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Ultrastrong light-matter interaction in an optomechanical system can result in nonlinear optical effects such as
photon blockade. The system-bath couplings in such systems play an essential role in observing these effects. Here
we study the quantum coherence of an optomechanical system with a dressed-state master equation approach.
Our master equation includes photon-number-dependent terms that induce dephasing in this system. Cavity
dephasing, second-order photon correlation, and two-cavity entanglement are studied with the dressed-state
master equation.
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I. INTRODUCTION

Cavity optomechanics is a study of quantum effects induced
by light-matter interaction between cavity and mechanical
modes [1,2]. Many such effects have been realized in recent
experiments, including the preparation of quantum ground
state, the observation of strong optomechanical coupling, and
the coherent conversion of photon states via a mechanical
interface [3–11]. Among recent theoretical works, studies
of optomechanical systems in the single-photon strong or
ultrastrong coupling regime have predicted many interesting
nonlinear optical effects such as photon blockade, phonon
sidebands, and nonlinear optomechanically induced trans-
parency [12–23]. With the strength of single-photon optome-
chanical coupling comparable to mechanical frequency and
cavity bandwidth, optomechanical systems can demonstrate
strong nonlinearity. It is promising to reach this regime
in several experimental systems [4–9,24,25]. In addition,
recent theoretical works have shown that ultrastrong cou-
pling could be achieved using various quantum engineering
schemes [26–30].

The cavity and the mechanical modes in an optomechanical
system are subject to environmental noise, which causes
decoherence and plays a crucial role in studying the nonlinear
optical effects. The system-bath couplings can be treated with
a master equation approach. Very often, a standard master
equation (SME) is used to describe damping and thermal
excitations. For example, the contributions of a mechanical
bath can be in the form of D[b̂]ρ(t) and D[b̂†]ρ(t), where
b̂ is the annihilation operator of the mechanical mode,
D[ô]ρ(t) = 1

2 [2ôρ(t)ô† − ô†ôρ(t) − ρ(t)ô†ô] is the Lindblad
superoperator for operator ô, and ρ(t) is the density matrix
of the optomechanical system at time t . Such treatment is
based on the assumption that the optomechanical coupling
is much weaker than the mechanical frequency, and thus
it does not seriously modify the eigenstates of this system.
Under this assumption, each system mode is only affected
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by its corresponding bath modes. However, in the single-
photon strong or ultrastrong coupling regime, photons in
the eigenstates are strongly dressed by phonon excitations
of the mechanical mode, and this assumption is not valid
anymore [31–34].

Here we study the quantum coherence and dynamics of
an optomechanical system in the ultrastrong coupling regime
with an appropriate master equation approach. In our method,
we decompose the system operators in terms of the eigenstates
(dressed states) of the optomechanical system, and we derive
the master equation under this decomposition. This approach
was previously used to study strongly coupled harmonic
oscillators with linear coupling [32,33] and a mechanical
resonator coupled to a two-level-system defect [34]. Our
master equation contains photon-number-dependent terms
in the form of D[b̂ − β0N̂c]ρ(t), D[b̂† − β0N̂c]ρ(t) and
D[N̂c]ρ(t), which cause mechanical damping as well as
cavity dephasing. Counterintuitively, the term D[N̂c]ρ(t) that
generates dephasing between different photon Fock states
is not induced by cavity bath modes. It originates from
mechanical bath modes that influence the state of the cavity
via light-matter interaction. We show that at high temperature
our master equation generates faster cavity dephasing and
entanglement decay when compared with the SME. The
second-order photon correlation given by our master equation
also demonstrates more classical behavior than that of the
SME at high temperature, predicting photon bunching in
some regions of photon antibunching predicted by the SME.
Our results indicate that the coherence of an optomechanical
system could be strongly influenced by ultrastrong cou-
pling, and the SME may not be sufficient for studying this
system.

This paper is organized as follows. In Sec. II, we present
the master equation derived in the dressed-state basis of an
optomechanical system, and we compare this master equation
with the SME. We then study the quantum coherence prop-
erties of an optomechanical system governed by this master
equation in Secs. III, IV, and V, respectively, on the dephasing
of the cavity state, the second-order photon correlation in the
stationary state of the cavity, and the dynamics of two-cavity
entanglement. Conclusions are given in Sec. VI.
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II. DRESSED-STATE MASTER EQUATION

We consider an optomechanical system with one cavity
mode and one mechanical mode coupling via radiation-
pressure interaction. The Hamiltonian of this system is (� = 1)

Ĥs = ωcâ
†â + ωmb̂†b̂ − g0â

†â(b̂ + b̂†), (1)

where ωc (ωm) is the cavity (mechanical) frequency, g0 is the
strength of the single-photon optomechanical coupling, and
â (b̂) is the annihilation operator of the cavity (mechanical)
mode. The eigenstates of this coupled system can be written
as

|n,k(n)〉 = |n〉c ⊗ enβ0(b̂†−b̂)|k〉m (2)

with cavity photon number n and phonon number k for the
mechanical mode. Here the state |k(n)〉 is the mechanical
Fock state |k〉m shifted with a displacement nβ0 that is
proportional to the cavity photon number n and β0 = g0/ωm.
In other words, the eigenstates are dressed states in which the
cavity photon excites a photon-number-dependent mechan-
ical displacement due to the optomechanical coupling. The
corresponding eigenenergies of these states are εn,k = nωc +
kωm − n2g2

0/ωm, as illustrated in Fig. 1. In this work, we study
an optomechanical system in a ultrastrong coupling regime
with single-photon optomechanical coupling g0 comparable
to (or larger than) the mechanical frequency and the cavity
bandwidth κ . In this regime, the mechanical component
of the eigenstates is strongly shifted by optomechanical
coupling with a displacement proportional to the cavity photon
number [12–14,28].

The cavity and the mechanical modes couple to environ-
mental degrees of freedom that induce damping and thermal
excitations in the optomechanical system (see Fig. 1). The
system-bath couplings can be written as Ĥ I

b = Ĥ I
cb + Ĥ I

mb in
the interaction picture with [31]

Ĥ I
cb = â†(t)�̂c(t) + �̂†

c(t)â(t), (3)

FIG. 1. (Color online) Schematic energy diagram and system-
bath coupling of the optomechanical system (with only the zero-, one-,
and two-photon subspaces shown). The arrows indicate transitions
induced by cavity (blue) and mechanical (black) bath modes.

Ĥ I
mb = [b̂(t) + b̂†(t)][�̂m(t) + �̂†

m(t)]. (4)

The system operator â(t) = eiĤs t âe−iĤs t can be decomposed
in terms of the eigenstates as

â(t) =
∑
n,k,j

e−i�
(n)
k,j tA

(n)
j,k|n − 1,j (n−1)〉 〈n,k(n)|, (5)

where the Franck-Condon factors A
(n)
j,k = √

n〈j (n−1)|k(n)〉 are
finite for j �= k, indicating that â(t) contains many phonon
sidebands, and �

(n)
k,j = (εn,k − εn−1,j ). The operator b̂(t) =

eiĤs t b̂e−iĤs t can be simplified as

b̂(t) = e−iωmt (b̂ − β0N̂c) + β0N̂c (6)

with N̂c = â†â being the photon number operator. The op-
erator �̂c(t) [�̂m(t)] is the cavity (mechanical) bath operator
with �̂c(t) = ∑

j gcj e
−iωcj t ĉcj [�̂m(t) = ∑

j gmj e
−iωmj t ĉmj ] in

terms of the annihilation operator ĉcj (ĉmj ), frequency ωcj

(ωmj ), and coupling constant gcj (gmj ) of the bath modes.
With ωc � ωm, the cavity bath spectral densityJc(ω) =∑

j |gcj |2δ(ω − ωcj ) can be assumed to be flat over the
whole range of relevant phonon sidebands with Jc(ωc) =
κ/2π . We also assume that the mechanical bath spectral
density Jm(ω) = ∑

j |gmj |2δ(ω − ωmj ) is of Ohmic form with
Jm(ω) = (γmω/2πωm), and γm being the mechanical damping
rate. At high temperature, this spectral density corresponds to
a white noise on the mechanical mode [35].

Under the Born-Markov and the rotating wave approxima-
tions (RWA), we then derive the full master equation of this
system using the dressed-state operator decomposition given
in Eqs. (5) and (6). The master equation in the Schrödinger
picture has the form

dρ(t)

dt
= −i[Ĥs,ρ(t)] + γm(nth + 1)D[b̂ − β0N̂c]ρ(t)

+ κD[â]ρ(t) + γmnthD[b̂† − β0N̂c]ρ(t)

+ 4γm(kBT /ωm)β2
0D[N̂c]ρ(t), (7)

where nth is the thermal phonon occupation number at temper-
ature T , and D[ô]ρ(t) is the Lindblad superoperator. Hereafter
we call this master equation the dressed-state master equation
(DSME). The last term in this master equation is due to the
low-frequency part of the mechanical noise [35] and could
induce dephasing between different photon number states. A
detailed derivation of the DSME can be found in Appendix A.
In the limit of weak single-photon optomechanical coupling
with β0 � 1, the β0-dependent terms in the DSME can be
neglected. The DSME then becomes

dρ(t)

dt
= −i[Ĥs,ρ(t)] + γm(nth + 1)D[b̂]ρ(t)

+ κD[â]ρ(t) + γmnthD[b̂†]ρ(t), (8)

which has the familiar form of the SME often seen in the
literature.

Compared with the SME, the extra terms in the DSME
originate from the mechanical bath modes and the interaction
between the cavity and the mechanical modes. This interaction
results in the expression in Eq. (6). From Eq. (6) together with
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Eq. (4), we see that the mechanical resonator-bath coupling
generates two physical processes: (i) the exchange of phonons
between the system and bath modes in the shifted basis, which
gives rise to the D[b̂ − β0N̂c] and D[b̂† − β0N̂c] terms in
Eq. (7); (ii) the shift of the mechanical displacement that
depends on the photon number, which yields the last term
in Eq. (7). With β0 ∼ 1 in the ultrastrong coupling regime, the
extra terms can have a strong impact on the coherence and
dynamics of the optomechanical system.

III. CAVITY DEPHASING

The dynamics of an optomechanical system governed
by the DSME could be quite different from the dynamics
governed by the SME. We first study the dephasing of
cavity states. Consider the optomechanical system in an initial
state |ψ(0)〉 = 1√

2
(|0〉c + |3〉c)|0〉m, with both the cavity and

the mechanical modes in a pure state. We numerically simulate
the time evolution of the density matrix of this system using the
package in Ref. [36]. We then calculate the off-diagonal matrix
element ρ03(t) ≡ |c〈0|Trm[ρ(t)]|3〉c| of the density matrix
ρ(t), where |0〉c, |3〉c are photon number states and Trm is a
trace operation over the mechanical mode. This matrix element
directly reflects the coherence of the cavity mode. In Fig. 2,
ρ03(t) from the DSME as well as from the SME is plotted.
At nth = 0 (T = 0), the DSME result predicts stronger cavity
coherence than that of the SME, with ρ03(t) decreasing at a
slower rate with the DSME. However, at nth = 20, opposite
behavior can be observed with ρ03(t) decreasing at a faster
rate with the DSME than that with the SME. These results
indicate that the dephasing of the cavity is strongly affected
by the β0-dependent terms in Eq. (7) even at moderate thermal
occupation number, and the SME is not sufficient to correctly
describe the time evolution of this system.

To explain the above result, we write the master equations
in the interaction picture, which are given by Eqs. (A20)
and (A21) in Appendix A. In the interaction picture, the
bath-induced terms in the DSME are exactly the same as that of
Eq. (7), only with ρ(t) replaced by the density matrix ρI (t) in
the interaction picture. In the SME, with all other terms staying

κt

ρ
0
3
(t

)

FIG. 2. (Color online) Time envelope of |ρ03(t)|. Thin (red)
envelopes are for nth = 0; thick (blue) envelopes are for nth = 20.
The dotted curves are the actual time evolution of |ρ03(t)|. Other
parameters are g0 = 0.8 ωm, κ = 0.005 ωm, and γm = 0.00167 ωm.

the same as that in the DSME, the D[N̂c] term has a different
coefficient: γm(2nth + 1)β2

0 . Hence at nth = 0 (T = 0), the
SME has one more term than the DSME: γmβ2

0D[N̂c]ρI (t),
which explains the slower dephasing predicted by the DSME.
At nth = 20 (finite T ), the coefficient of the D[N̂c] term in the
DSME becomes larger than that in the SME, which predicts
faster dephasing for the DSME.

The time evolution of the photon number average, in
contrast, is not affected by the β0-dependent terms in the master
equation. It can be shown that with the DSME, 〈N̂c(t)〉 =
exp (−κt)〈N̂c(0)〉, as given by Eq. (A22) in Appendix A, which
is the usual photon exponential decay at a decay rate κ .

IV. SECOND-ORDER PHOTON CORRELATION

Photon correlation can be strongly affected by the radiation-
pressure interaction in an optomechanical system with ultra-
strong coupling [13,16,17]. The second-order photon corre-
lation at equal times defined as g(2)(0) = 〈â†â†ââ〉ss/〈â†â〉2

ss

is a widely used quantity to identify the quantum features
of a photon state, such as antibunching. Here we study the
behavior of g(2)(0) of an optomechanical system governed by
the DSME and the SME. The system is under a weak driving
on the cavity mode. With the driving, the Hamiltonian Ĥs

in Eq. (7) needs to be replaced by Ĥ ′
s = Ĥs + E0(âeiωd t +

â†e−iωd t ), where E0 (ωd ) is the amplitude (frequency) of the
driving field. In our numerical calculation [36], we choose
the detuning of the driving field �0 ≡ ωc − ωd to be at the
single-photon resonance with �0 = g2

0/ωm, i.e., the driving
field can resonantly excite the transition between the ground
state and the state |1,0(1)〉 [12,13]. We derive the photon
correlation by solving the steady state of the master equations.

The photon correlation g(2)(0) is plotted in Fig. 3 as a
function of the dimensionless constant β0 = g0/ωm. Similar to
that in previous works [13,17], g(2)(0) demonstrates oscillating
behavior with peak positions at β0 = √

k/2 for integer number
k. These peaks correspond to two-photon resonances at given
phonon sidebands. At nth = 0, the result with the DSME gives
smaller g(2)(0) values and indicates more quantumness in the
photon state than that with the SME. On the other hand,

g0/ωm

g
(2

)
(0

)

FIG. 3. (Color online) Photon correlation g(2)(0) vs g0/ωm at
detuning �0 ≡ g2

0/ωm and driving amplitude E0 = 0.1κ . Thin (red)
curves are for nth = 0; thick (blue) curves are for nth = 10. Other
parameters are κ = 0.005 ωm and γm = 0.0033 ωm.
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at nth = 10, g(2)(0) from the DSME is always larger than
that from the SME, indicating less antibunching and weaker
photon blockade. In particular, in the vicinity of β0 = 1.7
and several other values, the SME gives g(2)(0) < 1, while
the DSME gives an opposite result of g(2)(0) > 1, which
shows that photon blockade does not occur. These numerical
results can be explained by our previous analysis of the master
equations in the interaction picture, and they also agree with
the results for cavity dephasing. Our results imply that in
the ultrastrong regime, the second-order photon correlation
depends sensitively on the coupling β0 and could be strongly
affected by the D[N̂c] term in the DSME.

V. TWO-CAVITY ENTANGLEMENT

Consider an optomechanical system made of two-cavity
modes coupling to a common mechanical resonator with the
total radiation-pressure interaction Ĥint = −∑

i gi â
†
i âi(b̂ +

b̂†), where gi’s are the coupling constants and âi’s are the
annihilation operators for the cavity modes with i = 1,2. Here
we study the entanglement between the two-cavity modes. The
DSME for this system can be derived as

dρ(t)

dt
= −i[Ĥs,ρ(t)] + γm(nth + 1)D[b̂ − N̂t ]ρ(t)

+
∑

i

κiD[âi]ρ(t) + γmnthD[b̂† − N̂t ]ρ(t)

+ 4γm(kBT /ωm)D[N̂t ]ρ(t), (9)

where Ĥs is the total Hamiltonian with the interaction Ĥint

given above, κi is the damping rate of each cavity mode, and
N̂t = β1N̂c1 + β2N̂c2, with βi = gi/ωm and N̂ci = â

†
i âi . The

difference between Eq. (9) and Eq. (7) is that the N̂t terms
in the above master equation contain contributions from both
cavities. Details of the derivation are presented in Appendix B.

We study the time dependence of the entanglement be-
tween the two-cavity modes using the master equations. The
system starts with an initial state |ϕ(0)〉 = 1√

2
[(|0〉c1|1〉c2 +

|1〉c1|0〉c2)|0〉m] with the cavities in a fully entangled state.
We characterize the entanglement with the logarithmic nega-
tivity [37,38]: EN (t) = log2 ‖(Trm[ρ(t)])TA‖, where the super-
script TA denotes the partial transpose of the reduced density
matrix Trm[ρ(t)], and ‖ô‖ denotes the trace norm of the matrix
ô. The logarithmic negativity EN (t) is plotted in Fig. 4. For
equal coupling strength β1,2 = 1.5, the results from the DSME
and from the SME are exactly the same and without oscillations
in the amplitudes. This is because N̂t = β1(N̂c1 + N̂c2) at
equal coupling, proportional to the total photon number in
the cavities, and our initial state is in a superposition of
two states |0〉c1|1〉c2 and |1〉c1|0〉c2, which have equal total
photon number. Hence, the N̂t -dependent terms in the master
equations generate equal phase fluctuations on these two
states, and they induce no extra dephasing in this special case.
However, when the couplings are different, e.g., for β1 = 1.5
and β2 = 0.5, the DSME and the SME give different results.
At nth = 20, EN (t) derived from the DSME decays faster than
that from the SME, similar to the behavior of cavity dephasing
shown in Fig. 2, due to the larger D[N̂t ] terms in the DSME.
This indicates that the mechanical noise is transferred to the

κt

E
N

(t
)

FIG. 4. (Color online) Time envelope of EN (t). Thin (red) curve
is for β1,2 = 1.5; thick (blue) curves are for β1 = 1.5 and β2 = 0.5.
The dotted curves are the actual time evolution of EN (t). Other
parameters are κ1,2 = 0.005 ωm, γm = 0.00167 ωm, and nth = 20.

cavity modes via the optomechanical coupling and degrades
the entanglement. Note that although the time envelopes in
Figs. 2 and 4 all show exponential decay, their time scales
and detailed behaviors are quite different. The similarity in the
time envelopes is due to the forms of the dissipative terms in
the master equations, which induce this generic behavior in
both cavity dephasing and entanglement.

VI. CONCLUSIONS

To summarize, we study quantum coherence in an optome-
chanical system in the ultrastrong coupling regime with a
dressed-state master equation approach. Compared with the
standard approach, our master equation takes into account
the modification of the eigenstates due to the optomechanical
coupling between the cavity and the mechanical modes, and
it predicts different behaviors in cavity dephasing, second-
order photon correlation, and two-cavity entanglement. Our
results show that ultrastrong light-matter interaction can
play a significant role in the open system dynamics of an
optomechanical system. This work could be useful for future
studies of nonlinear optical effects in optomechanical systems.
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APPENDIX A: DSME FOR A SINGLE-CAVITY SYSTEM

In this Appendix, we present details of the derivation of the
DSME given in Eq. (7). The coupling between the system
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and the bath modes can be described by the Hamiltonian
Ĥ I

b = Ĥ I
cb + Ĥ I

mb in the interaction picture with the cavity-
bath coupling Ĥ I

cb given by Eq. (3) and the mechanical
mode-bath coupling Ĥ I

mb given by Eq. (4), respectively. Under
the Born-Markov approximation, the master equation for the
reduced density matrix ρI (t) of the optomechanical system in
the interaction picture can be derived as [31–34]

dρI (t)

dt
= −

∫ ∞

0
ds Trb

[
Ĥ I

b (t),

× [
Ĥ I

b (t − s), ρI (t) ⊗ ρc ⊗ ρm

]]
, (A1)

where Trb denotes the trace operation over the bath modes,
and ρc (ρm) is the density matrix of the cavity (mechanical)
bath modes in their thermal state. As the cavity bath and the
mechanical bath are independent from each other, the above
master equation can be written as

dρI (t)

dt
= LI

cρ
I (t) + LI

mρI (t), (A2)

where LI
c and LI

m are superoperators acting on the density
matrix of the system. By applying the rotating wave approx-
imation (RWA) to remove fast oscillating terms such as the
e±2iωct terms, the cavity bath contribution becomes

LI
cρ

I (t) =
∫ ∞

0
ds R−(s)â†(t − s)ρI (t)â(t)

−
∫ ∞

0
ds R−(s)â(t)â†(t − s)ρI (t)

+
∫ ∞

0
ds R+(s)â(t − s)ρI (t)â†(t)

−
∫ ∞

0
ds R+(s)â†(t)â(t − s)ρI (t)

+ H.c., (A3)

with bath correlation functions defined as

R−(s) = Trb[�̂†
c(t)�̂c(t − s)ρc],

(A4)
R+(s) = Trb[�̂c(t)�̂†

c(t − s)ρc].

For the mechanical bath, we have

LI
mρI (t) =

∫ ∞

0
ds Rm(s)X̂(t − s)ρI (t)X̂(t)

−
∫ ∞

0
ds Rm(s)X̂(t)X̂(t − s)ρI (t) + H.c.,

(A5)

with the time-dependent operators

X̂(t) = b̂(t) + b̂†(t),
(A6)

X̂�(t) = �̂m(t) + �̂†
m(t),

and the correlation function for the mechanical bath

Rm(s) = Trb[X̂�(t)X̂�(t − s)ρm]. (A7)

Below we derive the contributions of the cavity and the
mechanical bath modes, respectively.

1. Cavity bath contribution

We first write down the time-dependent operator â(t).
Define the operators

Â
(n)
j,k = √

n〈j (n−1)|k(n)〉|n − 1,j (n−1)〉 〈n,k(n)| (A8)

and the energy separations �
(n)
k,j = (εn,k − εn−1,j ) in terms of

the eigenenergies εn,k . It can be shown that �
(n)
k,j = ωc + (k −

j )ωm + (1 − 2n)g2
0/ωm, including phonon sidebands (k −

j )ωm. We then have

â(t) =
∑
n,k,j

e−i�
(n)
k,j t Â

(n)
j,k. (A9)

The cavity bath contribution to the DSME can be derived from
Eq. (A3). With �̂c(t) = ∑

j gcj e
−iωcj t ĉcj ,

R−(s) =
∑

j

|gcj |2n(ωcj ,T )eiωcj s ,

(A10)
R+(s) =

∑
j

|gcj |2[n(ωcj ,T ) + 1]e−iωcj s ,

where n(ωcj ,T ) is the average occupation number of the
corresponding bath mode. Because ωc � ωm, we assume
that the cavity bath spectral density defined as Jc(ω) =∑

j |gcj |2δ(ω − ωcj ) is slowly varying near ω = ωc, and can
thus be written as Jc(ω) ≡ κ/2π in the full range of the phonon
sidebands. Hence,∫ ∞

0
ds ei�

(n)
k,j ·sR+(s) ≈ κ

2
[n(ωc,T ) + 1] ≈ κ

2
,

(A11)∫ ∞

0
ds e−i�

(n)
k,j ·sR−(s) ≈ κ

2
n(ωc,T ) ≈ 0,

where the thermal photon number at the cavity frequency
n(ωc,T ) ≈ 0. The cavity bath contribution is hence

LI
cρ

I (t) = κ

2

∑
k,j,n,l,i,r

{
2
[
e−i�

(n)
k,j t Â

(n)
j,k

]
ρI (t)

[
ei�

(r)
l,i t Â

(r)†
i,l

]

− [
ei�

(r)
l,i t Â

(r)†
i,l

][
e−i�

(n)
k,j t Â

(n)
j,k

]
ρI (t)

− ρI (t)
[
ei�

(r)
l,i t Â

(r)†
i,l

][
e−i�

(n)
k,j t Â

(n)
j,k

]}
, (A12)

which is simply LI
cρ

I (t) = κD[â(t)]ρI (t). Here D[ô]ρ(t) =
1
2 [2ôρ(t)ô† − ô†ôρ(t) − ρ(t)ô†ô] is the Lindblad superopera-
tor for operator ô. Under the RWA, the fast oscillating terms
in this expression can be omitted from the above equation.

By transforming Eq. (A12) to the Schrödinger picture, the
cavity bath contribution can be simplified as

Lcρ(t) = κD[â]ρ(t), (A13)

where Lc is a superoperator acting on the density matrix
of the system modes in the Schrödinger picture, ρ(t) =
e−iĤs t ρI (t)eiĤs t . The time-dependent factors in this super-
operator are canceled due to the transformation e−iĤs t .
Equation (A13) has exactly the same form as the cavity bath
contribution in a standard master equation.

013812-5



HU, HUANG, LIAO, TIAN, AND GOAN PHYSICAL REVIEW A 91, 013812 (2015)

2. Mechanical bath contribution

The time-dependent operator b̂(t) can be decomposed in
the eigenbasis as

b̂(t) =
∑
n,j

[
√

je−iωmt |n,(j − 1)(n)〉〈n,j (n)|

+β0n|n,j (n)〉〈n,j (n)|], (A14)

which can be simplified to give Eq. (6). Using the expression
�̂m(t) = ∑

j gmj e
−iωmj t ĉmj , we derive the correlation function

Rm(s) defined in Eq. (A7) as

Rm(s) =
∑

j

|gmj |2n(ωmj ,T )eiωmj s

+
∑

j

|gmj |2[n(ωmj ,T ) + 1]e−iωmj s, (A15)

where n(ωmj ,T ) is the thermal occupation number of bath
mode ĉmj . We assume that the spectral density of the
mechanical bath Jm(ω) = ∑

j |gmj |2δ(ω − ωmj ) is Ohmic and
takes the form of Jm(ω) = γmω

2πωm
in the continuum limit of bath

frequency. Here γm = 2πJm(ωm) is the mechanical damping
rate. Note that for an Ohmic spectral density, the correlation
function in Eq. (A15) can be converted to the familiar form in
Ref. [35] with

Rm(s) = γm

2ωm

∫ ∞

−∞

dω

2π
ωe−iω·s[coth (ω/2kBT ) + 1], (A16)

where we have applied the relation n(−ω,T ) = −[n(ω,T ) +
1]. Similar to the calculation for the cavity bath in Sec. A 1,
we find ∫ ∞

0
ds eiωmsRm(s) = γm

2
(nth + 1),

∫ ∞

0
ds e−iωmsRm(s) = γm

2
nth, (A17)

∫ ∞

0
ds Rm(s) = γm

2

(
kBT

ωm

)
,

where nth ≡ n(ωm,T ) is the thermal phonon number at the
mechanical resonance.

Using this result and applying the RWA to omit the fast
oscillating terms, we derive the mechanical bath contribution
to the DSME:

LI
mρI (t) = γm(nth + 1)D[b̂ − β0N̂c]ρI (t)

+ γmnthD[b̂† − β0N̂c]ρI (t)

+ 4γm

(
kBT

ωm

)
β2

0D[N̂c]ρI (t). (A18)

With Eq. (6), e−iĤs t (b̂ − β0N̂c)eiĤs t = eiωmt (b̂ − β0N̂c). The
mechanical bath contribution in the Schrödinger picture,
Lmρ(t), has exactly the same form as that of Eq. (A18) with
the replacement ρI (t) → ρ(t).

3. Master equations

Here we summarize the equations derived in the previous
subsections. In the Schrödinger picture, the DSME has the

form

dρ(t)

dt
= −i[Ĥs,ρ(t)] + Lcρ(t) + Lmρ(t), (A19)

with Lcρ(t) and Lmρ(t) given by Eqs. (A13) and (A18),
respectively. Written explicitly in terms of the system oper-
ators, we obtain the master equation given by Eq. (7). In the
interaction picture, the DSME becomes

dρI (t)

dt
= κD[â(t)]ρI (t)

+ γm(nth + 1)D[b̂ − β0N̂c]ρI (t)

+ γmnthD[b̂† − β0N̂c]ρI (t)

+ 4γm

(
kBT

ωm

)
β2

0D[N̂c]ρ(t), (A20)

which contains fast oscillating terms with frequency O(ωm)
generated by the phonon sidebands. These terms can be
omitted under the RWA.

The SME in the Schrödinger picture, often seen in the
literature, is given by Eq. (8). Applying the transformation
ρI (t) = eiĤs tρ(t)e−iĤs t and omitting the fast oscillating terms
including e±iωmt , the SME in the interaction picture becomes

dρI (t)

dt
= κD[â(t)]ρI (t)

+ γm(nth + 1)D[b̂ − β0N̂c]ρI (t)

+ γmnthD[b̂† − β0N̂c]ρI (t)

+ γm(2nth + 1)β2
0D[N̂c]ρI (t). (A21)

Note that we have used Eq. (6) and the RWA in deriving
this master equation. The difference between Eq. (A20)
and Eq. (A21) is in the last term of the master equation,
which corresponds to photon dephasing. The difference is
proportional to γm[4( kBT

ωm
) − 2nth − 1]β2

0 , and it originates
from the mechanical bath modes. Because of the strong
coupling between the cavity and the mechanical modes, the
mechanical noise is transferred to the cavity mode and induces
photon dephasing. At high temperature with kBT � ωm,
the DSME predicts more serious dephasing than the SME,
whereas at low temperature, the DSME in Eq. (A20) predicts
slower dephasing than the SME. We want to note that the
master equations here are all based on the bath correlation
function given by Eq. (A16), which corresponds to a white
noise spectrum on the mechanical mode at high temperature.

4. Analytical solutions of operator averages

With the DSME given above, the time evolution of some
operators can be solved analytically. For the photon number
operator N̂c,

d〈N̂c〉
dt

= −κ〈N̂c〉, (A22)

which yields the solution 〈N̂c(t)〉 = e−κt 〈N̂c(0)〉. This result is
exactly the same as the time evolution given by the SME, i.e.,
the dynamics of the photon number operator is not affected by
our approach. This is because N̂c commutes with both Ĥs and
the extra dephasing term (the last term) in the DSME.
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Similarly, for the annihilation operator of the mechanical
mode b̂,

d〈b̂〉
dt

= −iωm(〈b̂〉 − β0〈N̂c〉) − γm

2
(〈b̂〉 − β0〈N̂c〉), (A23)

which depends on the photon number average 〈N̂c〉. Combin-
ing Eq. (A22) and Eq. (A24), we derive

〈b̂(t)〉 = e−iωmt− γm
2 t 〈b̂(0)〉

+ ig0 + β0γm/2

iωm + γm/2 − κ
(e−κt − e−iωmt− γm

2 t )〈N̂c(0)〉,

(A24)
which depends on the initial cavity photon number, but it is
independent of the thermal temperature of the mechanical bath.

APPENDIX B: DSME FOR A TWO-CAVITY SYSTEM

In this section, we derive the DSME given by Eq. (9) for
two-cavity modes coupling to a common mechanical mode.
The total Hamiltonian of this system can be written as

Ĥs =
∑
i=1,2

ωci â
†
i âi + ωmb̂†b̂ −

∑
i=1,2

giâ
†
i âi(b̂

† + b̂), (B1)

where âi is the annihilation operator for the ith cavity mode,
ωci is its frequency, and gi is the coupling constant between

cavity âi and the mechanical mode. The eigenstates of this
Hamiltonian are

|n1,n2,k
(n1,n2)〉 = |n1〉c1|n2〉c2e

(
∑

i niβi )(b̂†−b̂)|k〉m, (B2)

with βi = gi/ωm. The corresponding eigenenergies are

εn1,n2,k = n1ωc1 + n2ωc2 + kωm − (n1β1 + n2β2)2ωm. (B3)

To derive the DSME, we consider the time-dependent opera-
tors b̂(t) and âi(t). For the mechanical mode,

b̂(t) = eiĤs t b̂e−iĤs t = e−iωmt (b̂ − N̂t ) + N̂t (B4)

with the effective number operator defined as

N̂t = β1â
†
1â1 + β2â

†
2â2. (B5)

For the cavity mode, âi(t) = eiĤs t âie
−iĤs t , including many

phonon sidebands. We use the same assumptions as that in
Appendix A, i.e., the cavity spectral density is smooth in the
entire range of the phonon sidebands, and the mechanical
bath is Ohmic. By applying the same procedure as that in
Appendix A, the DSME in Eq. (9) can be derived.
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A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter,
Nature (London) 478, 89 (2011).

[7] N. Brahms, T. Botter, S. Schreppler, D. W. C. Brooks,
and D. M. Stamper-Kurn, Phys. Rev. Lett. 108, 133601
(2012).
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[29] X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Sci.
Rep. 3, 2943 (2013).

013812-7

http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1088/0953-4075/46/10/104001
http://dx.doi.org/10.1088/0953-4075/46/10/104001
http://dx.doi.org/10.1088/0953-4075/46/10/104001
http://dx.doi.org/10.1088/0953-4075/46/10/104001
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature08171
http://dx.doi.org/10.1038/nature08171
http://dx.doi.org/10.1038/nature08171
http://dx.doi.org/10.1038/nature08171
http://dx.doi.org/10.1038/nature09898
http://dx.doi.org/10.1038/nature09898
http://dx.doi.org/10.1038/nature09898
http://dx.doi.org/10.1038/nature09898
http://dx.doi.org/10.1038/nature10461
http://dx.doi.org/10.1038/nature10461
http://dx.doi.org/10.1038/nature10461
http://dx.doi.org/10.1038/nature10461
http://dx.doi.org/10.1103/PhysRevLett.108.133601
http://dx.doi.org/10.1103/PhysRevLett.108.133601
http://dx.doi.org/10.1103/PhysRevLett.108.133601
http://dx.doi.org/10.1103/PhysRevLett.108.133601
http://dx.doi.org/10.1038/nature10787
http://dx.doi.org/10.1038/nature10787
http://dx.doi.org/10.1038/nature10787
http://dx.doi.org/10.1038/nature10787
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1002/andp.201400116
http://arxiv.org/abs/arXiv:1407.3035
http://dx.doi.org/10.1088/1367-2630/12/8/083030
http://dx.doi.org/10.1088/1367-2630/12/8/083030
http://dx.doi.org/10.1088/1367-2630/12/8/083030
http://dx.doi.org/10.1088/1367-2630/12/8/083030
http://dx.doi.org/10.1103/PhysRevLett.107.063601
http://dx.doi.org/10.1103/PhysRevLett.107.063601
http://dx.doi.org/10.1103/PhysRevLett.107.063601
http://dx.doi.org/10.1103/PhysRevLett.107.063601
http://dx.doi.org/10.1103/PhysRevLett.107.063602
http://dx.doi.org/10.1103/PhysRevLett.107.063602
http://dx.doi.org/10.1103/PhysRevLett.107.063602
http://dx.doi.org/10.1103/PhysRevLett.107.063602
http://dx.doi.org/10.1103/PhysRevA.85.025803
http://dx.doi.org/10.1103/PhysRevA.85.025803
http://dx.doi.org/10.1103/PhysRevA.85.025803
http://dx.doi.org/10.1103/PhysRevA.85.025803
http://dx.doi.org/10.1103/PhysRevA.87.013847
http://dx.doi.org/10.1103/PhysRevA.87.013847
http://dx.doi.org/10.1103/PhysRevA.87.013847
http://dx.doi.org/10.1103/PhysRevA.87.013847
http://dx.doi.org/10.1103/PhysRevA.87.043809
http://dx.doi.org/10.1103/PhysRevA.87.043809
http://dx.doi.org/10.1103/PhysRevA.87.043809
http://dx.doi.org/10.1103/PhysRevA.87.043809
http://dx.doi.org/10.1103/PhysRevA.87.013839
http://dx.doi.org/10.1103/PhysRevA.87.013839
http://dx.doi.org/10.1103/PhysRevA.87.013839
http://dx.doi.org/10.1103/PhysRevA.87.013839
http://dx.doi.org/10.1103/PhysRevA.85.051803
http://dx.doi.org/10.1103/PhysRevA.85.051803
http://dx.doi.org/10.1103/PhysRevA.85.051803
http://dx.doi.org/10.1103/PhysRevA.85.051803
http://dx.doi.org/10.1103/PhysRevA.87.025803
http://dx.doi.org/10.1103/PhysRevA.87.025803
http://dx.doi.org/10.1103/PhysRevA.87.025803
http://dx.doi.org/10.1103/PhysRevA.87.025803
http://dx.doi.org/10.1103/PhysRevLett.111.133601
http://dx.doi.org/10.1103/PhysRevLett.111.133601
http://dx.doi.org/10.1103/PhysRevLett.111.133601
http://dx.doi.org/10.1103/PhysRevLett.111.133601
http://dx.doi.org/10.1103/PhysRevLett.109.253601
http://dx.doi.org/10.1103/PhysRevLett.109.253601
http://dx.doi.org/10.1103/PhysRevLett.109.253601
http://dx.doi.org/10.1103/PhysRevLett.109.253601
http://dx.doi.org/10.1088/1367-2630/15/9/093007
http://dx.doi.org/10.1088/1367-2630/15/9/093007
http://dx.doi.org/10.1088/1367-2630/15/9/093007
http://dx.doi.org/10.1088/1367-2630/15/9/093007
http://dx.doi.org/10.1038/nphys965
http://dx.doi.org/10.1038/nphys965
http://dx.doi.org/10.1038/nphys965
http://dx.doi.org/10.1038/nphys965
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1103/PhysRevLett.109.223601
http://dx.doi.org/10.1103/PhysRevLett.109.223601
http://dx.doi.org/10.1103/PhysRevLett.109.223601
http://dx.doi.org/10.1103/PhysRevLett.109.223601
http://dx.doi.org/10.1103/PhysRevLett.112.203603
http://dx.doi.org/10.1103/PhysRevLett.112.203603
http://dx.doi.org/10.1103/PhysRevLett.112.203603
http://dx.doi.org/10.1103/PhysRevLett.112.203603
http://dx.doi.org/10.1088/1367-2630/16/5/055008
http://dx.doi.org/10.1088/1367-2630/16/5/055008
http://dx.doi.org/10.1088/1367-2630/16/5/055008
http://dx.doi.org/10.1088/1367-2630/16/5/055008
http://dx.doi.org/10.1038/srep02943
http://dx.doi.org/10.1038/srep02943
http://dx.doi.org/10.1038/srep02943
http://dx.doi.org/10.1038/srep02943


HU, HUANG, LIAO, TIAN, AND GOAN PHYSICAL REVIEW A 91, 013812 (2015)

[30] J. Q. Liao, K. Jacobs, F. Nori, and R. W. Simmonds, New J.
Phys. 16, 072001 (2014).

[31] C. Gardiner and P. Zoller, Quantum Noise: A
Handbook of Markovian and Non-Markovian Quantum
Stochastic Methods with Applications to Quantum
Optics, Springer Series in Synergetics (Springer, Berlin,
2004).

[32] M. A. de Ponte, M. C. de Oliveira, and M. H. Y. Moussa, Phys.
Rev. A 70, 022324 (2004).

[33] C.-H. Chou, T. Yu, and B. L. Hu, Phys. Rev. E 77, 011112
(2008).

[34] L. Tian, Phys. Rev. B 84, 035417 (2011).
[35] See, e.g., C. Genes, D. Vitali, P. Tombesi, S. Gigan, and

M. Aspelmeyer, Phys. Rev. A 77, 033804 (2008).
[36] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.

Commun. 183, 1760 (2012); ,184, 1234 (2013).
[37] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[38] M. B. Plenio, Phys. Rev. Lett. 95, 090503 (2005).

013812-8

http://dx.doi.org/10.1088/1367-2630/16/7/072001
http://dx.doi.org/10.1088/1367-2630/16/7/072001
http://dx.doi.org/10.1088/1367-2630/16/7/072001
http://dx.doi.org/10.1088/1367-2630/16/7/072001
http://dx.doi.org/10.1103/PhysRevA.70.022324
http://dx.doi.org/10.1103/PhysRevA.70.022324
http://dx.doi.org/10.1103/PhysRevA.70.022324
http://dx.doi.org/10.1103/PhysRevA.70.022324
http://dx.doi.org/10.1103/PhysRevE.77.011112
http://dx.doi.org/10.1103/PhysRevE.77.011112
http://dx.doi.org/10.1103/PhysRevE.77.011112
http://dx.doi.org/10.1103/PhysRevE.77.011112
http://dx.doi.org/10.1103/PhysRevB.84.035417
http://dx.doi.org/10.1103/PhysRevB.84.035417
http://dx.doi.org/10.1103/PhysRevB.84.035417
http://dx.doi.org/10.1103/PhysRevB.84.035417
http://dx.doi.org/10.1103/PhysRevA.77.033804
http://dx.doi.org/10.1103/PhysRevA.77.033804
http://dx.doi.org/10.1103/PhysRevA.77.033804
http://dx.doi.org/10.1103/PhysRevA.77.033804
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevLett.95.090503

