
ARTICLE OPEN

Quantum coherence and state conversion: theory

and experiment
Kang-Da Wu1,2,5, Thomas Theurer3,5, Guo-Yong Xiang1,2✉, Chuan-Feng Li1,2, Guang-Can Guo1,2, Martin B. Plenio3 and

Alexander Streltsov4✉

The resource theory of coherence studies the operational value of superpositions in quantum technologies. A key question in this

theory concerns the efficiency of manipulation and interconversion of the resource. Here, we solve this question completely for

qubit states by determining the optimal probabilities for mixed-state conversions via stochastic incoherent operations. Extending

the discussion to distributed scenarios, we introduce and address the task of assisted incoherent state conversion, where the

process is enhanced by making use of correlations with a second party. Building on these results, we demonstrate experimentally

that the optimal state-conversion probabilities can be achieved in a linear optics setup. This paves the way towards real world

applications of coherence transformations in current quantum technologies.
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INTRODUCTION

Practical constraints on our ability to manipulate physical systems
restrict the control we can exert on them. It is, e.g., exceedingly
difficult to exchange quantum systems undisturbed over long
distances.1 When manipulating spatially separated subsystems,
effectively, this limits us to Local Operations and Classical
Communication (LOCC). Under these operations, it is only possible
to prepare certain states, i.e., separable ones. The states that
cannot be produced under LOCC are called entangled and are
elevated to resources: consuming them allows to implement
operations such as quantum-state teleportation2 to achieve
perfect quantum-state transfer, which would not be possible with
LOCC alone. This has important consequences, e.g., in quantum
communication and other quantum technologies, but also for our
understanding of the view of the fundamental laws of nature.1,3–5

Entanglement is explored within the framework of quantum
resource theories, which can also be used to investigate other
non-classical features of quantum mechanics in a systematic way.
A concept underlying many facets of non-classicality, including
entanglement, is the superposition principle. As a quantum
system naturally decoheres in the presence of unavoidable
interactions between the system and its environment,6,7 super-
position is itself a resource, which is studied in the recently
developed resource theory of quantum coherence.8–14 In this
framework, the set of free operations analogous to LOCC in
entanglement theory are incoherent operations (IOs), correspond-
ing to quantum measurements which cannot create coherence
even if postselection is applied on the individual measurement
outcomes.10

One of the central questions in any resource theory is the state-
conversion problem, i.e., the characterization of the possible
interconversion of resources under transformations allowed by the
corresponding resource theory. The answer to this question leads
to a preorder on the resource states, which determines their
usefulness or value in technological applications, as a given state

can be used in all protocols that require a state that can be

created from it. The state-conversion problem is studied in two

opposing limits: in the single-shot regime, where one studies the

conversion of a single copy of a state, or in the asymptotic limit, in

which one assumes that asymptotically many copies are available.

The single-shot state-conversion problem using IOs has been

solved for all pure states11,15 and for mixed states of a single

qubit.12,16,17 Asymptotic incoherent conversions were investigated

in ref. 11 In the single-shot regime, a more general problem

concerns stochastic state conversions, i.e., finding the optimal

probability for probabilistic incoherent conversions between two

given quantum states. For conversions between pure states, this

question has been addressed in refs. 18,19 In this work, we provide

a full solution to the stochastic incoherent state-conversion

problem for qubit systems, the fundamental building blocks in

quantum information. This generalizes recent results on single-

shot coherence theory12,16–22 and single-shot resource theories in

general,23,24 opening new perspectives on how such resources

can lead to practical advantages in quantum metrology,25,26

quantum algorithms,27,28 and even quantum dynamics in

biology.29

When the technology to build quantum computers becomes
available, it is likely that they will appear initially in small numbers.

They have complete control over their qubits and can assist a less

powerful remote client restricted to IOs. In particular, they can

assist him in state conversions, which we study under the name of

assisted incoherent state conversion, solving the problem of

optimality for two-qubit pure and Werner states. Moreover, we

demonstrate an experimental realization of non-unitary IOs using

photonic quantum technologies and show their capability of

implementing optimal state conversion on qubits, both with and

without assistance. This is an important step towards the

experimental investigation and systematic manipulation of

coherence in quantum technological applications.
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RESULTS

Theoretical framework

In this section, we describe the foundations of this work. In the
resource theory of coherence, an orthonormal basis of states f ij ig,
usually motivated on physical grounds as being easy to synthesize
or store, are considered classical. Any mixture of such states,

ρ ¼
X

i

pi ij i ih j; (1)

is referred to as “free” and is termed incoherent, similar to
probability distributions on classical states. The free operations are
referred to as IOs:10 these are quantum transformations Λ, which
admit an incoherent Kraus decomposition

Λ½ρ� ¼
X

i

K iρK
y
i (2)

with incoherent Kraus operators K i , i.e., K i mj i � nj i for incoherent
states mj i and nj i. IOs admit a natural interpretation as quantum
measurements which cannot create coherence even if postselec-
tion is applied to the individual measurement outcomes i
identified with the Kraus operators K i . Most of the analysis
presented in the following can be reduced to the mathematically
simpler family of strictly incoherent operations (SIOs). These are
operations that can be decomposed into strictly incoherent Kraus
operators K i , which are defined by the property that both K i and

K
y
i are incoherent, and correspond to quantum processes that do

not use coherence.11,13

A general deterministic operation has the form (2), where the

Kraus operators K i fulfill the completeness condition
P

iK
y
i K i ¼ 1.

To implement a stochastic IO, we formally postselect a determi-
nistic IO according to the measurement outcomes i. Now, assume
we deal with a stochastic operation that can be decomposed into
incoherent Kraus operators that are not necessarily complete, i.e.,
P

iK
y
i K i � 1. If we want to call this operation incoherent, we must

ensure that it can be seen as part of a deterministic IO, otherwise
we would simply disregard the nonfree part of a costly operation.
The fact that this is always possible has been shown in ref. 30

Therefore, we call all stochastic operations that can be decom-
posed into incoherent Kraus operators incoherent as well. As the
following Proposition tells, the same holds true for SIOs.
Proposition 1. Every stochastic quantum operation that can be

decomposed into strictly incoherent Kraus operators is part of a
deterministic SIO.
The proof can be found in the Supplementary Material.
In this work, we will solve the problem of state conversion for

qubits under the restricted sets of operations IO and SIO
theoretically. To do this, we make use of the following Theorem
proven in the Supplementary Material, stating that the two
problems are equivalent.
Theorem 2. Let ρ and σ be states of a single qubit. The

following statements are equivalent:

(1) There exists an IO transforming ρ with probability p to σ.
(2) There exists a SIO transforming ρ with probability p to σ.

Then, we extend our analysis to the problem of assisted
incoherent state conversion, which we introduce now as a game
between two parties, Alice and Bob. Initially, they share a bipartite
quantum state ρAB and the aim of the game is to establish a
certain state σB on Bob’s side. Clearly, if all quantum transforma-
tions were allowed locally, Bob could achieve this task by simply
erasing his local system and preparing the desired state σB.
However, the situation changes if Bob is constrained to local IOs:
in this case, he cannot prepare the state σB if the state has
coherence. Moreover, as we will show later, correlations in the
joint state ρAB can be used to enhance Bob’s conversion
possibilities, if Alice assists Bob by measuring her particle and
communicating the measurement outcome.

As most of this work is concerned with qubits, we will make
frequent use of the Bloch representation, stating that every qubit
state ρ can be represented by a subnormalized vector r ¼
ðrx ; ry ; rzÞ through ρ ¼ ð1þ r � σÞ=2, where σ represents a vector
containing the Pauli matrices. As done above, we denote density
operators by small Greek letters and their Bloch vectors by the
respective small Latin letter. Throughout the paper, we assume
the eigenbasis of σz to be incoherent. Then, rotations about the
z-axis of the Bloch sphere and their inverse are both in SIO and in
IO, leading to an invariance of conversion probabilities under
these rotations. This makes it very convenient to introduce the
quantity

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2x þ r2y

q

; (3)

corresponding to the distance of the state to the incoherent axis.

Optimal conversion without assistance

For a general qubit state ρ, the exact shape of the state space that
can be achieved by IOs is described in the following Theorem,
making use of the Bloch sphere representation introduced above,
where r and s are the Bloch vectors of the initial and the final
state, respectively.
Theorem 3. A qubit state σ is reachable via a stochastic SIO or

IO transformation from a fixed initial qubit state ρ with a given
probability p if

r2s2z þ 1� r2z
� �

s2 � r2; (4a)

p2s2 � r2

1þ jrzj
2p� ð1� jrzjÞ½ �: (4b)

The proof of this Theorem can be found in the Supplementary
Material. As shown in Fig. 1, this theorem has a convenient
geometrical interpretation on the Bloch sphere: for fixed ρ, Eq. (4a)
defines an ellipsoid that is independent of p and Eq. (4b) a cylinder
that depends on p. The states to which ρ can be converted with

Fig. 1 Incoherent state conversion. Illustration of Theorem 3 in the
x–z plane of the Bloch sphere. For an initial state with rx ¼ r ¼ 0:6
and rz ¼ 0:7, which is depicted by the red dot, the reachable regions
for three different probabilities p are shown. The regions that are
reachable with lower probability include the ones reachable with
higher probability. The gray region cannot be reached with non-zero
probability.
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probability p lie inside their intersection. For p � 1� jrzj, the
ellipsoid is entirely contained in the cylinder and Eq. (4b) is
automatically satisfied if Eq. (4a) holds (see proof of Theorem 3).
Therefore, lowering the demanded probability of success below
1� jrzj will not increase the set of reachable states. This implies
that for mixed ρ, there is a discontinuity in the optimal conversion
probability Pðρ ! σÞ and the states outside the ellipsoid cannot
be achieved via stochastic IOs, even with arbitrary little probability.
From Theorem 3, we can deduce the following Corollary:
Corollary 4. The maximal probability P ρ ! σð Þ for a successful

transformation from a coherent qubit state ρ to a coherent qubit
state σ using IO or SIO is zero if

r2s2z þ 1� r2z
� �

s2 > r2 (5)

and

min
r2

1þ jrzjð Þs2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2 1� r2z
� �

r2

s0

@

1

A; 1

8

<

:

9

=

;

(6)

otherwise.
The proof of this Corollary is given in the Supplementary

Material. Moreover, these theoretical results can be extended
beyond qubits, leading to necessary conditions for stochastic state
conversions.
According to ref.10, a coherence measure C is a functional

mapping quantum states to the non-negative real numbers that is
zero exactly on the incoherent states, convex, and monotonic
under selective IOs on average. For every such measure C, it holds
that18

P ρ ! σð Þ � CðρÞ
CðσÞ : (7)

It is noteworthy that the bounds given in Eq. (7) cannot be used to
exclude the existence of a stochastic transformation from ρ to σ
(unless we have the trivial cases CðσÞ ¼ 1 or ρ incoherent and σ
not). However, the first condition in Corollary 4 is a (nontrivial)
necessary condition for the existence of a stochastic transforma-
tion. In the case of SIO, we can generalize this necessary condition
to arbitrary dimensions using the Δ robustness of coherence CΔ;R

introduced in refs. 12,31 by

CΔ;RðρÞ ¼ min t � 0
ρþ tτ

1þ t

�

�

�

�

2 I ; τ � 0;Δρ ¼ Δτ

� �

; (8)

where I denotes the set of incoherent states.
Theorem 5. A necessary condition for the existence of a

stochastic SIO transformation from ρ to σ is

CΔ;RðσÞ � CΔ;RðρÞ: (9)

Again, the proof can be found in the Supplementary Material. As
shown in ref.31, for the case of qubits, Eq. (9) is equivalent to
conditions (4a) and (5), and for higher dimensions, CΔ;R can be
evaluated efficiently using a semi-definite program (see the proof
of the Theorem and also ref. 32). The other necessary condition for
stochastic transformations on qubits was that the initial state is
not incoherent. For higher dimensions, this can be generalized by
the statement that the coherence rank or number11,33–35 can only
decrease under a stochastic IO (and therefore SIO) transformation,
which we show now for completeness.
The coherence rank rC of pure states is defined as the number

of non-zero coefficients needed to expand the state in the
incoherent basis.11,33 For mixed states, the coherence rank is
defined by ref. 34

rCðρÞ ¼ min max
i

rCðjψiiÞjρ ¼
X

i

pijψii ψij; pih � 0

( )

: (10)

It is well known that the coherence rank of a pure state can only
decrease under the action of an incoherent Kraus operator.11 From

this follows the statement directly: let fpi ; ψij ig be an optimal
decomposition of ρ in the sense that rCðρÞ ¼ maxirCð ψij iÞ.
Applying the Kraus operators of the stochastic IO to the ψij i leads
to a decomposition of the final state with the promised property.

Optimal conversion with assistance

We now present our results concerning state conversions with
assistance, for pure entangled states and a class of mixed states.
The task of assisted incoherent state conversion is equivalent to

transforming a shared state ρAB into a local state σB on Bob’s side
via local quantum-incoherent operations and classical commu-
nication (LQICC).36,37 These operations consist of general local
operations on Alice’s side, local IOs on Bob’s side, and the
exchange of measurement results via a classical channel. In case
only Alice sends information to Bob, we speak of one-way LQICC.
The problem of optimal conversion of a general two-qubit

entangled state ψj iAB into an arbitrary local state σB is solved in
the following Theorem, which is proven in the Supplementary
Material.
Theorem 6. Let Alice and Bob share a pure two-qubit state

ψj iAB and denote Bob’s local state by ρB. The maximal probability
Pað ψj iAB ! σBÞ to prepare the qubit state σB on Bob’s side via one-
way LQICC is given by

Pað ψj iAB ! σBÞ ¼ min 1; 1� rzj jð Þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p

s2

( )

; (11)

where r and s are the Bloch vectors of ρB and σB, respectively.
When the state is subjected to noise, the probabilities of

assisted incoherent state conversions are reduced. As an example,
we consider the two-qubit Werner state,

ρABw ¼ qw ϕ
þj i ϕþh j þ ð1� qwÞ

1

4
; (12)

with the maximally entangled state ϕþj i ¼ ð 00j i þ 11j iÞ=
ffiffiffi

2
p

. In
this case, the optimal conversion probability is determined by the
following Theorem.
Theorem 7. The optimal probability Pa ρABw ! σB

� �

for convert-
ing ρABw into the qubit state σB via one-way LQICC is given by,

Pa ρABw ! σB
� �

¼
1 if qw � s2

ffiffiffiffiffiffiffiffi

1�s2z

p ;

0 otherwise;

(

(13)

where s denotes the Bloch vector of σB .
This is proven in the Supplementary Material. Determining the

optimal assisted incoherent conversion probabilities for general
shared mixed states is left open for future work. However, in

general, correlations in the joint two-qubit state ρAB always enhance
the conversion possibilities of Bob whenever the state is not

quantum incoherent, i.e., not of the form ρAB ¼Pipiρ
A
i � ij i ih jB:

Theorem 8. If Bob’s system is a qubit, then for any state ρAB,
which is correlated and not quantum incoherent, the set of
accessible states for Bob via stochastic one-way LQICC is strictly
larger, when compared with ρA � ρB .
The proof can be found in the Supplementary Material.

Asymptotic state conversion via IO

In the scenario considered so far, we assumed that IOs are applied
on one copy of the state ρ. In the following, we will extend our
investigations to asymptotic conversion scenarios, where IOs are
performed on a large number of copies of the state ρ. The figure
of merit in this setting is the asymptotic conversion rate

Rðρ ! σÞ ¼ sup r : lim
n!1

inf
Λ

Λ ρ�nð Þ � σ� rnb c�

�

�

�

1

	 


¼ 0

� �

; (14)

where jjMjj1 ¼ Tr
ffiffiffiffiffiffiffiffiffiffi

MyM
p

is the trace norm, the infimum is
performed over all IOs Λ, and xb c is the largest integer smaller
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or equal to the real number x. In words, the quantity Rðρ ! σÞ is
the maximal rate at which IOs can convert the initial state ρ into
the target state σ, assuming the asymptotic limit of infinitely many
initial states on which the IO can act simultaneously. This quantity
should not be confused with the quantity r introduced in Eq. (3)
and can exceed 1; e.g., it is possible to convert one coherent state
into arbitrary many copies of an incoherent state. In general, the
single-shot scenario where one has only access to a single copy of
the state under consideration is very different from the asymptotic
case of infinitely many copies on which one can act commonly.
It is now important to note that the single copy conversion

probability Pðρ ! σÞ is a lower bound for the conversion rate, i.e.,

Rðρ ! σÞ � Pðρ ! σÞ: (15)

In fact, asymptotic conversion at rate Pðρ ! σÞ can be achieved
by applying a stochastic IO on each individual copy of the state ρ.
Denoting by þj i the maximally coherent single-qubit state, the

distillable coherence11 is defined as the maximal rate at which a
maximally coherent qubit state can be extracted from ρ using IOs,
i.e., CdðρÞ ¼ Rðρ ! j þ ihþjÞ. The complementary quantity, i.e, the
minimal rate at which the maximally coherent qubit states need to
be consumed to produce the state ρ via IOs, is called the
coherence cost11 and is formally defined by

CcðρÞ ¼ inf r : lim
n!1

inf
Λ

ρ�n � Λ þj i þh j� rnb c
� ��

�

�

�

�

�

1

	 


¼ 0

� �

; (16)

where the infimum is again over all IOs. As it was shown in ref.11,
from these two quantities follow the bounds

CdðρÞ
CcðσÞ

� Rðρ ! σÞ � min
CdðρÞ
CdðσÞ

;
CcðρÞ
CcðσÞ

� �

: (17)

It was also shown in ref. 11 that the distillable coherence admits
the following closed expression:

CdðρÞ ¼ SðΔ½ρ�Þ � SðρÞ; (18)

where SðρÞ ¼ �Tr½ρ log2 ρ� is the von Neumann entropy and
Δ½ρ� ¼Pi ij i ih jρ ij i ih j is the dephasing operator. Moreover, the
coherence cost Cc is equal to the coherence of formation Cf ,

11

CcðρÞ ¼ CfðρÞ ¼ min
X

i

piS Δ ψi½ �ð Þ: (19)

Here, the minimization is performed over all pure state decom-
positions of the state ρ ¼

P

ipiψi .
Up until here, the statements concerning asymptotic conver-

sions were valid for general dimensions. From here on, we will
specialize them exclusively to qubits. For single-qubit states, Eq.

(19) can be further simplified as follows:38

CcðρÞ ¼ CfðρÞ ¼ h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4jρ01j2
q

2

0

@

1

A; (20)

where hðxÞ ¼ �x log2 x � ð1� xÞ log2ð1� xÞ is the binary entropy
and ρ01 ¼ 0jρj1h i.
We will now demonstrate the power of these results on a

specific example. For this, we consider the following single-qubit
state:

ρ ¼
2
3

1
4

1
4

1
3

 !

: (21)

We will study the conversion of ρ into a convex combination of
maximally coherent states ±j i ¼ ð 0j i± 1j iÞ=

ffiffiffi

2
p

, i.e., the final state
σ has the form

σ ¼ q þj i þh j þ ð1� qÞ �j i �h j: (22)

In Fig. 2, we compare the aforementioned upper and lower
bounds on the state-conversion rate for the states ρ and σ in Eqs.
(21) and (22). In particular, there exists a range of the parameter q
where Pðρ ! σÞ (solid line in Fig. 2) is very close to the upper
bound min CdðρÞ=CdðσÞ; CcðρÞ=CcðσÞf g (dashed line in Fig. 2). The
quality of our bound should also be compared with the lower
bound CdðρÞ=CcðσÞ (dotted line in Fig. 2). The figure clearly shows
that the two different lower bounds have their advantages for
different values of the parameter q: for q close to 1/4, our new
bound is much tighter than the best previously known bound.11 If
q is below a critical value, the new bound is zero. This corresponds
to the region outside the reachable ellipsoid. In addition, the new
bound can never exceed 1 and thus the results from ref. 11 give a
better bound when σ has a much lower coherence than ρ, which
corresponds to q 	 1=2.
Indeed, we note that for q ¼ 1=4 the conversion probability

Pðρ ! σÞ coincides with CcðρÞ=CcðσÞ, and in fact both are equal to
1. This implies that the asymptotic conversion rate is given by
Rðρ ! σÞ ¼ 1 in this case. We will generalize this observation in
the following Theorem.
Theorem 9. Assume qubit states ρ and σ obey

s2z � r2z and s ¼ r: (23)

Then we have Rðρ ! σÞ ¼ 1.
We prove the Theorem in the Supplementary Material, where

we also show that it cannot be formulated as an if and only if
statement.
We will now apply the methods we developed for studying the

irreversibility of coherence theory. For any quantum resource
theory, the conversion rate R fulfills the following inequality for
any two nonfree states ρ and σ:

Rðρ ! σÞ ´ Rðσ ! ρÞ � 1: (24)

The resource theory is called reversible if Eq. (24) is an equality for
all nonfree states. Otherwise, the resource theory is called
irreversible. Examples for reversible resource theories are the
theories of entanglement and coherence, when restricted to pure
states only. However, both theories are not reversible for general
mixed states.11,39 General properties of reversible resource
theories have been investigated in refs. 40,41

In the following, we will study the irreversibility of coherence
theory in more detail. In particular, we will investigate which
values of distillable coherence Cd a single-qubit state can attain,
for a fixed amount of coherence cost Cc. The most interesting
family of states in this context is given by σ in Eq. (22):
Proposition 10. Among all single-qubit states, the family of

states given in Eq. (22) has the minimal distillable coherence Cd for
a fixed coherence cost Cc and vice versa maximal Cc for fixed Cd.

0.0 0.1 0.2 0.3 0.4 0.5
q0.0

0.5

1.0

1.5

2.0

Fig. 2 Comparison of upper and lower bounds on the asymptotic
conversion rate. Upper and lower bounds on the asymptotic
conversion rate Rðρ ! σÞ for states in Eqs. (21) and (22). Dashed line
shows the upper bound given by min CdðρÞ=CdðσÞ; CcðρÞ=CcðσÞf g,
solid line shows the lower bound given by Pðρ ! σÞ, and dotted line
shows the lower bound given by CdðρÞ=CcðσÞ.
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The Proposition is proven in the Supplementary Material. This
result allows us to plot the allowed region of coherence cost and

distillable coherence in Fig. 3. The upper curve is given by
CdðρÞ ¼ CcðρÞ, which is attained if ρ is a pure state. From results in
refs., 11,42 it follows directly that the same region is attainable for
distillable entanglement and entanglement cost when consider-

ing maximally correlated two-qubit states.

Experimental setup and protocols

We experimentally implement the above protocols on several
classes of input states, both with and without assistance. The
experimental protocols and setup are illustrated in Fig. 4. The
setup consists of three modules, which we describe in detail in the
following.
In module (I) shown in Fig. 4d, we can prepare three different

classes of states on which we then apply incoherent state
conversion with or without assistance. The first class consists of
single-qubit states of the form

ρB ¼ 1

2
1þ rxσx þ rzσzð Þ (25)

on Bob’s side, where rx;z are real numbers and denote x; z Bloch
coordinates. The second class consists of pure two-qubit
entangled states of the form

Ψj iAB ¼ ffiffiffiffiffi

μ0
p

0j iA β0j iB þ ffiffiffiffiffi

μ1
p

1j iA β1j iB; (26)

where μ0; μ1 and β0j i; β1j i denote eigenvalues and eigenvectors
of Bob’s local state. The third class are two-qubit Werner states

ρABw ¼ qw ϕ
þj i ϕþh j þ 1� qw

4
1
AB; (27)

where ϕþj i denotes a maximally entangled state and qw is the
purity of the Werner state.
In particular, two type-I phase-matched β-barium borate (BBO)

crystals, whose optical axes are normal to each other, are pumped
by a continuous laser at 404 nm, with a power of 80mW, for the
generation of photon pairs with a central wavelength at λ=
808 nm via a spontaneous parametric down-conversion process. A
half-wave plate (H) working at 404 nm set before the lens and BBO

Fig. 3 Irreversibility of coherence theory. Allowed region for
distillable coherence Cd and coherence cost Cc for single-qubit
states. The upper curve is given by CdðρÞ ¼ CcðρÞ, which is attained
for pure states. The lower curve is obtained from the family of states
given in Eq. (22), see Proposition 10 and its discussion for details.

Fig. 4 Experimental protocols and setup. In a–c, the three experiments performed in our laboratory are illustrated: a single-qubit conversion
without assistance; b pure entangled two-qubit state conversion with assistance; c noisy two-qubit state conversion with assistance. The
whole setup in d can be divided into three modules: (I) state preparation; (II) incoherent state conversion with or without assistance; and (III)
tomography. In (I), we can prepare a class of single-qubit states as in Eq. (25) for Bob, its purification shared with Alice, and a class of Werner
states; in (II), we experimentally implement the incoherent operations, both with and without assistance; in (III), we identify the quantum
states of Bob. The optical components appearing in the setup are β-barium borate (BBO), half-wave plate (Hi), quarter-wave plate (Q), beam
displacer (BD), adjustable aperture (AA), interference filter (IF), beam splitter (BS), mirror (M), quartz plate (QP), polarizing beam splitter (PBS),
polarization controller (PC), single photon detector (SPD), fiber coupler (FC), and unbalanced interferometer (UI). K1;2 denotes the outcomes of
Kraus operators 1(2) implementing the incoherent operation in module (II).
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crystals is used to control the polarization of the pump laser. Two
polarization-entangled photons

ΦðθÞj i ¼ cos 2θ HHj i þ sin 2θ VVj i (28)

are generated and then separately distributed through two single-
mode fibers (SMFs), where one represents Bob and the other Alice.
Two interference filters with a 3 nm full width at half maximum are
placed to filter out proper transmission peaks. Half-wave plates at
both ends of the SMFs are used to control the polarization of both
photons. A quarter-wave plate (Q) in Bob’s arm is used to
compensate the phase for the desired prepared state.
For preparing single-qubit states as in Eq. (25), we set the

rotation angle of the 404 nm H to 0
, resulting in a state Hj iA Hj iB.
By using Alice’s photons as trigger, we can experimentally
generate a pure incoherent state Hj iB. We replace H1 with a
polarizing beam splitter (PBS), a 400λ quartz plate, and another
two half-wave plates (H2;3) on Bob’s side, for generating single-
qubit states ρB. The rotation angle of H2 is set to γ1, rotating the
state Hj i to another pure state

cos 2γ1 Hj i þ sin 2γ1 Vj i: (29)

Then, after the birefringent crystal, the pure state is completely
dephased, resulting in an incoherent mixed state

cos22γ1 Hj i Hh j þ sin22γ1 Vj i Vh j: (30)

The rotation angle of H3 is set to γ2, resulting in the transformation

Hj i�! cos 2γ2 Hj i þ sin 2γ2 Vj i;
Vj i�! sin 2γ2 Hj i � cos 2γ2 Vj i: (31)

The final prepared state reads

ρB ¼ ðcos2γ1cos2γ2 þ sin2γ1sin
2γ2Þ Hj i Hh j

þ ðsin2γ1cos2γ2 þ cos2γ1sin
2γ2Þ Vj i Vh j

þ 1

2
cos 2γ1 sin 2γ2ð Hj i Vh j þ Vj i Hh jÞ;

(32)

with Bloch coordinates

rx ¼ cos 2γ1 sin 2γ2;

ry ¼ 0;

rz ¼ cos 2γ1 cos 2γ2:

(33)

Thus, we can prepare the desired single-qubit states as described
in Eq. (25).
For generating two-qubit entangled states as given in Eq. (26),

we set the rotation angle of the 404 nm H to α, where cos 2α ¼ μ0
and sin 2α ¼ μ1. Then, passing through H1 with rotation angle β
results in Ψðμ; βÞj iAB with desired μ and β. Using our experimental
setup, the maximally entangled state can be prepared with a
fidelity of 0.986.
For preparing Werner states as in Eq. (27), we make use of an

unbalanced Mach–Zehnder interferometer. In particular, two 50/
50 beam splitters (BSs) are inserted into one branch. In the
transmission path, the two-photon state is prepared as the Bell
state

ϕþj i ¼ 1
ffiffiffi

2
p ð HHj i þ VVj iÞ (34)

when the rotation angle of the 404 nm H is set to 22:5
. In the
reflected path, three 400λ quartz crystals and an H with 22:5
 are
used to dephase the two-photon state into a completely mixed-
state 1AB=4. The ratio of the two states mixed at the output port of
the second BS can be changed by the two adjustable apertures for
the generation of Werner states in Eq. (27) with arbitrary qw. Out of
the state preparation module, the two photons are distributed to
Alice and Bob. In fact, the two BSs are not ideally 50/50 and the
transmission rate for H and V polarized photons are not exactly
the same, resulting in a decrease of fidelity to F ¼ 0:971 when we
prepare maximally entangled state, although we have slightly

adjusted the rotation angle of the 404 nm H. It is noteworthy that
in our experiments, we adopt 0 � H and 1 � V .
In module (II) of Fig. 4d, a class of SIOs are implemented on

Bob’s photons, by the combination of six Hs and three BDs. For
details, we refer to the Supplementary Material. In the case of b, c,
these operations can depend on the result of measurements
made on Alice’s qubit.43,44

In module (III) of Fig. 4d, we perform quantum-state tomo-
graphy45 to identify the target states fpi ; ρig. When we conduct
the experiment without assistance, the single-qubit state after the
IO can be directly identified via the combination of two Hs, two
Qs, and two PBSs in module (III). For deterministic state
conversion, we directly read the total coincident counts from
the two single photon detectors (SPDs); and for stochastic state
conversion, we discard the counts from K2 . For experimentally
determining the conversion probability in the case of stochastic
conversion (SC), we also collect data in an orthogonal basis. The
probability for SC can then be evaluated as

P1 ¼
N1

Ntotal

; (35)

where N1 denotes the total coincident counts from K1 and Ntotal

denotes the total coincident counts from K1 and K2 , in basis
f Hj i; Vj ig.
When we conduct the experiments with assistance, Alice can

perform arbitrary local projective measurements on her photons
and broadcast the measurement outcomes to Bob. Specifically,
Alice chooses the optimal measurement, which helps Bob to
perform the optimal conversion. When Bob gets the information
from Alice, which is either 0 or 1, he can then implement the
aforementioned IOs, obtaining the final target states.
For data collections, we used SMFs on Bob’s arm and multi-

mode fibers on Alice’s arm for directing photons from space to
detectors. The use of multi-mode fibers can increase and stabilize
the collection effeciency of Alice’s photons. On the other hand, the
use of SMFs on Bob’s side is preferable for cleaning up the high-
order optical modes, resulting in best interference between the
light beams that are displaced by the BDs. As mentioned before,
the power of the 404 nm continuous laser is set to about 80 mW
and the coincidence window is 4 ns, resulting in 2000 coincident
events per second. When adding white noise on Alice’s arm, the
coincident counts decrease to around 25% when compared with
the case without noise.

Experimental conversion without assistance

For verifying the theoretical predictions of incoherent single-qubit
state conversion, we experimentally initialize Bob’s photon as in

Eq. (25) where rx ¼ 1
3
; rz ¼ 5

6
for a mixed input and rx ¼

ffiffiffiffi

11
p

6
; rz ¼ 5

6

for a pure input. Our goal is now to convert the initial states using
the IOs available in our experiments. In Fig. 5a, b, the
experimentally obtained boundary of state space for deterministic
conversion (DC) is shown for the x-z plane by red cubes. The
boundaries with respect to SC are shown by blue cubes. All solid
lines represent theoretical predictions from Theorem 3. Also, the
experimental conversion probability is depicted as a function of x-
z coordinates of the target state σ by cylinders on the right of each
plot. The solid lines represent the theoretical predictions from Eq.
(6). There is a fundamental difference between pure and mixed
inputs: a pure and coherent input can be converted via IOs into
any qubit state at least stochastically. For mixed input, this is not
the case.

Experimental conversion with assistance

To explore assisted conversions experimentally, we first let Bob

share a pure entangled state ψj iAB with Alice, where Bob’s local

state is the state in Eq. (25) with Bloch coordinates 0; 0; 5
6

� �

and
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1
3
; 0; 5

6

� �

. Our experimental results are shown in Fig. 5c, d.

Remarkably, due to Theorem 6, the probability for assisted
conversion only depends on the z-coordinate of the initial state,
which explains the close similarity of both the state spaces and
conversion probabilities in Fig. 5c, d. We also experimentally test
two Werner states, one with entanglement and one without. In
Fig. 6, the DC boundaries are shown in purple and blue for the two
states. In accordance with Eq. (13), resorting to SCs does not allow
to prepare additional states.

Comparison of the experimental protocols

Compared with DC, Bob can obtain more states when he allows
for SC and even obtain all qubit states by taking advantage of
assistance. This can be seen in Fig. 7, where we compare our
results for the different protocols. In Fig. 7a, we experimentally
show the boundary of accessible state space, both deterministi-
cally and stochastically, with and without assistance. Noting that
the ‘1 norm of coherence10 C‘1 reads

C‘1ðρÞ ¼
X

i≠j

jρijj ¼ r (36)

for qubit states, we can obtain a relation between the coherence
of a target state and the probability to obtain it using IOs. The
experimental results are shown in Fig. 7b. Although local
coherence can never be increased deterministically, we can still
exceed the original coherence at the expense of success

probability. A maximally coherent state þj i can be obtained by
utilizing SC and assistance.

DISCUSSION

In this work we study the problem of quantum-state conversion
within the resource theory of quantum coherence, both theore-

tically and experimentally. The state-conversion problem is
important in any resource theory, as it determines the value of
states for protocols using the resource under study. The result

presented here are a significant generalization of recent results on
single-shot coherence theory16,17,20–22 and single-shot resource
theories in general,23 and include necessary conditions on the
existence of SCs, which we generalized to higher dimensions.
In most resource theories, one is also interested in the

possibilities of asymptotic state conversion, where many instances

of the initial and final state are available. As we have shown, our
results also pave the way towards a complete solution of this
problem: our single-shot conversion rate gives a lower bound on
the asymptotic conversion rate, which is in some areas

significantly better than the best previously known bound.11 In
addition, it coincides for some states with an upper bound from
ref. 11 solving the asymptotic conversion problem in these cases.

Moreover, the results allow us to investigate the irreversibility of
coherence theory in the asymptotic limit and to determine the
possible distillable coherence for fixed coherence cost.

Fig. 5 Experimental results for state conversion: single-qubit states and pure two-qubit states. Experimental results for two local states for

Bob as in Eq. (25) with Bloch coordinates 1
3
; 0; 5

6

� �

and
ffiffiffiffi

11
p

6
; 0; 5

6

� �

, are shown in a, b without assistance from Alice. The states are prepared with

high fidelity up to 0.999. In the left of a, b, the deterministic conversion (DC) and stochastic conversion (SC) boundaries in x-z plane are shown
in red and blue cubes, respectively, with each side representing the variance δ rih iði ¼ x; y; zÞ derived from Poisson distribution of single
photons. In the right of a, b, conversion probabilities Pðρ ! σÞ for boundaries of SC are shown with respect to the x-z Bloch coordinates of the
target state σB. Experimental results for two local states for Bob, with Bloch coordinates 0; 0; 5

6

� �

and 1
3
; 0; 5

6

� �

, sharing pure entangled states

ψj iAB with Alice, are shown in c, d. The experimental two-qubit states are prepared with fidelity of 0.989 and 0.982. In the left of c, d, the DC
and SC boundaries in x-z plane are shown in green and orange cubes, respectively. In the right of c, d, the probabilities of conversion

Pað ψj iAB ! ϕj iBÞ are shown with respect to the x-z Bloch coordinates of the target state ϕj iB . Solid lines represent theoretical predictions.
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Experimentally implementing non-unitary IOs, we demon-
strated that a quantum optical experiment can closely achieve

the expected optimal conversion rates. The corresponding optical
setup should be seen as a building block for more general
transformations, also going beyond single qubits and IOs. The
results presented in this work can then serve as benchmarks for

these more advanced setups.

DATA AVAILABILITY

All data not included in the paper and its Supplementary Material are available upon

reasonable request from the corresponding authors.
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Fig. 7 Experimental results for showing the capability of enlarging conversion boundaries via different protocols. The local state of Bob is
experimentally prepared as ρB ¼ 1

2
1þ 1

3
σx þ 5

6
σz

� �

. In a, we can see that the accessible states of Bob can be enlarged by using different
conversion protocols; the red boundary can be achieved via DC without assistance, which shows the basic capability of local incoherent
conversion. When we use SC, without assistance, we can make the conversion boundary larger, shown as blue. Combining the boundary of SC
and DC, we obtain an ellipsoid in the Bloch space. With assistance from a pure source, we can enlarge the conversion boundary to the surface
of the Bloch sphere. The boundaries of assisted conversion, both DC and SC, are shown as green and orange, respectively. As the boundaries
are rotationally invariant with respect to z, we focus on the x-z plane by taking a round cross-section. In b, the maximal success probabilities
vs. obtained ‘1 norm of coherence are plotted for these different protocols.

Fig. 6 Experimental results for assisted incoherent state conversion: noisy two-qubit states. Experimental results for local states for Bob,

ρB ¼ 1
2
1, sharing pure entangled states ψj iAB with Alice, subjected to a controllable proportion of white noise. Although Bob will find his

system in a maximally mixed state with zero coherence, he can prepare certain coherent states if he takes advantage of Alice’s assistance. In
our experiment, we use two Werner states with qw ¼ 0:8245 and 0.2075. In the right, the real parts of the tomographically reconstructed
quantum states ρABw are shown, with a fidelity of 0.986 and 0.997, respectively. In the left, the DC boundaries in x-z plane for conversions
ρABw ! σB are shown in purple and blue, respectively.
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