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We present new bounds on the existence
of general quantum maximum distance separa-
ble codes (QMDS): the length n of all QMDS
codes with local dimension D and distance
d ≥ 3 is bounded by n ≤ D2 + d − 2. We ob-
tain their weight distribution and present ad-
ditional bounds that arise from Rains’ shadow
inequalities. Our main result can be seen as
a generalization of bounds that are known for
the two special cases of stabilizer QMDS codes
and absolutely maximally entangled states,
and confirms the quantum MDS conjecture in
the special case of distance-three codes. As
the existence of QMDS codes is linked to that
of highly entangled subspaces (in which every
vector has uniform r-body marginals) of max-
imal dimension, our methods directly carry
over to address questions in multipartite en-
tanglement.

1 Introduction
The processing of information with quantum particles
is inevitably affected by disturbance from the environ-
ment. By distributing the information onto many par-
ticles, quantum error correcting codes (QECC) can
safeguard quantum information from unwanted noise.
In this way, a limited amount of corruption or even
particle-loss can be tolerated. Since the discovery
of quantum error correction [1, 2] and the establish-
ment of its theoretical foundations [3–6], the search
for “good” codes with desirable characteristics has
been an ongoing endeavor. Both increasingly better-
performing codes [7–12] as well as stricter bounds im-
posed upon their existence have been found [13, 14].

The quantum Singleton bound can be seen as having
its origins in the no-cloning theorem [15, 16]. It states
that the parameters of any quantum error correction
code of distance d, encoding states from CK into a
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subspace of n systems with local dimensions D each,
are bounded by

K ≤ Dn−2(d−1) . (1)

Codes achieving this bound are called quantum maxi-
mum distance separable (QMDS) [3, 17]. Hugging the
fundamental limit of no-cloning, one can expect these
codes to have particularly intriguing features.

The study of multipartite entanglement has led to
the discovery of different types of entanglement that
can be shared by three or more quantum particles [18–
20]. In turn, subspaces whose vectors show interest-
ing entanglement properties have been investigated,
such as those showing a bounded Schmidt rank [21],
having a negative partial transpose [22], and being
completely [23, 24] or genuinely entangled [25–27].

Generalizing the concept of maximal bipartite en-
tanglement, r-uniform states are a particular type of
highly entangled pure quantum states: these states
exhibit maximal entanglement between any r parti-
cles and the rest, in the sense that all of their r-sized
marginals are maximally mixed (i.e. uniform).

It is reasonable to think that there are not too many
states with this property, and one might be tempted
to ask the following question: given a number n of
D-level quantum systems, what is the largest possible
subspace in which every state vector is r-uniform? In
other words, what is the dimension of the largest pos-
sible r-uniform subspace (rUS), and by what methods
can this subspace be characterized?

It can be established that the concepts of so-called
pure QECC and rUS are in fact equivalent [28]. Con-
sequently, the attainable dimensions of both objects
are constrained by the quantum Singleton bound. In
this article, we will focus on the case of QECC and
rUS achieving this bound, that is, on general QMDS
codes and their corresponding highly entangled sub-
spaces. All of our results can thus be seen as results
concerning both coding and entanglement theory, and
we will use methods from quantum error correction to
answer questions in multipartite entanglement, and
vice versa.
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While the quantum Singleton bound was one of
the earliest bounds obtained on quantum codes, not
much more about the structural properties of QMDS
codes is known than what was already obtained by
Rains in Ref. [17]. Explicit constructions for stabilizer
QMDS codes from classical maximal distance sepa-
rable codes followed [29–31], and QMDS codes were
later understood to constitute optimal ramp secret
sharing schemes [32].

It turns out that there are stronger constraints for
the existence of QMDS codes than their parameters
meeting the quantum Singleton bound, the full set of
which are not yet known. Similarly, classical MDS
codes have been studied for more than half a century,
but despite of that, the exact conditions for their ex-
istence have not yet been entirely resolved [33, 34].

In this article, we obtain two new bounds: first, we
prove that for any (both stabilizer and non-stabilizer)
QMDS code [respectively (d − 1)-uniform subspace
satisfying the Singleton bound] to exist, the following
condition has to be met,

n ≤ D2 + d− 2 . (2)

The result is obtained by a systematic investigation
of certain families of QMDS codes. Second, we use
Rains’ shadow inequality to further restrict the al-
lowed parameters in the case of small “alphabets”.
This can be seen as additional constraints that origi-
nate in the monogamy of entanglement [35].

Furthermore, we derive the weight distribution of
QMDS codes, a useful tool for the analysis and char-
acterization of codes; it is seen that the weights are
solely determined by the parameters of the code, re-
gardless how the code was constructed. Note that all
quantum MDS codes found to date are constructed
from classical MDS codes, in particular using the sta-
bilizer theory. Yet, even if one would find a different
construction for quantum MDS codes, their quantum
weight distribution has to match that of their classical
MDS counterpart. Hence it is an intriguing question
whether or not there exist QMDS codes that do not
arise from any classical construction.

The structure of this article is as follows: connec-
tions between quantum error correcting codes and
highly entangled subspaces are drawn in Sections 2
and 3. Then, Sections 4 and 5 introduce methods
that are needed for the proofs that follow: the ma-
chinery of quantum weight enumerators and descen-
dance rules for pure codes are presented. Sections 6
and 7 introduce quantum maximum distance sepa-
rable codes and the families formed thereof. The
weights of QMDS codes are derived in Section 8. This
results in bounds on the existence of QMDS codes
(Sections 9 and 10). The QMDS conjecture is treated
in Section 11, before concluding in Section 12. The
appendices contain proofs of the quantum Singleton
bound and an overview on previous bounds for stabi-
lizer QMDS codes and AME states. This is followed

by detailed tables on known QMDS constructions and
bounds on their existence for small local dimensions.

2 Quantum error correcting codes
A quantum error correcting code Q = ((n,K, d))D is
a K-dimensional subspace of (CD)⊗n such that every
error affecting at most d− 1 subsystems can either be
detected or acts trivially on the code, i.e., introduces
at most a global phase factor. Here, the parameter d
is the distance and a code with d ≥ 2t + 1 allows to
correct any error that affects up to t subsystems, e.g.
the complete depolarization of any t subsystems.

Let us gently introduce some notation to make this
precise: denote by {ea : a = 0, . . . , D2 − 1} an orthog-
onal operator basis for CD that includes the identity
e0 = 1, such that tr(e†aeb) = Dδab. By taking n-
fold tensor products of elements in {ea} we obtain
a so-called local error basis {Ea} on (CD)⊗n satis-
fying tr(E†aEb) = Dnδab. The support of an error-
operator Ea, that is, the subsystems it acts non-
trivially on, is denoted by supp(Ea). The weight of
Ea is the size of its support, wt(Ea) = | supp(Ea)|.
Finally, let {|iQ〉 : i = 1, . . . ,K} be a set of orthogo-
nal unit vectors spanning Q. Then ΠQ =

∑
|iQ〉〈iQ|

is the projector onto the code space.
For Q to be a QECC with minimum distance d, a

necessary and sufficient criterion is for

〈iQ|Ea |jQ〉 = C(Ea) δij (3)

to hold for all pairs |iQ〉 , |jQ〉 and errors Ea of weight
strictly less than d [36]. Note that C(Ea) ∈ C is a
constant that depends only on the specific error Ea,
but not on the vectors |iQ〉 and |jQ〉. A code is called
pure if C(Ea) = tr(Ea)/Dn = 0 for all Ea with 0 <
wt(Ea) < d. In other words, the constant C(Ea) of
pure codes vanishes for all non-trivial errors that the
code is designed to detect.

For one of the proofs that follow, we will also
need an entropic condition on quantum error cor-
rection: consider the purification of % = ΠQ/K
with a reference system R of dimension K, |φQ〉 =

1√
K

∑K
i=1 |iR〉 ⊗ |iQ〉. The von Neumann entropy of

a subsystem I is given by S(%I) = −
∑
i λi log(λi),

where λi are the eigenvalues of the reduced density
matrix %I for the subsystem I. For the code to have
distance d, a necessary and sufficient condition is that
SRA = SR + SA holds for every subsystem A with
|A| < d, that is, the reference system R and the sub-
system A are uncorrelated. From the conditions on
equality in the strong subadditivity, an equivalent for-
mulation is that %RA = %R ⊗ %A must hold.

3 Highly entangled subspaces
A pure state |φ〉, whose reductions onto r parties are
all maximally mixed, is termed r-uniform. That is,
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trSc(|φ〉〈φ|) ∝ 1 for every subset S ⊆ {1, . . . , n} of
size |S| ≤ r, where Sc denotes its complement. An r-
uniform subspace (rUS) is a subspace of (CD)⊗n in
which every vector is at least r-uniform. In other
words, every vector |φ〉 lying in an rUS satisfies that
for all error operators with supp(Ea) ⊆ S where
|S| ≤ r

〈φ|Ea |φ〉 = tr[trSc(|φ〉〈φ|)︸ ︷︷ ︸
∝1

trSc(Ea)] = tr(Ea)/Dn .

(4)
Accordingly, |φ〉 is maximally entangled across any bi-
partition of size r vs. n−r, having the largest possible
von Neumann entropy on the smaller reduction.

From the definition of a QECC in Eq. (3), it is
not hard to see that a pure code with parameters
((n,K, r + 1))D implies the existence of an r-uniform
subspace of (CD)⊗n with dimension K. In fact, the
converse statement is also true: the existence of an
r-uniform subspace implies that of a pure QECC of
distance r + 1. The proof is based on an equivalent
condition for a subspace Q to be a QECC, namely
that the expectation value

〈φ|E |φ〉 = C(E) (5)

is constant for all |φ〉 ranging over the subspace Q
and operators E with support on less than d parties.
The claim then follows by considering pure codes for
which C(E) = 0 when 0 < wt(E) < d.

The equivalence of Eq. (3) and Eq. (5) has already
been established, and we sketch the proof [37, 38]: ex-
panding |φ〉 in the logical basis {|iQ〉} and E in a
Hermitean error basis {Ea}, Eq. (3) implies Eq. (5).
The converse can be established by defining the inner
product 〈v, w〉Ea := 〈v| (Ea + λ1) |w〉, and its associ-
ated norm ||v||Ea =

√
〈v, v〉Ea , where λ ≥ 0 is chosen

such that Ea+λ1 ≥ 0. With the complex polarization
identity

〈v, w〉Ea = 1
4
(
||v + w||2Ea

− ||v − w||2Ea

+ i||v − iw||2Ea
− i||v + iw||2Ea

)
(6)

and the decomposition of |iQ〉 and |jQ〉 into sum and
differences (with and without a complex phase i) of
two vectors |ψ〉 , |φ〉 ∈ Q, it is seen that Eq. (5) implies
Eq. (3). Therefore, the formulations of Eq. (3) and
Eq. (5) are equivalent.

Considering these two definitions for the case of
pure codes, one arrives at the following observation.

Observation 1 (Equivalence of pure QECC and rUS).
The following objects are equivalent:
1. a pure ((n,K, d))D quantum error correcting code;
2. a (d − 1)-uniform subspace in (CD)⊗n of dimen-
sion K.

Thus the question about the maximal dimension
that an r-uniform subspace can attain is one-to-one

related to the maximal dimension of pure codes. In
what follows we will mostly focus on pure codes, as
the corresponding results for uniform subspaces can
simply be read off Observation 1.

4 Weight enumerators
We will make use of weight enumerators in the proofs
that follow. Their knowledge is not required to under-
stand the main result [Theorem 10] of this article (if
Theorem 2 is accepted); in that case this section can
be skipped.

For classical codes, the weight enumerator counts
the number of codewords of a given Hamming weight.
Although there is no such direct combinatorial inter-
pretation of the quantum weight enumerator, it has
been shown [39, 40] that quantum weight enumera-
tors are a useful tool for the characterization of quan-
tum codes and that they can, for example, be em-
ployed to determine their distance, as well as to de-
rive other properties of putative codes or to show their
non-existence.

Given a local error basis {Ea} with tr(E†aEb) =
Dnδab, define the Shor-Laflamme weights of a code
Q with associated projector ΠQ as [39, 40]

Aj(ΠQ) =
∑

wt(Ea)=j

tr[E†aΠQ] tr[EaΠQ] , (7)

Bj(ΠQ) =
∑

wt(Ea)=j

tr[E†aΠQEaΠQ] . (8)

The sum above is taken over all errors Ea of weight j
in the basis. Note that Aj = Aj(ΠQ) is simply the
Hilbert-Schmidt norm of all correlations in the code
that act on exactly j parties non-trivially. Both Aj
and Bj are non-negative quantities that are invariant
under the action of local unitaries U1⊗· · ·⊗Un 1, and
thus do not depend on the specific orthonormal error
basis chosen.

We will also need Rains’ unitary weights [40], de-
fined as

A′j(ΠQ) =
∑
|S|=j

tr[trSc(ΠQ) trSc(ΠQ)] , (9)

B′j(ΠQ) =
∑
|S|=j

tr[trS(ΠQ) trS(ΠQ)] , (10)

where the sum is over all subsets S ⊆ {1, . . . , n} of
size j. For readers familiar with measures in quantum
information, these quantities are proportional to the
average purities of suitably normalized reductions of

1 This can be seen from the fact that the purities
tr[trSc (ΠQ)2] of reductions can be expressed in terms of the
weights Aj . In turn, the dual weights Bj can be expressed
as linear combinations of Aj ; this follows from the quantum
MacWilliams identity [39–41]
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size j and n − j, respectively.2 From the definition,
A′j = B′n−j .

A fine-graining of both types of weights will prove
useful for later proofs:

AS(ΠQ) =
∑

supp(Ea)=S

tr[E†aΠQ] tr[EaΠQ] , (11)

BS(ΠQ) =
∑

supp(Ea)=S

tr[E†aΠQEaΠQ] . (12)

A′S(ΠQ) = tr[trSc(ΠQ) trSc(ΠQ)] , (13)
B′S(ΠQ) = tr[trS(ΠQ) trS(ΠQ)] . (14)

These are simply the non-symmetrized versions of
Eqs. (7) to (10) for a fixed subset S.

The following facts about the weights of codes are
known [40]: necessary and sufficient conditions for a
projector Π of rank K to be a QECC of distance d
are

KBj(Π) = Aj(Π) for 0 ≤ j < d . (15)
These conditions can be restated in terms of the uni-
tary enumerators. The quantities A′j and B′j are lin-
ear functions of the quantities Ai and Bi with i ≤ j
respectively,3

A′j(Π) =
∑
i≤j

D−j
(
n− i
n− j

)
Ai(Π) , (16)

B′j(Π) =
∑
i≤j

D−j
(
n− i
n− j

)
Bi(Π) . (17)

(Note that this resembles the notion of binomial mo-
ments in [42].) Hence the relations of Eq. (15) are
equivalent to

KB′j(Π) = A′j(Π) for 0 ≤ j < d . (18)

Generally, one has that KBj ≥ Aj and KB′j ≥ A′j for
all j, while KB0 = A0 = K2.

Analogous relations hold for subsets. Let T be
a subset of size less than d. From the conditions
for the image of a projector to be a code subspace
[Eq. (15)] it follows that KBT = AT , while gener-
ally KBS ≥ AS holds.4 Similarly, it can be seen
that KB′T = A′T holds, while KB′S ≥ A′S for arbi-
trary subsets S. (In terms of purities of the normal-
ized projector % = ΠQ/K, this simply amounts to
K tr[trT (%)2] ≥ tr[trT c(%)2], with equality for all sub-
sets |T | < d.)

From the definition in Eq. (3), it follows that pure
codes are those with Aj = 0 [or correspondingly, A′j =(
n
j

)
K2D−j ] for all 0 < j < d. These are codes whose

spanning vectors have maximally mixed (d− 1)-body
marginals, and correspond to r-uniform subspaces.

2 If ΠQ is normalized to a quantum state % = ΠQ/K, A′j(%)
is the sum over the purities of all j-body reductions.

3This can be established by writing the partial trace as a
channel. See Refs. [40, 41] for more details.

4 For a detailed derivation of this fact, see Appendix B in
Ref. [41]

5 New codes from old
To develop our main results, we need a method with
which new codes can be constructed from old ones.
This is done by taking partial traces of ΠQ.

Theorem 2 (Rains [40]). Let ((n,K, d))D be a pure
code with n, d ≥ 2. Then there exists a pure code
((n− 1, DK, d− 1))D.

Proof. Let the code space be spanned by an orthogonal
set of vectors, ΠQ =

∑K
i=1 |iQ〉〈iQ|. For simplicity,

we normalize the projector onto the code space to
a density matrix, % = ΠQ/K, such that tr(%) = 1.
(This is motivated by the fact that % stays normalized
after application of the partial trace). The code being
pure, it follows from Eq. (3) that all marginals of the
spanning vectors |iQ〉 on less than d parties must be
maximally mixed. Accordingly, the above vectors can
for any subset of parties S ⊆ {1, . . . , n} with |S| < d
be Schmidt-decomposed as

|iQ〉 = 1√
D|S|

D|S|∑
`=1
|v(`)
i 〉S ⊗ |w

(`)
i 〉Sc . (19)

We will now show that after performing a partial trace
over parties of some subset V with |V | < d, the opera-
tor trV (%) forms again (a projector onto) a pure code
of distance d− |V | and dimension KD|V |. First, note
that the rank of trV (%) can be at most KD|V |, while
the complementary operator trV c(%) is proportional
to the identity. Because the reduction onto V is max-
imally mixed, A′V (%) = 1/D|V |. From the condition
in Eq.(18), the complementary reduction must have
B′V (%) = tr[trV (%)2] = 1/(KD|V |). As the operator
trV (%) can have a rank of at most D|V |K, it must
indeed be proportional to a projector onto a subspace
of dimension D|V |K.
In similar manner, we can establish that the

code trV (ΠQ) has a distance of d − |V |. For this
we must check the condition in Eq. (18), namely
KB′j [trS(ΠQ)] = A′j [trS(ΠQ)] for 0 ≤ j < d−|V |. Re-
spectively, it suffices to show that KB′S(%′) = A′S(%′)
for all |S| < d−|V |, with %′ = trV (%). Let T be a sub-
set of size smaller than d−|V | with T c∩V = ∅. Then
tr[trT\V (%′)2] = tr[trT (%)2] = 1/(KD|T |). On the
other hand, tr[trT c(%′)2] = 1/D|T |, where T c is now
the complement of T in {1, . . . , n}\V . We conclude
that KB′T (%′) = A′T (%′) = 1/D|T | for all |T | < d−|V |,
and trV ΠQ indeed spans a pure code of distance d−|V |.
The claim follows by setting |V | to a single party.

As established in the above proof, a pure
((n,Dk, d))D code spawns a family of new pure codes
having parameters ((n − s,Dk+s, d − s))D for all in-
tegers s in 0 ≤ s < d. In the case of stabilizer
codes, the same result can be obtained more straight-
forwardly [43, 44].
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Remark. Naturally, this implies that if the existence
of a pure ((n,Dk, d))D can be ruled out, then any pure
((n+s,Dk−s, d+s))D for 0 ≤ s ≤ k cannot exist either.

Does this method of creating new codes from old
by partial trace also work for codes that are not pure?
It is tempting to think that any given impure code
((n,K, d))D may yield a ((n − 1,K ′, d − 1))D with
K < K ′ ≤ DK. However, this does not seem to be
straightforward: consider Shor’s code, which is an im-
pure code with parameters ((9, 2, 3))2. A partial trace
on the last qubit yields a projector of rank 4, yet it
does not form an ((8, 4, 2))2 code (such thatK ′ = DK),
as an analysis of its weight distribution shows.5

6 Quantum MDS codes
Let us recall the bound from which the concept
of QMDS codes originates, the quantum Singleton
bound.

Theorem 3 (Rains [17]). Let Q = [[n, k, d]]D be a
QECC. Its parameters are bounded by

k + 2d ≤ n+ 2 . (20)

For a code Q = ((n,K, d))D with K not necessarily
a power of D, the quantum singleton bound reads

K ≤ Dn−2(d−1) . (21)

Two proofs of the quantum Singleton bound are pre-
sented in Appendix A.

A code that achieves equality in Eqs. (20)
and (21), respectively, [i.e., having parameters
((n,Dn−2d+2, d))D] is called a quantum maximum dis-
tance separable code (QMDS). The length n of QMDS
codes is unbounded for d ≤ 2; these codes are called
trivial [45]. From now on, we restrict ourselves to non-
trivial QMDS codes, and can make use of n+2 = k+2d
in all derivations that follow.

It happens that all QMDS codes are pure [17, 45].
For this fact we will present a new information theo-
retic proof which was kindly communicated to us by
Andreas Winter [46]. The following lemma on the von
Neumann entropy S(J) = S(%J) = −

∑
i λi log(λi) of

a subsystem J ⊆ {1, . . . , n}, where λi are the eigen-
values of %J , is needed.

Lemma 4 (Winter [46]). Let n ≥ m > `. Then

1(
n
m

) ∑
I⊆{1,...,n}
|I|=m

S(I) ≤ m

`

1(
n
`

) ∑
J⊂{1,...,n}
|J|=`

S(J) . (22)

5 The Shor code is spanned by the vectors (|000〉+ |111〉)⊗3

and (|000〉 − |111〉)⊗3. It has the weights A = [4, 0, 36, 0, 108,
0, 300, 0, 576, 0] and B = [2, 0, 18, 78, 54, 414, 150, 666, 288, 378]
giving it a minimum distance d = 3. After a partial trace over a
single particle, one obtains A′ = [16, 0, 112, 0, 240, 0, 400, 0, 256]
and B′ = [4, 8, 80, 152, 520, 568, 1136, 808, 820], a trivial code
with distance d = 1 and K = 4.

The proof can be found in Appendix B.

Theorem 5 (Rains [17]). Let Q be a QMDS code.
Then Q is pure.

Proof. (Winter [46]) Purify the projector ΠQ onto the
code space with a reference system R of dimension Dk.
For any bipartition A|B of {1, . . . , n} with sizes |A| =
d− 1 and |B| = n− d+ 1, respectively,

S(B) = S(RA) = S(R) + S(A) (23)

must hold for ΠQ to be a code of distance d [cf. Sec-
tion 2]. Naturally, also

S(B) = S(R) + S(A) , (24)

where S(A) and S(B) denote the average entropy of
subsystems in {1, . . . , n} of sizes d− 1 and n− d+ 1,
respectively. Making use of Lemma 4, one has that

S(R) = S(B)− S(A) ≤ n− 2(d− 1)
d− 1 S(A) . (25)

For a quantum MDS code, S(R) = k = n− 2(d− 1).
Thus to satisfy Eq. (25), S(A) = (d− 1) log(D) for all
A of size (d− 1) must hold. This proofs the claim.

It is interesting to note that Eq. (25) presents a
trade-off, where large values of d/n and k/n go hand
in hand with a highly entangled code space.

Quantum maximum distance separable codes being
pure, we can extend Observation 1 to the case of sub-
spaces that meet the quantum Singleton bound:

Observation 6 (QMDS codes and maximal rUS).
The following objects are equivalent:
1. an ((n,Dn−2d+2, d))D QMDS code;
2. a (d− 1)-uniform subspace in (CD)⊗n of dimension
n− 2d+ 2.

These objects—quantum MDS codes and r-uniform
subspaces of maximal dimension—are now the main
focus of our attention. All results in the following
sections apply to both objects.

7 QMDS families
By Theorem 2, the existence of a QMDS code
with distance d leads to a family of QMDS codes
with distances d′ ≤ d (see Fig. 1). As an exam-
ple, the existence of a code having the parameters
((6, 20, 4))2 yields the chain ((6, 20, 4))2 ⇒ ((5, 21, 3))2 ⇒
((4, 22, 3))2 ⇒ ((3, 23, 1))2, where we refer to ((6, 20, 4))2
as the parent code. Such a QMDS family is solely
determined by the parameter n+ k with k = logDK
(n+k = 6 in the above example), and we are interested
in the highest achievable distance d̃ = (ñ − k̃)/2 + 1
within any given family.

Note that the reversal of such a chain of codes might
not always be possible: for example, the existence of
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n + k = 6, D = 2 n + k = 12, D = 3

?

((6, 20, 4))2 ∃
((5, 21, 3))2 ∃
((4, 22, 2))2 ∃
((3, 23, 1))2 ∃

?

((12, 30, 7))3 6 ∃
((11, 31, 6))3 6 ∃
((10, 32, 5))3 6 ∃
((9, 33, 4))3 6 ∃
((8, 34, 3))3 ∃
((7, 35, 2))3 ∃
((6, 36, 1))3 ∃

Figure 1: Two examples of QMDS families. Left: a qubit
QMDS family with n + k = 6. All its members, up to the
parent code ((6, 20, 4))2, exist. Right: a qutrit QMDS family
with n+k = 12. Its members are known for d ≤ 3 [29], while
it follows from the shadow inequalities that no corresponding
codes can exist for d > 3. See also Tables 1 and 2 in
Appendix D.

a code ((8, 34, 3))3 does not imply the existence of a
code ((9, 33, 4))3. Indeed, a construction for the former
is known, whereas the existence of the latter can be
excluded (see Section 10 and Tables 1 and 2 in Ap-
pendix D). Nevertheless, any QMDS code Q has the
characteristics of same-sized reductions of any of its
hypothetical parent codes Q̃: the reductions of Q are
proportional to projectors, whose ranks match those
of hypothetical reductions of Q̃, while forming QECC
themselves. This structure of nested projectors makes
QMDS codes both attractive from the perspective of
coding and entanglement theory, but also non-trivial
to construct.

A certain part of the chain of the QMDS codes,
consisting of the two top-most codes in any family,
can always be reversed.

Proposition 7. The existence of the following two
QMDS codes is equivalent:

((n, 1, n/2 + 1))D ⇐⇒ ((n− 1, D, n/2))D . (26)

(Note that for these to be QMDS codes, n must neces-
sarily be even).

Proof. ⇒: This direction was established in Theo-
rem 2.
⇐: Let us purify ((n−1, D, n/2))D with the associated
projector ΠQ =

∑D
i=1 |iQ〉〈iQ| to a state on n parties,

|φ〉 = 1√
D

D∑
i=1
|iQ〉 ⊗ |iR〉 , (27)

where {|iR〉} is a basis for the nth particle. From the
conditions in Eq. (18) it follows that for |φ〉〈φ| to be
a pure code of distance n/2 + 1 it suffices to check
that B′j(|φ〉〈φ|) = A′j(|φ〉〈φ|) =

(
n
j

)
D−j (as K = 1)

for all j < n/2 + 1. By partially tracing over any
(n/2 − 1) parties of ΠQ, we see that this is indeed

the case. With Theorem 2, any code Q with param-
eters ((n − 1, D1, n/2))D can be reduced to a pure
((n/2, Dn/2, 1))D, the latter corresponding to the iden-
tity matrix on n/2 particles. Thus every reduction of
ΠQ =

∑D
i=1 |vi〉〈vi|Q onto n/2 particles is maximally

mixed. Correspondingly, any reduction of |φ〉 of size
n/2 that does not include the last particle is maxi-
mally mixed. From the Schmidt decomposition for
pure states, it follows that any n/2-sized reduction
that includes the last particle must then be maxi-
mally mixed, too. Thus |φ〉〈φ| forms a pure code of
dimension 1 and distance n/2 + 1. This completes the
proof.

Hence, not only can an ((n − 1, D, n/2))D code be
obtained by partial trace from an ((n, 1, n/2+1))D, but
the latter can always be constructed by purification
from the former. As a consequence, all QMDS codes
with k = 0, 1 come in pairs, such as, e.g., the codes
((6, 1, 4))D and ((5, D, 3))D, which exist for all local
dimensions D [17].

While it was previously known that every pure code
of dimension D can with the addition of a single D-
dimensional system be purified to a rank-one quan-
tum state [40], the increase in distance for the case of
QMDS codes [Proposition 7] appears to be new.

It is natural to ask under what conditions other
steps in the hierarchy can be reversed. While we leave
this question open for now, note that for some cases

((n−2, D2, n/2−1))D 6⇒ ((n−1, D, n/2))D . (28)

For example, there exists a ((6, 32, 3))3 code, yet a
((7, 31, 4))3 can be excluded with the methods of Sec-
tion 10 (also see Table 2 in Appendix D).

Let us make a small detour to propagation rules
for classical codes. From a linear code [n, k, d]q, one
can obtain a code [n − 1, k, d − 1]q by an operation
called puncturing (deleting one coordinate), and a
code [n − 1, k − 1, d]q by shortening (taking an ap-
propriate subcode after deleting one coordinate) [47].
Both operations yield MDS codes when starting with
an MDS code. On the other hand, puncturing (i.e.
projectively measuring a single subsystem) a quantum
code ((n,K, d))D yields a code ((n− 1,K, d− 1))D [6].
But even when starting from a QMDS code, the result-
ing code is, in general, no longer QMDS. The analogue
of shortening of quantum codes preserves the property
of being a QMDS code, but it is more involved and
not always possible. Rains [17] has given a criterion
when a stabilizer code [[n−s, k−s, d]]q can be derived
from a stabilizer code [[n, k, d]]q by shortening.

8 The weights of quantum MDS codes
The weights of classical MDS codes are fixed by their
parameters [48], and it is natural to ask if a similar re-
sult might also hold for their quantum analogue. This
is indeed the case.
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Theorem 8. The unitary weights A′j of a general
QMDS code Q = ((n,Dk, d))D are given by

A′j(ΠQ) =
(
n

j

)
D2k−min(2α−j,j) , (29)

where α = (n+ k)/2.
Proof. From the repeated application of Theorem 2,
all reductions of size smaller than or equal to α are
proportional to identity. On the other hand, all reduc-
tions of size j > α, being pure codes with parameters
((j,D2α−j , j−α+1))D, are also proportional to projec-
tors. These, however, have a non-full rank of 2α− j,
namely the dimension of their code space. Summing
over all reductions of size j and taking into account
the normalization tr(ΠQ) = Dk yields the claim.

To obtain the Shor-Laflamme weights Aj , we make
use of the combinatorial version of the Möbius in-
version formula (see p. 267 in Ref. [49]). Denote
by 2[n] the set of subsets of {1, . . . , n}. Given the
functions f : 2[n] → R and g : 2[n] → R with g(S) =∑
T⊆S f(T ) , then

f(S) =
∑
T⊆S

(−1)|S−T |g(T ) . (30)

Using Möbius inversion, one can determine the weight
distribution of QMDS codes.

Theorem 9. The Shor-Laflamme weights Aj of a
general QMDS code Q = ((n,Dk, d))D are given by

Aj(ΠQ) =
(
n

j

) j∑
i=0

(
j

i

)
(−1)j−iD2k+i−min(2α−i,i) ,

(31)
where α = (n+ k)/2.
Proof. In Eq. (11) and (13), we defined the fine-
grained weights

AS(ΠQ) =
∑

supp(Ea)=S

tr[E†aΠQ] tr[EaΠQ] , (32)

A′S(ΠQ) = tr[trSc(ΠQ) trSc(ΠQ)] . (33)

As shown in [41], they are related via

A′S(ΠQ) = D−|S|
∑
T⊆S

AT (ΠQ) . (34)

We can accordingly make use of the Möbius inversion
[Eq. (30)] to obtain [40],

AS(ΠQ) =
∑
T⊆S

(−1)|S|−|T |D|T |A′T (ΠQ) . (35)

With Aj(ΠQ) =
∑
|S|=j AS(ΠQ), one obtains the Shor-

Laflamme weights for QMDS codes

Aj(ΠQ) =
∑
|S|=j

∑
T⊆S

(−1)|S|−|T |D|T |A′T (ΠQ)

=
(
n

j

) j∑
i=0

(
j

i

)
(−1)j−iD2k+i−min(2α−i,i) . (36)

This ends the proof.

Remark. The same result could be obtained by the
polynomial transform [40, 41]

A(x, y) = A′(x− y,Dy) (37)

where

A(x, y) =
n∑
j=0

Ajx
n−jyj , A′(x, y) =

n∑
j=0

A′jx
n−jyj .

Let us point out that the weights of an ((n,Dk, d))D
QMDS code are proportional to those of any n-
sized reduction of a hypothetical QMDS parent code
((n+ k, 1, n+k

2 + 1))D 6 (cf. the next section): this hy-
pothetical parent code is represented by a pure state
|φ〉〈φ| that has all its (n+ k)/2-body marginals max-
imally mixed. Accordingly, its j-sized reductions %(j)
have purity tr[%2

(j)] = D−min(j,n+k−j). Indeed, let
ΠQ′ = Dk trV (|φ〉〈φ|) with |V | = k be proportional to
an n-sized reduction of |φ〉. Summing over the purities
of all its marginals of size j, we obtain the weights of
Theorem 8. We conclude that the unitary weights of
a QMDS code ((n,Dk, d))D are proportional to those
of any n-sized reduction trV |φ〉〈φ| with (|V | = k) of
a hypothetical ((n+ k, 1, n+k

2 ))D code.
This observation motivates the bound on QMDS

codes that follows in Section 9. It is of the same type
as the one obtained by Scott in Ref. [50] (see Proposi-
tion 17 in Appendix C) for the existence of absolutely
maximally entangled states.

9 The maximal length of QMDS codes
In this section we derive a new bound for the existence
of QMDS codes. Our bound generalizes a result by
Ketkar et al. [51] on QMDS stabilizer or additive codes
to QMDS codes of any type. It can equally be seen
as a generalization of a bound by Scott [50] on the
existence of codes with parameters ((n, 1, bn2 c+1)) that
are known as absolutely maximally entangled states or
perfect tensors [52, 53]. Thus our main result extends
Props. 16 and 17 in Appendix C to all QMDS codes.

Theorem 10 (Maximal length of QMDS codes). Let
Q = ((n,Dk, d))D be a (stabilizer or non-stabilizer)
QMDS code with d ≥ 3. Then

n ≤ D2 + d− 2 , or equivalently (38)
n+ k ≤ 2(D2 − 1) . (39)

Proof. Denote by ΠQ the projector onto the code
space. For convenience we normalize the code to
a quantum state % = ΠQ/Dk, such that tr[%] = 1.
Define α = (n + k)/2, and denote by %′ the re-
duced density matrix of % corresponding to the code

6This argument could be refined: the weights of any
((n,Dk, d))D QMDS code are proportional to a reduction of any
of its hypothetical QMDS parents ((n+k−s,Ds, n+k

2 +1−s))D
for all 1 ≤ s ≤ k.
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Q′ = ((a + 1, Dα−1, 2))D on the first α + 1 parties.
Likewise, denote by %′′ a reduced density matrix of %
corresponding to Q′′ = ((α + 2, Dα−2, 3))D on the
first α + 2 parties. By Theorem 2 both Q′ and Q′′
must be pure, being derived from a pure code Q.
Then tr[%′2] = D−(α−1) and tr[%′′2] = D−(α−2). Since
Aj = 0 for all 0 < j < α+ 1, we can decompose %′ and
%′′ in the Bloch representation in the following way,

%′ = 1
Dα+1 (1+ Pα+1) , (40)

%′′ = 1
Dα+2 (1+

α+2∑
i=1

P
(i)
α+1 ⊗ 1i + Pα+2) , (41)

where Pα+1, P (i)
α+1, and Pα+2 only contain terms of

weight α+ 1, α+ 1, and α+ 2 respectively. Note that
there are α+ 2 different terms P (i)

α+1 with support on
different subsystems in %′′. Also, our normalization is
chosen such that

Aα+1(%′) = D−(α+1) tr[P 2
α+1] , (42)

Aα+1(%′′) = D−(α+2) tr[(
α+2∑
i=1

P
(i)
α+1 ⊗ 1i)2] , (43)

Aα+2(%′′) = D−(α+2) tr[P 2
α+2] , (44)

Making use of tr[%′2] = D−(α−1) leads to

Aα+1(%′) = D2 − 1 . (45)

Similarly, making use of tr[%′′2] = D−(α−2) yields,

Aα+2(%′′) = D4 − (α+ 2)(D2 − 1)− 1 ≥ 0 , (46)

which must be non-negative. Division by (D2 − 1)
leads to D2 − 1 − α ≥ 0, which can be recast to the
bound above. This proofs the claim.

10 Shadow bounds
Considering absolutely maximally entangled states,
stronger bounds on their existence can be made than
what is achieved by the bound from Scott [see Proposi-
tion 17 in Appendix C] in case their local dimension is
small [41, 54]. In a similar spirit, it is possible to con-
strain the existence of low-dimensional QMDS codes
further.

The shadow inequalities state that for any positive
semi-definite operators M1,M2 ≥ 0 and any subset
T ⊆ {1, . . . , n}, the following family of inequalities
hold [40, 55].∑
S⊆{1,...,n}

(−1)|S∩T | tr[trSc(M1) trSc(M2)] ≥ 0 . (47)

The shadow inequalities can be seen as a family
of monogamy of entanglement relations that con-
strain the entanglement appearing in the code sub-

space [35].7 In order to use the shadow inequali-
ties to determine the existence of codes, one sets
M1 = M2 = ΠQ and checks the non-negativity of
Eq. (47) for all subsets T ⊆ {1, . . . , n}.

Let Q = ((n,Dk, d))D be a QMDS code. Then
trSc(ΠQ)2 = D2k+min(n+k−|S|,|S|), in line with the ar-
guments of the proof of Theorem 8. Thus their struc-
ture in terms of their unitary invariants is symmetric
under permutation of the subsystems. We thus do not
forgo by considering a symmetrized version of Eq. (47)
only, the coefficients of the so-called shadow enumer-
ator [40, 55]

Sj(ΠQ) =
∑
|T c|=j

∑
S⊆{1,...,n}

(−1)|S∩T | tr[trSc(ΠQ)2]

=
n∑
`=0

Kn−j(`, n)A′`(ΠQ) ≥ 0 . (48)

Above, Km(`, n) is the Krawtchouk polynomial de-
fined as

Km(`, n) =
m∑
β=0

(−1)β
(
n− `
m− β

)(
`

β

)
. (49)

Remark. The same result can be obtained by the poly-
nomial transform [40, 41]

S(x, y) = A′(x+ y, y − x) (50)

where

S(x, y) =
n∑
j=0

Sjx
n−jyj , A′(x, y) =

n∑
j=0

A′jx
n−jyj .

We now can state the following corollary for the
special case of QMDS codes.

Corollary 11. Let ((n,Dk, d))D be a QMDS code.
The following expression must be non-negative for all
j in 0 ≤ j ≤ n,

Sj = D2k
n∑
`=0

Kn−j(`, n)
(
n

`

)
D−min(n+k−`,`) ≥ 0 .

(51)

Generally, the constraints imposed by Eqs. (47)
and (48) do not seem to give rise to simple closed-
form expressions on the existence or minimum dis-
tance of codes. In the case of a binary alphabet
however, the constraints yield the following bounds
(cf. Theorem 15 in Ref. [56] and Theorem 13.4.1
in Ref. [57]): the minimum distance of pure codes
((n, 1, d))2 is bounded by

d ≤

{
2bn6 c+ 3 if n = 5 mod 6;
2bn6 c+ 2 otherwise ,

(52)

7 The shadow inequalities are also connected to a family of
positive maps that generalize the reduction map % 7→ 1−%. Con-
sequently, Eq. (47) also holds in operator form: for all M ≥ 0
and all subsets T ⊆ {1, . . . , n},

∑
S⊆{1,...,n}(−1)|S∩T |MS ⊗

1Sc ≥ 0, where MS = trSc M [35].
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whereas the minimum distance of codes ((n,K, d))2
with K > 1 is bounded by

d ≤

{
2bn+1

6 c+ 2 if n = 4 mod 6;
2bn+1

6 c+ 1 otherwise .
(53)

As done for the case of AME states in Ref. [41], it is
possible to evaluate Corollary 11 numerically for any
QMDS code having small enough parameters. This
leads to new bounds on the existence of QMDS codes
in dimensions D ≤ 5, see Appendix D.

11 QMDS conjecture
The following conjecture relating the maximal length
of QMDS codes and the local dimension D is of inter-
est. It follows from the classical MDS conjecture, and
thus concerns itself with QMDS codes of stabilizer
type only. The MDS conjecture for classical codes
states that the length of a non-trivial linear MDS code
over the field GF (q) is bounded by n ≤ q + 1, with
the exception of q = 2m where additionally codes with
parameters [q+ 2, 3, q]q and [q+ 2, q− 1, 4]q exist. [48,
Research Problem (11.4)]. Applying this conjecture to
the classical codes over the field GF (q2) correspond-
ing to stabilizer codes, one obtains the following con-
jecture.

Conjecture 12 (QMDS Conjecture, Cor. 65 in
Ref. [51]). With exception of [[D2 + 2, D2 − 4, 4]]D
with D = 2m where n ≤ D2 + 2 (cf. Thm. 14 in
Ref. [30]), the length of all stabilizer QMDS codes
with d ≥ 3 is bounded by n ≤ D2 + 1.8

The strongest confirmation of the classical MDS
conjecture was proven in a seminal work by Ball,
which showed that the conjecture is true for linear
q-ary codes when q is prime [34]. Even when the
classical MDS conjecture turns out to be true, Con-
jecture 12 could be violated by non-stabilizer QMDS
codes.

On the other hand, our bound (Theorem 10) con-
strains the length of QMDS codes for distance d = 3
to n ≤ D2 + 1, confirming the QMDS Conjecture for
this choice of distance. For d = 4, our bound can be
met when D = 2m (Thm. 14 in Ref. [30]). In general,
however, Conjecture 12 is still unresolved for d > 3.

From the bound in Theorem 10 it is seen that
QMDS codes with distance d ≥ 3 can only exist if
n+k ≤ 6 for qubits, n+k ≤ 16 for qutrits, n+k ≤ 30
for ququarts, and n + k ≤ 48 in the case of local
dimension D = 5. Thus for qubits, no other non-
trivial QMDS codes exist apart from those with the
parameters of the known stabilizer codes [[6, 0, 4]]2 and
[[5, 1, 3]]2. In the case of qutrits, only seven QMDS fam-
ilies exist; for five of these, the optimal parent code
has already been found (see Table 2).

8 Note that while in Corollary 65 of Ref. [51] the case d = q2

and n ≤ q2 + 2 is listed as well, this is already excluded by the
quantum Singleton bound if q > 2.

12 Conclusions
It is readily seen that quantum maximum distance
separable (QMDS) codes must correspond to sub-
spaces in which every unit vector shows maximal en-
tanglement across all bipartitions where the smaller
partition has size (d − 1). The question under what
conditions such codes exist is thus not only relevant in
coding theory, but also for the study of multipartite
entanglement.

Interestingly, all QMDS codes can be grouped into
QMDS families whose members can be regarded as
being obtained by partial trace from a (possibly hy-
pothetical) parent code of larger length and distance.
Since all descendants within a QMDS family form
codes of smaller distance themselves, their spectra
are completely determined by the parameters of their
parent code. This insight completely determines the
weight enumerator of QMDS codes. It also leads to a
bound applicable to all (stabilizer and non-stabilizer)
QMDS codes, extending results known for the special
cases of stabilizer QMDS codes and absolutely max-
imally entangled states. Moreover, the application
of Rains’ shadow inequalities yields additional non-
existence results.

The quantum Singleton bound is independent of the
local dimension D and one thus cannot expect it to be
particularly strong. However, if the Singleton bound
can be met, classical codes are in all known cases ori-
gin of these optimal quantum codes and highly en-
tangled subspaces. More precisely, the majority of
non-trivial QMDS codes in the literature are of sta-
bilizer type and hence based on classical additive or
linear MDS codes. There are also some examples of
non-stabilizer (also called non-additive) QMDS codes,
in particular codes of distance two [58, Thm. 7]. How-
ever, putting these non-additive codes into the frame-
work of so-called union stabilizer codes or CWS codes
(see [45, Chapter 10]), one finds a connection to clas-
sical non-additive MDS codes as well.

It is an open question if this must generally be the
case and we state the problem more formally:

Research Problem. Is every quantum maximum dis-
tance separable code related to a classical MDS code?

It is indeed intriguing that hitherto no genuine
“quantum” constructions have been found that surpass
their classical counterparts for these types of codes.
We note that an affirmative answer to this question
would also reduce the question of the existence of ab-
solutely maximally entangled states for some given
even number of parties and local dimension to merely
a finite computational problem (also see Problem 3.
in Ref. [59]).

An interesting aspect seen here is that “optimal”
codes that have the largest possible distance must nec-
essarily also exhibit the highest possible bipartite en-
tanglement amongst the constituent particles. One
can readily expect a trade-off to be present, where
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large values of k/n and d/n necessarily go hand in
hand with a highly entangled code space, whereas
lowly entangled subspaces can only yield low values.
Indeed, such a trade-off can be seen in Eq. (25), quan-
tified by the average entropy of entanglement. A pre-
cise understanding of this trade-off might pave the
way to derive stronger bounds on the performance
of quantum codes, and could possibly help to explain
the distance scalings found in low-density parity check
codes [9].

To conclude, QMDS codes present themselves as
a rich playground: they form nested subspaces that
are highly entangled and prove to be a testing ground
for our understanding of multipartite entanglement.
The discovery of further monogamy relations as well
as entropic and rank inequalities would likely find an
immediate application in stronger bounds on the ex-
istence of these ideal quantum objects.
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A Proofs of the quantum Singleton
bound
We present two known proofs for the quantum Single-
ton bound below.

Theorem 13 (Quantum Singleton bound [15, 17, 60,
61]). Let ((n,K, d))D be a QECC. Its parameters are
bounded by

K ≤ Dn−2(d−1) . (54)
Proof 1: (Rains, Thm. 2 in Ref. [17]). Let us first
show that 2(d − 1) ≤ n. Assume that 2(d − 1) > n
and consider K = 1: by convention, codes with K = 1
are only considered codes if they are pure, and thus
must have trSc |φ〉〈φ| ∝ 1 for all |S| < d. From the
Schmidt decomposition however it is seen that it is
impossible that marginals of size bn2 c + 1 are of full
rank, and thus 2(d− 1) ≤ n. Consider now K > 1: in
terms of the unitary weight enumerators, the condi-
tions for a projector ΠQ to be a QECC subspace read
KB′j(ΠQ) = A′j(ΠQ) for all j < d [Eq. (18)]. Also
recall that by definition A′j = B′n−j . If 2(d− 1) > n,
one thus requires that

A′d−1 = KB′d−1 = KA′n−(d−1) , (55)

and, due to n− (d− 1) < (d− 1), also that

A′n−(d−1) = KB′n−(d−1) = KA′d−1 , (56)

leading to a contradiction also for K > 1.
Consequently, 2(d − 1) ≤ n. With the decomposi-

tions from Eq. (16), one has that

A′d−1 = D−d+1
d−1∑
i=0

(
n− i

n− d+ 1

)
Ai , (57)

but also9

A′d−1 = KB′d−1 = KA′n−d+1

= KD−n+d−1
n−d+1∑
i=0

(
n− i
d− 1

)
Ai . (58)

With
(
n−i

n−d+1
)

=
(
n−i
d−1−i

)
, the quantum Singleton

bound follows from the analysis of

0 = A′d−1 −A′d−1 = KD−n+d−1
n−d+1∑
i=0

(
n− i
d− 1

)
Ai

−D−d+1
d−1∑
i=0

(
n− i

d− 1− i

)
Ai . (59)

Consider the coefficient Ai for 0 ≤ i < d.

KD−n+d−1
(
n− i
d− 1

)
−D−d+1

(
n− i

d− 1− i

)
. (60)

Note that

(
n−i
d−1
)(

n−i
d−1−i

) = (d− 1− i)!(n− d+ 1)!
(d− 1)!(n− i− d+ 1)!

9The arXiv version (quant-ph/9703048) of Ref. [17] contains
in the corresponding formulae erroneous factors of (D − 1)i.
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= (n− d+ 1)(n− d) · · · (n− d+ 2− i)
(d− 1)(d− 2) · · · (d− i) ≥ 1 , (61)

because n − d + 1 ≥ d − 1 as established previously.
If K > Dn−2(d−1) > 1, the expression (60) must be
non-negative due to Ai ≥ 0, and it is furthermore
strictly positive in the case of i = 0 due to A0 = K.
Consequently Eq. (60) can only vanish if at least K ≤
Dn−2(d−1). This proofs the claim.

Proof 2: (Cerf & Cleve [15]). For this proof we only
consider the case K > 1. Then the distance must be
bounded by 2(d− 1) ≤ n, for if not, two copies of the
encoded state could be recovered each from reductions
of size n − (d − 1) < d − 1, violating the no-cloning
theorem.
Let ΠQ =

∑K
i=1 |iQ〉〈iQ| be the projector onto the

code space. The purification with a reference system R
leads to,

|ψQR〉 = 1√
K

K∑
i=1
|iQ〉 ⊗ |iR〉 , (62)

where |iR〉 is any orthonormal basis for R. Recall
that the von Neumann entropy is defined as S(%) =
− tr % log %. Let us partition the code into the three
subsystems A,B,C, such that |A| = |B| = d− 1 and
|C| = n− 2(d− 1). Then SR = S(trABC [%]) = log(K).
As the code has distance d, any subsystem of size
strictly smaller than d cannot reveal anything about
the reference system R: indeed the condition of %RA =
%R ⊗ %A is known to be a necessary and sufficient
condition for the subsystem A to be correctable [62];
this is also equivalent to SRA = SR + SA. With the
subadditivity of the von Neumann entropy, namely
S12 ≤ S1 + S2, this leads to

SR + SA = SRA = SBC ≤ SB + SC , (63)
SR + SB = SRB = SAC ≤ SA + SC , (64)

where we used that the entropies of complementary
subsystems are equal for a pure state. The combination
of the above two inequalities yields log(K) = SR ≤
SC ≤ log dim(HC) = logDn−2(d−1). This proofs the
claim.

A third proof of the quantum Singleton bound using
linear programming can be found in Refs. [60, 61].

B Entropy lemma
Lemma 14 (Winter [46]). Let n ≥ m > `. Then

1(
n
m

) ∑
I⊆{1,...,n}
|I|=m

S(I) ≤ m

`

1(
n
`

) ∑
J⊂{1,...,n}
|J|=`

S(J) . (65)

Proof. For any subset T ⊆ {1, . . . , n}, denote by XT

the combination of the subsystems {Xi : i ∈ T}. We

first aim to show that

S(X{1,...,n}) ≤
1

n− 1

n∑
i=1

S(X{1,...,n}\{i}) . (66)

For this, we purify the state with a reference system R.
Then Eq. (66) is equivalent to

(n− 1)S(R) ≤
n∑
i=1

S(XiR) . (67)

Rewritten in terms of the conditional von Neumann
entropy S(A|B) = S(AB)− S(B) yields

− S(R) ≤
n∑
i=1

S(Xi|R) . (68)

To see that this holds, note that

− S(R) = S(X{1,...,n}|R) ≤
n∑
i=1

S(Xi|R) , (69)

where the equality follows from the fact that the state
on the entire system X1 . . . XnR is pure, and the in-
equality follows from strong subadditivity. The re-
peated application of Eq. (66) yields

1
m

1(
n
m

) ∑
|I|=m

S(I) ≤ 1
`

1(
n
`

) ∑
|J|=`

S(J) . (70)

This completes the proof.

A slightly more general form of above Lemma, the
“quantum Shearer’s inequality”, and its history can be
found in Ref. [63].

C QMDS stabilizer codes and AME
states
In order to set the bound appearing in Section 9,
Theorem 10 into context, we shortly state the previ-
ously known bounds on stabilizer and largest-distance
QMDS codes.

Stabilizer codes are constructed from Abelian sub-
groups of nice error bases not containing a non-trivial
multiple of the identity.10 When the local dimension
D = q = pm is a power of a prime, such Abelian sub-
groups correspond to additive codes C over the finite
field Fq2 with q2 elements. Additionally, the code C
is contained in its dual, C ⊆ C⊥a , with respect to the
trace-alternating form on Fnq2 , given by

〈x, y〉a = trFq/Fp

(
x · yq − xq · y
β2q − βq

)
. (71)

10 A nice error basis is a set of unitary matrices {Eg} cor-
responding to a group G such that E1 = 1 and EgEh =
ωg,hEgh [64].
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Some QMDS constructions
short (Gilbert-Varshamov) [51, Cor. 32]: [[n, n− 2d+ 2, d]]q 2 ≤ d ≤ dn2 e,

(
n
d

)
≤ q2 − 1

Euclidean (CSS) [65, Cor. 1]:a [[n, n− 2d+ 2, d]]q 1 ≤ d ≤ bn2 c+ 1, 3 ≤ n ≤ q + 1 for 2 < q

punctured GRM [66, Thm. 5 & Cor. 6]: [[q2 − qα, q2 − qα− 2d+ 2, d]]q 2 ≤ d ≤ q, 0 ≤ α ≤ q − d+ 1
Hermitean [29, Thm. 14]:b [[q2 − s, q2 − s− 2d+ 2, d]]q 2 ≤ d ≤ q, for some 0 ≤ s < q, incl. s = 0, 1
single-error [67, Cor. 3.6]:c [[n, n− 4, 3]]q 4 ≤ n ≤ q2 + 1 except q = 2 with n = 4
Grassl/Rötteler I [30, Thm. 13]: [[q2 + 1, q2 − 2d+ 3, d]]q 2 ≤ d ≤ q + 1, for q odd or (q even and d odd)
Ball [69, Thm. 4]: [[q2 + 1, q2 − 2d+ 3, d]]q 2 ≤ d ≤ q + 1, for d 6= q

Grassl/Rötteler II [30, Thm. 14]: [[q2 + 2, q2 − 4, 4]]q q = 2m

trivial [30, Thm. 12]: [[n, n− 2, 2]]D n even and (D odd or a multiple of 4)

aIn Theorem 14 of Ref. [29], and subsequently also in the overview table of Ketkar et al. [51], only the upper bound n ≤ q is
given. The bound n ≤ q + 1 follows from Corollary 1 of Ref. [65] (note that there, the condition q > 2 for n = q + 1 is missing).

bFurther details on what values s can take can be found in Refs. [29, 30].
cThe case where q is odd also appears in Theorem 1.1 of Ref. [68].

Table 1: Some known QMDS constructions when q = pβ is a power of prime (except for the trivial QMDS). The table is
partially adopted from Ref. [51]. Apart from the trival QMDS codes with d = 2, all codes are stabilizer codes.

Here (β, βq) is a normal basis of Fq2 over Fq and the
trace function for q = pm is defined as trFq/Fp

(a) =∑m−1
i=0 aq

i

.
Thus, in the context of quantum MDS codes of sta-

bilizer type, their correspondence to classical MDS
codes is of relevance.

Proposition 15 (Thm. 15 and Lemma 61 in [51]).
The existence of the following is equivalent:
1. an [[n, n− 2d+ 2, d]]q QMDS stabilizer code;
2. an [n, d−1, n−d+2]q2 additive MDS code C ⊂ Fnq2

that is contained in its dual, C ⊂ C⊥a .

Note that the dual code C⊥a is also an MDS code
with parameters [n, n− d+ 1, d]q2 .

The following is known on the maximal length of
stabilizer QMDS codes.

Proposition 16 (Maximal length of QMDS stabilizer
codes, Thm. 63 in Ref. [51]). Let Q = [[n, k, d]]D be
a QMDS stabilizer code with d ≥ 3 and where D is a
prime-power. Then

n ≤ D2 + d− 2 . (72)

A pure state |φn,D〉 of n parties with local dimen-
sion D each is called absolutely maximally entangled
(AME), if maximal entanglement is present across ev-
ery bipartition. Consequently, all its reductions to
half of its parties are maximally mixed. AME states
are pure codes with parameters ((n, 1, bn2 c + 1))D. If
n is even, these states are the top-most member of a
QMDS family, reaching the largest distance allowed
by the quantum Singleton bound. They are also

known as perfect tensors. Scott obtained the follow-
ing bound on the existence of absolutely maximally
entangled states.

Proposition 17 (Maximal length of AME states,
Eq. 44 in Ref. [50]). Let |φn,D〉 be an absolutely maxi-
mally entangled state of n ≥ 4 parties of local dimen-
sion D each. Then

n ≤

{
2(D2 − 1) if n is even;
2D(D + 1)− 1 if n is odd .

(73)

Thus for n even, Proposition 17 is indeed a bound
on the existence of QMDS codes that have k = 0.

D Known constructions and tables
We list parameters of some known QMDS construc-
tions in Table 1. Tables 2 to 4 report on the high-
est distances within a QMDS family that are not ex-
cluded by our bounds, as well as on the parameters
that can be reached by known constructions. All up-
per bounds listed arise from the shadow inequalities
(Corollary 11). For local dimensions D > 5, these
constraints do not seem to be stronger than those of
Theorem 10 and thus our tables only include codes up
to D = 5.

Should the upper and lower bound meet, the corre-
sponding code is optimal and specifies its QMDS fam-
ily completely; these entries are marked by ∗ . Since
all currently known non-trivial constructions are sta-
bilizer codes, we use the notation [[n, k, d]]q for both
the lower and upper bound. The upper bound is valid
for general codes ((n,Dk, d))q as well.
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n + k upper lower
4 [[4, 0, 3]]3 [[4, 0, 3]]3 ∗ Hermitean
6 [[6, 0, 4]]3 [[6, 0, 4]]3 ∗ Rains [17]
8 [[6, 2, 3]]3 [[6, 2, 3]]3 ∗ single-error
10 [[10, 0, 6]]3 [[10, 0, 6]]3 ∗ Glynn code [70]
12 [[8, 4, 3]]3 [[8, 4, 3]]3 ∗ single-error
14 [[11, 3, 5]]3 [[10, 4, 4]]3 Grassl/Rötteler I
16 [[11, 5, 4]]3 [[10, 6, 3]]3 single-error

Table 2: Upper and lower bounds for the highest distance in
QMDS families of local dimension D = 3.

n + k upper lower
4 [[4, 0, 3]]4 [[4, 0, 3]]4 ∗ Hermitean
6 [[6, 0, 4]]4 [[6, 0, 4]]4 ∗ Rains [17]
8 [[8, 0, 5]]4 [[6, 2, 3]]4 single-error
10 [[10, 0, 6]]4 [[10, 0, 6]]4 ∗ Gulliver et al. [71]
12 [[10, 2, 5]]4 [[9, 3, 4]]4 Grassl/Rötteler [30]
14 [[14, 0, 8]]4 [[10, 4, 4]]4 shortening [[18, 12, 4]]4
16 [[13, 3, 6]]4 [[11, 5, 4]]4 Grassl/Rötteler [30]
18 [[18, 0, 10]]4 [[12, 6, 4]]4 shortening [[18, 12, 4]]4
20 [[16, 4, 7]]4 [[12, 8, 3]]4 single-error
22 [[22, 0, 12]]4 [[14, 8, 4]]4 shortening [[18, 12, 4]]4
24 [[19, 5, 8]]4 [[14, 10, 3]]4 single-error
26 [[23, 3, 11]]4 [[17, 9, 5]]4 Grassl/Rötteler I
28 [[22, 6, 9]]4 [[16, 12, 3]]4 single-error
30 [[26, 4, 12]]4 [[18, 12, 4]]4 Grassl/Rötteler II

Table 3: Upper and lower bounds for the highest distance in
QMDS families of local dimension D = 4.
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