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Quantum coherence induces pulse shape
modification in a semiconductor optical amplifier
at room temperature
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Coherence in light–matter interaction is a necessary ingredient if light is used to control the

quantum state of a material system. Coherent effects are firmly associated with isolated

systems kept at low temperature. The exceedingly fast dephasing in condensed matter

environments, in particular at elevated temperatures, may well erase all coherent information

in the material at timescales shorter than a laser excitation pulse. Here we show for an

ensemble of semiconductor quantum dots that even in the presence of ultrafast dephasing,

for suitably designed condensed matter systems quantum-coherent effects are robust

enough to be observable at room temperature. Our conclusions are based on an analysis of

the reshaping an ultrafast laser pulse undergoes on propagation through a semiconductor

quantum dot amplifier. We show that this pulse modification contains the signature of

coherent light–matter interaction and can be controlled by adjusting the population of the

quantum dots via electrical injection.
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C
oherent control of the quantum state of matter by light is
an established technique, in particular for isolated material
systems1–4. The nature of coherent interactions allows to

reversibly change the state of matter and the state of the
electromagnetic field on an ultrafast timescale without energy
loss. A particularly illustrative realization of such a process in a
resonantly driven two-level system are Rabi oscillations, showing
the complete and reversible periodic excitation of a two-level
system5. The qubits of quantum computing, for example, are
based on Rabi oscillations in single two-level systems. Harnessing
coherent processes, the deterministic nature of which allows
steering the energy flow in the coupled light–matter system,
opens up new avenues for applications also in mesoscopic and
macroscopic devices6–9. For a semiconductor device operating in
the coherent regime based on Rabi oscillations, the comparatively
slow gain recovery process via replenishing the active carriers
from a reservoir10, hitherto limiting the performance of devices to
data rates of about 200 Gb s� 1 (refs 11,12), could be avoided.
Implementing coherent sub-picosecond, not population lifetime
limited processes, for example, ultrafast switching, opens the new
field of coherent photonics.

Rabi flopping has been observed in various semiconductor
systems of different dimensionality at low temperature13,14, in
particular in isolated centres like quantum dots (QDs)15–17. QDs
are zero-dimensional structures formed by self-organization, and
show an atom-like delta-function density of states18,19. They
support localized excitations, although they are immersed in a
solid-state environment. With this unique combination of single-
particle behaviour and condensed matter characteristics20,21, they
are ideally suited for studying the response of a complex system
to excitation by a light pulse. In addition, self-assembled QDs are
readily integrated into electrically pumped device structures, with
the electrical injection allowing to control the initial population of
their quantum states.

For QD structures, decoherence times of 50–500 fs, depending
on the injection current, have been predicted and determined22–24,
making it hard to directly observe Rabi oscillations, as
scattering rapidly scrambles the phases, reducing a reversible
oscillation to an irreversible equilibration. The coherent light–
matter interaction, however, still does leave its traces on the
electromagnetic field of the exciting pulse as it leaves the sample,
opening an alternative method of measurement. The only
necessary condition in this case is that the pulse induces a
complete Rabi flop during the time within which the polarization

in the medium is not completely damped. Since the Rabi
frequency O scales with the field strength E, strong optical
pulses are required.

Signatures of coherent light–matter interaction on the electro-
magnetic field at room temperature have been predicted in
numerical simulations for quantum well (QW) structures25,26.
Indeed, Rabi oscillations in a quantum cascade structure with
two-dimensional (2D) confinement—at low temperature—have
recently been observed by analysing the change in pulse shape of
an intense laser pulse propagating through the material9. Also, a
pulse in a quantum-dash-based device has been shown to exhibit
signatures of Rabi oscillations27.

Here we show that an intense laser pulse interacting with an
ensemble of QDs can drive Rabi oscillations fast enough to be
observable even in a solid-state environment at room tempera-
ture. The signature of Rabi oscillations is retained even under
conditions of electrical pumping, adding the QD inversion as an
additional control parameter. Adjusting the QD population via
the electrical current allows for switching the modulations of the
pulse shape, thus controlling coherent effects through population.
These effects have on one hand the potential to be exploited for
ultrafast modulation of optical signals. On the other hand, for
telecommunications applications it is advised to keep the light
intensity at levels low enough to avoid a distortion of the bit
sequence due to unwanted coherent modulation.

Results
Experimental observation of laser pulse reshaping. In our
experiment, we observe the changes a strong Gaussian laser pulse
undergoes when propagating at room temperature through an
In(Ga)As-based QD-semiconductor optical amplifier (SOA). The
device offers the possibility of electrical current injection. Laser
pulses with a central wavelength of 1,280 nm, resonant to the QD
ground-state (GS) transition, are generated in an optical para-
metric oscillator (OPO) pumped by a Ti:sapphire laser with a
repetition rate of 75.4 MHz (Coherent MIRA 900-HP). The pulse
profile is a Gaussian function with a temporal and spectral full
width at half maximum (FWHM) of 230 fs and 15 nm, respec-
tively. We analyse the pulse shape in amplitude and phase in a
heterodyne cross-correlation experiment. A scheme of the set-up
is shown in Fig. 1. This frequency-resolved optical short-pulse
characterization by heterodyning (FROSCH) is capable of tracing
the oscillations of the complex electric field convolution with a
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Figure 1 | Experimental method. Schematic of the FROSCH set-up for electric field cross-correlation measurement of fs pulses. To illustrate the time

resolution of the method, the inset shows a zoom into a representative set of data, the real (blue) and imaginary (red) part of the lock-in signal and the

interference pattern of the reference diode with a wavelength of l¼ 780 nm (green).
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resolution better than p/20, corresponding to 0.1 fs. Being a linear
method, and analysing the electric field rather than the intensity,
it offers an intrinsically high sensitivity even at low signal levels. A
more detailed description of the experimental procedure is given
in the Methods section.

The experimentally determined pulse shape modification
observed on the output facet of the device for a Gaussian input
pulse for different pulse powers and injection currents is
displayed in Fig. 2. The experimental results are given as a
convolution of the electric field of the probe pulse passing the
device with a Gaussian reference pulse. The black lines in the top
row and centre row represent the measured convolution in terms
of amplitude and phase, respectively. An alternative visualization
of the time-dependent information contained in the exciting
pulse is a Gabor transformation. This transformation basically
yields time-resolved power spectra, as for example, also known
from wavelet theory, and is thus discussed in frequency–time
space. The bottom row of Fig. 2 shows the results, with the Gabor
transform of the experimental signal S(t) defined as

Gðt0; lÞ ¼
Z1

�1

SðtÞ exp � i
2pc0

l
t� ln 2

ðt0 � tÞ2

s2

� �
dt ð1Þ

Here, c0 is the speed of light and s¼ 106 fs is the half width at
half maximum of an elementary minimum uncertainty wavelet.
In our experiment, a weak pulse passes the unpumped device
without a significant change in the pulse shape (Fig. 2a).
Increasing the pulse intensity leads to the appearance of
interesting modifications, see Fig. 2b–d, as a result of the fact
that the frequency of Rabi oscillations increases linearly with the
pulse area Y (ref. 5), that is, a dimensionless quantity for the
integrated electric field intensity of the laser pulse. The signature
of the QD dynamics shows up in the amplitude (top row) as a
dip, accompanied by a step in the phase (centre row) and is
translated into a hole in the Gabor surfaces (bottom row).

Numerical simulation based on Maxwell–Bloch equations. To
substantiate the discussion, we model the signal amplification
inside the QD-SOA by semiclassical Maxwell–Bloch equations28–30.

We simulate the quantum device by a zero-dimensional two-level
system (QD) coupled to a reservoir of charge carriers in a 2D
reservoir (QW/wetting layer), being in non-equilibrium as a result of
electrical carrier injection (see refs 10,31,32). The model includes
0D–2D in- and out-scattering processes as detailed in the Methods
section. The results of the numerical simulations are displayed as red
convolution amplitude and phase curves in Fig. 2. The calculated
pulse modification is in excellent agreement with the experimental
results, in particular it reproduces the coincidence of amplitude dip
and phase jump consistently observed in the experiment. Further, it
can be seen that our modelling is able to correctly describe the pulse
modifications for all the different electrical pump currents and thus
allows for a deep understanding of the underlying microscopic
processes as will be detailed below.

Discussion
To make the complex system of coupled differential equation
accessible to physical intuition, we first condense the essence of
the dynamic expressions to a basic skeleton of a dipole coupled to
a light field, which results in equations formally analogous to the
well-known coupled oscillators of classical mechanics, see
Methods section. The dynamics of this system is displayed in
Fig. 3. We consider a light-field pendulum triggered by an
excitation with a frequency oL and a Gaussian amplitude in time,
coupled resonantly to a QD pendulum (Fig. 3a). Comparing with
the Maxwell–Bloch equations without propagation, the light
pendulum is identified with the real part of the electric field
amplitude E(t) and the QD pendulum with the real part of the
polarization P(t). For a suitable choice of the coupling
parameters, the oscillation energy is flowing from light pendulum
to QD pendulum and back during the time permitted by the
time-dependent amplitude of excitation (during the pulse). The
envelopes and phases of the pendula relative to the phase of the
excitation are displayed in Fig. 3b,c, respectively, so the fast
oscillations (frequency oL) are removed for clarity. The time
traces of the dynamics of the light pendulum and the QD
pendulum both show points in time at which the oscillation
amplitude is reduced to a minimum, and a phase jump occurs.
From basic mechanics, it is known that in a forced oscillation,
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Figure 2 | FROSCH measurement of pulse shape modification. Top row: electric field convolution amplitudes after propagation of the probe pulse through

the device for a range of injection currents J (black: experiment, red: simulation). Middle row: convolution phases (black: experiment, red: simulation).

Bottom row: absolute values of the Gabor transform of the experimental signal. (a) Low pulse intensity. (b–e) High pulse intensity with injection currents

J of (b) 0J0 (absorbing regime), (c) 3J0 (transparency), (d, e) 20J0 and 30J0 (amplifying regime).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3953 ARTICLE

NATURE COMMUNICATIONS | 4:2953 | DOI: 10.1038/ncomms3953 | www.nature.com/naturecommunications 3

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


there is a phase difference of about p/2 between the driving force
and the oscillator coupled to it. Thus, the time instants at which
the oscillation stops and the phase rapidly changes can be
qualitatively understood as the instants at which the role of the
respective pendulum changes from driving the oscillation to being
driven by the partner pendulum. In a convolution of light
pendulum oscillations with excitation oscillations, corresponding
to the convolution of the electric fields of probe pulse Ep(t) and
reference pulse Er(t) in our experiment, the signature of switching
in the dynamics of the light pendulum is retained (Fig. 3d). Also,
the analogue Gabor surface of our mechanical model displays the
tell-tale hole, indicating the point in time and frequency, at which
the light pendulum changes its role from driving to being driven.
Going back to the physical interpretation of the mechanical
model, this is the point in time at which the polarization created
inside the QDs starts to induce additional excitations in the
photon field.

The typical patterns of the pulse shape modifications discussed
for the driven pendula appear also in case of the QD system

coupled to a carrier reservoir with electrical injection and optical
driving pulse, as presented in the beginning (see Fig. 2). This case
is clearly beyond the simple mechanical oscillator picture owing
to the complex Coulomb scattering dynamics of the QDs coupled
to a 2D reservoir; yet the basic processes of the coherent
interaction between field and polarization inside the QDs leave
their identifiable traces. In our device, by electrically populating
the QD states, we can vary the initial QD carrier population from
the absorbing regime through the transparency into the
amplifying regime. This corresponds to largely unpopulated
QDs, to an equal distribution of populated and unpopulated QDs,
and to a majority of populated QDs. The resulting changes in the
pulse envelope modulation are shown in Fig. 2b–d. For zero
injection current the modifications of electric field amplitude,
phase and Gabor surface are clearly visible (Fig. 2b). At
intermediate current levels about the transparency current J0,
these patterns disappear (Fig. 2c). Entering the amplifying regime,
the pulse modification reappears (Fig. 2d). Even at high injection
currents that lead to an increasing reservoir filling and thus to a
shortened dephasing time T2 (ref. 22), the pulse shape
modulation is still present (Fig. 2e). This behaviour is consistent
with the assumption of a coherent energy transfer between QDs
and optical field. Depending on the initial population of the QDs,
the Rabi oscillations are phase shifted by half a cycle, in one case
starting with absorption of light energy and in the other case
starting with amplification by stimulated emission, controlled in
the experiment by setting the appropriate injection current J. A
net effect is thus only visible if the QDs are predominantly either
populated with carriers or unpopulated (Fig. 2b,c), in the case of
transparency the two anti-phase oscillations are expected to
cancel, as they do in the experimental data of Fig. 2c. The
dynamics of the coupled QD polarization and population is
clearly seen via its back action on the exciting light field.

Figure 4 displays the results of the numerical simulations
regarding the dynamics of the inversion and the polarization
inside the QDs. In a two-level system, this is usually visualized
using the Bloch sphere, based on a coordinate system spanned by
the degree of population inversion and complex microscopic
polarization, that is, the off-diagonal elements of the density
matrix containing the time-dependent terms of the coherent
dynamics5. For resonant light–matter interaction, the dynamics
in the Bloch sphere is restricted to the plane spanned by inversion
and imaginary part of the polarization. For a better visualization,
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the figure shows the total polarization but only the population
dynamics of the QD sub-ensemble resonant to the driving laser
pulse (the dynamics of the other QD subgroups is discussed
later). The trajectories shown in the Bloch sphere in Fig. 4
correspond to the experimental conditions of Figs 2a–e and
reflect the interaction with the modified laser pulse. At zero
current (Fig. 4a), no charge carriers populate the QDs, and the
Rabi oscillations start from the south pole of the Bloch sphere
with an amplitude governed by the pulse area Y of the driving
laser pulse. Charge-carrier scattering processes as well as phase
shifts of the polarization within the inhomogeneously broadened
ensemble lead to a damping of the oscillations along the device
(inset in Fig. 4a). For a partially or fully inverted system, the
starting point of the coherent population oscillations is in the
Northern Hemisphere of the Bloch sphere (Fig. 4b, coherent
dynamics at the input facet of the device). The pulse amplification
results in the rotation of the Bloch vector becoming increasingly
fast during the pulse propagation, reflected in the number of
cycles completed by the population in Fig. 4c at the output facet.
In the intermediate case of partially filled QDs, the pulse drives at
the same time two anti-phase Rabi oscillations, one starting from
the lower and the other from the upper state of the two-level
system with effectively disappearing signature on the pulse
envelope. At high injection current, we see the impact of the
injection current and corresponding high carrier density in the
2D reservoir as a reduced dephasing time T2 leading to a weaker
contrast in the pulse modulation.

It may seem surprising that clear pulse shape modulations are
present even in the inhomogeneously broadened QD ensemble of
our QD-SOA, but it will become clear by the following discussion
of the dynamics of all different QD subgroups that are separately
included in our modelling and displayed in Fig. 5b–f. The red and
black lines in Fig. 5a and d represent the calculated electric field
envelope and the convolution of the electric field with a reference
field equal to the input pulse, at the input and output facets of the
device, respectively. Note that the electric field (red line) of the
pulse propagating through the sample is significantly distorted.
The convolution with the Gaussian reference is causing a
smoothing of this pulse shape modification, and translates the
electric field reshaping into a dip in the tail of the black
convolution curve. The colour-coded contour plots in the second
and third row of Fig. 5 visualize the time evolution of the
microscopic polarization amplitude of the QD ground states
(GSs) for all subgroups of the inhomogeneously broadened
ensemble (distinguished by their detuning in Fig. 5b,e), as well as
the corresponding GS inversion for all contributing subgroups
(Fig. 5c,f). Inspecting the simulated results of Fig. 5b, it becomes
visible that at first a polarization is built up by the incoming
optical pulse for all subgroups, but with a much higher amplitude
for the group in resonance with the impinging light field (see
bright yellow structure at t¼ 0). All polarizations then decay with
the dephasing time T2 and thus the bright structure centred
around the initial detuning of 6 meV disappears. The polariza-
tion, in turn, reduces the GS inversion of the QDs by stimulated
emission. In our case, the input pulse power is strong enough to
drive the carrier occupations of the central subgroups below
transparency, as evident from the blue area where the sign of the
inversion is reversed in Fig. 5c. This zero crossing reflects a partial
Rabi flop. At the output facet (Fig. 5f), the Rabi oscillations are
faster because of the increased field amplitude and thus the blue
area with negative inversion is compressed in time. The faster
Rabi oscillations can also be seen in the polarization dynamics in
Fig. 5e. Note that the dynamics of the polarization of the
negatively and positively detuned subgroups is not symmetric
around the initial detuning of 6 meV owing to the additional
frequency components and chirp of the pulse induced along the

propagation, which leads to a non-uniform excitation of the
individual subgroups.

The electric field is driven by the total polarization of the
inhomogeneously broadened QD ensemble, and thus by a
superposition of the polarization of all the different subgroups.
Consequently, the spectral broadening translates into an addi-
tional dephasing of the polarization, which, for the case of a
uniform occupation of all QDs, would resemble a Gaussian decay
with a time constant of 73 fs. Thus, by introducing an additional
dephasing process, the observed coherent signature could in
principle also be reproduced with a simple two-level system using
effective parameters. Certainly, as verified with our numerics,
such an approach cannot accurately describe the observed pump-
current dependence of the pulse modulation, for example, the
reappearing and disappearing dips in the convoluted signal as
well as the gradual loss of coherence at high injection currents.
Here a pure dephasing process associated with the
current-dependent process in the 2D reservoir accelerates the
macroscopic polarization decay and yields T2 times below 100 fs
(ref. 23). The limit of instantaneous dephasing is illustrated in
Fig. 5d. The blue-dashed line in Fig. 5d represents the calculated
electric field convolution at the output facet for the approxima-
tion of adiabatically eliminated polarization dynamics31, yielding
an incoherent rate equation approach. Clearly, without the
coherent polarization dynamics, the observed pulse shape cannot
be reproduced.

Methods
Experimental methods. The device contains 15 undoped QD-in-a-well layers with
a nominal QD density of 1011 cm� 2 separated by 33–35 nm thick GaAs spacers.
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The shallow etched waveguide provides gain guiding on current injection, with the
top contact defining an active region with a lateral extension of 2 mm. The length of
the waveguide is 1.5 mm. The injection current can be varied from 0 to 200 mA,
corresponding to 4.4 kA cm� 2. When pumped electrically, the device shows
amplified spontaneous emission (ASE) from the QD GS centred at 1,281 nm
(0.967 eV), which is well described by a Gaussian with a FWHM of 0.03 eV.
From pump-probe experiments, the GS transparency current is determined to
be J0¼ 5 mA at 1,280 nm. ASE data show that at injection currents above 16J0

(80 mA), the GS reaches the maximal inversion and the GS luminescence intensity
saturates.

In the FROSCH experiment, the laser pulse is split into a probe (Ep) and a
reference (Er) part in an acousto-optical modulator. The temporal delay t between
the two pulses is controlled by a delay stage, and recorded via the interference
pattern of a control diode, analogous to rapid-scan Fourier transform infrared
spectroscopy. The beating generated by probe and reference pulse is recorded on
two photodetectors in a balanced detection scheme. The detected intensity is
filtered by a fast lock-in amplifier (Perkin Elmer DSP 7280). The lock-in signal
S(t)p

R
Ep(t)Er(t� t)dt is the temporal convolution of the electric fields of

reference pulse and probe pulse.

Numerical simulations. The Maxwell–Bloch model consists of coupled coherent
optical Bloch equations for the QD inter-band polarizations pm and the carrier
occupation probabilities rb,m

j for each subgroup j of QDs inside the inhomogen-
eously broadened QD ensemble.The dynamical equations in the slowly varying
envelope and rotating wave approximation are given by:
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The subscript bA{e,h} labels electrons and holes, respectively, and mA{GS,ES}
labels the confined QD levels, GS and excited state, respectively (with degeneracy
nm). We assume Gaussian distributions of the QD subgroups around the GS and ES
centre frequencies, respectively, with a spectral FWHM of DE¼ 30 meV in
agreement with experimental ASE results. The QD states are coupled to a 2D
carrier reservoir, represented by a QW-like wetting layer, by means of Auger
scattering rates in the order of 1–10 ps� 1 denoted by (qrb,m

j )/(qt)|col in equations
(3) and (4). They take into account all possible carrier–carrier in- and out-
scattering processes between QD and reservoir states, and are calculated
microscopically via density matrix theory32,33, yielding a strong dependence on the
carrier densities wb in the reservoir34. The Bloch equations (2)–(4) for the local
response of the medium are coupled to the reduced travelling wave equation for the
light propagating through the amplifier35,36.

The source for the light propagation described by equation (5) is the macroscopic
polarization defined by P(z,t)¼ 2NQDP

j,mnmf(j)(m)/(hQW)pj
m(z,t), where NQD is

the QD density, f(j) denotes the probability to find a QD in the jth subgroup and
hQW¼ 4 nm is the height of the QW layer. Further, vg is the group velocity,
Dom

j ¼ (om
j �o) is the detuning of the input light field frequency o to the

frequency om
j of the respective optical transition in the jth subgroup37. O(t)¼ (m)/

(:)E(t) is the Rabi frequency with the slowly varying electric field amplitude E, the
dipole moment m¼ 0.6 e0nm and the electron charge e0. We assume a linear increase
of the confinement factor G from 0.2 to 0.3 between J¼ 0 and J¼ 30J0 to account for
gain-guiding effects with increasing gain. The interaction strength of the electric field
with the medium is proportional to the field amplitude. Thus, the pulse area
Y¼

R
(m)/(:)E(0,t)dt is used to quantify the total interaction strength of the input

pulse. It is noted that by neglecting inhomogeneous broadening, the coupling to the
surrounding carrier reservoir and the light propagation, our system of dynamical
equations can be traced into the well-known optical Bloch equations with the off-
diagonal elements p and p*, and the diagonal elements re and rh.

The spontaneous recombination rate is given by Wmre,m
j rh,m

j with the Einstein
coefficient Wm. J is the electric current density injected into the QW and BS¼ 540
nm2 ns� 1 is a bimolecular loss rate accounting for spontaneous recombination
between the QW bands. The decay of the microscopic polarization pj

m is described
by the dephasing rate (T2)� 1�(TC

2 )� 1þ (Tph
2 )� 1, which dynamically depends on

the charge-carrier density in the device22. In addition to the Coulomb scattering
contribution to dephasing, TC

2 , which is in the order of 50–500 fs depending on the
pump current, we assume a constant phonon contribution given by
(Tph

2 )� 1¼ 3 ps� 1. A modulation of the pulse amplitude is only visible in the output
pulse if a pulse area of at least YEp is transmitted during the time T2.

We calculate the pulse propagation along the SOA and the dynamical behaviour
of the QD gain medium by solving equations (2)–(5). The input pulse amplitude is

modelled as a Gaussian with a FWHM of 235 fs and a peak frequency red shifted by
6 meV with regard to the GS gain peak, in accordance with experimental data.

Reducing the complete model to a skeleton of a two-level system is possible by
assuming a vanishing inhomogeneous broadening (only one subgroup, no index j),
neglecting carrier scattering and coupling of QD states to a non-equilibrium
reservoir, and excited states in the QDs (no index m), assuming constant inversion
in the GS (reþ rh� 1¼ const.) and ignoring propagation effects. Doing so, the
equations (2)–(5) can be transformed into equations formally identical to equations
describing coupled harmonic oscillators as detailed below in the Mechanical
analogue section.

Mechanical analogue. In our mechanical analogue, we describe the dynamics of
two coupled and driven pendula as an analogue for the local response of the QDs to
an impinging light field. The real part of the polarization of the two-level systems
formed by the QDs in the experiment is represented as harmonic oscillator with
eigenfrequency oQD. This oscillator is coupled to a pendulum representing the
light field that is modelled by a harmonic oscillator with eigenfrequency oL. The
effective dipole coupling between both is modelled via an elastic spring with
coupling constant D. The light field oscillator in turn is resonantly driven by a laser
excitation, following in its amplitude and phase the shape of the injected pulse.
This system is described by a set of coupled differential equations

ẍþbx_þ o2
L þD2 �D2

�D2 o2
QD þD2

� �
x ¼ xlaserðtÞ

0

� �
; x ¼ xLðtÞ

xQDðtÞ

� �
: ð6Þ

Here xL and xQD are the displacements of light oscillator and QD oscillator,
respectively. b is a damping constant introduced to mimic the lifetime of the
polarization and xlaser(t)pK sin(oLt)exp(� (t/tpulse)2) is the external oscillator,
which drives the light pendulum with frequency oL modulated by a Gaussian
envelope in time with a width of tpulse. K represents the coupling constant of light
field and laser excitation. The equations are solved numerically using SciLab
version 5.4.0.
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