7f. -I (&0) are orbits of 
the group G. 

(b) The set F is the fixed point set of G in Q M' The action of G in the 
tangent space to each point p E F induces the coadjoint action of G on 9 (after 
dividing by the kernel). 
Proof. (b) is clear. To see (a) we use the following simple geometric fact: Let ({Ji 
(i = 1 , . .. , m) be global I-parameter groups of diffeomorphisms of a connected 
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manifold M and let Xi be the corresponding vector fields. Assume that the 
Xi span the tangent space to M at every point of M. Then M is an orbit of 
the group K generated by the rp i' (Indeed, our assumption implies that every 
K -orbit in M is open. Since M is connected, the claim follows.) 0 

Proposition 6.1(a) has a number of important consequences, some of which 
are solutions to some of the conjectures of [DCK]. In order to state these results, 
introduce some notation and terminology. 

Denote by [ (resp. [+) the ideal in Zo generated by all elements xf and y£ 
(resp. xf). Then T = {X E OM I x(l) = O}, and we let Treg = {X E T I X(zp)2 =l-
I for all PER}. A G orbit in OM is called unipotent if its Zariski closure 
contains a point from F. A G-orbit in OM is called semisimple (resp. regular 
semisimple) if it intersects T (resp. Treg). 

Theorem. (a) Every G-orbit in OM contains an element X such that x(l+) = O. 
(b) Every G-orbit &' in OM is Zariski open in its Zariski closure &'. 
(c) A G-orbit is closed if and only if it is semisimple. 
(d) The union of all regular semisimple orbits G.Treg is Zariski open and 

dense in OM' 
(e) There is only a finite number of unipotent orbits. 

Proof. Follows from Proposition 6.1 and the well-known results on conjugacy 
classes in simple Lie groups [K, S]. 0 

Corollary. Every finite-dimensional irreducible representation p of U M, e in a 
vector space V is triangularizable; i.e., there exists a E G and a nonzero vector 
v E V such that 

Proof. By Theorem 6.1(a) there exists a E G such that p(a([+)) = O. It follows 
that p(a(E,J/ = 0 for all 0: E R+ . By the PBW theorem [L], it follows that 
p(a(U;)) consists of nilpotent endomorphisms; hence the subspace va = {v E 

Vlp(a(U;))v = O} is nonzero. Since the Kp normalize U:' va is Kp-
invariant, and hence the Kp have in va a common eigenvector. 0 

One can deduce fr~m [BC, Theorem 7.1] a more precise statement than The-
orem 6.1(a): Every G-orbit in OM contains an element X such that 

(i) x(l+) = 0, 
(ii) the set R; := {pf E R+ I X(y£) =I- O} is linearly independent (and then 

it is independent of J), 
(iii) if X(z,/ =I- 1 then 0: ~ R; . 

6.2. We turn now to the center Z of U M and the center Ze of U Me' Recall 
that U M = UO ED ( U- U M + U M U +) and denote by h' the projection of U M on 
UO . Similarly, define the projection h~: U M, e --+ UO . 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



174 C. DE CONCINI, V. G. KAC, AND C. PROCESI 

Lemma. Let Z E Ze be such that 

G·Z = Z and h~(z) = o. 
Then z = o. 
Proof. Since the map Spec Ze -+ Spec Zo (induced by inclusion) is surjective, 
[DCK, §3.6] due to Theorem 6.l(d), it suffices to check that the eigenvalue a 
of z on each diagonal module Me(A.) (see [DCK, §3.2]) is O. We have 

zv). = av). = u_v)., where u_ E V;. 
Since u _ is a nilpotent endomorphism, we see that a = 0 . 0 

Recall that the maximal torus T of G is the affine variety with coordinate 
ring C[M], the group ring of M. We identify C[M] with V! via p 1--+ K p ' 

P EM. It is convenient to look at T as the algebraic group eX 0 z M* . The 
action by left translations of T on functions on T can then be written as 

(A. 0 m)Kp = A.(m,p) K p ' A. E eX, mE M*. 

Consider the map of ! Q v in T defined by ! y 1--+ (-1) 0 y and let Q~ denote 
its image. One should note that QV c M* since QV = p* and that, for the 
same reason, Q~ is the set of all elements of T of period 2 if G is simply 
connected (otherwise Q~ may be smaller). Thus we have an action of the group 
~ v ° 
W:=W~Q2 on VM· 

Now we can recall the construction of Z . Denote by y the automorphism 
of VOQ~ defined by y(K p) = q(p I P) K P' and let h = y -1 0 h'. At this point 
we use that 2(p I P) c IE. Then we have an isomorphism of algebras [DCK, 
Proposition 2.2(b)] 

h: Z .::. Vow. 
More explicitly, for each rp E Vow there exists a unique central element (see 
[DCK] for notation) of the form 

zrp = y(rp) + L L Fkrpk rEr 
,,>0 k, rEPar(,,) 

where the rpk r E VO can be computed from a recurrent formula and Z = 
{z rp I rp E Vow}. The recurrent formula shows that the only poles of the rp k , r 
are q = roots of 1 and the poles of rp. 
Proposition. All the rp k r do not have a pole at q = e if rp does not. 
Proof. Let p/(q) be the lth cyclotomic polynomial and let m be the maximum 
of orders of poles of the rpk,r. Let z' = p/(q)m z. Then the element z'l q=e 

satisfies all conditions of the lemma and is nonzero, a contradiction. 0 

Thus, we have a well-defined injective homomorphism he: Veow -+ Ze given 
by rp 1--+ zrp. Denote by ZI its image. (Note that it is different from that 
introduced in [DCK, §5]. As we shall see, all conjectures stated there are true 
for the ZI ' introduced here.) 
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Corollary. (a) The subalgebra ZI of ZM e is pointwise fixed under the action 
of G and the action of ;;W . 

(b) The center Z M of U M is pointwise fixed under the action of ;;W . 

Proof. The first part of (a) is clear and the second part follows from (b). Now 
let Z E ZM and let z' := ~(z) - Z E ZM. If Z' :f. 0, then by Lemma 6.2 one 
can arrange for z' to be defined and yet h;(z') :f. o. This contradicts [DCK, 
(5.4.2)]. 0 

6.3. We return to the study of the quantum coadjoint action. Recall that G = 
Gc/CG, where Gc is the simply connected cover of G and CG = M* /Qv is 
its fundamental group. Note that, given mEN, we have 

m -I * * 1(m) := {a E T I a = 1} = m M / M , 

and that Q~ c 1(2) since Q v C M*. Denote by S the subgroup of T(21) 

generated by T(/) and Q~ . We have canonical isomorphisms 

Thus 
2 

T(21/S ~ CG/CG· 

Let G' = GclC~, so that CenterG' = CG/C~, The coroot lattice of the group 
G' is QV + 2M* and the weight lattice is P n tM. We list in Table 1, in the 
case of the adjoint group, G = Gad (i.e., when CG is the largest) the group G' , 
its center, the groups CG, and CG/C~. 

TABLE 1. 

(aij) G' CenterG' CG C2 
G 

A2k Gad 1l2k+1 1l2k+1 

A 2k _ 1 SL2k /Ilk 112 1l2k Ilk 

En' Cn Gc 112 112 1 

D2k Gc 112 +1l2 112 +1l2 

D2k _ 1 S04k-2 112 114 112 

E6 Gad 113 113 

E7 Gc 112 112 

E 8 , F4 , G2 Gc 

Note that zg = UeOT(I); hence Ueos is a subalgebra of zg. Consider the 
following subalgebra of Zo (which is independent of the choice of the reduced 
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expression J of wo)' 
, os J J 

Zo = Ve [xk ' yd, 
and let n~ = Spec Z~. The embedding Z~ c Zo induces an unramified cover 
n M ---. n~ with the Galois group Q~. Recall that the map Q M ---. GO is an 
unramified cover with the Galois group 1(2). Also the homomorphism G' ---. G 
is an unramified cover with the Galois group CG/C~ ~ 1(2,1Q~ . It follows that 
there exists a unique isomorphism of algebraic varieties r: Q~ ~ G'o , the big 
cell of G' , which makes the diagram 

Q' M 

1 
O 1(z/Q: 0 

G I G' 
commutative. The map r induces an embedding qG'] c Z~. 

Proposition. (a) Zo n ZI = qG'f , where G' acts on itself by conjugation. 

(b) Zo n ZI c Z~ . 
(c) Ii (V°w.~1(I) = Z n Z e e 0 1 . 
(d) The map Spec Z~ ---. Spec Zo n ZI induced by inclusion is the restriction 

to the big cell of the quotient morphism G' ---. SpecqG'f . 

Proof. In order to prove (a) note that by the construction of ZI ' he(Zo n ZI) c 
, h ow. h' ow ZO' and also e(ZI) = Ve . So, If a E Zo n ZI then e(a) E Zo n Ve ,hence 

there exists a unique a E qG'f c Z~ such that he(a) = he(a). (Here we use 
the well-known restriction isomorphism qG'f ~ qT']w , see [S].) Since, by 
Proposition 6.1(a), both a and a are G-invariant, applying Lemma 6.2, we 
get a = a. So, Zo n ZI c qG'f. Conversely, if a E qG'f then he(a) E 

(zg n Z~)w = zgw. But again, there exists a E ZI such that he(a) = he(a) , 
and by Lemma 6.2 we get a = a E ZI ' hence qG']G' C Z~ n ZI. (b) is clear 
since Zo n ZI = qG'f c Z~. (c) and (d) follow immediately from (b) and 
the definition of Z~. 0 

Corollary. The map Spec Z~ ---. Spec Zo n Zl induced by the inclusion is smooth 
in codimension 1. 

Proof. Due to Proposition 6.3(d), it suffices to show that the map rp': G' ---. 
SpecqG'lG is smooth in codimension 1. For this recall that the map rp: Gc ---. 
SpecqGclGc ~ en, given by g 1--+ (XI(g), ... , Xn(g» , where the Xi are the 
characters of fundamental representations of Gc ' is smooth in codimension 
1 [S, §§5, 8]. Since rp' is obtained from rp by dividing by C~ it suffices to 
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show that the quotient map of the action of C~ on SpeclC[Gc]Gc is smooth in 
codimension 1. Note that C~ is a cyclic group (see Table 1). Let s denote 
its order and let g be its generator. Let y/ be a primitive sth root of 1; then 
g X j = y/Sj X j' If s = 1, there is nothing to prove. Otherwise, by a case-wise 
inspection we see that there are at least two Sj which are relatively prime to s. 
This completes the proof. 0 

6.4. Our next objective is to prove that Z P ,B is generated by its subalgebras Zo 
and ZI' (Remark 6.4(a) below shows that this may be false if M i= P.) For 
this we shall prove the 

Proposition. The ring A := IC[P]w is a complete intersection over its subring 
AI := IC[IP]w. 

First, we prove a lemma. Let P+ = {A. E PI (A., a~) E Z+, i = 1, ... , n}, 

P~ = {A. E P+ I (A., a~) < I, i = 1, ... , n}. For A. E P+ let X). = L:ttEW().) ett . 
Then {X).}).EP (resp. {XI).}).EP ) form a ((:::-basis of A (resp. AI) and {X).})'EPI 

+ + + 
form a basis of the Armodule A. For A. = L: n/lJi E P+ let M). = I1 X::: . 
Finally, define a partial ordering on P+ by letting A. 2:: Il if A. - Il = L:i ai~i 
with ai E Q, ai 2:: 0 . 

Lemma. Let A. E P+. (a) We can write X). = L:ttEP~ a).ttXtt' where a).tt E Al and 

a).tt i= 0 only if A. 2:: Il· 
(b) We can write M). = L:ttEP~ b).ttXtt' where b).tt E Al and b).tt i= 0 only if 

A. 2:: Il. Also, b;.;. = 1 if A. E P~ . 
(c) We can write M). = L:ttEP~ c).ttMtt' where c).tt E Al and c).tt i= 0 only if 

A. 2:: Il . 
if . I' 11 , 11 I 11 Proo . Wnte A. = A. + A. ,where A. E P+, A. E P+ . Then A. 2:: A. and 

X). = X/).I X).II + La; Xtt ' where a;tt E Z. 
" ttd 

Thus (a) follows by induction on the ordering. 
Since 

M). = X). + L b; Xtt ' 
Jl ttd 

the first part of (b) follows by induction on the ordering and (a). The second 
part of (b) is clear. 

Thus, the matrix B := (b).tt) in (b) (where A., Il E P~) is invertible over Al 

and B- 1 = (C;tt) has the same properties, i.e., we have for A. E P~ 

Substituting this in (b) we get (c). 0 
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Proof of Proposition 6.4. By Lemma 6.4(c) we have 

M'= ~ dM 
Wj ~ ilL IL' 

ILEP~, IL<iWj 

Consider the polynomial algebra A,[x" ... ,xn ] let x,l = X~I '" x:n for Ii = 
E k/JJ i · Let Pi = x: - ElL diILxIL E A,[x, ' ... , x n ], let 1= (P, ' ... , Pn ) and let 
B = A,[x, ' ... , x n]/ I. We have a surjective homomorphism B -+ A defined 
by Xi 1-+ XWj . We claim that it is injective. This will prove the proposition. 

In order to prove the injectivity, it suffices to show that the x,l' Ii E P~ , span 
B. Take Ii E P+ and consider the monomial x,l = X~I ... x:n . If k i < I for all 
i , we are done; if not, then kj > I for some j and we have 

x,l = X~X,l_'Wj = L djILx,l_'WJ+IL . 
IL<'W j , ILEP~ 

Since Ii -I (JJ j + J.l < Ii , the proof is completed by induction on the ordering. 0 

Theorem. (a) Z P , e is generated by Zo and Z, . 
(b) ZP,e is an integrally closed complete intersection ring (over Zo)' 

Proof. Let Zp,e = Zo 0zonzI 2,. We have natural morphisms Zo ~ Zp,e -+ 

ZP,e' In order to prove (a), it suffices to show that Zp,e is normal. Indeed, 
s~nce ZP,e is finite over Zo [DCK], the normality of Zp,e implies that the map 
Zp,e -+ ZP,e is injective. From [DCK, §5.3] it follows that this is a birational 
inclusion, hence an isomorphism since Z P, e is normal [DCK]. 

Recall that 

(1) IV W Z, ~ C[P] = C[2P] , 

Hence by Proposition 6.4, Z p, e is a complete intersection ring over Zo' 
According to Serre's theorem [Se, Chapter 4], a complete intersection variety, 

which is smooth outside of a subvariety of codimension 2, is normal. Thus, 
in order to establish normality of Z P, e ' it suffices to show that Spec Z P, e is 
smooth outside of a subvariety of codimension 2. 

It follows from ( 1) that Spec Z P , e is an open subset in an unramified covering 
of the fiber product 

Xc:= T/W x TjW G, 

where the first map P,: T / W -+ T / W is induced by the Ith power map (t 1-+ t') 
and the second map (J: G -+ T / W is the quotient map. 

By [S, §§5, 8], G = G, U G2 , where G, is open, G2 is a closed subvariety 
of codimension ::::: 2, and (J: G, -+ T / W is a smooth map (here we use that 
G is simply connected). Hence T/W x TjW G, -+ T/W is a smooth map, and 
since T / W is smooth, we obtain that T / W X T j W G, is smooth. Since the map 
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T / W ---+ T / W is finite, we obtain that T / W X T / W G 2 has codimension ~ 2 
in T /W x T / W G, completing the proof. 

(b) is clear from the previous discussion. 0 

Remarks. (a) If M =I- P, the conclusion of Theorem 6.4(a) is false. For exam-
ple, if U Q , e is the (adjoint) quantum group of type A2 and e is a 3d root of 
1, then the element K; K2 is central but does not lie in ZQ,e. Note also that 
the proof of a result similar to Theorem 6.4(a) in [KW] on the center of the 
universal enveloping algebra U(g) of the Lie algebra g of a simple algebraic 
group G in characteristic p contains a gap. Our argument proves this result as 
well provided that the quotient map g * ---+ g * / G is smooth in codimension 1. 

(b) We have shown that Spec Z P , e is an unramified cover with the Galois 
group !Qv /Qv of the fiber product G/ /G x G/ /G GO, where the first map is the 
lth power map and the second is the restriction of the quotient map. 

(c) The proof of normality of SpecZe given in [DCK] may be simplified. 
Namely, it is easy to prove the following fact (cf. [DCK, Proposition 1.8]): Let 
C be an S-filtered algebra (where S is an ordered set such that any decreasing 
sequence stabilizes) such that GrC has no zero divisors and is integrally closed. 
Then C has these properties as well. (Indeed, it is standard that C has no 
zero divisors. Furthermore, if C c B c Z -1 C, where B is a subring and 
z is a central element of C, then -Z-IGrzB is a subring between GrC and 
-Z-IGrC, hence coincides with GrC. Take x E B\C and let y = zx. Since 
y = zX l for some Xl E C, we obtain an element X - Xl E B\C such that 
degz(x - Xl) < degy.) Also the fact that any quasi-polynomial algebra is 
integrally closed is proved by the argument at the end of the proof of Proposition 
1.8 of [DCK]. 

Corollary. (a) The action of G on 

SpecZp,e = SpecZl xSpeczOnzl SpecZo 

extends from Spec Zo by a trivial action on Spec Z,. Orbits of the action of G 
on Spec Z P , e are connected components of the preimages of orbits of G on n P 

under the map r: Spec Z P e ---+ Q P induced by inclusion of coordinate rings. 
(b) Let x E np and let' x = a 0 ll(x) E T /W. Recall the map PI: T /W ---+ 

T / W induced by the I th power map. Then 
-1 -1 I r (X) I = I PI (x) I . 

6.5. We shall give here another construction of the fiber product G / / G x G/ /G G 
(cf. Remark 6.4(b)). Let B be a finitely generated algebra without zero divisors, 
and let A be a finitely generated subalgebra of B. Denote by A the integral 
closure of A in B. This gives us a factorization of the map Spec B ---+ Spec A 
(induced by the inclusion), 

Spec B ---+ Spec A ---+ Spec A , 
such that SpecA is normal, the first map has connected (possibly empty) fibers, 
and the second map is finite, called the Stein factorization. 
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Now let G be a semisimple connected affine algebraic group. Given a positive 
integer m, denote by Pm: G ......., G the map defined by g 1-+ gm, g E G. Let 
G ......., X~ ......., G be the Stein factorization of this map. 

More explicitly this factorization can be constructed as follows (cf. §6.4). 
Denote by G / / G the affine variety with coordinate ring the regular functions 
on G invariant under conjugation, and let (J: G ......., G / / G be the quotient 
map. The map Pm induces a map Pm: G/ /G ......., G/ /G, so that we have a 
commutative diagram: 

G Pm 
---> G 

'\.a 

al XG 

PI ./ 

G//G ---> 
Pm 

G//G 

Here XG denotes the fiber product G/ /G X Gj jG G and Pi is the projection on 
the ith factor. By the universality property of the fiber product, there exists a 
morphism 0:: G ......., XG making the diagram commutative. 

Proposition. G ~ XG !2. G is the Stein factorization of Pm: G ......., G, so that 
X~ ~XG' 

Proof. Let T be a maximal torus; then we have the canonical isomorphism 
G/ /G'::' T/W, where W is the Weyl group. Since the map Pm: T......., T is 
finite, it follows that the map Pm: G/ /G ......., G/ /G is finite, hence the map 
P2: XG ......., G is finite. Furthermore, it is clear that the map 0:: G ......., XG is 
birational. It remains to show that XG is normal. As shown in §6.4, this is the 
case if G is simply connected. Hence it is true for arbitrary G. 0 

Remark. Note that if G is an arbitrary connected simply connected affine al-
gebraic group, we denote by G its quotient by the unipotent radical, and then 
XG is the fiber product of G and Xc; over G. 

6.6. The orbits of the action of G on Q M are described by the following 

Theorem. Consider the unrami./ied cover n' : Q M ......., G'o , with the Galois group 
Q~ = QV /(Qv n 2M*). Let & be a conjugacy class of a noncentral element of 
G' and let &0 = & n G'o. Then (n') -I (&0) is an orbit of G in Q M . 

Proof. We know (Proposition 6.1(a)) that connected components of (n,)-I (&0) 
are orbits. Hence it suffices to show that (n,)-I(&o) is connected. For that we 
have to show that the composite homomorphism rp: n 1 (&0) ......., Q~ defined by 

( A'iY) i* (G'o) _ 2M* QV 2M* + QV _ QV n l 0'0 ~ n l - + ......., 2Q* - 2 

is surjective. We need the following lemma. 
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Lemma. Consider the big cell in the group SL2 (C) 

and let a E C. Let ~ denote the intersection with V of the conjugacy class of 
noncentral elements of SL2 (C) with trace a. Then the inclusion map induces a 
surjective homomorphism of fundamental groups 1C 1 (~) ~ 1C 1 (V) . 

Proof. The set ~ is a hypersurface in V given by the equation z + z -1 + zxy = 
a, with the point (0,0, ±1) deleted if a = ±2. Consider the mth cover 
(Jm: SpecC[x, y, t, t- 1] ~ V = SpecC[x, y, z, z-l] given by (x, y, t) 1-+ 

(x, y, tm). Note that (J~1(~) has equation tm + em + tmxy = a, which is 
irreducible in C[x, y, t, t- 1]. Since 1C l (V) = Z, this proves the lemma. 0 

Now we complete the proof of Theorem 6.6. Since our claim holds for &', 
if it holds for an orbit in its closure, it suffices to consider two cases (since the 
closure of &' contains a semisimple conjugacy class): 

(a) &' is a conjugacy class of a noncentral semisimple element exp21Cih, 
h E~. 

(b) &' is a conjugacy class of a nontrivial unipotent element. 
In case (a) there exists a long root a such that (a v I h) ~ Z, where a v = 

2a / (a I a). Let Y,.: SL2 (C) ~ G' be the homomorphism corresponding to a. 
It is well known that Y,. is injective (see, e.g., [KW, Proposition 2.1]). Then 
&' n Y2(SL2(C)) is a noncentral conjugacy class in SL2(C). Due to the lemma, 
this implies that the image of i* contains a v. Using the Weyl group, we see 
that the image of i* contains a v for each long root a, hence contains Q v , and 
hence the map qJ is surjective. In case (b), it suffices to look at the conjugacy 
class &' of exp e,. , where e,. is a root vector attached to a long root a, since 
it is well known that the closure of any nontrivial unipotent conjugacy class 
contains this one (since the projectivization of the orbit of e,. in g is the only 
closed G-orbit in IP'g). The same argument as that in case (a) now completes 
the proof. 0 

Corollary. (a) Two elements of T\F lie in the same orbit of G if and only if 
they lie in the same orbit of W . 

(b) The closure of a G-orbit &' of a nonunipotent point in aM contains a 
unique closed G-orbit, which we denote by ~ . 

6.7. In this section we study the invariants of the action of G on aM' 
Theorem. (a) The restriction homomorphism induced by inclusion i: T ~ aM 
gives an isomorphism of the algebras of invariants 

.* ZG ~ Zow 
I: 0--+ ° 

(b) The map h. induces an isomorphism zZ • ~ v.ow. 
G 

(c) Zl = ZM .' 
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Proof. First of all, the homomorphism i*: Z~ --+ U~ is injective by Lemma 
6.2. Furthermore, by Corollary 6.6(a), i*: Z~ --+ zgw. This homomorphism 
induces an isomorphism of the fields of fractions. Indeed, consider the compos-
ite map SpecZo --+ c;O --+ T/W. Using Proposition 6.1(a) and the Stein factor-
ization we see that there exists a Zariski open G-invariant subset C' c Spec Zo 
and a morphism of C' to some algebraic variety whose fibers consist of G-
orbits. It follows from Corollary 6.5(a) that the latter variety is birationally 
isomorphic to T /W , proving the claim. 

Finally, i* (Z~) = zgw. Indeed, if P E zgw, by the above, there exists Q 

in the field of fractions of z~ such that i* (Q) = p. Suppose that Q fJ. z~. 
Since Zo is normal, we can write Q = PI /P2 in such a way that there exists 
a E SpecZo such that PI(a) =I- 0, but P2(a) = O. Also, clearly, g'Pj = rp(g)Pj' 

- Ox -g E G, where rp(g) E Zo . Hence the set of zeros of P2 in SpecZo is G-
invariant; let & be a closed G-orbit in this set (it exists by Proposition 6.l(a) 
by taking an orbit of minimal dimension). By Theorem 6.1(c), & n T =I- 0, 
hence P is not regular on T, a contradiction. This proves (a). 

(b) follows from (a) by the same arguments as in [KW, §5]. Finally since ZI c 
zZ e (by Corollary 6.2(a)) and he(ZI) = Ueow , by Lemma 6.2 we conclude that 

ZI = zZ e' proving (c). 0 

Remark. (a) This theorem may be used to write down explicit equations for 
the z'1' Consider the homomorphism fi: Ueo --+ U2 given by fi(Kp) = KIP 
and recall the identification of T with Spec Ueo . It is easy to see that for each 
rp E U~ there exists a unique 'PI E Ueo such that 

fiJ := IT (rp - rp(g)) = 'PI 0 fi· 
gE1[ 

If rp E UOW , it follows from the theorem that Z _ E Zo and that z'1 satisfies 
e '11 

IT (z'1 - y(rp)(g)) = Z"I . 
gE1[ 

Note that in the case of Uq (s!2) this equation appears in [DCK, §4]. 
(b) It follows from Theorem 6.7 that ZI n Z p , ° is a polynomial algebra on 

n generators QI"'" Qn constructed as follows. Let (Jj be the jth funda-
mental representation of the group Gp in a vector space ~. Then Q/a) = 
trv (Jj(ll(a)) , a E SpecZp,o' 

} 

6.8. In conclusion of this section, we present a conjecture (similar to that in 
[WK] on representations of Lie algebras in characteristic p) and state a result 
(similar to Theorem 2 from [WK]) that confirms this conjecture. 

Let (J be a finite-dimensional irreducible representation of the quantum 
group U M e in a vector space V. Let Xa: Zo --+ <C be the corresponding 
point of n M ' and let & be the G-orbit of Xa' 
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Conjecture. dim V is divisible by l(dim&)/2. In particular, dim V = IN if & is 
an orbit of maximal dimension. 

Let g E G be such that X := gXu has the property that x(l+) = 0 (see 
Theorem 6.I(a)). Define Xs E OM by Xs(zp) = X(zp)' P EM, and Xs(l) = 0, 
so that n(xs ) E T (and ~ = G· Xs ). Let RU be the set of a E R that 
vanishes on the Lie algebra of the center of the centralizer of n(xs ). We call a 
a representation of parabolic type if RU =j:. R (i.e., the center of tE-e centralizer 
of n(xs ) in G is infinite). In this case we may assume that g EGis such that 
R U := zn' n R where n' is a subset of n different from n. Let M' = zn' 
and let V~I e denote the subalgebra of V M e generated by Veo and the Ei and 
Fi such that a i E n' , and let V U = V~I /}e+ be the corresponding "parabolic" 
subalgebra. The proof of the following ~esu1t is essentially the same as that of 
Theorem 2 from [WK]: 

Theorem [DCKI]. Let a be an irreducible representation of parabolic type of 
V M e in a finite-dimensional vector space V. Then V contains a unique irre-
ducible VU-submodule V' (which is in fact a V:-module), and the VM,e-module 
V is induced from the V U -module V'. In particular, dim V = 11/ 2 dim V' , 
where t = IR\Ru I. 
Remarks. (a) The irreducible V~ e-module V' is a representation of non-
parabolic type. Thus, Theorem 6.8' reduces the representation theory of V M £ 

to the study of representations of nonparabolic type. ' 
(b) If a is not of parabolic type, then n(xs ) is conjugate in G to an el-

ement of the form amu, where u is a unipotent element of G commuting 
with am and am is a finite order element of G such that (Adam)ej = ej 
and (Adam)fj = fj for m =j:. j, (Adam)em = (exp(2ni/am))em , (Adam)fm = 
(exp( -2ni/am))fm . Here 'E;=, apj is the decomposition of the highest root 
and m = 0, I, ... , n . 

(c) In the An case (and only in that case) all nonparabolic representations 
are unipotent (i.e., Xs is unipotent). 

(d) If x(a) ~ F, then dim V is divisible by t . Indeed, using G, we can 
make all x;Cx(a)) nonzero and hence all the Ei invertible. Then all weight 
spaces with respect to VO have the same dimension. 

7. OM AS A POISSON ALGEBRAIC GROUP 

7.1. Recall that a Poisson bracket on a commutative algebra A is a bilinear 
map 

{, }:AAA-tA 

that satisfies the Jacobi identity and for which {ab, c} = a{ b, c} + {a, c}b . 
Given two commutative algebras with a Poisson bracket, A and B, one 

defines a Poisson bracket on A ® B by 

{a, ® b, ' a2 ® b2 } = {a, ' a2 } ® b,b2 + a,a2 ® {b, ' b2 }. 
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A commutative Hopf algebra A with co multiplication Ll, antipode S, and 
counit 1J is called a Poisson Hopf algebra if Ll: A -+ A 0 A and 1J: A -+ k are 
homomorphisms of Poisson algebras. 

Let Ll' = poll, where p: A 0 A -+ A 0 A is the permutation map, and let 

J=Ll-Ll':A-+AI\A. 

Let m = Ker 1J. Then J(m) em 1\ m since 

J(a) = L/(aj - 1J(aj)) 0 (b j - 1J(bj))) - ((b j - 1J(bj)) 0 (a j - 1J(a j ))), 

where Ll(a) = Lj aj 0 bj . It follows that J(m2) c m2 1\ m2 , hence J induces 
a map m/m2 -+ (m/m2) 1\ (m/m2), which is again denoted by J. This is a 
Lie comultiplication map, i.e., the contragredient map defines a Lie algebra 
structure on (m/m2)*. 

On the other hand, {m, m} em, hence {m2, m2} C m2 . Thus the Poisson 
bracket on A induces a Lie bracket on m/m2. The property that Ll is a homo-
morphism of Poisson algebras implies that J is a 1-cocycle for the Lie algebra 
m/m2 acting in the usual way on (m/m2) 1\ (m/m2) . 

Thus we obtain a Lie bialgebra L(A) = (m/m2)* associated to the Poisson 
Hopf algebra A (cf. [D]). 

If A is a finitely generated commutative Poisson Hopf algebra, then Spec A 
is an algebraic group called a Poisson algebraic group. Then L(A) is called the 
Lie bialgebra of SpecA (these notions were introduced by Drinfeld [D] in the 
category of Lie groups). 

7.2. We shall need the following simple 

Lemma. Let A and B be two commutative Poisson Hopf algebras, and let 
rp: A -+ B be an algebra isomorphism. Let a" ... , as be a set of Poisson 
generators of A (i.e., A equals the smallest Poisson subalgebra containing all 
the a). Suppose that 

(i) rp(1JA(a))k = 1JB(rp(a)), a E A; 
(ii) rp 0 rp(LlA(a)) = LlBrp(a j ) , i = I, ... , s; 

(iii) {rp(a j), rp(a)}=rp({aj,a}), i= 1, ... ,s, aEA. 
Then rp is an isomorphism of Poisson Hopf algebras. 

Proof. Due to the Jacobi identity, (iii) implies that rp is a Poisson algebra 
isomorphism. Now, due to the compatibility of Ll and 1J with { , }, conditions 
(i) and (ii) imply that rp is a Hopf algebra isomorphism. 0 

7.3. Recall (see §5) that Zo, M is a finitely generated commutative Hopf algebra. 
We give it a structure of a Poisson Hopf algebra by a usual formula (the choice 
of its normalization will become clear later) 

{a, b} = (ah - ha)//(ql - q -I) mod(q - e). 

Here a stands for a preimage of a E Zo in U M ,ow under the canonical homo-
morphism rpe: U M ,.W' ---+ U M,e (Ll and 1J are Poisson algebra homomorphisms 
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since d: VM sf ---t VM sf ® VM sf and t7: VM sf ---t.N are algebra homomor-
phisms).' " , 

Remark. (a) Let Ne = qJ;I(Ze)' Given U E Ne and v E Ve , let 

Pu(v) = (uv - vu)/(q - e) mod(q - e). 

The map u ---t Pu defines a representation of Ne := Ne/(q - e)2Ve (viewed as 
a Lie algebra) by derivations of Ve' (Restricting to ee we recover, up to a 
constant factor, the Poisson bracket.) We have the following exact sequence of 
Lie algebras 

o ---t V ~ N ~ Z ---t O. e e e 

(b) Denote by G the ~roup generated by all convergent series exp D, D E 

N e • Since the orbits of G in Q M are connecte~ it follows from Proposition 
6.I(a) that the orbit decompositions for G and G in Q M are the same. 

7.4. Here we recall (in a convenient to us form) an important example of a 
Poisson Hopf algebra (cf. [STS, D, LuR] and references therein). In the next 
sections we will show that this Poisson Hopf algebra is isomorphic to the Poisson 
Hopf algebra Zo M considered in §7.3. 

We keep the notation of §4.1. In particular, 9 is a simple Lie algebra cor-
responding to the Cartan matrix (a i), G is a connected algebraic group with 
Lie algebra 9 and such that the group of characters of a maximal torus T is 
M, V+, and V_ are unipotent subgroups of G corresponding to positive and 
negative roots, so that GO = V _ TV+ is the big cell of G, etc. We normalize an 
invariant symmetric bilinear form (. 1 .) on 9 by the condition that it induces 
the bilinear form (,1,) on Q defined in §O.2 (i.e., the square length of a short 
root in 2). When restricted to a subalgebra <Cei + <CJ; + <Chi' this becomes the 
usual trace form on sI2«C) multiplied by di- I • 

Consider the group G x G and the following two subgroups 
~ -I 
Q={(t u_,tU+)ltET, U±EV±}, K={(g,g)lgEG}. 

Consider the (nondegenerate invariant) bilinear form on 9 ffi 9 = Lie(G x G) 

((x\, x 2) 1 (y\, Y2» = -(x\IY\) + (x2IY2)' 

With respect to this form, 9 ffi g, Lie Q, and Lie K form a Manin triple, i.e., 
Lie a and Lie K are isotropic subalgebras whose sum is 9 ffi g. This allows us 
to identify (Lie a)* with Lie K . 

Consider the map it: a ---t G defined by it (a, b) = a -I b. Note that it is 
an unramified cover of the big cell GO of G. 

Given an affine algebraic manifold X we denote by qX] (resp. VectX, 
resp. g X) the space of regular functions (resp. vector fields, resp. differential 
I-forms) on X. To define a Poisson bracket { , } on qX] is equivalent 
to defining a homomorphism of q X]-modules r: g X ---t Vect X (satisfying 
certain conditions), so that {J, g} = (r(dJ) , dg). 
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We define the map .: gO --+ Vect~ as follows. We identify (Lien)* with 
the space ofleft-invariant I-forms on O. On the other hand, the adjoint action 
of G on itself gives an embedding Lie G C Vect G. This gives a linear map 
.0: (l!e 0) * --+ Vect G. Since fc is unramifie~ we have a map fc *: Vect G --+ 

Vect O. Then • is the homomorphism of qO]-modules defined by the linear 
~* map 1C 0.0 , _ 

9ne checks as in [LuR] that • defines a Poisson bracket on qQ] making 
qQ] a Poisson Hopf algebra. (In fact our setup is a complexification of that 
of [LuR].) 
7.5. We keep using the notation of 4.1. Let 

h (i) trt d (i) trt r ( . I ) W h h so t at n+ = n+ + \L,e j an n_ = n_ + \L,Jj l = , ... , n. eave t e 
corresponding semidirect product of groups 

(i) (") u+ = u+ ~ expCe j , U_ = U~ ~ expC.t;. 
This allows us to define regular functions Xj and Yj on U+ and U_ respectively 
by letting 

(i) ~ (i) ~ r (i) (i) 
u+ = u+ exp-xjej , u_ = u_ eXPYjJj' where u± E U± . 

Recall that qT] = M, i.e., any a E M defines a regular fu~ction on T, which 
we denote by za' We extend these functions to the whole a by letting xj ' Yj , 

and za equal on (t-I U _, tu+) to xj(u+) , Yj(u_) , and a(t) respectively. 
Define the regular automorphisms T: of the algebraic variety n, 

- - 1 -I - 1 (i) - 1 ~ - 1 -I ~ 2 (i) - 1 
Tj(t u_, tu+) = (tjt (u_) (expxjej)t j , tjt (exp Yj.t;)t u+ tj ), 

where the tj are defined in §4.1. _ 
Finally, define a map rp: OM --+ OM as follows. Recall that OM = SpecZo = 

S - 0 + 0 pec Zo x Spec Zo x Spec Zo and that Spec Zo = T. Then rp = rp _ x rpo x rp + ' 
where 

-I 
rpo(t) = (t ,t) . 

Here X and Yare maps defined in §4.4. By the definitions, we have 1C = fc 0 rp . 

7.6. Theorem. (a) rp is an isomorphism of Poisson algebraic groups. 
(b) The Tj satisfy the braid relations and the map rp * is a ~ -algebra iso-

morphism such that rp*(y) = Yj , rp*(x;) = x j ' rp*(za) = za' 

Proof. We apply Lemma 7.2 to the map rp*: qn] --+ qOM] and the ele-
ments X., y. (i = 1, ... , n), Z (a E M). It is clear that ~z = Z 0 Z . 

I I a a a a 

Since exp Ce j and T normalize Ulj ) , it suffices to calculate ~ in the subgroup 
{(t-I, texp-xjej)} of n, which gives 

M=10x+x.0z . 
I I I -OJ 
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Similarly we have 
L\Y·=10Y·+Y·0Z . I 1 1 -a j 

Thus the assumption (ii) of Lemma 7.2 holds. Since assumption ~) holds 
trivially, it remains to show that assumption (iii) holds. For fl E 0 (resp. 
a E OM) let Pa (resp. Pa ) be the operators on qn] (resp. qnM]) defined by 
Pa(u) = {fl, u} (resp. Pa(u) = {a, u}). We have to show that these operators 
correspond to each other, i.e., that rp* 0 Pa = Pa 0 rp* , for fl = Xi' Yi' and za. 

Let m = Ker 1'/ c qn] and let Xi be the image of Xi in m/m2 = Lie K . As 
above, it is clear that Xi = ciU;, 1;), for some ci E c. Since 

_ -I 
xi(ei) = -1 and ((1;,1;)1(0, ei)) =di ' 

we deduce that Xi = -di(1;, 1;). 
~ow we apply the left translation Lg to xi' g En. Let mg = {u E 

qn] 1 u(g) = O}. Recall that if u E m and Liu = Ei ai 0 bi , then L/il = 
Eai(g-I)bi mod m!. Hence 

L - - -( -1)_-1 gXi = Xi + Xi g Zi E mg , 

so that xi(g) +Xi(g-I)Zi(g)-1 = 0, and substituting in the above formula, we 
obtain 

L - - - -I (- - ) () - -I d( - - ) d 2 gXi = Xi - Zi XiZ i g = Zi ZiXi mo mg , 

(since du = u - u(g) mod m!). We conclude that 

P .. = -d.z·(f, f). 
ZiXi I I I I 

On the other hand, Theorem 5.4 can be rewritten as 

pzx. = -di z i1; 
J J 

(here the normalization of §7.3 is essential). This proves that rp* 0 PH = 
J J 

P . . 0 rp. Similarly, we prove that rp * 0 Py •. = py . 0 rp and rp * 0 Pz = Pz 0 rp using 
Z,X, I I a a 

Theorem 5.5 and Remark 5.5(a) respectively. 
In order to complete_the proof of (a), it remains to show tha.! the elements 

Xi' Yi' Za generate qn] as a Poisson algebra. Note ~hat qn] = qu_] 0 

qT] 0 qu+] , where U± and T are embedded in ° in a natural way as 
Poisson algebraic subgroups. Hence it suffices to show that the Xi (resp. Yi) 
generate q U +] (resp. q U _]) as a Poisson subalgebra. For this note that q U +] 
is Z+ -graded by degxi = 1. Let m+ be its augmentation ideal. In order to 
show that the Xi generate q U+] as a Poisson subalgebra, it suffices to show that 
m+/m! is generated as a Lie algebra by the Xi. But this is clear since m+/m! 
is the subalgebra n+ in the Lie algebra m/m! := g, the Xi corresponding to the 
ei • This completes the proof of (a). 

(b) follows from (a) and Theorem 4.7. 0 
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7.7. Remarks. (a) The orbits of G on OM are precisely the symplectic leaves 
of the Poisson structure on OM' ~ 

(b) Recall that, by Theorem 6.7(a) we have canonical isomorphisms T /W == 
Spec(zgw) == Spec(z~). Here z~ is the ring of G-invariant regular functions 
on OM = the ring of regular functions on OM constant along the symplectic 

leaves. Thus, the inclusion Z~ ~ Zo gives a map a: OM --+ T/W. On the 
other hand, we have the lth power map PI : T /W --+ T /W. Consider the 
fiber product YM := T/W X TjW OM' We extend the Poisson structure from 
OM to YM trivially. We have the canonical map SpecZM,e --+ YM and due 
to §6.4 this map is an isomorphism if M = P. Thus, according to Theorem 
7.6, Spec Z p , e as a Poiss~n variety can be constructed entirely in terms of the 
Poisson algebraic group Op. 

(c) For an n-tuple P = (PI' ... , Pn ) of elements of M one can associate a 
comultiplication tip of U M by the formula 

tipEj = E j ® KPi + KOF'Ii ® Ej' 

tipFj = Fj ® K:o.i- Pi + K'Ii ® Fj , 

tipKo. = Ko. ® Ko. ' 

where the '1j E M are defined by equations ('1 j I a) = -(Pj 10), i, j 
1, ... , n. The Lie comultiplication on m/m2 is then 

- -The corresponding Manin triple is (g EI7 g, Lie ° p , Lie K), where Lie ° p 
(n_, n+) + ~j q -OJ + Pj + '1 j , OJ + Pi + '1 j). Theorem 7.6 holds in this more 
general situation. 

NOTE ADDED IN PROOF 

1. One may replace throughout the paper the condition (/, d j ) = 1 for 
all i by I > d j for all i (/ odd). This takes care of (a j ) of type G2 and 
(odd) I divisible by 3. Then all results of the present paper still hold (with 
a little modification of their proofs). The same is true for [DCK] except that 
Theorem 3.2 and Corollary 3.2 should be modified. Consequently, the maximal 
dimension of an irreducible representation of Ue of type G2 in the case when 
3 divides I is 16 /27 (instead of 16 when 3 does not divide I; see [DCK, 
Theorem 3.8]). 

2. The case of I divisible by 4 has been worked out recently by Jonathan 
Beck in his MIT thesis. 

3. We can prove now the second part of Conjecture 6.8: if & is an orbit of 
maximal dimension, then dim V = IN . 
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