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QUANTUM COHOMOLOGY AND PERIODS

by Hiroshi IRITANI (*)

Abstract. — In a previous paper, the author introduced an integral struc-
ture in quantum cohomology defined by the K-theory and the Gamma class and
showed that it is compatible with mirror symmetry for toric orbifolds. Applying
the quantum Lefschetz principle to the previous results, we find an explicit rela-
tionship between solutions to the quantum differential equation of toric complete
intersections and the periods (or oscillatory integrals) of their mirrors. We describe
in detail the mirror isomorphism of variations of integral Hodge structure for a
mirror pair of Calabi-Yau hypersurfaces (Batyrev’s mirror).

Résumé. — Dans un précédent article, l’auteur a défini une structure entière
sur la cohomologie quantique à l’aide de la K-théorie et d’une classe Gamma.
Cette structure est compatible avec la symétrie miroir pour les orbifolds toriques.
Le principe de Lefschetz quantique appliqué aux résultats précédents, nous donne
une relation explicite entre les solutions du module différentiel quantique pour
une intersection complète torique et les périodes (ou les intégrales oscillantes) de
leur miroir. Nous expliquons en détail l’isomorphisme miroir pour une variation de
structure de Hodge entière pour une paire miroir (au sens de Batyrev) d’hypersur-
faces de Calabi-Yau.

1. Introduction

Hodge theoretic mirror symmetry is concerned with the equivalence of

Hodge structures from symplectic geometry (A-model or Gromov-Witten

theory) of Y and complex geometry (B-model or Kodaira-Spencer theory)

of the mirror Y̌ . In [37], we introduced a Z-structure in the A-model Hodge

theory in terms of the K-group and the Γ̂-class of Y . When Y is a weak

Fano compact toric orbifold, we showed that this Z-structure in the A-side

is in fact mirror to the natural Z-structure in the B-side. This was based

Keywords: quantum cohomology, mirror symmetry, Gamma class, K-theory, period,
oscillatory integral, variation of Hodge structure, GKZ system, toric variety, orbifold.
Math. classification: 14N35, 14D05, 14D07, 14J33, 32G20, 53D37.
(*) The author thanks Etienne Mann who kindly provided the French translation of the
abstract. This research is supported by Grant-in-Aid for Young Scientists (B) 22740042.



2910 Hiroshi IRITANI

on the mirror theorem [15] for toric orbifolds which will be shown in joint

work with Coates, Corti and Tseng and a calculation of oscillatory integrals

on the B-side. In this paper we extend the previous results in [37] to the

case of complete intersections in toric orbifolds.

For simplicity, we explain the case where Y is a Calabi-Yau manifold.

The variation of Hodge structure on the A-side is given by the trivial holo-

morphic vector bundle H = H∗(Y ) × H2(Y ) → H2(Y ) endowed with the

flat Dubrovin connection

∇V = dV + V ◦τ , V ∈ H2(Y )

where V ◦τ is the quantum multiplication by V at τ ∈ H2(Y ). The Hodge

filtration and the polarization form are given by F
p = H62(dim Y −p)(Y )

and Q(α, β) = (2πiii)dim Y
∫

Y
((−1)

deg
2 α)∪β respectively. For E ∈ K(Y ), we

have a unique flat section s(E) of the Dubrovin connection satisfying

s(E) ∼ (2πiii)− dim Y e−τ
(

Γ̂Y ∪ (2πiii)
deg

2 ch(E)
)

in the large radius limit, i.e., as e〈τ,d〉 → 0 for all nonzero effective classes

d ∈ H2(Y ;Z). The Gamma class Γ̂Y here plays the role of a “square root”

of the Todd class (see (3.4)) so that we have Q(s(E1), s(E2)) = χ(E1, E2)

by Hirzebruch-Riemann-Roch. The Γ̂-integral structure is defined to be the

Z-local system consisting of the flat sections s(E), E ∈ K(Y ). We call the

pairing

Π(φ, E) := Q(φ(τ), s(E)(τ))

of any section φ(τ) ∈ H with the flat section s(E) the A-period of Y . Our

main theorem identifies the A-periods of Y with the usual periods of the

mirror Y̌ .

Let Y be a quasi-smooth Calabi-Yau hypersurface in a weak Fano Goren-

stein toric orbifold X . Here we allow Y to have orbifold singularities. Let

∆ ⊂ NR be the fan polytope of X . The Batyrev mirror of Y is the hypersur-

face Y̌α = {Wα(t) = 1} in the algebraic torus Ť = Hom(N,C×) ∼= (C×)n

defined by the Laurent polynomial Wα(t) =
∑

b∈∆∩N
αbt

b on Ť. The affine

hypersurface Y̌α can be compactified to a Calabi-Yau orbifold Y̌α.

Theorem 1.1 (Theorems 5.7, 6.9, 6.10). — The A-period for Y associ-

ated to E ∈ K(Y) can be written as a period of Y̌α for some integral cycle

CE if either E is pulled-back from the ambient toric orbifold X or E = Opt:

(1.1)

Π(Υv, E)(ς(α)) =

∫

CE

(−1)age(v) age(v)! Res

(
αvtv dt1

t1
∧ · · · ∧ dtn

tn

(Wα(t) − 1)age(v)+1

)
.

ANNALES DE L’INSTITUT FOURIER



QUANTUM COHOMOLOGY AND PERIODS 2911

Here Υv is a section of H which (see (4.6)) is asymptotically the same in

the large radius limit as the unit class 1v on the twisted sector associated

to v ∈ Box and ς(α) is the mirror map.

We calculate the left-hand side of (1.1) as explicit hypergeometric series

(Theorem 4.6) by applying the quantum Lefschetz principle [17, 16] to the

mirror theorem [15] for toric orbifolds. Theorem 1.1 then follows from the

Laplace transformation of the previous results in [37]. Similar results for

toric complete intersections are given in Theorem 5.7. We use Theorem 1.1

to establish the mirror isomorphism between the ambient A-model VHS of

Y and the residual B-model VHS of Y̌α which preserves certain integral

structures (Theorem 6.9).

The present work is motivated by Givental’s celebrated paper [25] on

mirror symmetry for toric complete intersections, where Givental remarked

that each component of the I-function can be written as an oscillatory

integral. In terms of a hypergeometric differential system, essentially the

same integral structure has been identified in the work of Borisov-Horja

[9] and Hosono [33]. The Γ̂-structure was also proposed by Katzarkov-

Kontsevich-Pantev [40] independently. Our results give a partial affirmative

answer to the conjecture of Hosono [33, Conjecture 6.3].

The concept of orbifold has been a rich source of ideas in mirror sym-

metry. For example, Batyrev’s mirror may not admit a full crepant resolu-

tion for dimension bigger than 3. By the development of orbifold Gromov-

Witten theory [14, 13, 1], we can now work with partial resolutions with

orbifold singularities. In this paper, we encounter a phenomenon of multi-

generation(1) of orbifold quantum D-modules. This phenomenon was first

observed by Guest-Sakai [29] (in a different language) for a degree 3 Fano

hypersurface in P(1, 1, 1, 2). For an orbifold hypersurface, it can happen

that the ambient part(2) of the small quantum D-module is not generated

by the single unit class 1 as an O[z]〈z∂〉-module(3) , but is generated by 1

and the unit classes 1v supported on twisted sectors. Here ∂ denotes the

derivative in the H62
orb-direction and z is an additional variable in the quan-

tum D-module (see Definition 3.1). For the A-model VHS of a Calabi-Yau

hypersurface, this means that each Hodge filter F
p may not be generated

by 6 (dim Y − p) times derivatives of the top filter F
dim Y . In fact, we

(1) This does not mean that the quantum D-module is not cyclic.
(2) The ambient part is the subbundle of the quantum D-module with fiber ι∗H∗

orb(X ) ⊂
Horb(Y) where ι : Y → X is the inclusion of the hypersurface Y into the ambient toric
orbifold X .
(3) On the other hand, when z inverted, it is generated by 1 as an O[z, z−1]〈z∂〉-module
under the assumption on the ambient toric orbifold in this paper.

TOME 61 (2011), FASCICULE 7



2912 Hiroshi IRITANI

will describe the quantum D-module of toric Calabi-Yau hypersurfaces in

terms of the multi-GKZ system (Theorem 6.13) — a GKZ system defined

by multiple generators. The same generalization of the GKZ system was

proposed in a recent work by Borisov-Horja [8] who called it better be-

haved GKZ system. This multi-generation is a reason why we needed to

show Theorem 1.1 also for twisted sectors v 6= 0.

Acknowledgments. The author has learned a lot from various joint works

with Alessandro Chiodo, Tom Coates, Alessio Corti, Sergey Galkin, Vasily

Golyshev, Yongbin Ruan and Hsian-Hua Tseng. He would like to thank

them all. He also would like to thank Yukiko Konishi and Satoshi Minabe

for very helpful discussions concerning their work [44]. He is grateful to

Etienne Mann and Thierry Mignon for informing the author of their work

[45] and to Martin Guest for very helpful comments on a draft version of

this paper.

2. Preliminaries

2.1. Orbifold Gromov-Witten Invariants

Gromov-Witten theory for orbifolds has been developed by Chen-Ruan

for symplectic orbifolds and by Abramovich-Graber-Vistoli for smooth

Deligne-Mumford stacks. Here we fix notation for orbifold Gromov-Witten

invariants. For the details of the subject, we refer the reader to the original

articles [14, 13, 1].

Let X be a proper smooth Deligne-Mumford stack over C and X be its

coarse moduli space. Set n = dimC X . We assume that X is projective.

Let IX be the inertia stack, which is the fiber product X ×X ×X X of the

diagonal morphisms ∆: X → X × X . A C-valued point of IX is a pair

(x, g) of a C-valued point x ∈ X and a stabilizer g ∈ Aut(x) at x. Let

IX =
⊔

v∈T

Xv = X0 ⊔
⊔

v∈T′

Xv, X0 = X .

be the decomposition of IX into connected components. The index set

T contains a special element 0 ∈ T corresponding to the trivial stabilizer

g = 1. We set T
′ = T\{0}. Let age(v) ∈ Q>0 be the age (or degree shifting

number) of the component Xv. The Chen-Ruan orbifold cohomology group

H∗
orb(X ) is the Q-graded vector space given by

Hp
orb(X ) :=

⊕

{v∈T|p−2 age(v)∈2Z}

Hp−2 age(v)(Xv;C), p ∈ Q.

ANNALES DE L’INSTITUT FOURIER



QUANTUM COHOMOLOGY AND PERIODS 2913

Throughout the paper, we ignore odd cohomology classes in Gromov-

Witten theory i.e., elements in Hp−2 age(v)(Xv) with p−2 age(v) odd. (H∗
orb

(X ) is sometimes denoted by H∗
CR(X ) in the literature.) We have an involu-

tion inv : IX → IX given by (x, g) 7→ (x, g−1). This induces an involution

inv∗ : H∗
orb(X ) → H∗

orb(X ). The orbifold Poincaré pairing (·, ·)orb : H∗
orb(X )

⊗H∗
orb(X ) → C is defined by

(α, β)orb :=

∫

IX

α ∪ inv∗ β.

This is a nondegenerate symmetric bilinear form of degree −2n. Let X0,l,d

denote the moduli stack of stable maps of genus 0, l-pointed and degree d ∈

H2(X,Z). (This is the same as the stack of twisted stable maps K0,l(X , d)

in [1].) This is equipped with a virtual fundamental class [X0,l,d]vir ∈

H∗(X0,l,d;Q) and the evaluation maps

evi : X0,l,d → IX , i = 1, . . . , l

to the rigidified inertia stack(4) IX (see [1]). Take α1, . . . , αl ∈ H∗
orb(X ) and

nonnegative integers k1, . . . , kl. The orbifold Gromov-Witten invariants are

defined by

〈
α1ψ

k1 , α2ψ
k2 , . . . , αlψ

kl
〉

0,l,d
:=

∫

[X0,l,d]vir

l∏

i=1

(ev∗
i (αi) ∪ ψki

i ).

Because IX and IX are the same as topological spaces, we can define the

pull-back ev∗
i (αi) for αi ∈ H∗

orb(X ). The class ψi is the first Chern class of

the i-th universal cotangent line bundle Li → X0,l,d whose fiber at a stable

map f : C → X is the cotangent space T ∗
xi
C at the i-th marked point of the

coarse domain curve C.

2.2. Twisted Invariants

Following [17, 55, 16], we introduce the orbifold Gromov-Witten invari-

ants twisted by a vector bundle V on X and a characteristic class c . We use

these invariants to calculate the Gromov-Witten invariants of a complete

intersection in X . Let c(·) = exp(
∑∞

k=0 sk chk(·)) be a universal invertible

multiplicative characteristic class with parameters s = (s0, s1, s2, . . . ). Let

(4) The rigidified inertia stack IX is obtained from IX by taking the quotient of the
automorphism group at (x, g) ∈ IX by the cyclic group generated by g.

TOME 61 (2011), FASCICULE 7



2914 Hiroshi IRITANI

IV be the vector bundle on IX whose fiber at (x, g) is the g-fixed sub-

space of Vx. In the twisted theory, the pairing (·, ·)orb is replaced with the

following twisted Poincaré pairing:

(α, β)c

orb =

∫

IX

α ∪ inv∗(β) ∪ c(IV).

Using the universal family u : C0,l,d → X over X0,l,d, we define a K-group

element V0,l,d ∈ K0(X0,l,d) by V0,l,d = Rπ∗u
∗V.

C0,l,d
u

−−−−→ X

π

y

X0,l,d

Define the twisted Gromov-Witten invariants by

(2.1)

〈
α1ψ

k1 , α2ψ
k2 , . . . , αlψ

kl
〉c

0,l,d
:=

∫

[X0,l,d]vir

c(V0,l,d) ∪
l∏

i=1

ev∗
i (αi)ψ

ki

i .

Note that the twisted invariants equal the original ones when c is trivial

(i.e., c ≡ 1).

2.3. Twisted Quantum Cohomology

We can define both untwisted and twisted quantum cohomology, but we

begin with the twisted version because the untwisted version is obtained

from it by the specialization c = 1. Let EffX ⊂ H2(X;Z) denote the

semigroup generated by effective curves. The Novikov ring Λ is defined to

be the completion of the group ring C[EffX ]. For a curve class d ∈ EffX ,

let Qd be the corresponding element in Λ. Define Λs to be the completion

of C[EffX ][s0, s1, s2, . . . ] with respect to the additive valuation v given by

v(Qd) =

∫

d

ω, v(sk) = k + 1.

where ω is a Kähler class of X . Let {φ1, . . . , φN } ⊂ H∗
orb(X ) be a homo-

geneous C-basis, {τ1, . . . , τN } be the dual co-ordinates on H∗
orb(X ) and

τ =
∑N

i=1 τ
iφi be a general point on H∗

orb(X ). The twisted quantum prod-

uct •c

τ is defined by the formula:

(2.2) (α •c

τ β, γ)c

orb =
∑

l>0

∑

d∈EffX

〈α, β, γ, τ, . . . , τ〉c

0,l+3,d

Qd

l!

ANNALES DE L’INSTITUT FOURIER



QUANTUM COHOMOLOGY AND PERIODS 2915

where α, β, γ ∈ H∗
orb(X ). This defines a unique element α•c

τ β in H∗
orb(X )⊗

Λs[[τ ]]. Here Λs[[τ ]] := Λs[[τ1, . . . , τN ]]. The product •c

τ is extended bilinearly

over Λs[[τ ]] and defines a ring structure on H∗
orb(X )⊗Λs[[τ ]]. We call the ring

(H∗
orb(X ) ⊗ Λs[[τ ]], •c

τ ) the twisted quantum cohomology. For a topological

ring R with an additive valuation v : R → R ∪ {∞}, we define R{z, z−1}

to be the space of all power series
∑

k∈Z akz
k with ak ∈ R such that

lim|k|→∞ v(ak) = ∞. Let R{z} (resp. R{z−1}) denote the subspace of

R{z, z−1} consisting of nonnegative (resp. nonpositive) power series in z.

These are rings when R is complete. We define the Dubrovin connection

∇
c

i : H∗
orb(X ) ⊗ Λs{z}[[τ ]] → z−1H∗

orb(X ) ⊗ Λs{z}[[τ ]] by

∇
c

i =
∂

∂τ i
+

1

z
φi •c

τ .

The differential equation ∇
c

i s(τ, z) = 0 for a cohomology-valued function s

is called the quantum differential equation. Define L
c(τ, z) ∈ End(H∗

orb(X ))

⊗Λs{z−1}[[τ ]] by

(2.3)

(Lc(τ, z)α, β)c

orb = (α, β)c

orb +
∑

(d,l) 6=(0,0)
d∈EffX , l>0

〈
α

−z − ψ
, τ, . . . , τ, β

〉c

0,l+2,d

Qd

l!
.

Here 1/(−z − ψ) in the correlator should be expanded in the series∑
k>0(−z)−k−1ψk.

Proposition 2.1. — The End(H∗
orb(X ))-valued function L

c(τ, z) gives

a fundamental solution to the quantum differential equation: It satisfies

∇
c

i (Lc(τ, z)α) = 0, 1 6 i 6 N, ∀α ∈ H∗
orb(X )

and L
c(τ, z) = id +O(Q, τ). We also have

(2.4) (Lc(τ,−z)α,Lc(τ, z)β)c

orb = (α, β)c

orb.

Proof. — See [36, Proposition 2.3] and [45] when X is a smooth vari-

ety. In this proof, we will freely use the language of Givental’s Lagrangian

cone for which we refer the reader to [27, 16]. From Tseng’s orbifold Quan-

tum Riemann-Roch (QRR) [55], it follows that the twisted Gromov-Witten

invariants (2.1) satisfy the String Equation (SE), the Dilaton Equation

(DE) and the Topological Recursion Relation (TRR) listed e.g., in [49,

Section 1]. (In the TRR, we need to use the twisted Poincaré pairing.)

This is because these equations correspond to certain special geometric

properties of Givental’s Lagrangian cone (see [27]) and the symplectic op-

erator in Tseng’s QRR preserves such properties. The differential equation

for L
c(τ, z) has been proved for the untwisted theory for manifolds in [49,

TOME 61 (2011), FASCICULE 7



2916 Hiroshi IRITANI

Proposition 2] using TRR and the same proof applies to our case. It is easy

to see that L
c(τ, z)†β is a tangent vector of Givental’s Lagrangian cone

for the twisted theory. Here L
c(τ, z)† denotes the adjoint of L

c(τ, z), i.e.,

(α,Lc(τ, z)†β)c

orb = (Lc(τ, z)α, β)c

orb. By the Lagrangian property of the

cone, we know that (Lc(τ,−z)†α,Lc(τ, z)†β)c

orb contains only nonnegative

powers in z. On the other hand L
c(τ, z)†β = β + O(z−1). Therefore we

have (Lc(τ,−z)†α,Lc(τ, z)†β)c

orb = (α, β)c

orb and so L
c(τ,−z)† is inverse

to L
c(τ, z). This proves (2.4). �

Remark 2.2. — The existence of a fundamental solution implies that

the Dubrovin connection ∇
c is flat, i.e., [∇c

i ,∇
c

j ] = 0. This in turn shows

that the twisted quantum product •c

τ is associative.

Definition 2.3 ([25, 16]). — We define the J-function of the twisted

theory by

(2.5) J
c(τ, z) := L

c(τ, z)−1
1 = L

c(τ,−z)†
1 .

2.4. Equivariant Euler Twist

We consider the case where c is the S1-equivariant Euler class eλ. Here

S1 acts on vector bundles by scaling the fibers and λ ∈ H2
S1(pt) denotes a

generator. We have eλ(E) =
∑r

i=0 λ
icr−i(E) for a rank r vector bundle E .

Then eλ corresponds to the choice of parameters

s0 = log λ, si = (−1)i−1(i− 1)!λ−i (i > 1).

If V0,l,d is not represented by a vector bundle, the eλ-twisted invariants

take values in C[λ, λ−1]. In this paper, we only consider the case where

V0,n,d is a vector bundle and no negative powers of λ appear. Then we can

take the ground ring to be (instead of Λs) the completion Λλ of C[Eff][λ]

with respect to the valuation v(Qd) =
∫

d
ω, v(λ) = 0.

We assume that V is the sum L1 ⊕ · · · ⊕ Lc of line bundles such that

c1(Lj) is nef and Lj is a pull-back from the coarse moduli space X for all

1 6 j 6 c. Let Y be a quasi-smooth complete intersection in X with respect

to a regular section of V. Let ι : Y ⊂ X denote the inclusion. The pull-back

ι∗ : H∗
orb(X ) → H∗

orb(Y) and the push-forward ι∗ : H∗
orb(Y) → H∗

orb(X ) are

defined by the inclusion IY ⊂ IX . We also write LY(τ, z), JY(τ, z) for the

fundamental solution and the J-function of the untwisted theory of Y.

Proposition 2.4. — Under the above assumption, L
eλ(τ,z) and J

eλ(τ,z)

contain no negative powers in λ. So we can set L
e(τ, z) := L

eλ(τ, z)|λ=0,

ANNALES DE L’INSTITUT FOURIER



QUANTUM COHOMOLOGY AND PERIODS 2917

J
e(τ, z) := J

eλ(τ, z)|λ=0. Moreover, we have

ι∗L
e(τ, z)α = LY(ι∗τ, z)ι∗α

∣∣∣
H2(Y ;Z)→H2(X;Z)

.

Here α, β ∈ H∗
orb(X ). The notation H2(Y ;Z) → H2(X;Z) means to replace

Qd with Qι∗(d) for d ∈ H2(Y ;Z).

Proof. — The proof parallels the argument in [49, Section 2.1]. By the

assumption, for every stable map u : C → X in X0,l+2,d, the convexity

H1(C, u∗V) = 0 holds and the natural map H0(C, u∗V) → (u∗V)xl+2
is

surjective. Here xl+2 is the last marked point on C. Therefore V0,l+2,d is

a vector bundle and we can define the subbundle V ′
0,l+2,d by the following

exact sequence:

(2.6) 0 −−−−→ V ′
0,l+2,d −−−−→ V0,l+2,d −−−−→ ev∗

l+2 IV −−−−→ 0.

Here note that IV defines a vector bundle on the rigidified inertia stack

IX whose fiber at (x, g) ∈ IX is Vx. Using eλ(V0,l+2,d) = eλ(V ′
0,l+2,d) ∪

ev∗
l+2 eλ(IV), we find that L

eλ(τ, z)α equals

α+
∑

(d,l) 6=(0,0)
d∈EffX , l>0

Qd

l!
inv∗ evl+2∗


 ev∗

1 α

−z − ψ1




l+1∏

j=2

ev∗
j (τ)


 eλ(V ′

0,l+2,d) ∩ [X0,l+2,d]vir


 .

This shows that L
eλ does not contain negative powers of λ. Since L

eλ =

id +O(Q, τ), (Leλ)−1 and J
eλ = (Leλ)−1

1 do not contain negative powers

of λ either. We denote by evX : X0,l+2,d → (IX )l+2 and evY : Y0,l+2,d →

(IY)l+2 the collection (ev1, . . . , evl+2) of the evaluation maps. For the sec-

ond statement, it suffices to show that

f∗ evX
∗

(
ψk

1 e(V ′
0,l+2,d) ∩ [X0,l+2,d]vir

)
=

∑

d′:ι∗(d′)=d

g∗ evY
∗

(
ψk

1 ∩ [Y0,l+2,d′ ]vir
)

where f and g are the inclusions:

(IY)l+1 × IY
g

−−−−→ (IX )l+1 × IY
f

−−−−→ (IX )l+1 × IX .

We consider the fiber diagram

Z
i

−−−−→ X0,l+2,d

evZ

y
yevX

IX
l+1

× IY
f

−−−−→ (IX )l+2
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When Y is the zero locus of a regular section s ∈ H0(X ,V), Z is defined

to be the zero locus of ev∗
l+2(s) ∈ H0(X0,l+2,d, ev∗

l+2 IV). Using the refined

Gysin map f ! in [23, 56], we have

f∗ evX
∗

(
ψk

1 e(V ′
0,l+2,d) ∩ [X0,l+2,d]vir

)
=evZ

∗ f
!
(
ψk

1 e(V ′
0,l+2,d) ∩ [X0,l+2,d]vir

)
.

Let j : Y0,l+2,d → Z be the inclusion. It now suffices to show the equality

of classes on Z:
∑

d′:ι∗(d′)=d

j∗

(
ψk

1 ∩ [Y0,l+2,d′ ]vir
)

= f !
(
ψk

1 e(V ′
0,l+2,d) ∩ [X0,l+2,d]vir

)
.

Note that we only need to consider the case k = 0 since ψk
1 factors out. By

the functoriality [43] of virtual classes we have
∑

d′:ι∗(d′)=d

[Y0,l+2,d′ ]vir = 0!
X [X0,l+2,d]vir

where 0X : X0,l+2,d → V0,l+2,d is the zero section (which is the bottom row

of the diagram below). We can make the following fiber diagram:

Y0,l+2,d
j

−−−−→ Z
i

−−−−→ X0,l+2,d

j

y s̃Z

y
∥∥∥

Z
0Z−−−−→ V ′

0,l+2,d|Z X0,l+2,d

i

y h|Z

y s̃

y

X0,l+2,d
0′

X−−−−→ V ′
0,l+2,d

h
−−−−→ V0,l+2,d

where s̃ and s̃Z are the sections of V0,l+2,d and V ′
0,l+2,d|Z induced from s ∈

H0(X ,V), 0′
X and 0Z are the zero sections and h is the natural inclusion.

We have 0X = h ◦ 0′
X . Using the properties of the Gysin maps, we have

j∗0!
X [X0,l+2,d]vir = j∗0′

X
! h![X0,l+2,d]vir = 0∗

Z(s̃Z)∗h
![X0,l+2,d]vir

= e(V ′
0,l+2,d)h![X0,l+2,d]vir =f !

(
e(V ′

0,l+2,d) ∩ [X0,l+2,d]vir
)
.

In the last step we used the exact sequence (2.6). The conclusion follows.

�

Using φi•
eλ
τ = −(z∂τ iL

eλ(τ, z))(Leλ(τ, z))−1, we obtain the following

corollary.

Corollary 2.5. — Under the same assumption, the equivariant Euler

twisted quantum product •eλ
τ has the non-equivariant limit •e

τ and we have

ι∗(α •e

τ β) = (ι∗α) •ι∗τ (ι∗β)
∣∣∣
H2(Y ;Z)→H2(X ;Z)
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where α, β ∈ H∗
orb(X ) and •ι∗τ in the right-hand side denotes the untwisted

quantum product of Y.

2.5. The Specialization at Q = 1

The divisor equation ([1, Theorem 8.3.1]) shows that the Novikov pa-

rameter Q is actually redundant in the product •c

τ (2.2). Writing

(2.7) τ = τ0,2 + τ ′, τ0,2 ∈ H2(X0), τ ′ ∈
⊕

p6=2

Hp(X ) ⊕
⊕

v∈T′

H∗(Xv),

we have

(α •c

τ β, γ)c

orb =
∑

l>0

∑

d∈EffX

〈α, β, γ, τ ′, . . . , τ ′〉
c

0,l+3,d

e〈τ0,2,d〉Qd

l!
.

Therefore the parameter Q plays the same role as eτ0,2 . We define

◦c

τ := •c

τ |Q=1.

The new product ◦c

τ is a formal power series in τ ′ and a formal Fourier

series in τ0,2. Similarly, by the divisor equation, the fundamental solution

(2.3) can be specialized to Q = 1. Writing Lc(τ, z) := L
c(τ, z)|Q=1, we have

(Lc(τ, z)α, β)c

orb = (e−τ0,2/zα, β)c

orb

+
∑

(d,l) 6=(0,0)
d∈EffX ,l>0

〈
e−τ0,2/zα

−z − ψ
, τ ′, . . . , τ ′, β

〉c

0,l+2,d

e〈τ0,2,d〉

l!
.(2.8)

Here the action of τ0,2 on H∗
orb(X ) is defined by τ0,2 · α = pr∗(τ0,2) ∪ α

where pr: IX → X is the natural projection. The classical limit Q = τ =

0 corresponds, after the specialization Q = 1, to the limit τ ′ = 0 and

e〈τ0,2,d〉 → 0 for all nonzero d ∈ EffX . This is called the large radius limit.

3. Γ̂-Integral Structure in Quantum Cohomology

In this section we review the quantum D-module for stacks and its Γ̂-

integral structure following [37]. See also [38] for a review.
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3.1. Untwisted Quantum D-Module with Q = 1

We denote by ◦τ := ◦c

τ |s=0 the quantum product of the untwisted theory

of X specialized to Q = 1. In all the examples we treat in our paper, it

turns out a posteriori that the quantum product ◦τ is convergent in τ . So

henceforth we assume that ◦τ is convergent over the region U ⊂ H∗
orb(X )

containing the set
{
τ ∈ H∗

orb(X )
∣∣ ‖τ ′‖ 6 e−M , ℜ(〈τ0,2, d〉) 6 −M ∀d ∈ EffX \{0}

}

for some M > 0. Here ‖ · ‖ is a certain norm on H∗
orb(X ) and we used the

decomposition (2.7). The region U is considered as a neighborhood of the

large radius limit point.

Let (τ, z) denote a general point on U × C and (−) : U × C → U × C be

the map sending (τ, z) to (τ,−z). In the untwisted theory we can extend

the Dubrovin connection in the z-direction.

Definition 3.1 ([37, Definition 2.2]). — The quantum D-module

QDM(X ) is the triple (F,∇, (·, ·)F ) consisting of the trivial holomorphic

vector bundle F := H∗
orb(X ) × (U × C) → (U × C), the meromorphic flat

connection of F

∇ := d+
1

z

N∑

i=1

(φi◦τ )dτ i +

(
−

1

z
(E◦τ ) +

deg

2

)
dz

z

and the pairing (·, ·)F : (−)∗O(F ) ⊗ O(F ) → znOU×C defined by

(α, β)F := (2πiiiz)n(α, β)orb for α ∈ F(τ,−z), β ∈ F(τ,z).

Here E ∈ O(F ) is the Euler vector field

E := c1(TX ) +
∑

i

(
1 −

1

2
deg φi

)
τ iφi

and deg denotes the degree as a class in H∗
orb(X ). (In the definition of

∇, deg
2 should be understood as an element of End(H∗

orb(X )).) The con-

nection ∇ is called the (extended) Dubrovin connection. It has poles of

order 6 2 along z = 0. The pairing (·, ·)F is flat with respect to ∇. When

we refer to QDM(X ) as a D-module, we consider the action of the ring

OU [z]〈z∂1, . . . , z∂N 〉 of differential operators on O(F ) given by z∂i 7→ z∇i.

Remark 3.2. — We work with the different conventions for ∇ and (·, ·)F

from [37] to get a better match with the B-side. For the flat connection

∇old and the pairing (·, ·)old
F in [37], we have ∇ = ∇old + n

2
dz
z and (·, ·)F =

(2πiiiz)n(·, ·)old
F , where n = dimC X . In what follows, we will translate the
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contents in [37] in this new convention, but we will not remark the difference

every time.

Remark 3.3. — The quantum D-module can be considered as a vari-

ation of generalized Hodge structure. Generalizations of Hodge structure

have been studied by many people and referred to in various ways: semi-

infinite Hodge structure [2, 37], TERP structure [31] and non-commutative

Hodge structure [40] etc.

The quantum D-module has a certain symmetry which we called the

Galois action in [37]. This comes from the divisor equation and the mon-

odromy constraints for orbifold stable maps. Let H2(X ;Z) denote the sheaf

cohomology on the topological stack X which classifies topological orbifold

line bundles. For ξ ∈ H2(X ;Z), let Lξ be the corresponding orbifold line

bundle, ξ0 ∈ H2(X ;Q) denote the image of ξ and fv(ξ) ∈ [0, 1) ∩ Q be the

rational number such that the stabilizer along Xv acts on fibers of Lξ by

exp(2πiiifv(ξ)). (The number fv(ξ) is called the age of Lξ along Xv.) Define

the map G(ξ) : H∗
orb(X ) → H∗

orb(X ) by

(3.1) G(ξ)(τ0 ⊕
⊕

v∈T′

τv) = (τ0 − 2πiiiξ0) ⊕
⊕

v∈T′

e2πiiifv(ξ)τv

where τv ∈ H∗(Xv). Consider the following bundle isomorphism of F

GF (ξ) : Horb(X ) × (U × C) −→ Horb(X ) × (U × C),

(α, (τ, z)) 7−→ (dG(ξ)α, (G(ξ)τ, z))
(3.2)

where dG(ξ) ∈ End(H∗
orb(X )) is the differential of G(ξ).

Proposition 3.4 ([37, Proposition 2.3]). — The bundle isomorphism

GF (ξ) preserves the connection ∇ and the pairing (·, ·)F . This defines the

H2(X ,Z)-action on QDM(X ) and QDM(X ) descends(5) to the quotient

(U/H2(X ,Z)) × C.

The solution to the extended quantum differential equation ∇s = 0 is

given by the fundamental solution L(τ, z) := Lc(τ, z)|s=0 in (2.8) multiplied

by z− deg
2 zρ.

Proposition 3.5 ([37, Proposition 2.4]). — Set ρ := c1(TX ) and define

z− deg
2 zρ := exp

(
−

deg

2
log z

)
exp(ρ log z).

(5) We can assume that U is invariant under the action of H2(X ;Z).
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Then si(τ, z) = L(τ, z)z− deg
2 zρφi, i = 1, . . . , N form a basis of (multi-

valued) ∇-flat sections. Each si is characterized by the asymptotic initial

condition si(τ, z) ∼ z− deg
2 zρe−τ0,2φi in the large radius limit.

Note that L(τ, z) is convergent on U ×C∗ so far as the quantum product

◦τ is analytic on U since it is a solution to the quantum differential equation.

3.2. Γ̂-Integral Structure

Let S(X ) denote the space of multi-valued flat sections for ∇. By Propo-

sition 3.5, it is a C-vector space spanned by L(τ, z)z− deg
2 zρφi, 1 6 i 6 N .

We will introduce a Z-lattice S(X )Z in the space S(X ) using the K-group.

A similar rational structure was introduced also by Katzarkov-Kontsevich-

Pantev [40]. Define a pairing (·, ·)S : S(X ) ⊗ S(X ) → C by

(s1, s2)S := (s1(τ, eπiiiz), s2(τ, z))orb.

Here s1(τ, eπiiiz) denotes the analytic continuation of s1(τ, z) along the path

[0, 1] ∋ θ 7→ eπiiiθz. Since s1, s2 are flat sections, the right-hand side of the

above formula does not depend on τ and z. Note that (·, ·)S is neither sym-

metric nor anti-symmetric in general. It is symmetric (resp. anti-symmetric)

when X is an even (resp. odd) dimensional Calabi-Yau orbifold. The Galois

action on QDM(X ) induces the following automorphism GS(ξ) of S(X)

for ξ ∈ H2(X ;Z): (GS(ξ)s)(τ, z) := dG(ξ)s(G(ξ)−1τ, z) for s ∈ S(X ).

Let K(X ) be the Grothendieck group of topological orbifold vector bun-

dles on X . In the following, we could also use the Grothendieck group

Kalg(X ) of algebraic vector bundles. Our integral structure depends only

on the Chern character image of the K-group, so the algebraic K-group

defines a subgroup of S(X )Z. For an orbifold vector bundle E , take its

pull-back pr∗ E to IX (pr: IX → X is the natural map) and consider the

eigenbundle decomposition of pr∗ E|Xv
with respect to the stabilizer action:

pr∗ E|Xv
=
⊕

06f<1

(pr∗ E)v,f

where (pr∗ E)v,f is the piece on which the stabilizer of Xv acts by exp(2πiiif).

The Chern character map c̃h : K(X ) → H∗(IX ) is defined by

c̃h(E) :=
⊕

v∈T

∑

06f<1

e2πiiif ch((pr∗ E)v,f ).
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Let δv,f,i, i = 1, . . . , lv,f be the Chern roots of (pr∗ E)v,f , where lv,f =

rank((pr∗ E)v,f ). The Γ̂-class of E is defined to be

Γ̂(E) :=
⊕

v∈T

∏

06f<1

lv,f∏

i=1

Γ(1 − f + δv,f,i) ∈ H∗(IX ).

Here the Γ-function in the right-hand side should be expanded in Taylor

series at 1 − f > 0. This is a multiplicative transcendental characteristic

class. We write Γ̂X := Γ̂(TX ). For simplicity we assume that X has no

generic stabilizers, as this is true for our later examples.

Definition 3.6 ([37, Definition 2.9, Proposition 2.10, Remark 2.11], [40,

Definition 3.2]). — Define the K-group framing(6) s : K(X ) → S(X ) of the

space S(X ) by

s(E)(τ, z) := (2πiii)−nL(τ, z)z− deg
2 zρΨ(E)

where Ψ(E) := Γ̂X ∪ (2πiii)
deg0

2 inv∗ c̃h(E).
(3.3)

Here deg0 denotes the degree without the age shift, i.e., we define

(2πiii)
deg0

2 |H2k(IX ) := (2πiii)k and Γ̂X ∪ is the cup product in H∗(IX ). The

Γ̂-integral structure S(X )Z ⊂ S(X ) is defined to be the image of s. This

satisfies the following properties.

(i) S(X )Z is a lattice in S(X ), i.e., S(X ) = S(X )Z ⊗Z C.

(ii) We have GS(ξ)(s(E)) = s(E ⊗ L∨
ξ ) for ξ ∈ H2(X ;Z). In particular

the Galois action preserves the lattice S(X )Z.

(iii) The pairing (·, ·)S takes values in Z on S(X )Z. For holomorphic

vector bundles E1, E2, one has (s(E1), s(E2))S = (−1)nχ(E2, E1) :=∑n
i=0(−1)i+n dim Exti(E2, E1).

The last part (iii) of the properties follows from Kawasaki-Riemann-Roch

[42, 54] and the fact that the Γ̂-class is roughly the half of the Todd class.

In fact, for a smooth variety X, the Γ̂-class and the Todd class are related

by

(3.4) ((−1)
deg0

2 Γ̂X) · Γ̂X · eπiiic1(X) = (2πiii)
deg0

2 Td(TX)

thanks to the functional equality Γ(1 − z)Γ(1 + z) = πz/ sin(πz). (For an

orbifold the relationship is more complicated. See [38, p.124].)

Definition 3.7. — For E ∈ K(X ) and a section φ(τ, z) ∈ O(F ) of

the quantum D-module of X , we define the A-period Π(φ, E) to be the

(6) The convention here is different from [37].
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multi-valued function on U × C×

(3.5) Π(φ, E)(τ, z) := (φ(τ,−z), s(E)(τ, z))F .

The special case Z(E) := (2πiii)−nΠ(1, E), n = dimC X is the quantum

cohomology central charge of E defined in [37].

Under mirror symmetry the flat section s(E) should correspond to a

Gauss-Manin constant cycle CE and the above pairing Π(φ, E) to the inte-

gration of the de Rham form mirror to φ over CE . The unit section 1 should

correspond to a holomorphic (oscillatory) volume form. Using L(τ, z)† =

L(τ,−z)−1 (2.4), we can rewrite the A-periods in terms of the inverse fun-

damental solution.

(3.6) Π(φ, E)(τ, z) =
(
L(τ,−z)−1φ(τ,−z), zn− deg

2 zρΨ(E)
)

orb
.

In particular, Z(E) is a component of the J-function:

Z(E) =
1

(2πiii)n

(
J(τ,−z), zn− deg

2 zρΨ(E)
)

orb
,

where J(τ, z) = L(τ, z)−1
1 is the untwisted J-function of X with Q = 1.

4. Mirror Theorem for Toric Complete Intersections

In this section we state a Givental-style mirror theorem for complete

intersections in toric orbifolds. By the mirror theorem we can calculate the

J-function or the fundamental solution in terms of explicit hypergeometric

series.

4.1. Notation on Toric Orbifolds

Toric orbifolds or toric Deligne-Mumford stacks were introduced by

Borisov-Chen-Smith [7] in terms of a stacky fan. Here we fix notation for

toric orbifolds and state basic facts. We only consider compact weak Fano

toric orbifolds without generic stabilizers. See [21, 48, 7] for the basics of

toric varieties and stacks. A similar but more detailed account was given

in [37, Section 3.1] with a little different notation.

Let N ∼= Zn be a free abelian group. Set NR = N ⊗Z R. Let ∆ ⊂ NR

be an integral convex polytope containing the origin 0 in its interior. We

choose a stacky fan (Σ, β) on N adapted to ∆. It consists of the data

• a rational simplicial fan Σ in the vector space NR;
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• a homomorphism β : Zm → N such that {R>0b1, . . . ,R>0bm} is the

set Σ(1) of one-dimensional cones of Σ, where bi = β(ei) is the image

of the standard basis ei ∈ Zm

which are adapted to ∆ in the sense that ∆ is the convex hull of b1, b2,. . ., bm

and that b1, . . . , bm are on the boundary of ∆. We call ∆ the fan polytope.

These data give rise to a weak Fano (i.e., c1(X ) is nef) toric orbifold X .

The coarse moduli space X of X is the toric variety associated with the

fan Σ. We furthermore assume that

• the fan Σ admits a strictly convex piecewise linear function(7)

ϕ : NR → R;

• the set ∆ ∩ N generate N as a Z-module.

The first condition means that the underlying toric variety X is projective.

The second condition(8) ensures that the quantum D-module of X over

the small parameter space H62
orb(X ) is generated by the I-function (see

[37, Lemma 4.7]). Essentially the same assumption was made in [37] (see

Remark 3.4 ibid). We usually identify a cone σ of Σ with the subset {i | bi ⊂

σ} of {1, . . . ,m}.

Remark 4.1. — Borisov-Chen-Smith [7] allowed N to have torsion and

the torsion part of N equals the group of generic stabilizers of X . In this

case the mirror of X becomes disconnected [37]. We will restrict to the free

N to reduce technical complications.

Take a subset {bm+1, . . . , bm+s} of (N ∩ ∆) \ {b1, . . . , bm} such that

b1, . . . , bm+s generate N as an abelian group. These are called extended

ray vectors. They define an extended stacky fan in the sense of Jiang [39].

Let β̂ : Zm+s → N be the homomorphism sending the standard basis vec-

tors e1, . . . , em+s to b1, . . . , bm+s. Then β̂ is surjective by the assumption.

Define L := Ker β̂. The (extended) fan sequence is the exact sequence:

0 −−−−→ L −−−−→ Zm+s β̂
−−−−→ N −−−−→ 0

and the (extended) divisor sequence is its dual:

0 −−−−→ M
β̂∗

−−−−→ (Zm+s)∗ D
−−−−→ L∗ −−−−→ 0.

(7) A piecewise linear function is a continuous function on NR which is linear on each
cone of Σ. See [48] for the (strict) convexity.
(8) This second assumption is satisfied if πorb

1 (X ) is trivial; in particular if X is a weighted
projective space. We will state the toric mirror theorem without this assumption in [15].
The results in this paper should be generalized also without this assumption, but we
will stick to this case for simplicity.
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Here M := Hom(N,Z). Let Di = D(e∗
i ) ∈ L∗ be the image of the standard

basis e∗
i ∈ (Zm+s)∗. The Picard group Pic(X ) on the stack X is given by

Pic(X ) ∼= H2(X ;Z) ∼= L∗
/ m+s∑

i=m+1

ZDi.

The image Di of Di in Pic(X ) is the class of a torus invariant divisor. We

call Di the extended toric divisor class. The anticanonical class is given

by ρ := c1(X ) = −KX =
∑m

i=1 Di. The extended anticanonical class is

defined by ρ̂ :=
∑m+s

i=1 Di. Every element of Pic(X ) is represented by an

integral linear combination of toric divisors D1, . . . ,Dm. For an expression

ξ =
∑m

i=1 niDi, define a piecewise linear function ϕξ : NR → R by ϕξ(bi) =

ni for 1 6 i 6 m. The function ϕξ is ambiguous up to an integral linear

function in M = Hom(N,Z). We have the following:

• ξ is nef (resp. ample) ⇐⇒ ϕξ is convex (resp. strictly convex);

• For v ∈ Box, {ϕξ(v)} is the age fv(ξ) of the line bundle Lξ along

Xv.

Define the set Box by

Box :=
{
v ∈ N

∣∣∣ ∃σ ∈ Σ, 0 6 ∃ci < 1, v =
∑

i∈σ

cibi

}
.

This parametrizes connected components of IX [7]. For v ∈ Box, let Xv de-

note the corresponding component of IX and 1v ∈ H0(Xv) ⊂ H
2 age(v)
orb (X )

denote the unit class supported on Xv. Here age(v) is given by age(v) =∑
i∈σ ci when v is written as v =

∑
i∈σ cibi for some cone σ ∈ Σ and

ci > 0. The extended divisors Dm+1, . . . , Dm+s correspond to the classes

1bm+1
, . . . ,1bm+s

in H62
orb(X ).

Note that H2(X ;Q) ∼= (
⊕m+s

i=m+1 QDi)
⊥ ⊂ LQ := L ⊗ Q. We see that

H2(X ;Q) has a canonical complementary subspace in LQ. For m+1 6 j 6

m + s, bj is contained in a cone σ of Σ and we can write bj =
∑

i∈σ cjibi

for some cji > 0. Then δj := ej −
∑

i∈σ cjiei ∈ Qm+s belongs to LQ. We

have

(4.1) LQ = H2(X ;Q) ⊕
m+s⊕

j=m+1

Qδj .

The elements δm+1, . . . , δm+s are dual to Dm+1, . . . , Dm+s and regarded as

orbifold homology classes (of degree 6 2). Set NEX ,σ := {d∈H2(X ;R) | ∀i∈

{1, . . . ,m} \ σ, 〈Di, d〉 > 0} for a cone σ. The Mori cone NEX ⊂ H2(X ;R)

is given by

NEX =
∑

σ∈Σ

NEX ,σ .
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The extended Mori cone N̂EX ⊂ LR := L ⊗Z R is defined to be

N̂EX := NEX +
∑

m+16j6m+s

R>0δj .

For v ∈ Box, we define Kv to be the subset of Qm×Zs ⊂ Qm+s consisting of

all d ∈ Qm ×Zs such that
∑m+s

i=1 dibi +v = 0 and that {1 6 i 6 m | di /∈ Z}

is a cone of Σ. Let us write v =
∑

i∈σ cibi for some cone σ and ci ∈ [0, 1)

and set ci = 0 for i /∈ σ. Then we have a relation
∑m+s

i=1 (di + ci)bi = 0 for

d ∈ Kv. We denote by d+v the element of LQ defined by this relation. The

lattice L acts on Kv by addition and K0 ⊂ LQ. We define the reduction

function {− · } : Kv → Box by

{−d} :=
m∑

i=1

{−di}bi

where {r} denote the fractional part of r. Because
∑m+s

i=1 dibi + v = 0, we

have {−d} =
∑m+s

i=1 ⌈di⌉bi + v and so {−d} ∈ N. The reduction function in

fact induces an isomorphism Kv/L ∼= Box.

4.2. Mirror Theorem I: Toric Orbifolds

Let X be a toric orbifold as in the previous section. Define M :=

SpecC[L] = Hom(L,C×). For d ∈ L, let qd denote the corresponding ele-

ment in C[L]. This is a function qd : M → C×. The space M has a partial

(possibly singular) compactification M := SpecC[L ∩ N̂EX ]. It has a spe-

cial point (large radius limit point) 0 defined by qd = 0 for all nonzero

d ∈ L ∩ N̂EX . We choose a Z-basis p1, . . . , pr+s of L∗ (here r := m − n)

such that each pa is extended nef i.e., pa is semi-positive on N̂EX and

pr+1, . . . , pr+s ∈
∑m+s

j=m+1 Q>0Dj . Then we have the corresponding co-

ordinates q1, . . . , qr+s on M such that qd = q
〈p1,d〉
1 · · · q

〈pr+s,d〉
r+s . These co-

ordinates (q1, . . . , qr+s) give a desingularization Cr+s → M such that 0

corresponds to the origin of Cr+s. For d ∈ LQ, qd defines a possibly multi-

valued function on M. Let pa ∈ H2(X ;Z) denote the image of pa ∈ L∗. We

write p log q :=
∑r

a=1 pa log qa. This is an H2(X ;C)-valued (multi-valued)

function on M.

Definition 4.2 ([15]; See also [37, Section 4.1]). — Take v ∈ Box. De-

fine an H∗
orb(X )-valued (multi-valued) function Iv(q, z) on an open subset
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of M × C× by

Iv(q, z) = ep log q/z
∑

d∈Kv

qd+v
m+s∏

i=1

∏
k>di,{k}={di}(Di + kz)
∏

k>0,{k}={di}(Di + kz)
1{−d} .

Here all but finite terms in the infinite product cancel and Dj = 0 for

m + 1 6 j 6 m + s. The terms with d + v /∈ N̂EX automatically vanish

and Iv(q, z) is convergent in a neighborhood of 0. Apart from the prefactor

ep log q/z, it is homogeneous of degree 2 age(v) with respect to the grading

of H∗
orb(X ), deg(qd) := 2〈ρ̂, d〉 and deg z := 2. The series I(q, z) := I0(q, z)

is called the I-function. We have the asymptotics

Iv(q, z) = ep log q/z(1v +O(q))

I(q, z) = 1 +
τ(q)

z
+O(z−2)

where O(q) denotes a function vanishing at 0 and τ(q) is a multi-valued

map with values in H62
orb(X ), called the mirror map. The map τ(q) induces

a single-valued map

(4.2) τ(q) : {(q1, . . . , qr) | 0 < |qa| < ǫ} → H62
orb(X ;C)/H2(X ;Z)

for some ǫ > 0. Here H2(X ;Z) acts on H62
orb(X ) by the Galois action ξ 7→

G(ξ).

The following will be shown in joint work with Coates, Corti and Tseng

[15] (see [18] for the case of weighted projective spaces):

Theorem 4.3 ([15]). — Let X be a toric orbifold in Section 4.1 and

J(τ, z) be the untwisted J-function of X with Q = 1. Then we have

I(q, z) = J(τ(q), z).

The function Iv(q, z) can be obtained from I(q, z) = I0(q, z) by differen-

tiation. Writing Di =
∑r+s

a=1 miapa, we define the (z-decorated) logarithmic

vector field Di on M by Di := z
∑r+s

a=1 miaqa(∂/∂qa). Taking δ ∈ K0 such

that v = {−δ} and ⌈δi⌉ > 0 for all i, we can easily see that (see also [37,

Lemma 4.7])

(4.3) Iv(q, z) = q−δ




m+s∏

i=1

⌈δi⌉−1∏

ν=0

(Di − νz)


 I(q, z).

In the terminology of Givental’s Lagrangian cone [17, 16], Iv(q,−z) is in

the tangent space to the cone at −zI(q,−z). Therefore, Iv appears as a

column vector of the inverse fundamental solution.
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Corollary 4.4 ([37, Eqn (65)]). — Let L(τ, z) denote the fundamen-

tal solution (2.8) of the untwisted (s = 0) theory of X . There exists an

H∗
orb(X )-valued function θv(q, z) ∈ H∗

orb(X ) ⊗ O
M̃

[z] defined on a finite

cover M̃ of M and in a neighborhood of 0 such that

Iv(q, z) = L(τ(q), z)−1θv(q, z), θv(q, z) = 1v +O(q).

Also θv(q, z) is homogeneous of degree 2 age(v) and θ0(q, z) = 1.

Proof. — We differentiate I(q, z) = J(τ(q), z) = L(τ(q), z)−1
1 by the

differential operator appearing in (4.3). Here notice that z∂a◦L(τ(q), z)−1 =

L(τ(q), z)−1 ◦ (z∂a + (∂aτ)◦τ(q)) for ∂a = qa(∂/∂qa). �

4.3. Mirror Theorem II: Toric Complete Intersection

As before, let V be the sum of line bundles L1 ⊕ L2 ⊕ · · · ⊕ Lc over a

toric orbifold X and Y ⊂ X be a quasi-smooth complete intersection with

respect to a regular section of V. Let ι : Y → X be the inclusion. Let ξi be

the class of Li in Pic(X ) ∼= H2(X ;Z). We assume that

• The classes ξ1, . . . , ξc and c1(Y) = c1(X ) −
∑c

i=1 ξi are nef.

• The line bundles L1, . . . ,Ln are pulled back from the coarse moduli

space X, i.e., ξi ∈ H2(X,Z).

Let ϕi : NR → R be the piecewise linear function corresponding to ξi (see

Section 4.1). By the second assumption, we have {ϕi(v)} = fv(ξi) = 0

for all 1 6 i 6 c and v ∈ Box. Define a lift ξ̃i ∈ L∗ of ξi by ξ̃i :=∑m+s
j=1 ϕi(bj)Dj . The lift ξ̃i does not depend on the choice of ϕi. Then

ξ̃i is extended nef (semi-positive on N̂EX ) since 〈ξ̃i, δj〉 = 0. Set ρ̂Y :=

ρ̂−
∑c

i=1 ξ̃i. This is also extended nef.

Definition 4.5. — Let us write Iv(q, z)=ep log q/z
∑

d∈Kv
qd+v�d 1{−d}.

For v ∈ Box, we define an H∗
orb(X )-valued function Iv

V(q, z) by

Iv
V(q, z) = ep log q/z

∑

d∈Kv

qd+v
c∏

i=1

〈ξ̃i,d+v〉∏

k=1

(ξi + kz) ∪ �d 1{−d} .

Note that �d 1{−d} = 0 for d + v /∈ N̂EX and 〈ξ̃i, d + v〉 > 0 otherwise.

Also it is easy to see that 〈ξ̃i, d+v〉 is an integer. Under the above assump-

tion, Iv
V(q, z) is convergent near 0. Apart from the prefactor ep log q/z, it is

homogeneous of degree 2 age(v) with respect to the grading of H∗
orb(X ),
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degY q
d := 2〈ρ̂Y , d〉 and deg z := 2. We set IV(q, z) := I0

V(q, z). We have

the asymptotics:

Iv
V(q, z) = ep log q/z(1v +O(q))

IV(q, z) = F (q) 1 +
G(q)

z
+O(z−2)

(4.4)

where F (q) is a power series of the form 1+
∑

d6=0 cdq
d, cd ∈ Q with integral

exponents d ∈ L ∩ N̂EX and G(q) is an H62
orb(X )-valued map. The mirror

map

(4.5) ς̃(q) :=
G(q)

F (q)

defines a single valued map from a neighborhood of 0 toH62
orb(X ;C)/H2(X ;Z).

Theorem 4.6. — Let Le(τ, z), Je(τ, z) be the fundamental solution and

the J-function of the (e,V)-twisted theory of X . For v ∈ Box, there exists

an H∗
orb(X )-valued function Υ̃v(q, z) ∈ H∗

orb(X )⊗O
M̃

[z] defined on a finite

cover M̃ of M and in a neighborhood of 0 such that

(4.6) Iv
V(q, z) = Le(ς̃(q), z)−1Υ̃v(q, z), Υ̃v(q, z) = 1v +O(q).

Also Υ̃v(q, z) is homogeneous of degree 2 age(v) for the grading degY(qd) =

2〈ρ̂Y , d〉. We find that Υ̃0 = F (q) 1 by comparing the asymptotics in z.

Therefore,

IV(q, z) = F (q)Je(ς̃(q), z).

Proof. — When the mirror map τ(q) for X is “linear”, the last statement

follows from the quantum Lefschetz theorem [16, Corollary 5.1] applied to

the previous theorem 4.3. First we see how to modify the proof of quantum

Lefschetz in [16] to calculate a convenient slice (I-function) of the twisted

Lagrangian cone. Let Ls denote the (c,V)-twisted Lagrangian cone [16,

Section 3] of X . Define

Is(q, z) = ep log q/z
∑

d∈K0

qdQd
c∏

i=1

〈ξ̃i,d〉∏

k=1

exp (s(ξi + kz))�d 1{−d} .

Here d ∈ H2(X ;Q) is the H2(X ;Q)-component of d ∈ LQ under the decom-

position (4.1) and s(x) =
∑

k>0 skx
k/k!. We claim that −zIs(q,−z) is on

the cone Ls. Here we regard Is as a Λs[[log q1, . . . , log qr, q
1/e
r+1, . . . , q

1/e
r+s]]-

valued point on Givental’s loop space H for e∈N such that eK0 ⊂L. (See

the definition of H and Ls as formal schemes in [16, Appendix B].) At

s = 0, −zI0(q,−z) is on the untwisted cone L0 by Theorem 4.3. Write ξ̃i =∑r+s
a=1 viapa and define the logarithmic vector field ξ̃i :=z

∑r+s
a=1 viaqa(∂/∂qa).
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Then the same argument as the last paragraph of the proof of Theorem 4.8

in [16] shows that

fs(q) = exp

(
−

c∑

i=1

G0(−ξ̃i, z)

)
(−zI0(q,−z))

is on the untwisted cone L0, whereGy(x, z) is a formal power series depend-

ing on s defined in [16]. Applying Tseng’s symplectic operator ∆tw ([55];

we use the convention in [16, Theorem 4.1]), we get an element ∆tw(fs(q))

on Ls. Using the property of the function Gy(x, z) and ξ̃i(e
p log q/zqd) =

(ξi + z〈ξ̃i, d〉)ep log q/zqd (see Eqns (12), (13) in [16] and the discussion fol-

lowing them), we find that this equals −zIs(q,−z). This proves the claim.

Taking c = eλ, we obtain a vector Iλ on the (eλ,V)-twisted Lagrangian

cone:

Iλ(q, z) := Is(q, z)|c=eλ
= ep log q/z

∑

d∈K0

qdQd
c∏

i=1

〈ξ̃i,d〉∏

k=1

(λ+ξi +kz)�d 1{−d} .

By the discussion as in [16, Section 5.2], we know that Iλ and J
eλ are

related as Iλ(q, z) = F (q)Jeλ(ς̃(q;λ), z) where F (q), ς(q;λ) are determined

by the z-asymptotics of Iλ in the same way as (4.4) and (4.5). (Here F (q) =

F (q)|Q=1, ς̃(q) = ς̃(q; 0)|Q=1.) Now we differentiate Iλ by the differential

operator appearing in (4.3). We find

q−δ




m+s∏

i=1

⌈δi⌉−1∏

ν=0

(Di − νz)


 Iλ

= ep log q/z
∑

d∈Kv

qd+vQd+v
c∏

i=1

〈ξ̃i,d+⌈δ⌉〉∏

k=1

(λ+ ξi + kz)�d 1{−d}

(4.7)

where d+ ⌈δ⌉ = (di + ⌈δi⌉)m+s
i=1 is an element of K0. Applying the infinite-

rank differential operator
∏c

i=1

∏〈ξ̃i,δ〉
k=1 (λ+ ξ̃i +kz)−1 to the above element

(here note that 〈ξ̃i, δ〉 ∈ Z>0 since δ ∈ N̂EX ∩ K0), we obtain

I
v
λ(q, z) := ep log q/z

∑

d∈Kv

qd+vQd+v
c∏

i=1

〈ξ̃i,d+v〉∏

k=1

(λ+ ξi + kz)�d 1{−d} .

Here we expand (λ+ ξ̃i + kz)−1 as
∑∞

k=0 λ
−k−1(−ξ̃i − kz)k. Because

Iλ = F (q)Jeλ(ς̃(q;λ), z) = L
eλ(ς̃(q;λ), z)−1F (q) 1

and I
v
λ is obtained from Iλ by differentiation, I

v
λ = L

eλ(ς̃(q;λ), z)−1
Υ̃v for

an H∗
orb(X )-valued function Υ̃v(q, z;λ) which is regular at z = 0 (see the
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proof of Corollary 4.4). Here Υ̃v is defined over the ring C[z]((λ−1))[[EffX ]]

[[log q1, . . . , log qr, q
1/e
r+1, . . . , q

1/e
r+s]]. But I

v
λ, L

eλ , ς̃(q;λ) do not contain neg-

ative powers of λ, so it follows that Υ̃v is also regular at λ = 0. Now the

conclusion follows by setting λ = 0, Q = 1. �

Remark 4.7. — Recall that Iv was obtained from I by differentiation

(see (4.3)). In the twisted case, in general, Iv
V cannot be written in the

form Iv
V = PvIV for some differential operator Pv ∈ O

M̃
[z]〈z∂1, . . . , z∂r+s〉.

This means that the twisted quantum D-module over H62
orb(X ) may not be

generated by the unit section 1 as an O[z]〈z∂〉-module, where ∂ denotes

the derivative in the H62
orb(X ) direction. Differentiating IV by the same

differential operator as in (4.3), we obtain (cf. (4.7))

(4.8)

q−δ




m+s∏

i=1

⌈δi⌉−1∏

ν=0

(Di − νz)


 IV = ep log q/z




c∏

i=1

〈ξ̃i,δ〉∏

k=1

(ξi + kz) 1v +O(q)


 .

This equals Iv
V if 〈ξ̃i, δ〉 = 0 for all i. The equalities 〈ξ̃i, δ〉 = 0 (∀i) can be

achieved (for some δ) if there exists a cone σ in Σ such that v ∈ σ and

v is in the monoid generated by {b1, . . . , bm+s} ∩ σ. On the other hand, if

we invert the variable z, i.e., restrict the D-module to the complement of

z = 0, we can see from (4.8) that the twisted quantum D-module is still

generated by 1. Such a non-generation phenomenon first appeared in the

work of Guest-Sakai [29].

We remark that one can calculate Le and Υ̃v from the functions Iv
V

using the Birkhoff factorization in the theory of loop groups, as observed

by Coates-Givental [17] and Guest [28]. Using the fact that H∗(Xv) is

generated by 1v as a C[p1, . . . , pr]-module, we can find differential operators

Pv,i(z∂) ∈ C[z∂1, . . . , z∂r], i = 1, . . . , lv (where ∂a = qa(∂/∂qa)) such that

φv,i = Pv,i(p1, . . . , pr) 1v, v ∈ Box, i = 1, . . . , lv form a basis of H∗
orb(X ).

Then by the asymptotics (4.4) and the previous theorem, we have

Pv,i(z∂)Iv
V(q, z) = ep log q/z(φv,i +O(q)) = Le(ς̃(q), z)−1Υ̃v,i(q, z).

Here Υ̃v,i(q, z) = Pv,i(zς̃
∗∇e)Υ̃v(q, z) = φv,i + O(q) is an H∗

orb(X )-valued

function regular at z = 0. We consider the matrix formed by the column

vectors P i
v(z∂)Iv

V and regard it as an element of the loop group with loop

parameter z. Then the above equation shows that (Le)−1 and (Υ̃v,i)v,i are

obtained from it by the Birkhoff factorization [51]. Here we use the fact

that Le = id +O(z−1) and Υ̃v,i(q, z) is regular at z = 0. This also gives a

proof that Υ̃v(q, z) and Le(ς(q), z) are analytic near q = 0.

ANNALES DE L’INSTITUT FOURIER



QUANTUM COHOMOLOGY AND PERIODS 2933

Using Proposition 2.4, we get the following corollary of Theorem 4.6.

Corollary 4.8. — Let LY(τ, z), JY(τ, z) denote the fundamental so-

lution and the J-function of the untwisted theory of Y. Set Υv(q, z) =

ι∗Υ̃v(q, z) and ς(q)= ι∗ς̃(q). Then we have ι∗Iv
V(q, z)=LY(ς(q), z)−1Υv(q, z)

and ι∗IV(q, z) = F (q)JY(ς(q), z).

5. Equality of Periods: A-periods = B-periods

In this section we show that the A-periods of X equal ordinary periods

(or oscillatory integral) of the mirror. The key point — the hypersurface

J-function is a Laplace transform of the ambient one and the same for

mirror oscillatory integrals — had been observed in Givental’s paper [25]

on toric mirror theorem and in the Coates-Givental proof [17] of quantum

Lefschetz.

5.1. Laplace Transform of A-Periods

Let X be a toric orbifold in Section 4.1 and Y be a complete intersection

in X with respect to V = L1 ⊕ · · · ⊕ Lc in Section 4.3. Here we show that

the Laplace transforms of the A-periods of X give precisely those of Y. We

choose a lift ξ̃j ∈ L∗ of ξj for 1 6 j 6 c as in Section 4.3. Then ξ̃j defines a

one-parameter subgroup C× ∋ r 7→ rξ̃i of M = L∗ ⊗ C×. In co-ordinates,

rξ̃j = (rvj1 , . . . , rvj,r+s) when we set ξ̃j =
∑r+s

a=1 vjapa. By the formula (3.6)

and Corollary 4.4, the A-period Π(θv, E) of X is given by

(5.1) Π(θv, E)(τ(q), z) =
(
Iv(q,−z), zn− deg

2 zρΨ(E)
)

orb
.

Here θv is the section(9) of the quantum D-module QDM(X ) of X in

Corollary 4.4. Define the (partial) Laplace transform Π̂(φ, E) by

Π̂(φ, E)(q, s, z) :=

( c∏

j=1

sj

)∫ ∞

0

. . .

∫ ∞

0

Π(φ, E)
(
τ(
∏c

j=1(zrj)ξ̃j · q), z
)
e

−
∑

c

j=1
rjsjdr1 · · · drc.

where s = (s1, . . . , sc) ∈ (R>0)c. Note that Π(φ, E)(τ(q), z), Π̂(φ, E)(q, s, z)

are multi-valued. We can regard them as a single-valued function in

(log q1, . . . , log qr+s, log z).

(9) More precisely, θv is a section of τ∗QDM(X ). The A-period Π(θv , E) should be
understood as the pairing of θv(q, −z) and (τ∗s(E))(q, z) in the pulled-back quantum
D-module.
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Proposition 5.1. — For E ∈ K(X ) and v ∈ Box, we have

Π̂(θv, E)(q, s, z) =
(
Iv

V (q′
s,−z) , z

n− deg
2 zρY ΨV(E)

)
orb

where we set ΨV(E) := eπiiic1(V)Γ̂(V∨) ∪ Ψ(E), ρY := c1(Y) = ρ −
∑c

j=1 ξj

and

q′
s =

c∏

j=1

(eπiiis−1
j )ξ̃j ·q. i.e., log q′

s,a =log qa+
c∑

j=1

(πiii−log sj)vja, log sj> 0.

Note that the right-hand side also gives the analytic continuation of Π̂(θv, E)

in s.

Proof. — First we calculate the Laplace transform of Iv(q,−z). Writing

Iv(q,−z) = e−p log q/z
∑

d∈Kv
qd+v�d 1{−d}, we have

∫ ∞

0

· · ·

∫ ∞

0

Iv
(∏

(rjz)
ξ̃j · q,−z

)
e

−
∑

c

j=1
rjsjdr1 · · · drc

=
∑

d∈Kv,d+v∈N̂EX

e−p log q/zqd+v
�d

×
c∏

j=1

∫ ∞

0

e−ξj log(rjz)/z(rjz)
〈ξ̃j ,d+v〉e−rjsjdrj 1{−d}

=
∑

d∈Kv,d+v∈N̂EX

e−p log q/zqd+v
�d

×
c∏

j=1

(z/sj)
〈ξ̃j ,d+v〉−

ξj

z s−1
j Γ

(
1 + 〈ξ̃j , d+ v〉 − ξj

z

)
1{−d} .

Using Γ(1 + x) = xΓ(x) and 〈ξ̃j , d + v〉 ∈ Z>0, we find that this is

(s1 · · · sc)−1 times

c∏

j=1

e(πiii−log z)ξj/zΓ (1 − ξj/z) · Iv
V

(∏c
j=1(eπiii/sj)ξ̃j · q,−z

)
.

The conclusion now easily follows from this and (5.1). �

Remark 5.2. — The integral in rj yielding the factor Γj = Γ(1+〈ξ̃j , d+

v〉 − ξj/z) in the above calculation should be understood as a vector-

valued integration. The exchange of sum and integral is justified by the

estimates ‖�d‖ 6 C1C
|d|
2 /〈ρ̂, d〉! and ‖�d

∏c
j=1 Γj‖ 6 C1C

|d|
2 /〈ρ̂Y , d〉! for

some C1, C2 > 0. Here |d| =
∑r+s

a=1〈pa, d〉 and ‖ · ‖ is the operator norm

with respect to some norm on H∗
orb(X ). Note that we need the fact that

ρ̂, ρ̂Y are extended nef.
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Remark 5.3. — We can view the map ΨV(E) as defining a dual(10)

integral structure of the Euler twisted theory.

Using the mirror theorem (Corollary 4.8) we obtain the following corol-

lary.

Corollary 5.4. — For an algebraic vector bundle E on Y, we have

(2πiii)cΠY(Υv, E) (ς (q′
s) , z) = Π̂(θv, ι∗E)(q, s, z),

where ΠY(Υv, E) denotes the A-period (3.5) for Y and Υv is the section of

the quantum D-module of Y appearing in Corollary 4.8 and (4.6).

Proof. — By Toen’s Grothendieck-Riemann-Roch [54] we have

(5.2) c̃h(ι∗E) = ι∗




c∏

j=1

1 − e−ξj

ξj
· c̃h(E)


 .

Using this, ι∗Γ̂X = Γ̂Y ∪ ι∗Γ̂(V) and Γ(1 − x)Γ(1 + x) = πx/ sin(πx), we

find

ΨV(ι∗E) = (2πiii)cι∗ΨY(E).

Here ΨY denotes the map Ψ (3.3) for Y. The conclusion follows from the

previous proposition and Corollary 4.8. �

5.2. Mirror Construction

In toric geometry, various mirror constructions have been found by

Batyrev [4], Batyrev-Borisov [5], Givental [26] and Hori-Vafa [32]. Follow-

ing Givental and Hori-Vafa, we shall construct mirrors for nef complete

intersections in toric orbifolds as Landau-Ginzburg models.

Let X be a toric orbifold in Section 4.1. A nef partition is a partition

{1, . . . ,m} = I0 ⊔ I1 ⊔ · · · ⊔ Ic such that ξj :=
∑

i∈Ij
Di is nef for all

0 6 j 6 c and that ξ1, . . . , ξc are pulled back from the coarse moduli

space X, i.e., they are Cartier divisors on X. This is a special case of the

situation in Section 4.3. In the case of the original nef partition due to

Batyrev-Borisov [5], I0 is assumed to be empty. We need not to assume

that ξ0 is Cartier on X. As before, we assume the existence of a quasi-

smooth complete intersection Y ⊂ X with respect to V = L1 ⊕ · · · ⊕ Lc

(10) Because the Euler twisted theory has a degenerate pairing, we have to distinguish

the Γ̂-integral structure from its dual: the integral structure itself should be given by

ΨV (E) = Γ̂(V)−1Ψ(E).
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where Li is the line bundle in the class ξi ∈ Pic(X ). Let ϕj : NR → R be the

piecewise linear function defined by ϕj(bi) = 1 for i ∈ Ij and ϕj(bi) = 0 for

i ∈ {1, . . . ,m} \ Ij . By the assumption ϕj(bi) is 0 or 1 for all 1 6 i 6 m+ s

and j > 1. We set Îj := {1 6 i 6 m + s |ϕj(bi) = 1} for j > 1. The sets

Î1, . . . , Îc are mutually disjoint. Set Î0 := {1, . . . ,m+ s} \
⋃c

j=1 Îj .

Consider the torus Ť := Hom(N,C×) = M ⊗Z C×. Let t denote a point

on Ť. Each element b ∈ N defines a function tb : Ť → C×. Take α =

(α1, . . . , αm+s) in (C×)m+s and define the Laurent polynomialsW
(0)
α (t), . . . ,

W
(c)
α (t) on Ť as W

(j)
α (t) =

∑
i∈Îj

αit
bi . A mirror of Y is given by the com-

plete intersection in Ť

Y̌α = {t ∈ Ť | W (1)
α (t) = · · · = W (c)

α (t) = 1}

endowed with a holomorphic function W
(0)
α : Y̌α → C. The pair (Y̌α,W

(0)
α )

is called the Landau-Ginzburg model. We assume that Y̌α is a non-empty

smooth complete intersection for generic α. The translation of the torus Ť

induces the Ť-action on the parameter space: α 7→ t ·α := (tb1α1, . . . , t
bm+s

αm+s). Then (Y̌α,W
(0)
α ) ∼= (Y̌t·α,W

(0)
t·α ). Therefore the parameter space of

the mirror family descends to M (in Section 4.2) via the exact sequence

(the divisor sequence tensored with C×):

1 −→ Ť = M ⊗Z C× −→ (C×)m+s −→ M = L∗ ⊗Z C× −→ 1.

In [37] we considered the mirror of a toric orbifold X itself. In this case I0 =

{1, . . . ,m} and the mirror is the family of functions
∑m+s

j=1 αjt
bj : Ť → C.

Remark 5.5. — Batyrev and Borisov [5] dealt with the case where I0

is empty. In this case Y is Calabi-Yau. They considered a Calabi-Yau

compactification of Y̌α in a toric variety P̂∇. Here P̂∇ is a crepant par-

tial resolution of the toric variety P∇ associated with the polytope ∇ =

∇1 + · · · + ∇c ⊂ NR, where ∇i is the convex hull of {bj | j ∈ Ii} ∪ {0}. It

would be interesting to find a partial compactification of (Y̌α,W
(0)
α ) with

good topological properties.

Remark 5.6. — We hope that the existence of a quasi-smooth complete

intersection Y and that of a smooth complete intersection Y̌α are related.

In the Batyrev-Borisov construction [5], it was shown that a general com-

plete intersection Y is quasi-smooth if and only if the compactification of

a general Y̌α is quasi-smooth.
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5.3. A-Periods and B-Periods

Take C×-co-ordinates (t1, . . . , tn) on Ť associated with a basis of N.

Define a holomorphic volume form Ωα on Y̌α by

Ωα =
dt1

t1
∧ · · · ∧ dtn

tn

dW
(1)
α ∧ · · · ∧ dW

(c)
α

.

We shall consider the following oscillatory integral (B-periods):

(5.3)

∫

Γ(α)

φ(t)e−W (0)
α (t)/zΩα

for a Laurent polynomial φ : Ť → C and a possibly noncompact cycle

Γ(α) ⊂ Y̌α such that ℜ(W
(0)
α (t)/z) → ∞ in the end of Γ(α). More gen-

erally, for ~k = (k1, . . . , kc) ∈ (Z>0)c, we introduce the residue symbol

Osc(φ,~k;α) =
(∏c

j=1 z
kjkj !

)
ResY̌α

(
φ(t)e−W (0)

α (t)/z dt1

t1
∧ · · · ∧ dtn

tn∏c
j=1(W

(j)
α (t) − 1)kj+1

)

and define the “oscillatory” residue integral

(5.4)
∫

Γ(α)

Osc(φ,~k;α) =

∏c
j=1 z

kjkj !

(2πiii)c

∫

T (Γ(α))

φ(t)e−W (0)
α (t)/z dt1

t1
∧ · · · ∧ dtn

tn∏c
j=1(W

(j)
α (t) − 1)kj+1

.

Here T (Γ(α)) ⊂ Ť is a cycle given as follows: Take a small tubular neigh-

bourhood N of Y̌α in Ť. Then N \
⋃c

j=1(W
(j)
α )−1(1) has a deformation

retraction to an (S1)c-bundle T → Y̌α. We take T (Γ(α)) to be the total

space of T |Γ(α). Note that (5.4) equals (5.3) when ~k = 0.

In this section we consider the integral over the real locus. Set(11) ŤR :=

Hom(N,R>0) = {(t1, . . . , tn) | ti > 0 (∀i)}. When α ∈ (R>0)m+s, we can

define the real cycle ΓR(α) in Y̌α by ΓR(α) := Y̌α ∩ ŤR. Similarly we define

MR := Hom(L,R>0) ⊂ M. For α ∈ (R>0)m+s, we have the estimate(12) :

c∑

j=0

W (j)
α (t) =

m+s∑

i=1

αit
bi > ǫ(α) max

16i6n

{
t
1/N
i , t

−1/N
i

}
∀t ∈ ŤR

for some ǫ(α) > 0 and N ∈ N. Restricting this to ΓR(α) = ŤR ∩ Y̌α,

we get W
(0)
α (t) + c > ǫ(α) max16i6n{t

1/N
i , t

−1/N
i }. Consider the integrals

(5.3), (5.4) with ℜ(z) > 0, Γ(α) = ΓR(α) and α ∈ (R>0)m+c. Take Pn

(11) Note that this does not depend on the choice of co-ordinates ti on Ť.
(12) Use the fact that 0 is in the interior of ∆ and the inequality β1x1 + · · · + βkxk >

x
β1
1 · · · x

βk

k
for xi > 0, βi > 0,

∑k

i=1
βi = 1.
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as a compactification of Ť. Then the convergence of the integral (5.3) is

ensured by the exponential factor e−W (0)
α (t)/z because φ(t)Ωα grows at most

polynomially near the infinity Pn \ Ť. By taking T (ΓR(α)) to be a semi-

algebraic cycle (as in [50, Appendix]) which is sufficiently close to ΓR(α),

we have the convergence of (5.4) similarly.

For v ∈ Box, we set αv :=
∏

j∈σ α
cj

j when v =
∑

j∈σ cjbj for some cone

σ and cj ∈ [0, 1). The following is the first main theorem of this paper.

Theorem 5.7. — Let Y be a toric complete intersection in Section 5.2.

The A-periods (3.5) of the structure sheaf OY equal the oscillatory residue

integrals over ΓR(α).

ΠY(Υv,OY)(ς(q), z) =

∫

ΓR(α)

Osc(αvtv, ~ϕ(v);α).

Here ~ϕ(v) = (ϕ1(v), . . . , ϕc(v)), v ∈ Box, α ∈ (R>0)m+s, q = [α] ∈ MR,

z > 0 and the functions ς(q), Υv(q) are as in Corollary 4.8 (see also (4.5),

(4.6)). In particular, the quantum cohomology central charge ZY(OY) =

(2πiii)− dim YΠY(1,OY) is given by

ZY(OY)(ς(q), z) =
1

(2πiii)dim YF (q)

∫

ΓR(α)

e−W (0)
α (t)/zΩα.

Moreover, the A-period ΠY(Υv, ι
∗E) for E ∈ K(X ) is in the Z-span of

the monodromy transforms of ΠY(Υv,OY) with respect to the monodromy

around q = 0.

Remark 5.8. — The A-periods ΠY(Υγ , ι
∗E) should be written as an

oscillatory integral over an integral cycle ΓE which is monodromy-generated

by ΓR, but we do not know its explicit representative.

Remark 5.9. — By Corollary 4.8, the A-period ΠY(Υv, E) for E ∈ K(Y)

can be expressed in terms of the explicit hypergeometric function Iv
V :

ΠY(Υv, E)(ς(q), z) =
(
ι∗Iv

V(q,−z), zdim Y− deg
2 zρY ΨY(E)

)
orb

.

Hence theorem 5.7 gives equalities of oscillatory integrals and hypergeo-

metric series.

Proof of Theorem 5.7. — The case Y = X was proved in [37, Theo-

rem 4.14]. In this case we have the following:

Π(1,OX )(τ(q), z) =

∫

ŤR

e
−
∑

c

j=0
W (j)

α (t)/z dt1
t1

∧ · · · ∧
dtn
tn
,

where q = [α] ∈ MR, α ∈ (R>0)m+s. By (4.3) and (5.1), we know that

Π(θv,OX ) can be obtained from Π(1,OX ) by differentiation. Using the
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fact that the vector field Di there is lifted to zαi(∂/∂αi) on the α-space,

we calculate

Π(θv,OX )(τ(q), z) =

∫

ŤR

αvtve
−
∑

c

j=0
W (j)

α (t)/z dt1
t1

∧ · · · ∧
dtn
tn
.

By the assumption that Y̌α is smooth for generic α, we can see that the

map

~Wα := (W (1)
α , . . . ,W (c)

α ) : ŤR −→ (R>0)c

is generically submersive for generic α ∈ (R>0)m+s. Hence the above oscil-

latory integral can be rewritten as

Π(θv,OX )(τ(q), z) =

∫

u∈(R>0)c

c∏

j=1

duje
−
∑

c

j=1
uj/z

Pv(α, u),

where Pv(α, u) :=
∫
ŤR∩{ ~Wα(t)=u}

αvtve−W (0)
α (t)/z

dt1
t1

∧···∧ dtn
tn

dW
(1)
α ∧···∧dW

(r)
α

. Here we

set Pv(α, u) = 0 if u is not in the image of ~Wα. We take the partial Laplace

transform of the both-hand sides. Under the divisor map D : Zm+s → L∗,

ξ̃j can be lifted to the sum
∑

i∈Îj
ei ∈ Zm+s. Therefore the c-dimensional

flow q 7→
∏c

j=1(zrj)ξ̃j · q on M can be lifted to the flow on the α-space

scaling W
(j)
α by zrj for 1 6 j 6 c and leaving W

(0)
α invariant. Hence

Π̂(θv,OX )(q, s, z) with s ∈ (R>0)c equals

(
c∏

k=1

∫ ∞

0

skdrk

)∫

u∈(R>0)c




c∏

j=1

duje
−(uj+sj)rj (zrj)ϕj(v)


Pv(α, u)

=

∫

u∈(R>0)c




c∏

j=1

dujsjz
ϕj(v)ϕj(v)!

(uj + sj)1+ϕj(v)


Pv(α, u).

We can change the order of the integration by Fubini since the integrand

can be viewed as a non-negative measure. Because Π̂(θv,OX ) is well-defined

by Proposition 5.1, the integral in the right-hand side also converges for

sj > 0. If sj ∈ C \ R60, there exists a constant C(sj) > 0 such that
∣∣∣∣

1

(uj + sj)1+ϕj(v)

∣∣∣∣ 6
C(sj)

(uj + 1)1+ϕj(v)
for all uj > 0.

Therefore the above integral can be analytically continued in s and makes

sense for sj ∈ C \ R<0. The jump of the values across the branch cut R<0

can be calculated by the Cauchy integral formula. For a function f(sj) on

TOME 61 (2011), FASCICULE 7



2940 Hiroshi IRITANI

C \ R<0 we set (∆j f)(−sj) := limǫ→+0(f(−sj − iiiǫ) − f(−sj + iiiǫ)) for

sj > 0. Then we have
(

∆1 · · · ∆c Π̂(θv,OX )
)

(q,−s1, . . . ,−sc, z)

=

c∏

j=1

(−2πiiisj)

c∏

j=1

(
z
∂

∂sj

)ϕj(v)

Pv(α, s).

On the other hand, we can calculate the left-hand side using Proposition 5.1

when q is sufficiently close to 0 and sj > 1. It is
(∏c

j=1(e−2πiiiξj/z − 1) ∪ Iv
V

(∏c
j=1 s

−ξ̃j

j · q,−z
)
, zn− deg

2 zρY ΨV(OX )
)

orb

= (−1)cΠ̂(θv, ι∗OY)(q, eπiiis, z) by (5.2) and Proposition 5.1

= (−2πiii)cΠY(Υv,OY)
(
ς
(∏c

j=1 s
−ξ̃j

j · q
)
, z
)

by Corollary 5.4.

We arrive at the formula in the theorem by differentiating

Pv(α, s) =

∫

T (ŤR∩{ ~Wα(t)=s})

αvtve−W (0)
α (t)/z dt1

t1
∧ · · · ∧ dtn

tn

(W
(1)
α (t) − s1) · · · (W

(c)
α (t) − sc)

in s1, . . . , sc and setting s1 = · · · = sc = 1. The last statement follows from

the fact that K(X ) is generated by line bundles [10] and the monodromy

formula

ΠY(φ, E)(ς(e2πiiiξ̃ · q), z) = ΠY(φ, ι∗(L∨
ξ ) ⊗ E)(ς(q), z)

where E ∈ K(Y), ξ̃ ∈ L∗ and ξ ∈ Pic(X ) is its image. (It follows from

Definition 3.6, (ii) and ς(e2πiiiξ̃ · q) = G(ι∗ξ)−1ς(q).) �

6. Toric Calabi-Yau Hypersurfaces

In this section we restrict our attention to a Calabi-Yau hypersurface Y in

a Gorenstein weak Fano toric orbifold X . Based on the period calculation

in Theorem 5.7, we study mirror symmetry of Y as an isomorphism of

variations of Hodge structure and compare the integral structures on the

both sides. We set n := dimC X as before.

6.1. Batyrev Mirror

Batyrev [4] constructed mirror pairs of Calabi-Yau hypersurfaces based

on the duality of reflexive polytopes. This is the case where the ambient
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toric orbifold X is Gorenstein (i.e., KX is pulled back from the coarse

moduli space) and we take the nef partition I0 = ∅, I1 = {1, . . . ,m} in

Section 5.2. We refer the reader to [4], [20, Section 4] for details. The fan

polytope ∆ is said to be reflexive if the integral distance between 0 and all

hyperplanes generated by codimension one faces equal 1. If ∆ is reflexive,

the dual polytope ∆∗ = {y ∈ MR | 〈x, y〉 > −1 (∀x ∈ ∆)} have integral

points as its vertices and (∆∗)∗ = ∆. A weak Fano toric orbifold is Goren-

stein if and only if its fan polytope is reflexive. A general anticanonical

section Y in a weak Fano Gorenstein toric orbifold X is a quasi-smooth

Calabi-Yau orbifold. As in Section 5.2, the (uncompactified) mirror Y̌α of

Y is given as a hypersurface in the torus Ť:

Y̌α = W−1
α (1) ⊂ Ť, Wα(t) := W (1)

α (t) =

m+s∑

i=1

αit
bi .

Take C× co-ordinates (t1, . . . , tn) on Ť as before. Introduce another variable

t0 and define the subring S∆ of C[t0, t
±
1 , . . . , t

±
n ] by

S∆ =
⊕

k>0

Sk
∆, Sk

∆ =
⊕

b∈k∆∩N

Ctbtk0 .

It is graded by the degree of t0. The toric variety P∆ := ProjS∆ is a

compactification of Ť. The variety P∆ is associated with the normal fan of

∆ and its fan polytope is ∆∗. The closure Y̌ α of Y̌α in P∆ is an anticanonical

section of P∆. We say that Y̌α is ∆-regular if the intersection of Y̌ α and

every torus orbit O in P∆ is a smooth subvariety of codimension 1 in O.

The set of parameters α for which Y̌α is ∆-regular is a non-empty Zariski

open subset (C×)m+s
reg of (C×)m+s. This is invariant under the action of Ť

and descends to a Zariski open subset Mreg in M. Let Y̌α be ∆-regular. A

resolution of Y̌ α by a Calabi-Yau orbifold is constructed as follows. Choose

a projective crepant resolution X̌ → P∆ by a toric orbifold X̌ . This amounts

to choosing a triangulation of the fan polytope ∆∗. The fan polytope of X̌

is still ∆∗. Then the pull-back Y̌α ⊂ X̌ of Y̌ α is a quasi-smooth Calabi-Yau

hypersurface which gives a crepant resolution of Y̌ α.

Remark 6.1. — Batyrev [4] showed that one can choose X̌ with only

terminal singularities (MPCP desingularization). In this case Y̌α becomes

also terminal. In particular, we can take Y̌α to be smooth in dimension 3

because terminal Gorenstein orbifolds in dimension 3 are all smooth. From

a viewpoint of orbifold mirror symmetry, we do not need to restrict our

attention to terminal partial resolutions.
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6.2. A-Model VHS of a Calabi-Yau Hypersurface

By the Gorenstein condition, the orbifold cohomology of Y is graded by

even integers(13) . Since Y is Calabi-Yau, the quantum D-module QDM(Y)

of Y in Definition 3.1 restricted to H2
orb(Y) and z = 1 reduces to a variation

of Hodge structure (VHS) in the classical sense (cf. Remark 3.3). See [20,

Section 8.5]. We furthermore restrict our attention to the “ambient part”.

Set

H∗
amb(Y) := Im(ι∗ : H∗

orb(X ) → H∗
orb(Y)).

By Corollary 2.5, H∗
amb(Y) is closed under quantum product. For the con-

vergence domain U ⊂ H∗
orb(Y) in Section 3.1, we set U ′ = H2

amb(Y) ∩ U .

Take a C-basis η1, . . . , ηℓ in H2
amb(Y). Let τ1, . . . , τ ℓ be the correspond-

ing co-ordinates on H2
amb(Y) and τ =

∑ℓ
i=1 τ

iηi be a general point on

H2
amb(Y).

Definition 6.2. — The ambient A-model VHS of Y is the tuple (HA,

∇A,F •
A, QA) consisting of the locally free sheaf HA = H∗

amb(Y)⊗OU ′ over

U ′, the flat Dubrovin connection ∇A : HA → HA ⊗ Ω1
U ′

∇A = d+

ℓ∑

i=1

(ηi◦τ )dτ i,

the decreasing Hodge filtration F
p
A = H

62(n−1−p)
amb (Y) ⊗ OU ′ on HA and

the ∇A-flat (−1)n−1-symmetric pairing QA : HA ⊗ HA → OU ′

QA(α, β) = (2πiii)n−1((−1)
deg

2 α, β)orb.

The Galois action of ι∗H2(X ;Z) on the A-model VHS is defined similarly

to (3.1), (3.2).

The A-model VHS satisfies Griffiths transversality and the Riemann bi-

linear relation:

(6.1) ∇A
F

p
A ⊂ F

p−1
A ⊗ Ω1

U ′ , QA(F p
A,F

n−p
A ) = 0.

By a result of Mavlyutov [47, Theorem 5.1], we have the decomposition

H∗
orb(Y) = H∗

amb(Y) ⊕ Ker(ι∗). Since the two summands are orthogonal to

each other with respect to the orbifold Poincaré pairing, we know that the

polarization form QA is non-degenerate on the ambient part HA.

The Γ̂-integral structure in Definition 3.6 induces an integral structure

on the above A-model VHS. Let LY(τ) := LY(τ, z = 1) denote the funda-

mental solution of the quantum differential equation (with Q = 1) of Y. By

(13) Recall that we ignore odd cohomology classes on the A-side.
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Proposition 2.4, we know that LY(τ) with τ ∈ U ′ maps a class in H∗
amb(Y)

to a flat section of HA. Therefore, if E ∈ K(Y) satisfies c̃h(E) ∈ H∗
amb(Y),

we have a flat section s(E)(τ) = s(E)(τ, z = 1) of HA in the same way as

(3.3):

s(E)(τ) = (2πiii)−(n−1)LY(τ)ΨY(E),

ΨY(E) = Γ̂Y ∪ (2πiii)
deg0

2 inv∗ c̃h(E).

Definition 6.3. — Set HA := Ker ∇A ⊂ HA. Define the local subsys-

tem Hamb
A,Z of HA as

Hamb
A,Z := {s(ι∗E) | E ∈ K(X )}.

It is a Z-lattice of HA and preserved under the Galois action by ι∗H2(X ;Z).

For s(E1), s(E2) ∈ Hamb
A,Z , we have

QA(s(E1), s(E2)) = χY(E1, E2).

We call Hamb
A,Z the ambient Γ̂-integral structure on the ambient A-model

VHS of Y.

Remark 6.4. — The above integral structure also induces rational and

real structures HA,Q, HA,R on the A-model VHS. With respect to the real

involution κ defined by HA,R, we hope to have the Hodge decomposition

and the Riemann bilinear inequality:

(6.2) HA = F
p
A ⊕ κ(F n−p

A ), iii
p−qQA(φ, κ(φ)) > 0

for φ ∈ H
p,q

A = F
p
A ∩ κ(F q

A) \ {0}, q = n − 1 − p. From a result in [35],

it follows that these properties hold in a neighbourhood of the large radius

limit(14) . In fact, by mirror symmetry, we will see that these properties

hold globally.

6.3. B-Model VHS

As we saw in Section 5.2, the parameter space of the mirror Y̌α (or its

compactification Y̌α) descends to M = L∗ ⊗ C×. We are interested in the

VHS associated with the family of ∆-regular Calabi-Yau hypersurfaces:

pr2 : Y̌
def
=
{

(t, α) ∈ X̌ × (C×)m+s
reg

∣∣ t ∈ Y̌α

}/
Ť −→ Mreg.

(14) We showed the Riemann bilinear inequality for the (p, p) part (or algebraic part) of
quantum cohomology VHS in [35]. Note that the ambient part H∗

amb(Y) is contained in

the (p, p) part.
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In this paper, we restrict our attention to the VHS on the untwisted middle

cohomology Hn−1(Y̌α). Furthermore, we only consider classes obtained as

residues. Let Res: Hn(X̌ \ Y̌α) → Hn−1(Y̌α) be the Poincaré residue map:
∫

γ

Res(ω) =
1

2πiii

∫

T (γ)

ω, ω ∈ Hn(X̌ \ Y̌α),

where T (γ) ⊂ X̌ \ Y̌α is a tube of an (n− 1)-cycle γ ⊂ Y̌α (as appeared in

(5.4)). Define the residue part of Hn−1(Y̌α) by

Hn−1
res (Y̌α) := Im(Res: H0(X̌ ,Ωn

X̌
(∗Y̌α)) → Hn−1(Y̌α)).

Here H0(X̌ ,Ωn
X̌

(∗Y̌α)) is the space of algebraic n-forms with arbitrary poles

along Y̌α. Let Ď1, . . . , ĎN be the toric divisors of X̌ . We claim that we have

the orthogonal decomposition with respect to the intersection pairing:

(6.3) Hn−1(Y̌α) = Hn−1
res (Y̌α) ⊕

(
N∑

i=1

fi∗H
n−3(Y̌α ∩ Ďi)

)

where fi : Ďi ∩ Y̌α →֒ Y̌α is the inclusion. To see this, we use the Gysin

exact sequence (see [46, Eqn (7)]):

(6.4)

N⊕

i=1

Hn−3(Y̌α ∩ Ďi)

⊕
fi∗

−−−−→ Hn−1(Y̌α) → Wn−1(Hn−1(Y̌α)) → 0.

Here W•(Hn−1(Y̌α)) denotes the weight filtration of Deligne’s mixed Hodge

structure. In the proof of [46, Theorem 4.4], it is shown that the compo-

sition H0(X̌ ,Ωn
X̌

(∗Y̌α)) → Hn−1(Y̌α) → Wn−1(Hn−1(Y̌α)) is surjective.

Hence Hn−1
res (Y̌α) and

∑N
i=1 fi∗H

n−3(Y̌α ∩ Ďi) generate Hn−1(Y̌α). On the

other hand, Hn−1
res (Y̌α) and fi∗H

n−3(Y̌α ∩ Ďi) are orthogonal to each other

because Res(ω) for a holomorphic n-form ω on X̌ \ Y̌α vanishes on Y̌α ∩ Ďi.

This proves the claim. The decomposition (6.3) gives a topological char-

acterization of Hn−1
res (Y̌α): It consists of degree n − 1 classes on Y̌α which

vanish on the toric boundaries Y̌α ∩ Ďi. Therefore the subspace Hn−1
res (Y̌α)

is defined over Q and is preserved by the Gauss-Manin connection. We can

also see that each class α ∈ Hn−1
res (Y̌) is primitive, i.e., α ∪ H = 0 for an

ample hyperplane class H. By (6.3) and (6.4), we have the identification

Hn−1
res (Y̌α) ∼= Wn−1(Hn−1(Y̌α)).

Since Wn−1(Hn−1(Y̌α)) is the lowest weight component, this identification

induces a Q-Hodge structure of weight n− 1 on Hn−1
res (Y̌α).
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Definition 6.5. — The residual B-model VHS of the family pr2 : Y̌ →

Mreg is a tuple (H B,∇
B, HB,Q,F

•
B, QB) where H B is the locally free sub-

sheaf of (Rn−1pr2∗CY̌
) ⊗ OMreg over Mreg whose fiber at [α] is the residue

part Hn−1
res (Y̌α), ∇B is the Gauss-Manin connection, HB,Q ⊂ Ker ∇B is the

rational structure explained above, F
p
B,[α] =

⊕
j>p H

j,n−1−j
res (Y̌α) is the

standard Hodge filtration and QB is the intersection form:

QB(ω1, ω2) = (−1)(n−1)(n−2)/2

∫

Y̌α

ω1 ∪ ω2.

The residual B-model VHS satisfies the usual properties of a variation of

polarized Hodge structure as given in (6.1) and (6.2).

Consider the relative homology group H∗(Ť, Y̌α). The Morse-theoretic

argument in [37, Section 3.3.1] (see also [22]) shows that

(6.5) Hk(Ť, Y̌α;Z) ∼= Hk(Ť, {ℜ(Wα(t)) ≫ 0};Z) ∼=

{
0 k 6= n

ZVol(∆) k = n

where Vol(∆) is the normalized volume of ∆ such that the volume of the

standard n-simplex is 1. The group Hn(Ť, {ℜ(Wα(t)) ≫ 0}) is generated

by Lefschetz thimbles emanating from critical points of Wα(t); Vol(∆) is

the number of critical points of Wα(t) (with multiplicities). By the relative

homology exact sequence, we have

0 −→ Hn(Ť) −→ Hn(Ť, Y̌α)
∂

−→ Hn−1(Y̌α) −→ Hn−1(Ť) −→ 0.

The image of Hn(Ť, Y̌α;Z) under ∂ consists of the vanishing cycles ofWα(t).

Lemma 6.6. — The image of the composition

Hn(Ť, Y̌α)
∂

−−−−→ Hn−1(Y̌α) −−−−→ Hn−1(Y̌α)
PD

−−−−→ Hn−1(Y̌α)

is Hn−1
res (Y̌α). Here PD is the Poincaré duality isomorphism (defined over

Q). We denote by VC: Hn(Ť, Y̌α) → Hn−1
res (Y̌α) the resulting surjection.

Proof. — It is clear that an image of the above map vanishes on the toric

boundaries Y̌α ∩ Ďi. Thus the image is contained in Hn−1
res (Y̌α). The dual

of this map is given by

(6.6)

Hn−1
res (Y̌α)∨ ∼= Hn−1

res (Y̌α) ∼= Wn−1H
n−1(Y̌α) →֒ Hn−1(Y̌α)

δ
−→ Hn(Ť, Y̌α)

where the first isomorphism is via the intersection pairing. The map δ is

dual to ∂ and its kernel is Hn−1(Ť). Because the intersection of Hn−1(Ť)

and Wn−1Hn−1(Y̌α) is zero for the weight reason, the above dual map is

injective. �
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Definition 6.7. — The vanishing cycle integral structure Hvc
B,Z ⊂ HB,Q

on the residual B-model VHS is defined to be the image of Hn(Ť, Y̌α;Z)

under the vanishing cycle map VC: Hn(Ť, Y̌α) → Hn−1
res (Y̌α).

Remark 6.8. — The mixed Hodge structure of affine hypersurfaces in

the algebraic tori was studied by Danilov-Khovanskii [22] and Batyrev [3].

The Hodge structure of toric hypersurfaces has been studied by Batyrev-

Cox [6] and Mavlyutov [46, 47].

6.4. Mirror Isomorphism with Integral Structures

In this section, as we did in Section 4.1, we assume that N is generated by

∆∩N as a Z-module. Also we choose non-zero vectors {bm+1, . . . , bm+s} ⊂

∆ ∩ N \ {b1, . . . , bm} such that b1, . . . , bm+s generate N over Z. Because

∆ is reflexive, every bi has to be on the boundary of ∆. Then the lift ξ̃1

of ξ1 = D1 + · · · + Dm defined in Section 4.3 equals
∑m+s

i=1 Di and so

ρ̂Y = ρ̂ − ξ̃1 = 0. Thus the degrees of the variables q1, . . . , qr+s are zero.

By the homogeneity of the I-function IV , the mirror map ς(q) = ι∗ς̃(q) for

Y (see (4.5)) takes values in H2
amb(Y).

We briefly review the mirror isomorphism of D-modules for a toric orb-

ifold X in [37]. We can associate the B-model D-module (R(0),∇, (·, ·)R(0))

to the Landau-Ginzburg mirror (Ť,Wα(t)) of X . It is a meromorphic flat

connection over Mo ×C with poles along z = 0 such that the underlying Z-

local system at ([α], z) ∈ Mo×C× is given by the latticeHn(Ť,{ℜ(Wα(t)/z)

≪ 0};Z). Here Mo is a Zariski open subset of M containing Mreg. The

oscillatory form φ(t)eWα(t)/z dt1

t1
∧ · · · ∧ dtn

tn
appearing in Section 5.3 gives a

section of the B-model D-module R(0). We have the mirror isomorphism(15)

[37, Proposition 4.8] in a neighbourhood of q = 0

MirX : (τ × id)∗(QDM(X )/H2(X ;Z)) ∼= (R(0),∇, (·, ·)R(0))

sending the unit section 1 to [eWα(t)/z dt1

t1
∧ · · · ∧ dtn

tn
]. Here τ is the mirror

map in (4.2) and H2(X ;Z) acts by Galois action. This induces an inclusion

(15) Because we changed our convention of QDM(X ) from [37] (see Remark 3.2), we
also need to modify the definition of the B-model D-module accordingly. The necessary
modification makes the B-model D-module more natural. We defined the integration

pairing of a section [φ(t)eW (t)/z dt1
t1

· · · dtn

tn
] of R(0) and a Lefschetz thimble with the

additional factor of (−2πz)−n/2 in [37, Eqn. (53)]. Then the integral structure, the flat

connection and the pairing on R(0) were introduced through this integration pairing.
We just need to remove the factor (−2πz)−n/2 there to redefine these ingredients.
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of Z-lattices:

MirZX : K(X ) →֒ Hn(Ť, {ℜ(Wα(t)/z) ≫ 0};Z)

such that for ΓE = MirZX (E),

(
φ(q,−z), s(E)(τ(q), z)

)
F

=

∫

ΓE

MirX (φ(q,−z))

for any section φ(q, z) of (τ × id)∗QDM(X ). (It is known by Hua [34]

that K(X ) is a free Z-module and thus K(X ) ∼= S(X ).) For z > 0 and

α ∈ (R>0)m+s, MirZX sends the structure sheaf OX to the real Lefschetz

thimble ŤR. By [37, Theorem 4.11], the map MirZX gives an isomorphism

of lattices under the assumption

K(X ) → Hom(K(X ),Z), E 7→ χ(·, E), is surjective.

This holds true in our case because X does not have generic stabilizers

and we can apply the result of Kawamata [41] that the derived category

Db(X ) of coherent sheaves has a full exceptional collection {E}N
i=1. (In this

case, {Ei}
N
i=1 forms a Z-basis of K(X ) and the Gram matrix χ(Ei, Ej) is an

upper-triangular matrix with diagonal entries all equal to one.) Therefore

MirZX is an isomorphism. If q = [α] is sufficiently close to 0, all the critical

values of Wα(t) are contained in the ball {u ∈ C | |u| 6 1/2}. Then we have

the canonical identification for z > 0:

(6.7)

Hn(Ť, {ℜ(Wα(t)/z) ≫ 0};Z) ∼= Hn(Ť, {ℜ(Wα(t)) > 1};Z) ∼= Hn(Ť, Y̌α;Z).

The following is the second main theorem of the paper.

Theorem 6.9. — Let (Y, Y̌α) be a Batyrev’s mirror pair of Calabi-Yau

hypersurfaces. The ambient A-model VHS of Y and the residual B-model

VHS of Y̌α are isomorphic:

MirY : ς∗
(
(HA,∇

A,F •
A, QA)/ι∗H2(X ;Z)

)
∼= (H B,∇

B,F •
B, QB)

in a neighbourhood of q = 0. We have the following correspondence under

MirY :

MirY : Υv(q, z = 1) 7−→ (−1)age(v) age(v)! Res

(
αvtv dt1

t1
∧ · · · ∧ dtn

tn

(Wα(t) − 1)age(v)+1

)
,

where v ∈ Box, q = [α] and Υv(q, 1) is the section of ς∗HA in Corollary 4.8

(see (4.6)). In particular, F (q) 1 corresponds to the holomorphic volume

form Ωα = dt1

t1
∧ · · · ∧ dtn

tn
/dWα on Y̌α. The mirror isomorphism MirY

induces an isomorphism

MirZY : Hamb
A,Z

∼= Hvc
B,Z
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of Z-local systems. Moreover, when z > 0 and q = [α] is sufficiently close

to 0, we have the commutative diagram:

(6.8)

K(X )
MirZX−−−−→

∼=
Hn(Ť, {ℜ(Wα(t)/z) ≫ 0};Z)

ι∗

y
yǫn−1 VC

Hamb
A,Z

MirZY
−−−−→

∼=
Hvc

B,Z

where ǫn = (−1)n(n−1)/2. Here we used the identification (6.7) to define the

right vertical arrow VC (see Lemma 6.6). The left vertical arrow ι∗ sends

E to s(ι∗E)(ς(q)) for E ∈ K(X ).

Proof. — Consider the map R : S+
∆ → H0(Ť,Ωn

Ť
(∗Y̌α)) [3] defined by

R(tbtk0) = (−1)k−1(k − 1)!
tb

(Wα(t) − 1)k

dt1
t1

∧ · · · ∧
dtn
tn
, k > 0.

Let I
(1)
∆ be the ideal of S∆ spanned by the monomials tbtk0 such that b is

in the interior of k∆. Batyrev showed [3, Theorem 8.1, 8.2] that R(tbtk0)

with tbtk0 ∈ I
(1)
∆ , k 6 p generate the Hodge filter Fn+1−pWn+1(Hn(Ť \

Y̌α)). Because the Poincaré residue map Hn(Ť \ Y̌α) → Hn−1(Y̌α) is a

surjective morphism of mixed Hodge structures of the Hodge type (−1,−1)

[3, Section 5], we know that Res(R(tbtk0)), tbtk0 ∈ I
(1)
∆ , k 6 p generate

Fn−pWn−1(Hn(Y̌α)). (One can also see that R(tbtk0) for tbtk0 ∈ I
(1)
∆ extends

to a holomorphic n-form on X̌ \ Y̌α. See the proof of [46, Theorem 4.4].)

By the homogeneity of Υv(q, z), we have (−1)deg /2Υv(q, 1) = (−1)age(v)

Υ(q,−1). Using this and Theorem 5.7, we have

ς∗QA(Υv|z=1, s(ι
∗OX )) = (−1)age(v)ς∗ΠY(Υv,OY)

∣∣
z=1

= QB(Res(R(αvtvt
age(v)+1
0 )), ǫn−1 VC(ŤR))

for v ∈ Box and q sufficiently close to 0. Here VC(ŤR) = Y̌α ∩ ŤR is what

we denote by ΓR(α) before. We consider the monodromy transforms of

the both-hand sides around q = 0. By the last statement in Theorem 5.7,

ς∗QA(Υv, s(ι
∗E)) is monodromy generated by ς∗QA(Υv, s(ι

∗OX )). More-

over, MirX and the vertical arrows in the diagram (6.8) is equivariant with

respect to the monodromy transformation around q = 0 (which is the ten-

sor product of line bundles on K(X ); see Definition 3.6, (ii)). Therefore,

we have for any E ∈ K(X ) and q sufficiently close to 0,

(6.9) ς∗QA(Υv|z=1, s(ι
∗E)) = QB(Res(R(αvtvt

age(v)+1
0 )), ǫn−1 VC(ΓE))
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where ΓE := MirZX (E). The A-model VHS ς∗HA is generated by Υv|z=1,

v ∈ Box and their covariant derivatives near q = 0 as an OMreg
-module

(see the discussion before Corollary 4.8). Likewise we claim that the B-

model VHS H B is generated by Res(R(αvtvt
age(v)+1
0 )), v ∈ Box and their

derivatives. Take any element tbtk0 ∈ I
(1)
∆ . Take a cone σ ∈ Σ such that

b ∈ σ. Then we can write b =
∑

i∈σ libi + v for some v ∈ Box ∩σ and

li ∈ Z>0. The piecewise linear function ϕ1 defined in Section 5.2 satisfies

ϕ1(bj) = 1 for all 1 6 j 6 m + s. So we have ϕ1(b) =
∑

i∈σ li + age(v).

Since tbtk0 ∈ I
(1)
∆ , we have ϕ1(b) + 1 6 k. By a direct calculation, we find

∏

i∈σ

(∇B
∂/∂αi

)li Res
(
R(tvt

age(v)+1
0 )

)
= Res

(
R(tbt

ϕ1(b)+1
0 )

)
.

Using the Euler vector field Ẽ =
∑m+s

i=1 αi(∂/∂αi), we find

(∇B

Ẽ
+ k − 1) · · · (∇B

Ẽ
+ ϕ1(b) + 1) Res

(
R(tbt

ϕ1(b)+1
0 )

)
= Res

(
R(tbtk0)

)
.

Now the claim follows. By taking the derivatives of (6.9), we know that

the full period matrices of ς∗(HA,∇
A) and (H B,∇

B) are the same. This

shows that we have an isomorphism MirY : ς∗(HA,∇
A) ∼= (H B,∇

B) send-

ing Υv(q, 1) to Res(R(tvt
age(v)+1
0 )). Moreover, from the above calculation,

it turns out that the generators Res(R(tbtk0)), tbtk0 ∈ I
(1)
∆ , k 6 p of Fn−p

Wn−1(Hn(Y̌α)) ∼= F
n−p
B,[α] correspond via MirY to elements in (ς∗F

n−p
A )[α]

∼=

H
62(p−1)
amb (Y). Hence MirY(ς∗F

n−p
A ) ⊃ F

n−p
B . The other inclusion

MirY(ς∗F
n−p
A ) ⊂ F

n−p
B can be easily seen by taking a basis of F

n−p
A

given by the covariant derivatives of Υv|z=1. Therefore ς∗(HA,∇
A,F •

A) ∼=
(H B,∇

B,F •
B).

Next we show that ς∗QA = QB under MirY . We know by (6.9) that

the “dual” flat sections QA(·, s(ι∗E)) and QB(·, ǫn−1 VC(ΓE)) correspond to

each other under MirY . Therefore it suffices to show thatQA(s(ι∗E1), s(ι∗E2))

and QB(VC(ΓE1
),VC(ΓE2

)) are equal for E1, E2 ∈ K(X ). We have

QA(s(ι∗E1), s(ι∗E2)) = χY(ι∗E1, ι
∗E2) = χ(E1, E2) − (−1)nχ(E2, E1).

Let eπiiiΓEi
denote the parallel translate of ΓEi

∈ Hn(Ť, {ℜ(Wα(t)/z) ≫ 0})

along the path [0, 1] ∋ θ 7→ eπiiiθz. Then we have

QB(VC(ΓE1
),VC(ΓE2

)) = ǫn−1 VC(ΓE1
) · VC(ΓE2

)

= ǫn(ΓE1
· eπiiiΓE2

+ (−1)n−1ΓE2
· eπiiiΓE1

).
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Since MirX preserves the pairing(16) , we have

χ(E1, E2) = ǫnΓE1
· eπiiiΓE2

and ς∗QA = QB follows. Therefore, s(ι∗E) corresponds to VC(ΓE) under

MirY when q is sufficiently close to 0. This shows the commutative diagram

(6.8). �

The class [Opt] ∈ K(Y) of a skyscraper sheaf at a non-stacky point on Y

gives a flat section s(Opt) of HA. Usually [Opt] is not contained in ι∗K(X ),

but we can still find an integral cycle on Y̌α corresponding to it.

Theorem 6.10. — Under the mirror isomorphism MirY in Theorem 6.9,

the flat section s(Opt) corresponds to an integral compact (n − 1)-cycle

C(α) ⊂ Y̌α i.e.,

(6.10) QA(φ, s(Opt)) =

∫

C(α)

MirY(φ)

for any section φ of ς∗HA. In particular, we have (2πiii)n−1F (q) =
∫

C(α)
Ωα.

Proof. — It suffices to prove (6.10) for φ = Υv(q, 1), v ∈ Box. We first

show that for sufficiently small α ∈ (C×)m+s and q = [α],

QA (Υv(q, 1), s(Opt)(ς(q))) = −
1

2πiii

∫

(S1)n

(−1)age(v) age(v)!αvtv

(Wα(t) − 1)1+age(v)

dt1
t1

∧ · · · ∧
dtn
tn

where (S1)n = {|t1| = · · · = |tn| = 1}. By (4.6) and the formula of Iv
V , we

find that the left-hand side equals

(2πiii)n−1
∑

∑
m+s

j=1
djbj+v=0

dj∈Z>0

(∑m+s
j=1 dj + age(v)

)
!

∏m+s
j=1 dj !

qd+v.

On the other hand, by expanding 1/(1 − Wα(t)) in geometric series, the

right-hand side can be calculated as the residue at t = 0. This is possible

under the assumption that |Wα(t)| < 1 for all t ∈ (S1)n (this holds when

all αj are sufficiently small). It is easy to see that the residue calculation

(16) We made a sign error in [37] in matching the pairings under mirror symmetry. In [37,
Appendix A.3] we showed that the A-model and B-model pairings differ only by a con-

stant. The constant is fixed by comparing ΓR · Γc with χ(OX , Opt) = 1, where ΓR = ŤR

and Γc
∼= (S1)n. Taking the orientation into account, we find that ΓR ·Γc = (−1)n(n−1)/2

instead of 1. So the B-model pairing should be multiplied by ǫn = (−1)n(n−1)/2 to have
the complete match with the A-side.
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gives the same answer as above. We now use the following argument by

Przyjalkowski [52, Section 2.5]. For a fixed such α, we consider the family

of compact tori (S1
ǫ )n = {|t1| = · · · = |tn| = ǫ} for 0 < ǫ 6 1. At ǫ = 1, we

have (S1
1)n ∩ Y̌α = ∅. While ǫ decreases from 1, this family of tori slices the

hypersurface Y̌α. For sufficiently small ǫ, (S1
ǫ )n does not intersect Y̌α again.

Let 0 < δ < 1 be such that (S1
ǫ )n ∩ Y̌α = ∅ for ǫ 6 δ. Then one can use

(S1
δ )n − (S1

1)n as a tube cycle of the slice C(α) :=
⋃

δ<ǫ<1 Y̌α ∩ (S1
ǫ )n. We

can see that the integral over (S1
δ )n of the same integrand tends to zero as

δ → 0 since the denominator grows faster than the numerator. From this

it follows that the integral over (S1
δ )n is in fact zero and the right-hand

side equals
∫

C(α)
MirY(Υv(q, 1)). The last statement follows from the case

v = 0. �

6.5. Multi-GKZ System

Batyrev [3] showed that a rational period of affine hypersurfaces in Ť sat-

isfies the Gelfand-Kapranov-Zelevinsky (GKZ) hypergeometric differential

system [24]. Borisov-Horja [8] showed that a certain collection of periods

satisfies a multi-generator version of GKZ system, which they called better

behaved GKZ system. Here we see that the residual B-model VHS can be

realized as a sub D-module of the D-module defined by the multi-GKZ

system. This is related to the multi-generation phenomenon explained in

the Introduction and Remark 4.7. In joint work [15] with Coates, Corti and

Tseng, we also found that the multi-GKZ system arises for the quantum

D-module of a toric orbifold X itself (17) .

Set N̂ := N ⊕Z and b̂i = (bi, 1) ∈ N̂. We still assume bi 6= 0 for all i and

set b̂0 = (0, 1). For simplicity we set N := m+ s. Let ∆̂ be the cone in the

vector space N̂R = N̂⊗R generated by ∆×{1}. Let m1, . . . ,mn be a basis

of M = Hom(N,Z). Let m0 ∈ Hom(N̂,Z) be the projection to the second

factor. We can then regard m0,m1, . . . ,mn as a basis of M̂ := Hom(N̂,Z).

Definition 6.11 ([8, 15]). — The multi-GKZ system associated to

{b̂0, b̂1, . . . , b̂N = b̂m+s} is the system of differential equations for a family

{̟e(α0, . . . , αN ) | e ∈ N̂ ∩ ∆̂} of functions on (C×)N+1 given by Dν;e,e′ =

(17) The multi-generation occurs typically for non-compact X . It can also occur for
compact X which does not satisfy the assumption in Section 4.1.
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Zi,e = 0, where

Dν;e,e′ :=

N∏

i=0

(
∂

∂αi

)ν+,i

̟e −
N∏

i=0

(
∂

∂αi

)ν−,i

̟e′

Zi,e :=

N∑

j=0

〈mi, b̂j〉αj
∂̟e

∂αj
+ (〈mi, e〉 − βi)̟e, 0 6 i 6 n,

ν runs through all elements in ZN+1 satisfying e
′ = e +

∑N
i=0 νib̂i and

ν+, ν− ∈ (Z>0)N+1 are given by ν±,i = max(±νi, 0) (then ν = ν+ − ν−).

The constants β0, . . . , βn are called exponents. Alternatively, we can regard

the multi-GKZ system as a D-module on (C×)N+1 defined by

(6.11)
⊕

e∈N̂∩∆̂

D̟e

/ ∑

e,e′,ν: as above

DZν;e,e′ +
∑

16i6N,e∈N̂∩∆̂

DZi,e

where ̟e here is a formal symbol and D = C
〈
α±

0 , . . . , α
±
N , ∂α0 , . . . , ∂αN

〉
.

It is easy to see that the multi-GKZ system is generated by finitely many

̟e. In this section, for α = (α0, . . . , αN ) ∈ (C×)N+1, we set Wα(t) =

α0 +
∑N

i=1 αit
bi and Y̌α := {t ∈ Ť |Wα(t) = 0}. Then Wα(t) and Y̌α in the

previous section are recovered by setting α0 = −1. Note that Y̌(α0,α′) =

Y̌−α−1
0 α′ for α0 ∈ C×, α′ ∈ (C×)N . Take a locally constant section Γ(α) ∈

Hn(Ť, Y̌α;Z) of the relative homology bundle over the α-space. Let C(α) :=

∂Γ(α) ∈ Hn−1(Y̌α;Z) be its boundary. For e = (b, k) ∈ ∆̂ ∩ N̂ we set

Πe(α) := (−1)k−1(k − 1)!

∫

C(α)

Res

(
tb

Wα(t)k

dt1
t1

∧ · · · ∧
dtn
tn

)

for k > 0 and for k = 0 (in this case e = 0),

Π0(α) := −

∫

Γ(α)

dt1
t1

∧ · · · ∧
dtn
tn
.

The integrands of these period integrals Πe(α) generate the relative coho-

mology bundle
⋃

α H
n(Ť, Y̌α) by the results of Batyrev [3] and Stienstra

[53] (see also [44]).

Proposition 6.12. — The set of functions Πe(α), e ∈ N̂ ∩ ∆̂ satisfies

the multi-GKZ system with exponent β = (0, 0, . . . , 0).

Proof. — Borisov-Horja [8, Proposition 5.2] proved a similar result.

Stienstra [53] proved that Π0 satisfies the ordinary GKZ system. The propo-

sition here can be proved by an easy direct calculation, using the formula for

∂αj
Π0(α) of Konishi-Minabe [44, Section 4.3] and the method of Batyrev

[3, Theorem 14.2]. �
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The relative cohomology bundle
⋃

α H
n(Ť, Y̌α) has the rank Vol(∆) (6.5)

and the multi-GKZ system has the same rank by Borisov-Horja [8, Sec-

tion 3]. Thus they are isomorphic as a local system. BecauseWn−1(H
n−1(Y̌α))

→ Hn(Ť, Y̌α) is injective (see (6.6)), the residual B-model VHS is embed-

ded in the multi-GKZ system. Note that Πe(α) is a period of the residual

B-model VHS if e is in the interior of ∆̂ and also that the corresponding

residue classes on Y̌α generate the B-model VHS. Therefore we have the

following.

Theorem 6.13. — Let π : (C×)N+1 → M be the map sending (α0, α
′)

to [−α−1
0 α′] and set (C×)N+1

reg = π−1(Mreg). Under the pull-back by

π : (C×)N+1
reg → Mreg, the residual B-model VHS is isomorphic to the sub

D-module of the multi-GKZ system (6.11) generated by ̟e such that e

is in the interior of the cone ∆̂. In particular, the ambient A-model VHS

is embedded in the multi-GKZ system under mirror isomorphism of Theo-

rem 6.9.

Remark 6.14. — We will see that the multi-GKZ system here describes

the quantum D-module of the total space of KX in [15]. So QDMamb(Y)

is contained in QDM(KX ).

Remark 6.15. — The above identification between the multi-GKZ and

the relative cohomology introduces a mixed Hodge structure on the multi-

GKZ system. In the context of orbifold mirror symmetry, Corti-Golyshev

[19] studied the hypergeometric system associated to weighted projective

Calabi-Yau hypersurfaces and its Hodge structure.

Remark 6.16. — Mann-Mignon [45] obtained another (but closely re-

lated) description of the quantum D-module of a nef complete intersection

in a smooth toric variety.

6.6. Questions and Example

In Theorem 6.9, we showed the correspondence between vanishing cycles

on Y̌α and ambient K-classes on Y. This match of the integral structures

is not completely satisfactory. For example, the class [Opt] on Y would

not be contained in ι∗K(X ), but the corresponding mirror cycle exists (see

Theorem 6.10). We can also consider different integral structures which

might be more natural. For example, on the A-side, we can take the integral

structure

HA,Z = {s(E) | c̃h(E) ∈ H∗
amb(Y), E ∈ K(Y)}.
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This is bigger than Hamb
A,Z in general. On the B-side we could consider the

integral structure Wn−1(Hn−1(Y̌α)) ∩ Hn−1(Y̌α;Z). When we can choose

a smooth compactification Y̌α, we could also take the integral structure

Hn−1
res (Y̌α) ∩Hn−1(Y̌α;Z).

Question 1. — What is the integral structure in the B-model corre-

sponding to HA,Z?

Yongbin Ruan asked the following question to the author.

Question 2. — What is the “correct” definition of the integral middle

homology group of the orbifold Y̌α in this context?

Mirror symmetry for the orbifold Hodge numbers of toric Calabi-Yau

hypersurfaces was studied by Borisov-Mavlyutov [11].

Question 3. — Can one extend the mirror isomorphism of VHS beyond

the ambient part/residue part? Then what is the integral structure in the

B-model VHS on the full orbifold cohomology of Y̌α?

Example 6.17. — We first consider the simplest example of an ellip-

tic curve Y in P2. The mirror is defined by Wα(t1, t2) = α1t1 + α2t2 +

α3(t1t2)−1. The C×-co-ordinate q on M ∼= C× is given by q = α1α2α3. We

choose a section (α1, α2, α3) = (1, 1, q) and work with Wq(t) = t1 + t2 +

q(t1t2)−1. The mirror hypersurface Y̌q = {Wq(t) = 1} is an elliptic curve

minus 3 points. The function Wq(t) has the three critical values 3q1/3,

3ωq1/3, 3ω2q1/3, where ω = e2πiii/3. Let q > 0 be small and take vanishing

paths from the three critical values to 1 as shown in Figure 6.1.

•

•

• •

3ωq
1

3

3ω2q
1

3

3q
1

3 1 (smooth fiber)

O(−1)

O

O(1)

Figure 6.1. Vanishing Paths

The Lefschetz thimble Γi from 3ω−iq1/3 (i = −1, 0, 1) along the given

vanishing path corresponds to the line bundle O(i) on P2. The vanishing

cycle Ci = ∂Γi ⊂ Y̌q corresponds to ι∗O(i) under MirZY . For a suitable

symplectic basis {A,B} of H1(Y̌ α,Z), we have

C±1 = A± 3B, C0 = A.
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Similarly for a basis {Opt,OY} of the topological K-group K(Y) of Y, we

have

ι∗O(±1) = OY ± 3Opt, ι∗O = OY

in K(Y). Therefore MirZY extends to an isomorphism of the overlattices in

this case.

HA,Z
∼= K(Y) ∼= H1(Y̌ α;Z).

Example 6.18. — Next we consider a quintic threefold Y in P4, fa-

mous example studied in [12]. The mirror of Y is defined by the function

Wq(x1, . . . , x4) = x1 + x2 + x3 + x4 + x5 + q/(x1x2x3x4x5) with one com-

plex parameter q ∈ C×. The affine hypersurface Y̌q = {z ∈ Ť |Wq(x) = 1}

can be compactified to a smooth Calabi-Yau manifold Y̌q. In this case,

the ambient A-model VHS of Y is a flat bundle of rank 4 with fiber⊕3
p=0 H

2p(Y) =
⊕3

p=0 H
p,p(Y) and the residual B-model VHS of Y̌q is

a flat bundle with fiber H3(Y̌q). We shall show that the isomorphism of

the Z-structures in Theorem 6.9

MirZY : Hamb
A,Z = ι∗K(X )

∼=
−→ Hvc

B,Z ⊂ H3(Y̌q;Z)

extends to an isomorphism K(Y) ∼= H3(Y̌q;Z) of the overlattices. (Here as

usual K(Y) denotes the topological K-group.) By the Atiyah-Hirzebruch

spectral sequence, we know that K(Y) is a free Z-module generated by Opt,

OC , OD, OY where C ⊂ Y is a line and D = Y ∩P3 is a hyperplane section.

Under the isomorphism K(Y) ⊗ Q ∼= H3(Y̌q;Q) of rational vector spaces,

the dimension filtration K60 ⊂ K61 ⊂ K62 ⊂ K63 = K(Y) induces

the filtration W0 ⊂ W1 ⊂ W2 ⊂ W3 = H3(Y̌q;Q). For E ∈ K(Y), we

denote the corresponding element in H3(Y̌q;Q) by the same symbol. We

set WZ
i = Wi ∩ H3(Y̌q;Z). We have W0 = Q[Opt]. For α ∈ WZ

3 , we have

α − (α · [Opt])[OY ] ∈ W⊥
0 = W2. Here the intersection number α · [Opt] is

an integer since [Opt] ∈ H3(Y̌q;Z) by Theorem 6.10. This shows that

WZ
3 = WZ

2 + Z[OY ].

It is easy to see that the perfect intersection pairing on WZ
3 induces a

perfect pairing on WZ
2 /W

Z
0 . We know that [OD] = [OY − OY(−1)] and

[OD]2 = 5([OC ] − 2[Opt]) belong to ι∗K(X ) and thus to H3(Y̌q,Z). They

also form a rational basis of W2/W0. Take an element a[OD] + b[OD]2 ∈

WZ
2 /W

Z
0 . By taking the tensor product with OY(−1) which corresponds to

the monodromy transformation around q = 0, we have a[OD]2 ∈ WZ
2 /W

Z
0 .

Hence (a[OD] + b[OD]2) · (a[OD]2) = 5a2 ∈ Z. Thus a ∈ Z. Therefore

WZ
2 = WZ

1 + Z[OD].
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Moreover the perfectness of the pairing on WZ
2 /W

Z
0 implies that [OC ] =

[OD]2/5 ∈ WZ
2 /W

Z
0 and that WZ

2 /W
Z
0 = Z[OC ] ⊕ Z[OD]. By pairing with

[OY ] again we know that WZ
0 = Z[Opt]. These show that K(Y) ∼= WZ

3 =

H3(Y̌q;Z).

Remark 6.19. — Hartmann [30] studied Hodge-theoretic mirror symme-

try for a quartic K3 surface and identified the mirror periods with certain

hypergeometric functions.
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[24] I. M. Gel’fand, A. V. Zelevinskĭı & M. M. Kapranov, “Hypergeometric func-
tions and toric varieties”, Funktsional. Anal. i Prilozhen. 23 (1989), no. 2, p. 12-26.

[25] A. Givental, “A mirror theorem for toric complete intersections”, in Topological
field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., vol.
160, Birkhäuser Boston, Boston, MA, 1998, p. 141-175.

[26] A. B. Givental, “Homological geometry and mirror symmetry”, in Proceedings
of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Basel),
Birkhäuser, 1995, p. 472-480.

[27] ——— , “Symplectic geometry of Frobenius structures”, in Frobenius manifolds,
Aspects Math., E36, Vieweg, Wiesbaden, 2004, p. 91-112.

[28] M. A. Guest, “Quantum cohomology via D-modules”, Topology 44 (2005), no. 2,
p. 263-281.

[29] M. A. Guest & H. Sakai, “Orbifold quantum D-modules associated to weighted
projective spaces”, arXiv:0810.4236.

[30] H. Hartmann, “Period- and mirror-map for the quartic K3”, arXiv:1101.4601.

[31] C. Hertling, “tt∗ geometry, Frobenius manifolds, their connections, and the con-
struction for singularities”, J. Reine Angew. Math. 555 (2003), p. 77-161.

[32] K. Hori & C. Vafa, “Mirror symmetry”, arXiv:hep-th/0002222.

[33] S. Hosono, “Central charges, symplectic forms, and hypergeometric series in local
mirror symmetry”, in Mirror symmetry. V, AMS/IP Stud. Adv. Math., vol. 38,
Amer. Math. Soc., Providence, RI, 2006, p. 405-439.

[34] Z. Hua, “On the Grothendieck groups of toric stacks”, arXiv:0904.2824.

[35] H. Iritani, “tt∗-geometry in quantum cohomology”, arXiv:0906.1307.

[36] ——— , “Quantum D-modules and generalized mirror transformations”, Topology
47 (2008), no. 4, p. 225-276.

[37] ——— , “An integral structure in quantum cohomology and mirror symmetry for
toric orbifolds”, Adv. Math. 222 (2009), no. 3, p. 1016-1079.

[38] ——— , “Ruan’s conjecture and integral structures in quantum cohomology”, in
New developments in algebraic geometry, integrable systems and mirror symmetry
(RIMS, Kyoto, 2008), Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo,
2010, p. 111-166.

[39] Y. Jiang, “The orbifold cohomology ring of simplicial toric stack bundles”, Illinois
J. Math. 52 (2008), no. 2, p. 493-514.

TOME 61 (2011), FASCICULE 7



2958 Hiroshi IRITANI

[40] L. Katzarkov, M. Kontsevich & T. Pantev, “Hodge theoretic aspects of mirror
symmetry”, in From Hodge theory to integrability and TQFT tt*-geometry, Proc.
Sympos. Pure Math., vol. 78, Amer. Math. Soc., Providence, RI, 2008, p. 87-174.

[41] Y. Kawamata, “Derived categories of toric varieties”, Michigan Math. J. 54 (2006),
no. 3, p. 517-535.

[42] T. Kawasaki, “The Riemann-Roch theorem for complex V -manifolds”, Osaka J.
Math. 16 (1979), no. 1, p. 151-159.

[43] B. Kim, A. Kresch & T. Pantev, “Functoriality in intersection theory and a
conjecture of Cox, Katz, and Lee”, J. Pure Appl. Algebra 179 (2003), no. 1-2,
p. 127-136.

[44] Y. Konishi & S. Minabe, “Local B-model and mixed Hodge structure”, Adv. Theor.
Math. Phys. 14 (2010), no. 4, p. 1089-1145.

[45] E. Mann & T. Mignon, “Quantum D-modules for toric nef complete intersections”,
arXiv:1112.1552.

[46] A. R. Mavlyutov, “Semiample hypersurfaces in toric varieties”, Duke Math. J.
101 (2000), no. 1, p. 85-116.

[47] ——— , “On the chiral ring of Calabi-Yau hypersurfaces in toric varieties”, Com-
positio Math. 138 (2003), no. 3, p. 289-336.

[48] T. Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und
ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15,
Springer-Verlag, Berlin, 1988, An introduction to the theory of toric varieties, Trans-
lated from the Japanese, viii+212 pages.

[49] R. Pandharipande, “Rational curves on hypersurfaces (after A. Givental)”,
Astérisque (1998), no. 252, p. Exp. No. 848, 5, 307-340, Séminaire Bourbaki. Vol.
1997/98.

[50] F. Pham, “La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-
Manin”, Astérisque (1985), no. 130, p. 11-47, Differential systems and singularities
(Luminy, 1983).

[51] A. Pressley & G. Segal, Loop groups, Oxford Mathematical Monographs, The
Clarendon Press Oxford University Press, New York, 1986, Oxford Science Publi-
cations, viii+318 pages.

[52] V. Przyjalkowski, “On Landau-Ginzburg models for Fano varieties”, Commun.
Number Theory Phys. 1 (2007), no. 4, p. 713-728.

[53] J. Stienstra, “Resonant hypergeometric systems and mirror symmetry”, in Inte-
grable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River
Edge, NJ, 1998, p. 412-452.

[54] B. Toen, “Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford”,
K-Theory 18 (1999), no. 1, p. 33-76.

[55] H.-H. Tseng, “Orbifold quantum Riemann-Roch, Lefschetz and Serre”, Geom.
Topol. 14 (2010), no. 1, p. 1-81.

[56] A. Vistoli, “Intersection theory on algebraic stacks and on their moduli spaces”,
Invent. Math. 97 (1989), no. 3, p. 613-670.

Manuscrit reçu le 3 janvier 2011,
accepté le 1er décembre 2011.

Hiroshi IRITANI
Kyoto University
Department of Mathematics
Kitashirakawa-Oiwake-cho
Sakyo-ku, Kyoto, 606-8502 (Japan)

iritani@math.kyoto-u.ac.jp

ANNALES DE L’INSTITUT FOURIER

mailto:iritani@math.kyoto-u.ac.jp

	1. Introduction
	2. Preliminaries
	2.1. Orbifold Gromov-Witten Invariants
	2.2. Twisted Invariants
	2.3. Twisted Quantum Cohomology
	2.4. Equivariant Euler Twist
	2.5. The Specialization at Q=1

	3. "055B-Integral Structure in Quantum Cohomology
	3.1. Untwisted Quantum D-Module with Q=1
	3.2. "055B-Integral Structure

	4. Mirror Theorem for Toric Complete Intersections
	4.1. Notation on Toric Orbifolds
	4.2. Mirror Theorem I: Toric Orbifolds
	4.3. Mirror Theorem II: Toric Complete Intersection

	5. Equality of Periods: A-periods = B-periods
	5.1. Laplace Transform of A-Periods
	5.2. Mirror Construction
	5.3. A-Periods and B-Periods

	6. Toric Calabi-Yau Hypersurfaces
	6.1. Batyrev Mirror
	6.2. A-Model VHS of a Calabi-Yau Hypersurface
	6.3. B-Model VHS
	6.4. Mirror Isomorphism with Integral Structures
	6.5. Multi-GKZ System
	6.6. Questions and Example

	Bibliography

