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QUANTUM COHOMOLOGY OF THE HILBERT SCHEME

OF POINTS ON 𝒜𝑛-RESOLUTIONS

DAVESH MAULIK AND ALEXEI OBLOMKOV

1. Introduction

1.1. Overview. Given a quasiprojective surface 𝑆, the Hilbert scheme Hilb𝑚(𝑆)
of 𝑚 points on 𝑆 parametrizes zero-dimensional subschemes of 𝑆 of length 𝑚.
The Hilbert scheme is a nonsingular irreducible quasiprojective algebraic variety
of dimension 2𝑚. It contains an open dense set parametrizing configuration of 𝑚
distinct points and can be viewed as a crepant resolution of the symmetric product
of 𝑆. The classical cohomology of these varieties has been well studied [N1, Gr, QW]
and, as we shall explain later, admits a description in terms of the representation
theory of Heisenberg algebras.

In this paper, we consider the following family of surfaces. Let 𝜁 be a primitive
(𝑛+1)-th root of unity and let the generator of the cyclic group ℤ𝑛+1 act on ℂ2 by

(𝑧1, 𝑧2) �→ (𝜁𝑧1, 𝜁
−1𝑧2).

We denote by 𝒜𝑛 the minimal resolution of the quotient

𝒜𝑛 → ℂ2/ℤ𝑛+1.

The diagonal action of 𝑇 = (ℂ∗)2 on ℂ2 commutes with the cyclic group action
and therefore lifts to a 𝑇 -action on both 𝒜𝑛 and Hilb(𝒜𝑛).

Our goal is to study the small quantum product on the 𝑇 -equivariant cohomology
of Hilb𝑚(𝒜𝑛) for all𝑚 and 𝑛. Quantum cohomology is a deformation of the classical
cohomology ring of Hilb(𝒜𝑛). The structure constants of the ring are defined by a
virtual count of rational curves passing through specified subvarieties of the Hilbert
scheme, weighted by degree.

The main theorem of this paper is an explicit operator formula for quantum
multiplication by divisors in 𝐻2

𝑇 (Hilb𝑚(𝒜𝑛),ℚ). These operators have a simple

expression in terms of the action of the affine Lie algebra 𝔤𝔩(𝑛+1) on its basic rep-
resentation. Under the assumption of a nondegeneracy conjecture (see Section 6.3),
the divisor operators generate the entire quantum cohomology ring and, in partic-
ular, can be used to calculate the full genus 0 Gromov-Witten theory.

In the case of ℂ2, the quantum cohomology ring has been completely calculated
in [OP1]. Along with our results here, these surfaces are the only surfaces for
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1056 DAVESH MAULIK AND ALEXEI OBLOMKOV

which the divisor operators have been fully calculated for an arbitrary number of
points. Our strategy is motivated by the approach of [OP1] for ℂ2. The presence
of compact directions on the underlying surfaces greatly complicates the geometry
of the Hilbert scheme; the existence of a holomorphic symplectic form is essential
for circumventing these difficulties.

1.2. Relation to other theories. Using the results of [M], [MO], we show that
the divisor operators of this paper satisfy a triangle of equivalences between the
Gromov-Witten theory of 𝒜𝑛×P1, the Donaldson-Thomas theory of 𝒜𝑛×P1, and
the quantum cohomology of the Hilbert scheme of points on the 𝒜𝑛 surface.

Gromov-Witten
theory of 𝒜𝑛 ×P1

Donaldson-Thomas
theory of 𝒜𝑛 ×P1

Quantum cohomology
of Hilb(𝒜𝑛)

The above triangle was first shown to hold for C2 in [BP], [OP1], [OP2]. While
the equivalence between Gromov-Witten theory and Donaldson-Thomas theory is
expected to hold for arbitrary threefolds, the relationship with the quantum co-
homology of the Hilbert scheme breaks down for a general surface, at least in the
specific form we describe here. Our work for 𝒜𝑛 surfaces provides the only other
examples for which this triangle is known to hold.

2. Statement of theorems

In this section, we state precisely the operators for multiplication by divisors on
the quantum cohomology ring. In order to express these cleanly, we explain how to

write the cohomology of Hilb(𝒜𝑛) in terms of the representation theory of 𝔤𝔩(𝑛+1).

2.1. Topology of 𝒜𝑛 and the root lattice. We first set notation for the geometry
of the 𝒜𝑛 surfaces. Viewed as a crepant resolution of a quotient singularity, the
exceptional locus of 𝒜𝑛 consists of a chain of 𝑛 rational curves 𝐸1, . . . , 𝐸𝑛 with
intersection matrix given by the negative Cartan matrix for the Dynkin diagram 𝐴𝑛.
That is, each 𝐸𝑖 has self-intersection −2 and intersects 𝐸𝑖−1 and 𝐸𝑖+1 transversely.
These classes span 𝐻2(𝒜𝑛,ℚ) and, along with the identity class, span the full
cohomology ring of 𝒜𝑛. We will also work with the dual basis {𝜔1, . . . , 𝜔𝑛} of
𝐻2(𝒜𝑛,ℚ), defined by the property that

⟨𝜔𝑖, 𝐸𝑗⟩ = 𝛿𝑖,𝑗

under the Poincaré pairing.
Under the 𝑇 -action, there are 𝑛+1 fixed points 𝑝1, . . . , 𝑝𝑛+1; the tangent weights

at the fixed point 𝑝𝑖 are given by

𝑤𝐿
𝑖 := (𝑛+ 2− 𝑖)𝑡1 + (1− 𝑖)𝑡2,

𝑤𝑅
𝑖 := (−𝑛+ 𝑖− 1)𝑡1 + 𝑖𝑡2.
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The 𝐸𝑖 are the 𝑇 -fixed curves joining 𝑝𝑖 to 𝑝𝑖+1. We denote by 𝐸0 and 𝐸𝑛+1 the
noncompact 𝑇 -fixed curve direction at 𝑝1 and 𝑝𝑛+1, respectively.
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As usual, we denote by 𝔤𝔩(𝑛+1) the Lie algebra (defined over ℚ) of (𝑛+1)×(𝑛+1)
matrices. We will denote by 𝑒𝑖𝑗 ∈ 𝔤𝔩(𝑛+1) the matrix with 1 in position (𝑖, 𝑗) and 0
everywhere else. With respect to the Cartan subalgebra 𝔥 of diagonal matrices, the
roots are given by functionals 𝛼𝑖𝑗 ∈ 𝔥∗ which take the value 𝑎𝑖𝑖−𝑎𝑗𝑗 on the diagonal
matrix (𝑎𝑘𝑘). There is an identification of lattices between 𝐻2(𝒜𝑛,ℤ) with the 𝐴𝑛

root lattice obtained by sending the exceptional curves 𝐸𝑖 to the simple roots 𝛼𝑖,𝑖+1.
Under this identification, there is a distinguished set of effective curve classes

𝛼𝑖𝑗 = 𝐸𝑖 + ⋅ ⋅ ⋅+ 𝐸𝑗−1

which correspond to positive roots in the 𝐴𝑛 lattice.

2.2. Fock space formalism. In this section, we introduce the Fock space mod-
elled on 𝐻∗

𝑇 (𝒜𝑛,ℚ) and explain the identification with 𝐻∗
𝑇 (Hilb(𝒜𝑛),ℚ). These

constructions for projective surfaces were first provided in [N1, Gr] and extended
in this setting to the equivariant context in [QW]. Consider the Heisenberg algebra
ℋ generated over the field ℚ(𝑡1, 𝑡2) by a central element 𝑐 and elements

𝔭𝑘(𝛾), 𝛾 ∈ 𝐻∗
𝑇 (𝒜𝑛,ℚ), 𝑘 ∈ ℤ, 𝑘 ∕= 0,

so that 𝔭𝑘(𝛾) are ℚ(𝑡1, 𝑡2)-linear in the labels 𝛾. The Lie algebra structure on ℋ is
defined by the following commutation relations:

[𝔭𝑘(𝛾1), 𝔭𝑙(𝛾2)] = −𝑘𝛿𝑘+𝑙⟨𝛾1, 𝛾2⟩ ⋅ 𝑐,
[𝑐, 𝔭𝑘(𝛾)] = 0.

Our sign convention for the commutator differs from [N1] but simplifies later formu-
las. Notice that we can pick a basis of cohomology for which the Poincaré pairing
never takes denominators that are divisible by (𝑡1+𝑡2); as a result, ℋ can be defined
over the ring

𝑅 = ℚ[𝑡1, 𝑡2](𝑡1+𝑡2)

of rational functions with nonnegative valuation at (𝑡1 + 𝑡2).
The Fock space ℱ𝒜𝑛

is freely generated over the ring ℚ[𝑡1, 𝑡2] by the action of
the commuting creation operators 𝔭−𝑘(𝛾) for 𝑘 > 0 and 𝛾 ∈ 𝐻∗

𝑇 (𝒜𝑛,ℚ) on the
vacuum vector 𝑣∅. There is an orthogonal grading

ℱ𝒜𝑛
=
⊕
𝑚≥0

ℱ (𝑚)
𝒜𝑛
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1058 DAVESH MAULIK AND ALEXEI OBLOMKOV

induced by defining the degree of 𝑣∅ to be zero and the degree of each operator
𝔭𝑘(𝛾) to be −𝑘.

After an extension of scalars to the fraction field ℚ(𝑡1, 𝑡2), ℱ𝒜𝑛
admits the struc-

ture of a representation of ℋ. Under this action, the annihiliation operators 𝔭𝑘(𝛾)
with 𝑘 > 0 kill the vacuum vector and the central element 𝑐 acts trivially. Similarly,
we define a nondegenerate pairing on ℱ𝒜𝑛

⊗ℚ(𝑡1, 𝑡2) by requiring

⟨𝑣∅∣𝑣∅⟩ = 1

and specifiying the adjoint

𝔭𝑘(𝛾)
∗ = (−1)𝑘𝔭−𝑘(𝛾).

There is a graded isomorphism

ℱ𝒜𝑛
=
⊕
𝑚≥0

𝐻∗
𝑇 (Hilb𝑚(𝒜𝑛),ℚ).

Under this isomorphism, the Heisenberg operators 𝔭𝑘(𝛾) are defined by correspon-
dences between Hilbert schemes of different numbers of points. The inner prod-
uct on ℱ𝒜𝑛

over ℚ(𝑡1, 𝑡2) defined above corresponds to the Poincaré pairing on
Hilb𝑚(𝒜𝑛) defined by 𝑇 -equivariant residue.

2.3. Nakajima basis. If we work with a fixed basis {𝛾0, . . . , 𝛾𝑛} of 𝐻∗
𝑇 (𝒜𝑛,ℚ),

our Fock space has a natural basis indexed as follows. Given a nonnegative integer
𝑚, a cohomology-weighted partition of 𝑚 consists of an unordered set of pairs

−→𝜇 = {(𝜇(1), 𝛾𝑖1), . . . , (𝜇
(𝑙), 𝛾𝑙𝑖)},

where {𝜇(1), . . . , 𝜇(𝑙)} is a partition whose parts are labelled by elements 𝛾𝑖𝑘 in our
basis. For each cohomology-weighted partition −→𝜇 as above, the associated basis
element is given by

1

𝔷(−→𝜇 )
𝑙∏

𝑘=1

𝔭−𝜇(𝑘)(𝛾𝑖𝑘)𝑣∅,

where

𝔷(−→𝜇 ) =
∏

𝜇(𝑘) ⋅ ∣Aut(−→𝜇 )∣.
We will also denote this basis element by −→𝜇 when there is no confusion. The
associated basis of 𝐻∗

𝑇 (Hilb𝑚(𝒜𝑛),ℚ) will be called the Nakajima basis. It is clear
from the definition that this basis respects the grading of ℱ𝒜𝑛

so that cohomology-
weighted partitions of 𝑚 form a basis of 𝐻∗

𝑇 (Hilb𝑚(𝒜𝑛),ℚ) over ℚ[𝑡1, 𝑡2]. If we
want to stress the underlying choice of basis 𝛾𝑘, we will write

𝜇1(𝛾1) ⋅ 𝜇2(𝛾2) . . . 𝜇𝑟(𝛾𝑟),

where 𝜇𝑘 is the subpartition of 𝜇 labelled with 𝛾𝑘.
The cohomological degree of a basis element −→𝜇 under these identifications is

2(𝑚− 𝑙(𝜇)) +
∑

deg(𝛾𝑖𝑘).

Finally, under the 𝑇 -equivariant Poincaré pairing, the dual basis of the Nakajima
basis is given, up to constant factors, by cohomology-weighted partitions labelled
with the dual basis of {𝛾𝑖}.
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In terms of the basis {1, 𝜔1, . . . , 𝜔𝑛}, we can see from the formula for cohomo-
logical degree that there are two types of divisors in the Nakajima basis. First, we
have

𝐷 = −{(2, 1), (1, 1)𝑚−2}
which is proportional to the boundary divisor on Hilb𝑚(𝒜𝑛) where two points
collide. Second, we have for 𝑖 = 1, . . . , 𝑛,

(1, 𝜔𝑖) = {(1, 𝜔𝑖), (1, 1)
𝑚−1}.

These latter divisors are clearly nonnegative on effective curve classes. We will give
explicit formulas for quantum multiplication by these elements. We will also use
this basis of divisors to measure degrees of curve classes.

2.4. Affine algebra 𝔤𝔩(𝑛 + 1) and the basic representation. The Fock space
description given above can be reinterpreted in terms of the representation theory

of the affine algebra 𝔤𝔩(𝑛+1). While the previous discussion is valid for any surface
𝑆, this interpretation is a special feature of the 𝒜𝑛 surfaces.

The Lie algebra �̂� = 𝔤𝔩(𝑛 + 1) is defined over ℚ in terms of a central extension
of the loop algebra 𝔤𝔩(𝑛+ 1)⊗ℚ[𝑡, 𝑡−1]. It is generated by elements

𝑥(𝑘) = 𝑥 ⋅ 𝑡𝑘, 𝑥 ∈ 𝔤𝔩(𝑛+ 1), 𝑘 ∈ ℤ,

a central element 𝑐, and a differential 𝑑. The defining relations are

[𝑥(𝑘), 𝑦(𝑙)] = [𝑥, 𝑦](𝑘 + 𝑙) + 𝑘𝛿𝑘+𝑙,0𝑡𝑟(𝑥𝑦)𝑐,

[𝑑, 𝑥(𝑘)] = 𝑘𝑥(𝑘), [𝑑, 𝑐] = 0,

where 𝑡𝑟(𝑥𝑦) refers to the trace of the matrix 𝑥𝑦. The Cartan subalgebra of �̂� is
given by

�̂� = 𝔥⊕ℚ𝑐⊕ℚ𝑑.

Using this direct sum decomposition, we can write the dual space

�̂�∗ = 𝔥∗ ⊕ℚΛ⊕ℚ𝛿,

where Λ(𝑐) = 1,Λ(𝑑) = 0 and 𝛿(𝑑) = 1, 𝛿(𝑐) = 0. As in the finite-dimensional
situation, there is a theory of roots and weights lying in this dual space. The roots
of �̂� are given by

Δ = {𝑘𝛿 + 𝛼𝑖,𝑗 , 𝑘 ∈ ℤ} ∪ {𝑘𝛿, 𝑘 ∕= 0}.
Associated to the weight Λ, there is a unique irreducible highest weight represen-
tation (𝑉Λ, 𝜌), containing a vector 𝑣 such that

𝜌(𝔤𝔩(𝑛+ 1)⊗ℚ[𝑡])𝑣 = 0

and

𝜌(𝑐)𝑣 = 𝑣.

This is known as the basic representation of �̂�.
We have an embedding of Lie algebras of the Heisenberg algebra ℋ associated

to 𝒜𝑛,

ℋ → �̂�⊗ℚ(𝑡1, 𝑡2),

given by the map

𝔭−𝑘(1) �→ Id(−𝑘), 𝔭𝑘(1) �→ −Id(𝑘)/((𝑛+ 1)2𝑡1𝑡2), 𝑘 > 0,

𝔭𝑘(𝐸𝑖) �→ 𝑒𝑖,𝑖(𝑘)− 𝑒𝑖+1,𝑖+1(𝑘), 𝑐 �→ 1.
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This embedding is compatible with the identification of 𝐻2(𝒜𝑛,ℤ) with the finite
𝐴𝑛 root lattice. We identify ℋ with its image inside �̂�⊗ℚ(𝑡1, 𝑡2).

Rather than study the full representation 𝑉Λ, we will work with the subspace

𝑊 =
⊕
𝑚≥0

𝑉Λ[Λ−𝑚𝛿],

where 𝑉 [𝛼] denotes the weight space of 𝑉 associated to the weight 𝛼. By construc-
tion, 𝑊 is graded by nonnegative integers. Moreover, after an extension of scalars,
the space 𝑊 ⊗ℚ(𝑡1, 𝑡2) is preserved by the action of ℋ. We then have the following
easy observation.

Proposition 2.1. There is an isomorphism of ℋ-modules
𝑊 ⊗ℚ(𝑡1, 𝑡2)→ ℱ𝒜𝑛

⊗ℚ(𝑡1, 𝑡2)

uniquely specified by requiring that 𝑣 map to 𝑣∅.

Although we will not need it, Nakajima has identified the entire basic represen-
tation of �̂� with the cohomology of various moduli spaces. Also, note that while
we have extended scalars to ℚ(𝑡1, 𝑡2), all objects and maps given here are again
defined over 𝑅 = ℚ[𝑡1, 𝑡2](𝑡1+𝑡2).

2.5. Quantum cohomology. Let 𝛽 ∈ 𝐻2(Hilb𝑚(𝒜𝑛),ℤ) be a curve class. Given
cohomology classes −→𝜇 1, . . . ,

−→𝜇 𝑘 ∈ 𝐻∗
𝑇 (Hilb𝑚(𝒜𝑛),ℚ), the 𝑘-point genus 0 Gromov-

Witten invariant is defined by integration against the 𝑇 -equivariant virtual class of
the moduli space of genus 0 stable maps

⟨−→𝜇1, . . . ,
−→𝜇𝑘⟩Hilb

0,𝑘,𝛽 =

∫
[𝑀0,𝑘(Hilb(𝒜𝑛),𝛽]vir

ev∗1
−→𝜇1 . . . ev

∗
𝑘
−→𝜇𝑘,

where ev𝑖 : 𝑀0,𝑘(Hilb(𝒜𝑛), 𝛽) → Hilb(𝒜𝑛) denote evaluation maps. We can then
encode these invariants in the 𝑘-point generating function

⟨−→𝜇1, . . . ,
−→𝜇𝑘⟩Hilb =

∑
𝛽

⟨−→𝜇1, . . . ,
−→𝜇𝑘⟩Hilb

0,𝑘,𝛽𝑞
𝐷⋅𝛽

𝑛∏
𝑖=1

𝑠
(1,𝜔𝑖)⋅𝛽
𝑖 ∈ ℚ(𝑡1, 𝑡2)((𝑞))[[𝑠1, . . . , 𝑠𝑛]],

where again 𝐷 and (1, 𝜔𝑖) are the basis of divisors on Hilb(𝒜𝑛) described earlier.
Since 𝒜𝑛 is noncompact, some care is required to define the above integrals

rigorously. Although 𝑀0,𝑘(Hilb(𝒜𝑛), 𝛽) may be noncompact, its 𝑇 -fixed locus is
necessarily compact. In this case, we can define the above integral by the pushfor-
ward of its equivariant residue. In the compact case, this agrees with the original
definition by the virtual localization formula.

In the case of 𝑘 = 3, we can define the quantum product on

𝑄𝐻𝑇 (Hilb𝑚(𝒜𝑛)) = 𝐻∗
𝑇 (Hilb𝑚(𝒜𝑛),ℚ)⊗ℚ(𝑡1, 𝑡2)((𝑞))[[𝑠1, . . . , 𝑠𝑛]]

as follows. Given −→𝜇 ,−→𝜈 ,−→𝜌 , the quantum product ∘ is defined using the structure
constants

⟨−→𝜇 ∣−→𝜌 ∘ −→𝜈 ⟩ = ⟨−→𝜇 ,−→𝜌 ,−→𝜈 ⟩Hilb ∈ ℚ(𝑡1, 𝑡2)((𝑞))[[𝑠1, . . . , 𝑠𝑛]].

The brackets on the left-hand side of the above equation denote the inner product
on Fock space. It is a standard fact that these structure constants define a ring
deformation of the classical equivariant cohomology ring.
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2.6. Operator formulas. The main object of study in this paper are the two-
point genus 0 invariants for Hilb(𝒜𝑛). These can be encoded in an operator on
Fock space; more precisely, we define the operator Θ(𝑞, 𝑠1, . . . , 𝑠𝑛) by the equality

(1) ⟨−→𝜇 ∣Θ(𝑞, 𝑠1, . . . , 𝑠𝑛)∣−→𝜈 ⟩ = ⟨−→𝜇 ,−→𝜈 ⟩Hilb.

On the left-hand side, the angle brackets refer to the inner product on Fock space
induced by Poincaré duality.

Consider the following function of 𝑞, 𝑠1, . . . , 𝑠𝑛 with coefficients in 𝑈(�̂�):

Ω+ :=
∑

1≤𝑖<𝑗≤𝑛+1

∑
𝑘∈ℤ

: 𝑒𝑗𝑖(𝑘)𝑒𝑖𝑗(−𝑘) : log(1− (−𝑞)𝑘𝑠𝑖 . . . 𝑠𝑗−1).

In this expression, we use the normal ordering shorthand where

: 𝑒𝑗𝑖(𝑘)𝑒𝑖𝑗(−𝑘) : =
{
𝑒𝑗𝑖(𝑘)𝑒𝑖𝑗(−𝑘), 𝑘 < 0 or 𝑘 = 0, 𝑖 < 𝑗,

𝑒𝑖𝑗(−𝑘)𝑒𝑗𝑖(𝑘), otherwise.

Moreover, we expand the logarithms so that the Taylor expansion has nonnegative
exponents in the 𝑠 variables.

A priori, the above expression defines an operator on the entire basic representa-
tion 𝑉Λ. However, a direct calculation shows that each summand : 𝑒𝑖𝑗(𝑘)𝑒𝑗𝑖(−𝑘) :
commutes with elements of the Cartan subalgebra �̂�. As a result, Ω+ preserves
each weight subspace of 𝑉Λ and in particular descends to a well-defined operator
on each graded component:

𝑉Λ[Λ−𝑚𝛿]⊗ℚ(𝑡1, 𝑡2) = 𝐻∗
𝑇 (Hilb𝑚(𝒜𝑛),ℚ).

Moreover, for each graded piece, it is clear that only finitely many summands in
Ω+ contribute.

We also have the operator

Ω0 = −
∑
𝑘≥1

[
(𝑛+ 1)𝑡1𝑡2𝔭−𝑘(1)𝔭𝑘(1) +

𝑛∑
𝑖=1

𝔭−𝑘(𝐸𝑖)𝔭𝑘(𝜔𝑖)

]
log

(
1− (−𝑞)𝑘
1− (−𝑞)

)
and the sum

Ω = Ω0 +Ω+.

The expression for Ω0 is already written in terms of Heisenberg operators, so it
obviously acts on Fock space.

Our main theorem is that Ω(𝑞, 𝑠1, . . . , 𝑠𝑛) is essentially the operator encoding
two-point Gromov-Witten invariants for Hilb(𝒜𝑛).

Theorem 2.1. The generating function of two-point invariants of Hilb𝑚(𝒜𝑛) is
given by the following operator equality:

Θ(𝑞, 𝑠1, . . . , 𝑠𝑛) = (𝑡1 + 𝑡2) ⋅ Ω(𝑞, 𝑠1, . . . , 𝑠𝑛).
In terms of two-point invariants, we have

⟨−→𝜇 ,−→𝜈 ⟩Hilb = (𝑡1 + 𝑡2)⟨−→𝜇 ∣Ω(𝑞, 𝑠1, . . . , 𝑠𝑛)∣−→𝜈 ⟩.
As a corollary, we have the following operator expressions for quantum multipli-

cation by the divisors 𝐷 and (1, 𝜔𝑖) and let

𝑀𝐷,𝑀(1,𝜔1), . . . ,𝑀(1,𝜔𝑛)

denote the operators on
⊕

𝑚𝑄𝐻∗
𝑇 (Hilb𝑚(𝒜𝑛)) and let 𝑀 𝑐𝑙

𝐷 ,𝑀
𝑐𝑙
(1,𝜔𝑖)

denote the

operators for classical multiplication.
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Corollary 2.2. We have the equality

𝑀𝐷 = 𝑀 𝑐𝑙
𝐷 + (𝑡1 + 𝑡2)𝑞

𝑑

𝑑𝑞
Ω(𝑞, 𝑠1, . . . , 𝑠𝑛),

𝑀(1,𝜔𝑖) = 𝑀 𝑐𝑙
(1,𝜔𝑖)

+ (𝑡1 + 𝑡2)𝑠𝑖
𝑑

𝑑𝑠𝑖
Ω+(𝑞, 𝑠1, . . . , 𝑠𝑛).

Proof. This follows immediately from the divisor equation

⟨−→𝜇 ,𝐷,−→𝜈 ⟩𝛽 = (𝐷 ⋅ 𝛽)⟨−→𝜇 ,−→𝜈 ⟩𝛽
for 𝛽 ∕= 0. □

2.7. Gromov-Witten theory of 𝒜𝑛 ×P1. Consider the projective line P1 with
three distinguished marked points 0, 1,∞. The 𝑇 -equivariant Gromov-Witten the-
ory of 𝒜𝑛 × P1 relative to the fibers over 0, 1,∞ has been studied in [M]. If we
study curve classes of degree 𝑚 > 0 over the base P1, then relative conditions at
each fiber are given by cohomology-weighted partitions of 𝑚,

−→𝜇 ,−→𝜈 ,−→𝜌 .
The relative Gromov-Witten theory of 𝒜𝑛×P1 is encoded by the generating func-
tion

Z′
𝐺𝑊 (𝒜𝑛 ×P1)−→𝜇 ,−→𝜈 ,−→𝜌 ∈ ℚ(𝑡1, 𝑡2)((𝑢))[[𝑠1, . . . , 𝑠𝑛]].

The reader should see [M] for an explanation of this generating function; the 𝑢-
variable encodes the genus of the domain curve, while the variables 𝑠𝑖 again encode
the degree of the curve classes with respect to the divisors 𝜔𝑖 on the 𝒜𝑛 surface.

By comparing our formulas with those of [M], we will prove the following precise
version of the Gromov-Witten/Hilbert correspondence discussed in the Introduc-
tion.

Theorem 2.2. Under the variable substitution 𝑞 = −𝑒𝑖𝑢 we have
(−1)𝑚⟨−→𝜇 ,−→𝜈 ,−→𝜌 ⟩Hilb

𝒜𝑛
= (−𝑖𝑢)−𝑚+𝑙(𝜇)+𝑙(𝜈)+𝑙(𝜌)Z′(𝒜𝑛 ×P1)−→𝜇 ,−→𝜈 ,−→𝜌

for −→𝜈 = (2) and −→𝜈 = (1, 𝜔𝑖).

Moreover, the statements and proofs in [M] were motivation for the strategy
pursued in this paper. Again assuming a nondegeneracy conjecture, the above
statement should hold for arbitrary three-point invariants.

Just as with quantum cohomology, the three-point invariants defined using the
Gromov-Witten theory of 𝒜𝑛 × P1 can also be used to define a ring deformation
of the classical equivariant cohomology 𝐻∗

𝑇 (𝒜𝑛,ℚ) over ℚ(𝑡1, 𝑡2)((𝑢))[[𝑠1, . . . , 𝑠𝑛]].
An equivalent version of this correspondence is the statement that, after a tran-
scendental change of variables, this ring deformation is explicitly isomorphic to the
quantum deformation.

In upcoming work [MO] we will finish the comparison of both of these three-point
invariants with the Donaldson-Thomas theory of 𝒜𝑛 ×P1.

2.8. Overview of proof. Our operator formulas have many striking qualitative
features which are geometrically surprising and turn out to be useful in their proof.
First, as a function of 𝑠1, . . . , 𝑠𝑛, we observe that (1) is essentially root-theoretic.
That is, the only curve classes from 𝒜𝑛 that contribute to Ω are those corresponding
to positive roots 𝛼𝑖𝑗 and their multiples. Moreover, the associated expression is
essentially independent of the root with which we are working.
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Second, if we fix a root 𝛼𝑖,𝑗 and isolate the contribution to Ω from its multiples,
the associated terms have a logarithmic dependence on (𝑠𝑖⋅. . .⋅𝑠𝑗−1). In practice, this
means that the contribution from 𝑑𝛼𝑖,𝑗 is essentially given by the contribution from
𝛼𝑖,𝑗 . In terms of the divisor operators from Corollary 2.2, this implies that their
matrix entries are rational functions in 𝑞, 𝑠1, . . . , 𝑠𝑛. While one expects rational
functions in 𝑞 for theoretical reasons, the fact that these operators are rational
functions in all variables is a special feature of these geometries.

Our proof proceeds by establishing these qualitative features directly and using
them to algorithmically reduce the computation to a few basic cases. We then
show that both Θ and Ω satisfy the same qualitative properties and have the same
value on the basic cases. In Section 3, we establish some preliminary lemmas
involving reduced virtual classes. In Section 4, we set up the algorithm on the
geometric side for the operator Θ. In Section 5, we perform the same analysis for
Ω, and we prove the main theorem and its corollaries in Section 6. In particular,
we discuss a conjecture on Ω which implies that these divisors generate the full
quantum cohomology ring. Finally, in Section 7, we discuss elementary properties
of the quantum differential equation and give an argument, due to Jim Bryan, for
extending these formulas to 𝐷 and 𝐸 surface resolutions.

3. Preliminary lemmas

In this section, we set some further notation and explain basic properties of the
reduced virtual class for Hilb(𝒜𝑛).

3.1. Definitions. We first clarify the definition of two-point Gromov-Witten in-
variants

⟨−→𝜇 ,−→𝜈 ⟩Hilb
𝛽 =

∫
[𝑀0,2(Hilb(𝒜𝑛),𝛽]vir

ev∗1
−→𝜇 ev∗2−→𝜈 .

The integrand is the virtual fundamental class on the space of stable maps and has
dimension

−𝐾Hilb(𝒜𝑛) ⋅ 𝛽 + (2𝑛− 3) + 2 = 2𝑛− 1.

As mentioned earlier, the space of stable maps is typically noncompact. There
are two approaches in making sense of the above expression. The first approach, al-
ready described, is to use the fact that its 𝑇 -fixed locus is compact. The equivariant
residue is defined to be the formal contribution of these fixed loci to virtual localiza-
tion. We can take the integral to be the pushforward to a point of these equivariant
residues, which will take values in ℚ[𝑡1, 𝑡2](𝑡1+𝑡2) due to the denominators occuring
in the residue expressions.

Alternately, if the insertions correspond to 𝑇 -equivariant cycles for which the
space of maps meeting these cycles is compact, then this integral can be replaced
with one over this incidence locus. We then have a 𝑇 -equivariant integral on a
compact space which is defined in the usual sense. In particular, the associated
invariant takes values in ℚ[𝑡1, 𝑡2]. Since any insertion can be written as a combi-
nation of these compact cycles with coefficients in ℚ(𝑡1, 𝑡2), we can use this as a
definition in general. This agrees with the first approach by the virtual localization
formula.

The Hilbert-Chow morphism defines a map from the Hilbert scheme of points to
the symmetric product of 𝒜𝑛:

𝜌𝐻𝐶 : Hilb𝑚(𝒜𝑛)→ 𝑆𝑚(𝒜𝑛).
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We distinguish curve classes 𝛽 ∈ 𝐻2(Hilb(𝒜𝑛),ℤ) based on whether they are con-
tracted by 𝜌𝐻𝐶

∗ . Curves that are contracted by 𝜌𝐻𝐶 will be called punctual curves,
since they parametrize subschemes with fixed support. Noncontracted curves will
be called nonpunctual curves. It is easy to see that a class 𝛽 is punctual if and only
if (1, 𝜔𝑖) ⋅ 𝛽 = 0 for all 𝑖 and is effective if, in addition, 𝐷 ⋅ 𝛽 ≥ 0.

As we shall explain later, the contribution to the two-point operator Θ from
punctual curve classes can be deduced from the calculations for Hilb(ℂ2) in [OP1].
For most of this paper, we will study the contribution to Θ from non-punctual
curves, denoted by

⟨�⃗�∣Θ+(𝑞, 𝑠1, . . . , 𝑠𝑛)∣�⃗�⟩ ∈ ℚ(𝑡1, 𝑡2)((𝑞))[[𝑠1, . . . , 𝑠𝑛]].

Moreover, given a curve class 𝛼 = 𝑐1𝐸1 + ⋅ ⋅ ⋅ + 𝑐𝑛𝐸𝑛 ∈ 𝐻2(𝒜𝑛), we isolate the
coefficient in Θ of 𝑠𝑐11 ⋅ . . . ⋅ 𝑠𝑐𝑛𝑛 as Θ𝛼(𝑞) so that the corresponding invariants are
given by

⟨�⃗�∣Θ𝛼(𝑞)∣�⃗�⟩ ∈ ℚ(𝑡1, 𝑡2)((𝑞)).

Notice that we are still considering all possible values of 𝐷 ⋅ 𝛽, so the result is a
Laurent series in 𝑞.

Finally, given a curve class 𝛽 ∈ 𝐻2(Hilb𝑚(𝒜𝑛),ℤ), we define the support of 𝛽 to
be the smallest interval 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 containing the set {𝑘∣(1, 𝜔𝑘) ⋅ 𝛽 ∕= 0}. It will
be useful to consider the contribution to Θ of all curve classes with fixed support
[𝑖, 𝑗]:

⟨�⃗�∣Θ[𝑖,𝑗]∣�⃗�⟩ ∈ ℚ(𝑡1, 𝑡2)((𝑞))[[𝑠𝑖, . . . , 𝑠𝑗−1]].

3.2. Bases for Fock space. It will be useful in our arguments to shift between
different bases for the cohomology of Hilb𝑚(𝒜𝑛). First, as discussed in Section 2.3,
for every choice of basis {𝛾𝑘} of 𝐻∗

𝑇 (𝒜𝑛,ℚ) there is an associated Nakajima basis
{�⃗�} given by partitions weighed by elements of this basis. We will work with the
Nakajima basis indexed by weighted partitions of the form

𝜇1(𝜔1) . . . 𝜇𝑛(𝜔𝑛)𝜇𝑛+1(1),

where {𝜇𝑖} is an (𝑛+1)-tuple of partitions (or multipartition) such that
∑ ∣𝜇𝑖∣ = 𝑚.

If we extend coefficients to ℚ(𝑡1, 𝑡2), then we have a basis of𝐻
∗
𝑇 (𝒜𝑛,ℚ)⊗ℚ(𝑡1, 𝑡2)

given by fixed points [𝑝1], . . . , [𝑝𝑛+1] and can also study its associated Nakajima
basis

𝜇1([𝑝1]) . . . 𝜇𝑛+1([𝑝𝑛+1]),

where {𝜇𝑖} is a again a multipartition of 𝑚.
Finally, we will also work with the basis of localized equivariant cohomology

given by 𝑇 -fixed points on Hilb𝑚(𝒜𝑛), which can be described as follows. We first
recall the description of 𝑇 -fixed subschemes of ℂ2 under the standard torus action.
Given such a subscheme of length 𝑚, it must be the zero locus of a monomial ideal

𝐼𝜆 = (𝑥𝜆1 , 𝑦𝑥𝜆2 , . . . , 𝑦𝑙−1𝑥𝜆𝑙)

associated to the partition 𝜆 of 𝑚.
The toric surface 𝒜𝑛 admits an affine cover by open sets 𝑈𝑘

∼= ℂ2 centered at
the fixed point 𝑝𝑘, where we fix the identification with ℂ2 so that the 𝑥- and 𝑦-axes
correspond to 𝐸𝑘−1 and 𝐸𝑘, respectively. Given a 𝑇 -fixed subscheme of length 𝑚
on 𝒜𝑛, its restriction to each 𝑈𝑘 yields an associated monomial ideal and partition.
This gives a bijection between 𝑇 -fixed subschemes of length 𝑚 and multipartitions
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�⃗� = {𝜆𝑘} such that
∑ ∣𝜆𝑘∣ = 𝑚. The associated cohomology class shall be denoted

by

[𝐽�⃗�] ∈ 𝐻∗
𝑇 (Hilb𝑚(𝒜𝑛))⊗ℚ(𝑡1, 𝑡2).

The relationship between the Nakajima basis associated to {𝑝𝑖} and the fixed-
point basis can be described in terms of symmetric functions as follows (see [N2,
LQW, OP1]). Both of these bases are induced by the Nakajima and fixed-point
bases for Hilb(ℂ2) under the isomorphism

ℱ𝒜𝑛
⊗ℚ(𝑡1, 𝑡2) =

𝑛+1⊗
𝑖=1

ℱℂ2,𝑖 ⊗ℚ(𝑤𝑖
𝐿, 𝑤

𝑖
𝑅),

where the coordinate axes on the 𝑖-th factor have been identified with the tangent
weights at 𝑝𝑖. Let Symm denote the ring of symmetric functions over ℚ(𝑡1, 𝑡2) in
countably many variables 𝑧1, 𝑧2, . . . . This ring admits an isomorphism with Fock
space by identifying 1 with the vacuum vector 𝑣∅ and the Heisenberg operator
𝔭−𝑘([𝑝𝑖]) with multiplication by the Newton symmetric polynomial 𝑤𝑖

𝑅 ⋅p𝑘(𝑧) where
p𝑘(𝑧) =

∑
𝑎 𝑧

𝑘
𝑎 ∈ Symm. Under this identification, the Nakajima basis element

𝜇𝑖([𝑝𝑖]) is idenitifed with the Newton symmetric function
(𝑤𝑖

𝑅)𝑙(𝜇𝑖)

𝔷(𝜇𝑖)
p𝜇𝑖

(𝑧) and the

normalized fixed-point (𝑤𝑖
𝑅)

−∣𝜆∣[𝐽𝜆] is identified with the integral Jack polynomial

J𝜃𝜆(𝑧)

with parameter 𝜃 = 𝑤𝑖
𝐿/𝑤

𝑖
𝑅. If we specialize our equivariant weights so that 𝑡1+𝑡2 =

0, then the Jack polynomials written above become proportional to the associated
Schur polynomials

s𝜆(𝑧) = (−1)∣𝜆∣dim𝜆

∣𝜆∣! J𝜆(𝑧)mod(𝑡1 + 𝑡2),

where dim𝜆 is the dimension of the irreducible representation of 𝑆𝑚 associated to
𝜆.

To apply this to 𝒜𝑛, the Nakajima basis element
∏
𝜇𝑖([𝑝𝑖]) now corresponds to

an (𝑛+1)-tuple of power-sum symmetric functions
⊗

𝑖 p𝜇𝑖
(𝑧(𝑖)) and the fixed-point

basis element [𝐽−→
𝜆
] corresponds to an (𝑛+ 1)-tuple of Jack symmetric polynomials⊗

J𝜆𝑖
(𝑧(𝑖)). Under the specialization 𝑡1+ 𝑡2 = 0, we again are allowed to work with

(𝑛+ 1)-tuples of Schur polynomials.

3.3. Reduced virtual classes. We now define the reduced virtual fundamental
class for 𝑀0,𝑘(Hilb(𝒜𝑛), 𝛽). Given any variety with an everywhere-nondegenerate
holomorphic symplectic form, this form gives rise to a trivial factor of the obstruc-
tion theory. By removing this trivial factor by hand, we obtain a new obstruction
theory with virtual dimension increased by 1. In the case of Hilb(ℂ2), this con-
struction is important in the analysis of [OP1], and we will use it in much the same
way. Our discussion is based on the more detailed treatment given there.

We first explain the standard and modified obstruction theory for a fixed domain
curve 𝐶. Given a fixed nodal, pointed curve 𝐶 of genus 0, let 𝑀𝐶(Hilb(𝒜𝑛), 𝛽)
denote the moduli space of maps from 𝐶 to Hilb(𝒜𝑛) of degree 𝛽 ∕= 0. The usual
perfect obstruction theory for 𝑀𝐶(Hilb(𝒜𝑛), 𝛽) is defined by the natural morphism

(2) 𝑅𝜋∗(ev∗𝑇Hilb)
∨ → 𝐿𝑀𝐶

,
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where 𝐿𝑀𝐶
denotes the cotangent complex of 𝑀𝐶(Hilb(𝒜𝑛), 𝛽) and

ev : 𝐶 ×𝑀𝐶(Hilb(𝒜𝑛), 𝛽)→ Hilb(𝒜𝑛),

𝜋 : 𝐶 ×𝑀𝐶(Hilb(𝒜𝑛), 𝛽)→𝑀𝐶(Hilb(𝒜𝑛), 𝛽)

are the evaluation and projection maps.
Letting 𝛾 denote the holomorphic symplectic form on𝒜𝑛 induced by the standard

form 𝑑𝑥 ∧ 𝑑𝑦 on ℂ2 induces a holomorphic symplectic form on 𝒜𝑛 which, in turn,
induces a holomorphic symplectic form 𝛾 on Hilb𝑚(𝒜𝑛). The 𝑇 -representation ℂ ⋅𝛾
has weight −(𝑡1 + 𝑡2). Let 𝜔𝜋 denote the relative dualizing sheaf. The symplectic
pairing and pullback of differentials induces a map

ev∗(𝑇Hilb(𝒜𝑛))→ 𝜔𝜋 ⊗ (ℂ𝛾)∗.

This, in turn, yields a map of complexes

𝑅𝜋∗(𝜔𝜋)
∨ ⊗ ℂ𝛾 → 𝑅𝜋∗(ev∗(𝑇Hilb(𝒜𝑛))

∨)

and the truncation

𝜄 : 𝜏≤−1𝑅𝜋∗(𝜔𝜋)
∨ ⊗ ℂ𝛾 → 𝑅𝜋∗(ev∗(𝑇Hilb(𝒜𝑛))

∨).

This truncation is a trivial line bundle with equivariant weight −(𝑡1 + 𝑡2).
Results of Ran and Manetti ([R, Man]) on obstruction theory and the semireg-

ularity map imply the following. First, there is an induced map

(3) 𝐶(𝜄)→ 𝐿𝑀𝐶

where 𝐶(𝜄) is the mapping cone associated to 𝜄. Second, this map (3) satisfies the
necessary properties of a perfect obstruction theory. This is precisely the modified
obstruction theory we use to define the reduced virtual class. Since all maps in this
section are compatible with the 𝑇 -action, we have a 𝑇 -equivariant reduced virtual
class.

There is one important subtlety regarding the semiregularity results of [R, Man].
In order to apply their results, we require a compact target space. We can embed the
𝒜𝑛 singularity in a surface 𝑆 with a holomorphic symplectic form that is degenerate
away from the singularity. Given a stable map 𝑓 , its deformation theory can be

studied on the Hilbert scheme of the resolved surface 𝑆 where our curve maps
entirely to the nondegenerate locus. Theorem 9.1 of [Man] still gives the necessary
vanishing statement for realized obstructions.

As with the standard obstruction theory (2), we obtain the reduced 𝑇 -equivariant
perfect obstruction theory on 𝑀0,𝑘(Hilb(𝒜𝑛), 𝛽) by varying the domain 𝐶 and
studying the the relative obstruction theory over the Artin stack 𝔐 of all nodal
curves. Since the new obstruction theory differs from the standard one by the 1-
dimensional obstruction space (ℂ𝛾)∨, we have that the reduced virtual dimension
is given by

1 + (2𝑛− 3) + 𝑘.

Furthermore we have the identity

[𝑀0,𝑘(Hilb(𝒜𝑛), 𝛽)]
𝑣𝑖𝑟
standard = 𝑐1(ℂ𝛾

∨)[𝑀0,𝑘(Hilb(𝒜𝑛), 𝛽)]
red

= (𝑡1 + 𝑡2)[𝑀0,𝑘(Hilb(𝒜𝑛), 𝛽)]
red.

We have the following lemma, whose proof is nearly identical to that of Lemma
2 in [OP1].
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Lemma 3.1. The standard 𝑇 -equivariant Gromov-Witten invariants of Hilb𝑚(𝒜𝑛)
with nonzero degree and with insertions from 𝐻∗

𝑇 (Hilb𝑚(𝒜𝑛),ℚ) are divisible by
(𝑡1 + 𝑡2).

Proof. As these invariants take values in ℚ(𝑡1, 𝑡2), divisibility is defined by valua-
tion with respect to (𝑡1 + 𝑡2). The cohomology 𝐻∗

𝑇 (Hilb(𝒜𝑛),ℚ) is spanned as a
ℚ[𝑡1, 𝑡2]-module by the Nakajima basis with respect to (1, 𝜔1, . . . , 𝜔𝑛), so it suffices
to prove this statement with insertions from this basis. If we instead study inser-
tions given by the Nakajima basis with respect to the fixed points [𝑝1], . . . , [𝑝𝑛+1],
then by compactness these invariants lie in ℚ[𝑡1, 𝑡2] and by the reduced construc-
tion are divisible by (𝑡1 + 𝑡2). Since the change of basis from {[𝑝1], . . . , [𝑝𝑛+1]} to
{1, 𝜔1, . . . , 𝜔𝑛} does not introduce any denominators of (𝑡1 + 𝑡2), we are done. □

We denote the reduced invariants with curved brackets; we have shown that

⟨−→𝜇 ,−→𝜈 ⟩Hilb
0,2,𝛽 = (𝑡1 + 𝑡2) (�⃗�, �⃗�)

Hilb
0,2,𝛽 .

3.4. Factorization. The first application of reduced class arguments will be the
study of two point invariants in the Nakajima basis with respect to {1, 𝜔1, . . . , 𝜔𝑛}.
The following result shows that we can remove any parts labelled with 1. It is the
analog of the additivity statements for Hilb(ℂ2) proved in Section 3.5 of [OP1].

Proposition 3.2. We have the factorization

⟨𝜇(1)
∏

𝜆𝑖(𝜔𝑖)∣Θ+∣𝜈(1)
∏

𝜌𝑖(𝜔𝑖)⟩ = ⟨𝜇(1)∣𝜈(1)⟩ ⋅ ⟨
∏

𝜆𝑖(𝜔𝑖)∣Θ+∣
∏

𝜌𝑖(𝜔𝑖)⟩.
Proof. In the above expression the first factor on the right-hand side is just the
usual inner product on Fock space, equivalent to the classical Poincaré pairing. In
particular, it is nonzero if and only if 𝜇 = 𝜈.

We can assume 𝑙(𝜇) ≤ 𝑙(𝜈). We consider the associated two-point invariant
obtained by ordering the parts 𝜇(𝑘) of 𝜇 and labelling them with fixed points [𝑝𝑖𝑘 ]:

⟨𝜇(1)([𝑝𝑖1 ]) . . . 𝜇
(𝑙)([𝑝𝑖𝑙 ]) ⋅

∏
𝜆𝑖(𝜔𝑖)∣Θ+∣𝜈(1)

∏
𝜌𝑖(𝜔𝑖)⟩.

The (halved) cohomological degree of this invariant is

2𝑙(𝜇) +𝑚− 𝑙(𝜇) +𝑚− 𝑙(𝜈)− (2𝑚− 1) = 𝑙(𝜇)− 𝑙(𝜈) + 1 ≤ 1.

Since the first insertion has compact support, concentrated along the exceptional
locus of 𝒜𝑛, it forces the invariant to be a polynomial in 𝑡1 and 𝑡2 that must also
be divisible by (𝑡1 + 𝑡2) by Lemma 3.1. Therefore the invariant vanishes unless
𝑙(𝜇) = 𝑙(𝜈), in which case it equals 𝛾 ⋅ (𝑡1 + 𝑡2), where

(4) 𝛾 =
(
𝜇(1)([𝑝𝑖1 ]) . . . 𝜇

(𝑙)([𝑝𝑖𝑙 ]) ⋅
∏

𝜆𝑖(𝜔𝑖), 𝜈(1)
∏

𝜌𝑖(𝜔𝑖)
)Hilb

∈ ℚ

is the reduced invariant. Since 𝛾 is a nonequivariant constant, it can be evaluated
by replacing the equivariant classes [𝑝𝑖𝑘 ] with nonequivariant point classes [𝜉𝑘] for
distinct points 𝑥𝑖𝑘 ∈ 𝒜𝑛 that do not lie on any of the exceptional divisors 𝐸𝑖.

The moduli space of maps connecting the Nakajima cycle 𝜇(𝜉)
∏
𝜆𝑖(𝜔𝑖) to the

Nakajima cycle 𝜈(1)
∏
𝜌𝑖(𝜔𝑖) is empty unless 𝜇 = 𝜈. In this case, it can be identified

with the space of maps to the product

(5)
∏
𝑘

Hilb𝜇𝑘
(𝜉𝑘)× 𝑍,
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where Hilb𝜇𝑘
(𝜉𝑘) is the punctual Hilbert scheme of 𝜇𝑘 points supported at the point

𝜉𝑘 and 𝑍 is the subscheme of Hilb(𝒜𝑛) consisting of subschemes supported on the
exceptional locus. This moduli space of maps to (5) has connected components
corresponding to the contribution of each of these factors to the total degree of the
stable map.

The only component that contributes to our invariant is where the map to each
of the punctual Hilbert schemes is contracted. Indeed, the standard obstruction
theory factors into contributions arising from each of the factors. Moreover, if the
component of our curve class from any of these factors is nonzero, then the argu-
ments from the last section give rise to a trivial factor of the obstruction theory.
If two of these components are nonzero, then we have two trivial factors and the
associated reduced invariant must also vanish. Since we are considering nonpunc-
tual curve classes, we know that the component of our curve class in 𝑍 must be
nonzero, and therefore the domain curve is contracted in the projection to each
factor Hilb𝜇𝑘

(𝜉𝑘). The reduced invariant in (4) is given by∏
𝑘

1

𝜇𝑘
⋅
(∏

𝜆𝑖(𝜔𝑖),
∏

𝜌𝑖(𝜔𝑖)
)Hilb

.

Finally, if we substitute

1 =
∑
𝑘

[𝑝𝑘]

𝑤𝑖
𝐿 ⋅ 𝑤𝑖

𝑅

for the first insertion, the statement of the proposition follows by a direct calcula-
tion. □

As a consequence of this proposition, if we proceed inductively on the number
of points 𝑚, it suffices to determine only a certain submatrix of the full two-point
matrix Θ+. Moreover, from this proof these invariants are always of the form
𝛾(𝑡1+ 𝑡2), where 𝛾 is the nonequivariant reduced invariant. This allows us to make
the following useful observation. In order to calculate the two-point operator Θ+

precisely, it is enough to calculate the above two-point invariants mod(𝑡1 + 𝑡2)
2. If

we then work with any other of the bases described in Section 3.2, it also suffices
to determine the two-point invariants with respect to the new basis mod(𝑡1 + 𝑡2)

2.
This is true (and well defined) since the coefficients in the change of bases never
have factors of (𝑡1 + 𝑡2) in the denominator.

4. Geometric calculations

In this section, we give an inductive procedure for determining two-point invari-
ants in terms of a fixed number of new calculations for each 𝑚.

The strategy in this section is to apply virtual localization [GP] with respect to
the torus action. However, while the 𝑇 -fixed points of Hilb(𝒜𝑛) are isolated, the
loci of 𝑇 -fixed curves are typically positive-dimensional and quite complicated to
describe concretely. Instead we proceed indirectly and use the observation from
the last section to ignore loci that contribute excess multiples of (𝑡1 + 𝑡2). This
allows us to reduce the analysis to correlators for which only zero-dimensional loci
of curves contribute.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUANTUM COHOMOLOGY OF THE HILBERT SCHEME OF POINTS 1069

4.1. Fixed-point correlators. Our procedure for determining these invariants
proceeds via three intermediate propositions about two-point invariants in the fixed-
point basis. Recall that we use the subscript [𝑖, 𝑗] to isolate the contribution of curve
classes on 𝒜𝑛 that are linear combinations of 𝐸𝑖, . . . , 𝐸𝑗−1 with nonzero coefficients
for 𝐸𝑖 and 𝐸𝑗−1.

Proposition 4.1. For 𝑚 ≥ 1, an arbitrary two-point correlator

⟨[𝐽�⃗�]∣Θ[𝑖,𝑗]∣[𝐽�⃗�]⟩ ∈ ℚ[𝑡1, 𝑡2]((𝑞))[[𝑠𝑖, . . . , 𝑠𝑗−1]]

is congruent modulo (𝑡1 + 𝑡2)
2 to a linear combination of

∙ ⟨[𝐽�⃗�]∣Θ[𝑖,𝑗]∣[𝐽�⃗�]⟩, where 𝜂𝑘 = ∅ for 𝑘 ∕= 𝑖,
∙ two-point correlators ⟨[𝐽�⃗�]∣Θ[𝑖,𝑗]∣[𝐽�⃗�]⟩ for Hilb𝑚′(𝒜𝑛) with 𝑚

′ < 𝑚,

with coefficients in 𝑅 = ℚ(𝑡1, 𝑡2)(𝑡1+𝑡2) determined by pairings in the classical equi-
variant cohomology of Hilb(𝒜𝑛).

For the next two propositions, we specify the following fixed points by the mul-

tipartitions �⃗�, 𝜃, �⃗�, �⃗�:

𝜌𝑖 = (𝑚), 𝜌𝑘 = ∅, if 𝑘 ∕= 𝑖,

𝜃𝑖 = (1𝑚), 𝜃𝑘 = ∅, if 𝑘 ∕= 𝑖,

𝜅𝑖 = (𝑚− 1), 𝜅𝑗 = (1), 𝜅𝑘 = ∅, if 𝑘 ∕= 𝑖, 𝑗,

𝜎𝑖 = (1𝑚−1), 𝜎𝑗 = (1), 𝜎𝑘 = ∅, if 𝑘 ∕= 𝑖, 𝑗.

We then have the next two steps in our algorithm.

Proposition 4.2. For 𝑚 ≥ 1, a two-point correlator ⟨[𝐽�⃗�]∣Θ[𝑖,𝑗]∣[𝐽�⃗�]⟩ where 𝜂𝑘 = ∅
for 𝑘 ∕= 𝑖 is congruent modulo (𝑡1 + 𝑡2)

2 to a linear combination of

∙ ⟨[𝐽𝜌]∣Θ[𝑖,𝑗]∣[𝐽�⃗�]⟩,
∙ ⟨[𝐽𝜃]∣Θ[𝑖,𝑗]∣[𝐽�⃗�]⟩,
∙ two-point correlators ⟨[𝐽�⃗�]∣Θ[𝑖,𝑗]∣𝐽�⃗�]⟩ for Hilb𝑚′(𝒜𝑛) with 𝑚

′ < 𝑚,

with coefficients in 𝑅 determined by pairings in the classical equivariant cohomology
of Hilb(𝒜𝑛).

Proposition 4.3. For these special two-point correlators we have the following
expression modulo (𝑡1 + 𝑡2)

2:

⟨[𝐽𝜌]∣Θ[𝑖,𝑗]∣[𝐽�⃗�]⟩ = (−1)𝑚−1(𝑡1 + 𝑡2)((𝑛+ 1)𝑡1)
2𝑚 (𝑚!)2

𝑚
log(1− (−𝑞)𝑚−1𝑠𝑖𝑗),

⟨[𝐽𝜃]∣Θ[𝑖,𝑗]∣[𝐽�⃗�]⟩ = (−1)𝑚−1(𝑡1 + 𝑡2)((𝑛+ 1)𝑡1)
2𝑚 (𝑚!)2

𝑚
log(1− (−𝑞)−𝑚+1𝑠𝑖𝑗),

where 𝑠𝑖𝑗 = 𝑠𝑖, ⋅ . . . ⋅, 𝑠𝑗−1 and the logarithm is expanded with nonnegative exponents
in 𝑠𝑘.

4.2. Degree scaling. As a first application of the above three steps, we easily
show the following proposition.

Proposition 4.4. The two-point operator Θ satisfies the following properties:

∙ Θ+(𝑞, 𝑠1, . . . , 𝑠𝑛) =
∑

1≤𝑖<𝑗≤𝑛

∑
𝑑≥1 Θ𝑑𝛼𝑖,𝑗

(𝑞)(𝑠𝑖 ⋅ . . . ⋅ 𝑠𝑗−1)
𝑑,

∙ Θ𝑑𝛼𝑖,𝑗
(−𝑞) = Θ𝛼𝑖,𝑗

((−𝑞)𝑑)/𝑑 for 𝑑 ≥ 1.
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The first part of this proposition states that our answer only depends on a sum
over roots of the 𝐴𝑛 lattice. The second part states that taking multiples of a fixed
root has an extremely simple scaling property. We will explain a second argument
for the root dependence at the end of the paper.

Proof. We proceed by induction on 𝑚, the number of points, starting from the
vacuous case of 𝑚 = 0. Propositions 4.1, 4.2, and 4.3 then show that two-point
invariants in the fixed-point basis satisfy both claims in the proposition modulo (𝑡1+
𝑡2)

2. This implies that the reduced two-point invariants ⟨∏𝜇𝑖(𝜔𝑖),
∏
𝜈𝑗(𝜔𝑗)⟩Hilb

also satisfy both claims modulo (𝑡1 + 𝑡2)
2 and therefore precisely as well by the

observation at the end of last section. The claim then follows from the factorization
of Proposition 3.2. □

4.3. Localization and unbroken curves. It suffices to evaluate the reduced two-
point invariants (

[𝐽�⃗�], [𝐽�⃗�]
)Hilb

[𝑖,𝑗]
mod(𝑡1 + 𝑡2),

where again the subscript [𝑖, 𝑗] isolates curve classes with support in [𝑖, 𝑗]. While the
𝑇 -fixed loci are quite complicated to describe, many of these loci will contribute
additional factors of (𝑡1 + 𝑡2) and can be ignored. A description of which loci
contribute nontrivially as well as the proper framework for handling them is given
in [OP1]. The discussion given here follows Section 3.8 of that paper.

Let 𝑇± denote the antidiagonal torus {(𝜉, 𝜉−1)} ⊂ 𝑇 . We will first analyze fixed
loci with respect to the smaller torus 𝑇±. The fixed points on Hilb𝑚(𝒜𝑛) for 𝑇

±

are the same as those with respect to 𝑇 , but the locus of fixed maps is larger. Let
𝑓 ∈𝑀0,2(Hilb𝑚(𝒜𝑛), 𝛽) denote a 𝑇

±-fixed map 𝑓 : 𝐶 → Hilb(𝒜𝑛). We say that 𝑓
is broken if either

∙ the domain 𝐶 contains a connected, 𝑓 -contracted subcurve 𝐶 ′ for which
the curve 𝐶∖𝐶 ′ has at least two connected components which are not 𝑓 -
contracted or

∙ two non-𝑓 -contracted components 𝑃1, 𝑃2 ⊂ 𝐶 meet at a node 𝑠 of 𝐶 and
have tangent weights 𝑤𝑃1,𝑠, 𝑤𝑃2,𝑠 satisfying 𝑤𝑃1,𝑠 + 𝑤𝑃2,𝑠 ∕= 0.

If 𝑓 is broken, then so is every map in the connected component of the 𝑇±-fixed locus
containing 𝑓 , and we can classify these components as broken and unbroken. We
can decompose the 𝑇±-equivariant calculation for the reduced two-point correlator
into contributions from broken and unbroken fixed loci:(

[𝐽�⃗�], [𝐽�⃗�]
)Hilb

[𝑖,𝑗]
=
(
[𝐽�⃗�], [𝐽�⃗�]

)broken
[𝑖,𝑗]

+
(
[𝐽�⃗�], [𝐽�⃗�]

)unbroken
[𝑖,𝑗]

.

The following lemma is proven in [OP1].

Lemma 4.5. The 𝑇±-equivariant broken contributions vanish. In particular, if
there are no unbroken contributions, then

(
[𝐽�⃗�], [𝐽�⃗�]

)Hilb

[𝑖,𝑗]
vanishes mod 𝑡1 + 𝑡2.

4.4. Properties of unbroken curves. Every nonempty unbroken connected com-
ponent must contain a 𝑇 -fixed map, so we can determine necessary criteria for
two-point invariants to be nonzero mod(𝑡1 + 𝑡2)

2.
We will first give a description of nonpunctual one-dimensional 𝑇 -orbits on

Hilb𝑚(𝒜𝑛). In the following, given partitions 𝜇, 𝜌 we denote by 𝜇 ∪ 𝜌 the parti-
tion obtained by concatenating the lists of parts and 𝜇′ the partition obtained by
taking the transpose of the associated Young diagram.
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Lemma 4.6. Suppose we have a nonpunctual one-dimensional 𝑇 -orbit 𝐶 connect-
ing fixed points 𝐽�⃗� and 𝐽�⃗�. Then there exists a unique 𝑘 and partitions 𝜇, 𝜈, 𝜌 such
that

∙ (1, 𝜔𝑘) ⋅ [𝐶] > 0,
∙ 𝜆𝑙 = 𝜂𝑙 for 𝑙 ∕= 𝑘, 𝑘 + 1,
∙ up to reordering the two fixed points we have

𝜆𝑘 = 𝜇 ∪ 𝜌, 𝜆𝑘+1 = 𝜈′,

𝜂𝑘 = 𝜇, 𝜂𝑘+1 = (𝜈 ∪ 𝜌)′,
∙ and the tangent weight at 𝐽�⃗� is a positive integral multiple of 𝑤𝑘

𝑅.

If 𝑙(𝜌) = 1, then there is a unique such 𝑇 -orbit.

Proof. The structure of a nonpunctual orbit near a fixed point can be analyzed
using Hilb(ℂ2) as a local model, in which case the third and fourth conditions are
satisfied by the analysis in Section 7.2 of [N3]. The transpose occurs because of
our convention for partition orientation. Since the tangent weights 𝑤𝑘

𝑅 are not
proportional to any other tangent weights, this forces the uniqueness of 𝑘 as well
as the first two conditions. □

For punctual 𝑇 -orbits we have the following lemma.

Lemma 4.7. Given a punctual 𝑇 -orbit connecting 𝐽�⃗� and 𝐽�⃗�, there exists a unique
𝑘 such that

∙ 𝜆𝑙 = 𝜂𝑙 for 𝑙 ∕= 𝑘,
∙ the tangent weight at 𝐽�⃗� is of the form

𝑎 ⋅ 𝑤𝑘
𝐿 + 𝑏 ⋅ 𝑤𝑘

𝑅

with 𝑎 ⋅ 𝑏 ≤ 0.

Proof. At a fixed point of Hilb(ℂ2), the tangent weights are of the form 𝑎𝑡1 + 𝑏𝑡2
with 𝑎 ⋅ 𝑏 ≤ 0. One can directly check that the associated linear combinations
𝑎 ⋅ 𝑤𝑘

𝐿 + 𝑏 ⋅ 𝑤𝑘
𝑅 are distinct as we vary 𝑘. Therefore any 𝑇 -orbit is noncontracted

over a unique fixed point and the statement follows. □

Let 𝑓 : (𝐶, 𝑧1, 𝑧2) → Hilb𝑚(𝒜𝑛) be a two-pointed, 𝑇 -fixed unbroken map. Any
noncontracted irreducible component of 𝐶 has at most 2 marked or nodal points.
This implies that 𝐶 must be a chain of rational curves

𝐶 = 𝐶1 ∪ 𝐶2 ∪ ⋅ ⋅ ⋅ ∪ 𝐶𝑟

with nodes 𝑞1, . . . , 𝑞𝑟−1. Up to relabelling, we must have

𝑧1 ∈ 𝐶1, 𝑧2 ∈ 𝐶𝑟

or

𝑧1, 𝑧2 ∈ 𝐶1,

and 𝐶1 is 𝑓 -contracted.
In the first case, let 𝑆 denote the sequence of 𝑇 -fixed points of Hilb(𝒜𝑛):

𝑆 = 𝑓(𝑧1), 𝑓(𝑞1), 𝑓(𝑞2), . . . , 𝑓(𝑞𝑟), 𝑓(𝑧2).

We otherwise take 𝑆 to be

𝑆 = 𝑓(𝑞1), 𝑓(𝑞2), . . . , 𝑓(𝑞𝑟).
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We define an ordering on fixed points given as follows. Given a partition 𝜆 with
parts 𝜆(1), . . . , 𝜆(𝑙), we have the function

𝜖(𝜆) =
∑(

𝜆(𝑖)

2

)
.

Given two multipartitions �⃗�, �⃗�, we say that

�⃗� ર �⃗�

if, when 𝑘 is the smallest integer such that ∣𝜆𝑘∣ ∕= ∣𝜂𝑘∣, we have ∣𝜆𝑘∣ > ∣𝜂𝑘∣ or, if
∣𝜆𝑘∣ = ∣𝜂𝑘∣ for all 𝑘, then 𝜖(𝜆𝑘) ≥ 𝜖(𝜂𝑘) for all 𝑘.

Lemma 4.8. The sequence 𝑆 is either an increasing sequence or a decreasing
sequence with respect to the ordering ર.
Proof. This follows from the description of the one-dimensional orbits. We discuss
the case where 𝑧1 and 𝑧2 are on noncontracted components. Assume that the
(fractional) tangent weight to 𝐶1 at 𝑧1 is congruent to 𝑎𝑡1 mod(𝑡1 + 𝑡2) with 𝑎 < 0.
Because of the unbroken condition, the sum of the tangent weights at each node 𝑞𝑘
must be proportional to 𝑡1+𝑡2, so the tangent weight to 𝐶𝑘 at 𝑞𝑘−1 is 𝑎𝑡1 mod(𝑡1+𝑡2)
for all 𝑘.

For a nonpunctual component 𝐶𝑘, it is a multiple cover of one of the orbits
described in Lemma 4.6. Since 𝑎 < 0, the tangent space at 𝑞𝑘−1 maps to a 𝑇 -
fixed point with tangent weight a positive rational multiple 𝑤𝑙

𝑅 for some 𝑙, since
𝑤𝑙
𝐿 = 𝑏𝑡1 mod(𝑡1 + 𝑡2) with 𝑏 > 0. The length of the support of the subscheme at

𝑝𝑙 decreases and increases at 𝑝𝑙+1, so we have 𝑓(𝑞𝑘−1) ર 𝑓(𝑞𝑘).
For a punctual component 𝐶𝑘 connecting partitions 𝜆 and 𝜂 supported at the

fixed point 𝑝𝑙, the tangent weight at 𝑞𝑘−1 is a positive rational multiple of 𝑎𝑤𝐿

degree with respect to𝐷, given by the localization expression 0 < 𝐷⋅𝐶𝑘 = 𝑐(𝜆)−𝑐(𝜂)

𝑎𝑤𝑙
𝐿+𝑏𝑤𝑙

𝑅

where 𝑐(𝜆) is the content

𝑐(𝜆) = 𝐷∣𝐽𝜆
=

∑
(𝑖,𝑗)∈𝜆

(𝑖− 1)𝑤𝑙
𝐿 + (𝑗 − 1)𝑤𝑙

𝑅.

The coefficient of 𝑤𝑙
𝐿 in 𝑐(𝜆) is precisely 𝜖(𝜆), which implies 𝜖(𝜆) ≥ 𝜖(𝜂), so again

we have 𝑓(𝑞𝑘−1) ર 𝑓(𝑞𝑘). □

The main application of this unbroken analysis is the following vanishing propo-
sition for two-point fixed correlators.

Proposition 4.9. Given two distinct (𝑛 + 1)-tuples of partitions �⃗� ∕= 𝜂 such that
either ∣𝜆𝑖∣ = ∣𝜂𝑖∣ or ∣𝜆𝑗 ∣ = ∣𝜂𝑗 ∣, then

⟨[𝐽�⃗�]∣Θ[𝑖,𝑗]∣[𝐽�⃗�]⟩ = 0 mod (𝑡1 + 𝑡2)
2.

Proof. Since we are considering curve classes 𝛽 with support equal to [𝑖, 𝑗], we have
(1, 𝜔𝑘) ⋅𝛽 = 0 for 𝑘 < 𝑖 and (1, 𝜔𝑖) ⋅𝛽 > 0. Suppose there exists an unbroken map 𝑓 ;

since �⃗� ∕= 𝜂, the two marked points must be at opposite ends of the chain 𝐶. The
first condition and the description of punctual and nonpunctual 𝑇 -orbits ensures
that ∣𝜆𝑘∣ = ∣𝜂𝑘∣ for 𝑘 < 𝑖. Similarly, the second condition implies that the length
of the subscheme supported at 𝑝𝑖 either increases or decreases at some point in the
chain. Lemma 4.8 implies that ∣𝜆𝑖∣ ∕= ∣𝜂𝑖∣ and the analogous statement for 𝑗. This
contradicts the hypothesis, so all 𝑇 -fixed maps are broken. □
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4.5. Proof of Proposition 4.1. The proof of this proposition and the next will
only use the factorization and vanishing statements of Propositions 3.2 and 4.9.

Recall that our invariants take values in 𝑅 = ℚ[𝑡1, 𝑡2](𝑡1+𝑡2).We define an equiv-
alence relation ∼ on elements of 𝑅((𝑞))[[𝑠1, . . . , 𝑠𝑛]] so that

𝑓(𝑡1, 𝑡2, 𝑞, 𝑠1, . . . , 𝑠𝑛) ∼ 0

if 𝑓 mod(𝑡1+ 𝑡2)
2 is an 𝑅-linear combination of ⟨[𝐽�⃗�]∣Θ𝑖,𝑗 ∣[𝐽�⃗�]⟩ for Hilb𝑚′(𝒜𝑛) with

𝑚′ < 𝑚.
In these terms, the factorization proposition can be restated as follows.

Lemma 4.10. Given 𝑘 > 0, �⃗� ∈ 𝐻∗(Hilb𝑚(𝒜𝑛),ℚ), �⃗� ∈ 𝐻∗(Hilb𝑚−𝑘(𝒜𝑛),ℚ), we
have

⟨�⃗�∣Θ𝑖,𝑗 ∣𝔭−𝑘(1)�⃗�⟩ ∼ 0.

Proof. If we write �⃗�, �⃗� in terms of the Nakajima basis with respect to 1, 𝜔1, . . . , 𝜔𝑛,
this follows immediately from the statement of Proposition 3.2 since 𝑘 > 0. □

In the case of 𝒜1, we will restate this lemma in terms of the symmetric function
notation for elements of ℱ𝒜1

. Since

𝔭−𝑘(1) =
1

2𝑡1(𝑡2 − 𝑡1)
𝔭−𝑘([𝑝1]) +

1

2𝑡2(𝑡1 − 𝑡2)
𝔭−𝑘([𝑝2])

and each of these fixed-point Nakajima operators corresponds to multiplication by
p𝑘(𝑧), we have

⟨(p𝜇(𝑧) ⋅ 𝑔(𝑧))⊗ ℎ(𝑧)∣Θ+∣∙⟩ ∼ (−1)𝑙(𝜇)⟨𝑔(𝑧)⊗ (p𝜇(𝑧) ⋅ ℎ(𝑧))∣Θ+∣∙⟩,
where ∙ denotes any cohomology class.

If we apply Lemma 4.10 to invariants with insertions in the Nakajima basis with
respect to the basis {1, 𝑝1, . . . , 𝑝𝑗 , 𝑝𝑛}, this shows that all two-point correlators are
determined by two-point correlators

⟨[𝐽�⃗�]∣Θ𝑖,𝑗 ∣[𝐽�⃗�]⟩
with 𝜆𝑗 = ∅, 𝜂𝑗 = ∅. By Proposition 4.9, we must have �⃗� = �⃗�. For 𝒜1, this
concludes the proof.

For the case of general 𝒜𝑛, we have to argue further as follows. Given two
partitions 𝜋 and 𝜋′ of size 𝑎 and 𝑎− 1 respectively, we say that

𝜋 ↘ 𝜋′

if their Young diagrams differ by the removal of a single box. We already have that
𝜆𝑗 = ∅; suppose further that there exists 𝑘 ∕= 𝑖, 𝑗 for which 𝜆𝑘 ∕= ∅. Then there
exists a multipartition �⃗� such that

𝜆𝑟 = 𝜂𝑟, 𝑟 ∕= 𝑘,

and

𝜆𝑘 ↘ 𝜂𝑘.

If we use symmetric function notation for the fixed-point basis, then we have
that modulo (𝑡1 + 𝑡2)

𝔭−1(1)

(⊗
𝑟

J𝜂𝑟
(𝑧(𝑟))

)
≡ (𝑛+ 1)𝑡1

𝑛+1∑
𝑠=1

⊗
𝑟 ∕=𝑠

J𝜂𝑟
(𝑧(𝑟))⊗

(
p1(𝑧

(𝑠)) ⋅ J𝜂𝑠
(𝑧(𝑠))

)
.
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Moreover, if we expand out these products in the basis of Jack polynomials, we
have that

p1(𝑧) ⋅ J𝜂𝑘
(𝑧) = 𝑐 ⋅ J𝜆𝑘

(𝑧) + . . .

with 𝑐 ∕≡ 0mod 𝑡1 + 𝑡2. This implies that

0 ∼ ⟨
⊗

J𝜆𝑟
(𝑧(𝑟))∣Θ𝑖,𝑗 ∣𝔭−1(1) ⋅

⊗
J𝜂𝑟

(𝑧(𝑟))⟩

∼
𝑛+1∑
𝑠=1

⟨J𝜆𝑟
(𝑧(𝑟))∣Θ𝑖,𝑗 ∣

⊗
𝑟 ∕=𝑠

J𝜂𝑟
(𝑧(𝑟))⊗ (p1(𝑧) ⋅ J𝜂𝑠

(𝑧))⟩

∼ 𝑐⟨
⊗

J𝜆𝑟
(𝑧)∣Θ𝑖,𝑗 ∣

⊗
J𝜆𝑟

(𝑧)⟩.
The last equality follows from Proposition 4.9, since the number of points supported
at either 𝑝𝑖 or 𝑝𝑗 is fixed.

4.6. Proof of Proposition 4.2. We will just prove this for 𝒜1, since the case
of general 𝑛 is essentially the same. We will write everything using symmetric
function notation for fixed-point basis elements. Moreover, since we are ignoring
factors of 𝑡1 + 𝑡2, it is convenient to work with Schur polynomials instead of Jack
polynomials, since the branching rules are easier to describe. In these terms, the
goal of this section is to calculate

⟨s𝜆(𝑧)⊗ 1∣Θ1,2∣s𝜆(𝑧)⊗ 1⟩
in terms of

⟨s𝜌(𝑧)⊗ 1∣Θ1,2∣s𝜅(𝑧)⊗ s(1)(𝑧)⟩
and

⟨s𝜃(𝑧)⊗ 1∣Θ1,2∣s𝜎(𝑧)⊗ s(1)(𝑧)⟩,
where 𝜌 = (𝑚), 𝜅 = (𝑚− 1), 𝜃 = (1𝑚), 𝜎 = (1𝑚−1).

We first assume that there are two distinct partitions, 𝜆1, 𝜆2, of size 𝑚− 1 such
that

𝜆↘ 𝜆1, 𝜆↘ 𝜆2.

This happens if and only if 𝜆 ∕= (𝑎, 𝑎, . . . , 𝑎) for some 𝑎 dividing 𝑚.
We then have the equality

0 ∼ ⟨s𝜆1
(𝑧)⊗ s(1)(𝑧)∣Θ1,2∣s𝜆2

(𝑧)⊗ s(1)(𝑧)⟩
∼ ⟨(s(1)(𝑧) ⋅ s𝜆1

(𝑧))⊗ 1∣Θ1,2∣(s(1)(𝑧) ⋅ s𝜆2
(𝑧))⊗ 1⟩

∼
∑

𝜂1↘𝜆1

∑
𝜂2↘𝜆2

⟨s𝜂1
(𝑧)⊗ 1∣Θ1,2∣s𝜂2

(𝑧)⊗ 1⟩

∼ ⟨s𝜆(𝑧)⊗ 1∣Θ1,2∣s𝜆(𝑧)⊗ 1⟩.
The first equality follows from Proposition 4.9, since 𝜆1 ∕= 𝜆2. The second equality
is the restatement of the factorization lemma in terms of symmetric functions given
after Lemma 4.10. The third equality is the branching rule formula for multiplying
Schur functions. The fourth equality follows again from the vanishing statement
and the fact that 𝜆 is the unique partition 𝜂 of 𝑚 such that

𝜂 ↘ 𝜆1, 𝜂 ↘ 𝜆2.
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This reduces us to the case where 𝜆 = (𝑎, 𝑎, . . . , 𝑎) for some 𝑎∣𝑚 or, equivalently,
where the Young diagram of 𝜆 is rectangular. If 𝑎 ∕= 1,𝑚, there are two distinct
ways of removing two boxes from the Young diagram of 𝜆:

𝜆1 = (𝑎, 𝑎, . . . , 𝑎− 1, 𝑎− 1), 𝜆2 = (𝑎, 𝑎, . . . , 𝑎, 𝑎− 2).

We then again have

0 ∼ ⟨s𝜆1
(𝑧)⊗ s(2)(𝑧)∣Θ1,2∣s𝜆2

(𝑧)⊗ s(1,1)(𝑧)⟩
∼ ⟨s(1,1)(𝑧) ⋅ s𝜆1

(𝑧)⊗ 1 ∣Θ1,2∣s(2)(𝑧) ⋅ s𝜆2
(𝑧)⊗ 1⟩

∼ ⟨s𝜆(𝑧)⊗ 1∣Θ1,2∣s𝜆(𝑧)⊗ 1⟩
by again using Proposition 4.9 and the branching rule for Schur functions.

This leaves 𝜆 = 𝜌 or 𝜆 = 𝜃. In these cases, we have for instance

⟨s𝜃(𝑧)⊗ 1∣Θ1,2∣s𝜎(𝑧)⊗ s1(𝑧)⟩ ∼ (−1) ⋅ ⟨s𝜃(𝑧)⊗ 1∣Θ1,2∣s𝜃(𝑧)⊗ 1⟩.
We argue similarly in the case of 𝜆 = 𝜌.

4.7. Proof of Proposition 4.3. In order to prove Propositon 4.3, we will explicitly
calculate the two invariants

⟨[𝐽𝜃]∣Θ𝑖,𝑗 ∣[𝐽�⃗�]⟩, ⟨[𝐽𝜌]∣Θ𝑖,𝑗 ∣[𝐽�⃗�]⟩mod(𝑡1 + 𝑡2)
2.

The main observation in each case is that, for every curve class, there is at
most one unbroken 𝑇 -fixed curve joining the two fixed point insertions in each of
these invariants. If we assume this for now, then since every positive-dimensional
compact variety with a 𝑇 -action has at least two fixed points, this curve is the
entire unbroken 𝑇±-fixed locus. By Lemma 4.5, we have(

[𝐽𝜃], [𝐽�⃗�]
)𝑇

mod(𝑡1 + 𝑡2) ≡
(
[𝐽𝜃], [𝐽�⃗�]

)𝑇±

=
(
[𝐽𝜃], [𝐽�⃗�]

)𝑇±, unbroken
,

where the curved brackets denote the reduced virtual class invariants. These invari-
ants differ from the usual invariants by a factor of (𝑡1 + 𝑡2). Therefore, as long as
we work mod(𝑡1+ 𝑡2)

2, it suffices to calculate the localization residue of the unique
unbroken 𝑇 -fixed curve.

We begin by explaining the calculation of the first invariant.

Lemma 4.11. The only unbroken maps joining 𝐽𝜃 to 𝐽�⃗� have multidegree given

by the monomial (𝑞1−𝑚𝑠𝑖 ⋅ . . . ⋅ 𝑠𝑗−1)
𝑑 for 𝑑 ≥ 1. Moreover, for each 𝑑, there is a

unique such map.

Proof. We first show that there is a unique chain of 𝑇 -orbits that is decreasing with
respect to the partial ordering ર. Let 𝑓 : 𝐶 → Hilb(𝒜𝑛) be an unbroken 𝑇 -fixed
map with

𝐶 = 𝐶1 ∪ 𝐶2 ∪ ⋅ ⋅ ⋅ ∪ 𝐶𝑟

and let 𝑆 = {𝐽𝜃, 𝑓(𝑞1), . . . , 𝑓(𝑞𝑟−1), 𝐽𝜎} be the decreasing sequence of fixed points
associated to the marked points and nodes. For 1 ≤ 𝑘 ≤ 𝑗 − 𝑖, let 𝜃(𝑘) be the
multipartition defined by

𝜃
(𝑘)
𝑖 = (1𝑚−1), 𝜃

(𝑘)
𝑖+𝑘 = (1), 𝜃

(𝑘)
𝑙 = ∅, 𝑙 ∕= 𝑖, 𝑖+ 𝑘.

We claim that

𝑆 = {𝜃, 𝜃(1), 𝜃(2), . . . , 𝜃(𝑗−1) = 𝜎}.
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Indeed, let 𝐿1, . . . , 𝐿𝑟 denote the 𝑇 -orbits that are the reduced images of 𝐶𝑘.
First, 𝐿1 must be a nonpunctual 𝑇 -orbit with a single point moving from 𝑝𝑖 to
𝑝𝑖+1, so 𝑓(𝑞1) = 𝜃(1). This is due to the fact that the function 𝜖 achieves a strict
minimum on (1𝑚). For this same reason, all subsequent 𝐿𝑘 are nonpunctual curves
as well which force 𝑓(𝑞𝑘) = 𝜃(𝑘). The uniqueness of these orbits follows from the
full statement of Lemma 4.6.

The degrees of each of these orbits are calculated as follows:

𝐷 ⋅ 𝐿1 =
−(𝑚2 )𝑤𝑖

𝑅 +
(
𝑚−1

2

)
𝑤𝑖
𝑅

𝑤𝑖
𝑅

= 1−𝑚,

(1, 𝜔𝑖) ⋅ 𝐿1 = 1, (1, 𝜔𝑙) ⋅ 𝐿1 = 0.

Similarly, we have

𝐷 ⋅ 𝐿𝑘 = 0, (1, 𝜔𝑘) ⋅ 𝐿𝑘 = 1.

Suppose that the degree of 𝐶1 over 𝐿1 is 𝑑. The tangent weights at 𝑓(𝑞𝑘) are

𝑤𝑖+𝑘
𝐿 and 𝑤𝑖+𝑘

𝑅 , which add to 𝑡1 + 𝑡2. Since the fractional tangent weights to 𝐶 at
each node 𝑞𝑘 must add to a multiple of 𝑡1 + 𝑡2, we have that the degree of 𝐶𝑘 over
𝐿𝑘 is 𝑑 for all 𝑘. Therefore, only the unbroken fixed maps have degree given by
𝑞𝑑(1−𝑚) ⋅ (𝑠𝑖 ⋅ . . . ⋅ 𝑠𝑗−1)

𝑑, and, for each 𝑑, there is a unique such map 𝑓 . □

This calculation of the residue at this unbroken map 𝑓 factors into contributions
from each component 𝐶𝑘, each node 𝑞𝑘, and each marked point at 𝐽𝜃 and 𝐽�⃗�. For
more details on how to determine these contributions, we refer the reader to [GP].

∙ Contribution from 𝐶1:
This contribution is given by the ratio of equivariant Euler classes

1

𝑑
⋅ 𝑒(𝐻1(𝐶1, 𝑓

∗(𝑇Hilb(𝒜𝑛))))

𝑒(𝐻0(𝐶1, 𝑓∗(𝑇Hilb(𝒜𝑛)))− 0)
.

The 1
𝑑 factor arises from the automorphism of 𝐶1 over 𝐿1. The 𝐻0-term

has a single trivial weight 0 corresponding to reparameterization that we
remove by hand in the above expression. The restriction of the tangent
bundle to the orbit 𝐿1 is given by

𝑇Hilb(𝒜𝑛) ∣𝐿1
= 𝒪(2)⊕𝒪(−2)⊕𝒪(1)𝑚−1 ⊕𝒪(−1)𝑚−1.

The 𝑇 weights over each fixed point of these bundles are given by the
following table:

𝐽𝜃 𝐽�⃗�

𝒪(2) 𝑤𝑖
𝑅 −𝑤𝑖

𝑅

𝒪(−2) 𝑤𝑖
𝐿 𝑤𝑖

𝐿 + 2𝑤𝑖
𝑅

𝒪(1) 2𝑤𝑖
𝑅 𝑤𝑖

𝑅
...

...
...

𝒪(1) 𝑚𝑤𝑖
𝑅 (𝑚− 1)𝑤𝑖

𝑅

𝒪(−1) 𝑤𝑖
𝐿 − 𝑤𝑖

𝑅 𝑤𝑖
𝐿

...
...

...

𝒪(−1) 𝑤𝑖
𝐿 − (𝑚− 1)𝑤𝑖

𝑅 𝑤𝑖
𝐿 − (𝑚− 2)𝑤𝑖

𝑅
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In what follows, let 𝜏 ≡ (𝑛 + 1)𝑡1 mod(𝑡1 + 𝑡2). The contribution of
𝐻0(𝐶1, 𝑓

∗(𝒪(2))− 0 is given by

𝑑∏
𝑘=1

−(𝑘
𝑑
𝑤𝑖
𝑅)

2 ≡ (−1)𝑑
(
𝑑!

𝑑𝑑

)2

𝜏2𝑑.

The contribution of 𝐻0(𝐶1, 𝑓
∗(𝒪(1))) for 𝑎 = 1, . . . ,𝑚− 1 is

(−1)𝑑+1𝜏𝑑+1
𝑑∏

𝑘=0

(𝑎+
𝑘

𝑑
)mod(𝑡1 + 𝑡2).

The contribution of 𝐻1(𝐶1, 𝑓
∗(𝒪(−2))) is given by

(𝑡1 + 𝑡2) ⋅ (−1)𝑑−1

(
𝑑!

𝑑𝑑

)2

𝜏2𝑑−2 mod(𝑡1 + 𝑡2)
2.

The contribution of 𝐻1(𝐶1, 𝑓
∗(𝒪(−1))) for 𝑎 = 1, . . . ,𝑚− 1 is

𝜏𝑑−1
𝑑−1∏
𝑘=1

(𝑎+
𝑘

𝑑
)mod(𝑡1 + 𝑡2).

The total contribution is then

(−1)𝑚𝑑+𝑚+𝑑

𝑑(𝑚− 1)!𝑚!

1

𝜏2𝑚
⋅ (𝑡1 + 𝑡2)mod(𝑡1 + 𝑡2)

2.

∙ Contribution from 𝐶𝑘, 𝑘 > 1:
The same calculation shows that the contribution here is given by

(−1)𝑚
𝑑 ⋅ ((𝑚− 1)!)2

⋅ (𝑡1 + 𝑡2)mod(𝑡1 + 𝑡2)
2.

∙ Contribution from nodes:
At each node 𝑞𝑘 we have a contribution

𝑑

𝑡1 + 𝑡2

arising from the normal direction to the fixed locus arising from smoothing
the node, and

(−1)𝑚𝜏2𝑚((𝑚− 1)!)2 mod(𝑡1 + 𝑡2)

from the gluing condition at the node.
∙ Contribution from marked points:

The contribution from each marked point is the product of the tangent
weights at the fixed point

(−1)𝑚𝜏2𝑚(𝑚!)2, (−1)𝑚𝜏2𝑚((𝑚− 1)!)2 mod(𝑡1 + 𝑡2).

The total contribution yields

⟨[𝐽𝜃]∣Θ𝑖,𝑗 ∣[𝐽�⃗�]⟩ =
∑
𝑑≥1

1

𝑑

(𝑚!)2

𝑚
(−1)𝑚𝑑+𝑚+𝑑𝜏2𝑚(𝑞1−𝑚𝑠𝑖 ⋅ . . . ⋅ 𝑠𝑗−1)

𝑑

= (−1)𝑚−1((𝑛+ 1)𝑡1)
2𝑚 (𝑚!)2

𝑚
log(1− (−𝑞)1−𝑚𝑠𝑖 ⋅ . . . ⋅ 𝑠𝑗−1).

For the calculation of
⟨[𝐽𝜌]∣Θ𝑖,𝑗 ∣[𝐽�⃗�]⟩,
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we argue in the same way, omitting the details since they are similar to the last
calculation. As before, there is a unique sequence of 𝑇 -orbits connecting the two
fixed points that is decreasing with respect to the partial ordering ર. Let 𝜌(𝑘) be
the multipartitions defined by

𝜌
(1)
𝑖 = (𝑚− 1, 1), 𝜌

(1)
𝑙 = ∅, 𝑙 ∕= 𝑖,

𝜌
(𝑘)
𝑖 = (𝑚− 1), 𝜌

(𝑘)
𝑖+𝑘−1 = (1), 𝜌

(𝑘)
𝑙 = ∅.

Then the sequence of marked points and nodes associated to any fixed, unbroken
map is

𝑆 = {�⃗�, 𝜌(1), . . . , 𝜌(𝑗−𝑖+1) = �⃗�}.
The argument for this is analogous to the argument given above, now using the
fact that the two largest values of the function 𝜖 are achieved at the partitions

(𝑚), (𝑚− 1, 1).

Again, the 𝑇 -orbits 𝐿1, . . . , 𝐿𝑗−𝑖+1 joining the fixed points in 𝑆 are uniquely
determined. The orbit 𝐿1 is punctual with tangent weights ±((𝑚−1)𝑤𝑖

𝐿−𝑤𝑖
𝑅) and

has degree given by the monomial 𝑞. The orbit 𝐿2 has degree given by the monomial
𝑞−1𝑠𝑖 while the remaining 𝐿𝑘 are nonpunctual with tangent weights ±𝜏 mod(𝑡1+𝑡2)
and degree 𝑠𝑘, 𝑖 < 𝑘 < 𝑗. Given an unbroken 𝑇 -fixed map 𝑓 : 𝐶 → Hilb(𝒜𝑛),
𝐶 = 𝐶1 ∪ ⋅ ⋅ ⋅ ∪ 𝐶𝑟 as before, if the degree of 𝐶2 over 𝐿2 is 𝑑, then the unbroken
condition forces the degree of 𝐶1 over 𝐿1 to be 𝑚𝑑 and the degree of 𝐶𝑘 over 𝐿𝑘

for 𝑘 ≥ 2 is 𝑑. Therefore there is again a unique unbroken map for every 𝑑 ≥ 1.

∙ Contribution for 𝐿1:
This punctual contribution is the main calculation of [OP1]:

(𝑡1 + 𝑡2) ⋅ (−1)𝑚𝑑+𝑚 (𝑚!)2

𝑚𝑑
𝜏2𝑚mod(𝑡1 + 𝑡2)

2.

∙ Contribution for the node 𝑞1:
The contribution from smoothing the node at this point yields

𝑚𝑑

(𝑚− 1)(𝑡1 + 𝑡2)
.

∙ Contribution for 𝐿2:
This calculation involves an enumeration of the 𝑇 -equivariant splitting

of the normal bundle, similar to the one given above:

1

𝑑
(𝑡1 + 𝑡2) ⋅ (−1)𝑚+𝑑

((𝑚− 2)!)2(𝑚− 1)𝑚

1

𝜏2𝑚
mod(𝑡1 + 𝑡2)

2.

∙ Other curves, nodes, and marked points: The remaining calculations are
the same as those given above:

(−1)𝑚((𝑚− 1)!)2𝜏2𝑚.

The total contribution yields

⟨[𝐽𝜌]∣Θ𝑖,𝑗 ∣[𝐽�⃗�]⟩ =
∑
𝑑≥1

1

𝑑

(𝑚!)2

𝑚
(−1)𝑚𝑑+𝑚+𝑑𝜏2𝑚(𝑞𝑚−1𝑠𝑖 ⋅ . . . ⋅ 𝑠𝑗−1)

𝑑

= (−1)𝑚−1((𝑛+ 1)𝑡1)
2𝑚 (𝑚!)2

𝑚
log(1− (−𝑞)𝑚−1𝑠𝑖 ⋅ . . . ⋅ 𝑠𝑗−1).
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5. Operator calculations

In this section, we prove the results of the last section for the operator Ω+. The
results of the last section give an inductive algorithm (Propositions 4.1-4.3) which
uniquely determines the operator Θ+ in terms of

(1) the factorization statement of Proposition 3.2,
(2) the vanishing statement of Proposition 4.9,
(3) the calculation of two-point correlators mod(𝑡1 + 𝑡2)

2 in Proposition 4.3,
(4) the statement that the coefficients of ⟨∏𝜇𝑖(𝜔𝑖)∣Θ+∣

∏
𝜈𝑖(𝜔𝑖)⟩ are linear

polynomials, proportional to (𝑡1 + 𝑡2),
(5) and the vanishing vacuum expectation ⟨𝑣∅∣Θ+∣𝑣∅⟩.

All the other manipulations of the last section involved moving between the Naka-
jima and fixed-point bases. If we prove each of these statements for (𝑡1 + 𝑡2)Ω+,
then this inductive algorithm forces

(𝑡1 + 𝑡2)Ω+ = Θ+.

It is clear from its definition that Ω+ has the same root dependence and degree
scaling properties as those of Θ+ proved in Proposition 4.4. It therefore suffices
to isolate the contribution of a fixed root 𝛼 = 𝛼𝑖,𝑗 or, equivalently, to study the
coefficient of 𝑠𝑖 ⋅ . . . ⋅ 𝑠𝑗−1 :

ℰ𝛼(𝑞) = −
∑
𝑘∈ℤ

: 𝑒𝑗,𝑖(𝑘)𝑒𝑖,𝑗(−𝑘) : (−𝑞)𝑘,

where we have dropped the factor of 𝑡1+ 𝑡2 for convenience. The vanishing vacuum
expectation is immediate from this formula.

5.1. Commutation relations. We first write the commutation relations for ℰ𝛼(𝑞)
with the Nakajima operators 𝔭𝑟(𝛾) for 𝑟 ∕= 0. Define operators

ℰ𝑟𝛼(𝑞) = −
∑
𝑘∈ℤ

𝑒𝑗,𝑖(𝑘)𝑒𝑖,𝑗(𝑟 − 𝑘)(−𝑞)𝑘− 𝑟
2 .

Notice that, on any fixed graded piece of Fock space, the summands in the above
expression vanish for 𝑘 sufficiently negative. For 𝑟 = 0, the discrepancy between
this operator and ℰ𝛼 arises from the normal ordering. This can be written as

ℰ0
𝛼(𝑞) = ℰ𝛼(𝑞) + (𝑒𝑖𝑖(0)− 𝑒𝑗𝑗(0))

−𝑞
1 + 𝑞

+
𝑞

(1 + 𝑞)2
⋅ 𝑐.

In particular, we have

ℰ0
𝛼(𝑞)𝑣∅ =

𝑞

(1 + 𝑞)2
𝑣∅.

It follows directly from the embedding of the Heisenberg algebra into �̂� and from
the commutation relations that

[𝔭𝑟(𝛾), ℰ𝑠𝛼(𝑞)] = (𝛼, 𝛾)((−𝑞)−𝑟/2 − (−𝑞)𝑟/2) ⋅ ℰ𝑟+𝑠
𝛼 (𝑞),

where (𝛼, 𝛾) denotes the Poincaré pairing on 𝐻∗
𝑇 (𝒜𝑛,ℚ).

This result makes calculating matrix elements with respect to the Nakajima basis
extremely simple. In particular, we can easily deduce the factorization statement.

Proposition 5.1. In terms of the Nakajima basis with respect to {1, 𝜔1, . . . , 𝜔𝑛},
we have

⟨𝜇(1)
∏

𝜆𝑖(𝜔𝑖)∣ℰ𝛼(𝑞)∣𝜈(1)
∏

𝜌𝑖(𝜔𝑖)⟩ = ⟨𝜇(1)∣𝜈(1)⟩ ⋅ ⟨𝜆𝑖(𝜔𝑖)∣ℰ𝛼(𝑞)∣𝜌𝑖(𝜔𝑖)⟩.
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Proof. This follows immediately from the fact that

[ℰ𝛼(𝑞), 𝔭𝑟(1)] = 0,

which in turn follows from the vanishing

(𝛼, 1) = 0.

□

Furthermore, it is clear that matrix elements ⟨∏𝜆𝑖(𝜔𝑖)∣ℰ𝛼(𝑞)∣
∏
𝜌𝑖(𝜔𝑖)⟩ are non-

equivariant constants, so that the coefficients of (𝑡1 + 𝑡2)Ω+ are linear. All that
remains are the vanishing statement and the exact evaluations.

5.2. Diagonalization. We now analyze the matrix elements of ℰ0
𝛼(𝑞) with respect

to the fixed-point basis. For our purposes, we only need to understand a certain
minor of this matrix mod(𝑡1 + 𝑡2). More precisely, since all operators and bases
are defined over 𝑅 = ℚ[𝑡1, 𝑡2](𝑡1+𝑡2), it makes sense to study the reduction of these
operators after tensoring with

𝑅/(𝑡1 + 𝑡2) = ℚ(𝜏 ),

where 𝜏 ≡ (𝑛+ 1)𝑡1 mod 𝑡1 + 𝑡2.
Recall the tensor product decomposition

ℱ𝒜𝑛
⊗𝑅 =

𝑛+1⊗
𝑘=1

ℱℂ2,𝑘 ⊗𝑅,

where the factors correspond to the 𝑇 -fixed points 𝑝1, . . . , 𝑝𝑛+1 of 𝒜𝑛. Since

(𝛼, [𝑝𝑘]) = 0

for 𝑘 ∕= 𝑖, 𝑗, we have

[ℰ0
𝛼, 𝔭𝑟([𝑝𝑘])] = 0

for 𝑘 ∕= 𝑖, 𝑗. Therefore, this operator admits a decomposition

ℰ0
𝛼(𝑞) = ℰ ′𝛼(𝑞)⊗ Id,

where ℰ ′𝛼(𝑞) is an operator on

ℱ𝑖,𝑗 ⊗𝑅 = (ℱℂ2,𝑖 ⊗ℱℂ2,𝑗)⊗𝑅

and the identity matrix acts on the remaining factors. From now on, we suppress
the ℂ2 in our notation. There is a bi-grading on the above space given by

ℱ𝑖,𝑗 =
⊕
𝑎,𝑏≥0

ℱ (𝑎)
𝑖 ⊗ ℱ (𝑏)

𝑗 .

We are interested in the minors with respect to this decomposition. That is, if 𝜋𝑎,𝑏
denote the orthogonal projections with respect to this grading, then

M𝛼(𝑞) =
⊕
𝑎,𝑏≥0

𝜋𝑎,𝑏 ∘ ℰ ′𝛼(𝑞) ∘ 𝜋𝑎,𝑏

is the operator defined by restricting to the minors where the number of points
concentrated at each fixed point is held constant. We want to diagonalize the
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operator
M𝛼(𝑞)

on
ℱ𝑖,𝑗 ⊗𝑅/(𝑡1 + 𝑡2) = ℱ𝑖,𝑗 ⊗ℚ(𝜏 )

obtained by an extension of scalars.
The advantage of composing with the projectors 𝜋𝑎,𝑏 is that we have a further

factorization of M𝛼(𝑞). It will again be convenient to write everything in terms of
symmetric function notation for elements of ℱ = ℱℂ2 ⊗ℚ(𝜏 ).

Let A(𝑞) be the operator on symmetric functions defined by

A(𝑞) ⋅ p𝜇(𝑧) =
∑
𝜈

p𝜈(𝑧)

( ∑
𝜌⊂𝜇∩𝜈

1

𝔷(𝜈∖𝜌) ⋅
(−𝑞)1/2
(1 + 𝑞)

⋅ 𝑓𝜇∖𝜌(𝑞)𝑓𝜈∖𝜌(𝑞)
)
.

In the above expression, 𝑓𝜆(𝑞) is defined by

𝑓𝜆(𝑞) =
∏
𝑖

(
(−𝑞)𝜆𝑖/2 − (−𝑞)−𝜆𝑖/2

)
.

If 𝜔 is the involution on symmetric functions defined by

𝜔(p𝜇(𝑧)) = (−1)𝑙(𝜇)p𝜇(𝑧),

then we also have the conjugate operator

B(𝑞) = 𝜔 ∘ A(𝑞) ∘ 𝜔.
We then have the decomposition:

Lemma 5.2.
M𝛼(𝑞) = −B(𝑞)⊗ A(𝑞).

Proof. This follows from the formulas for A(𝑞) and B(𝑞) and the commutation
relations for M𝛼(𝑞) with respect to the Nakajima operators. □

The following lemma is proven in [OP3]. In what follows, given a partition 𝜆,
we define the function

𝑒(𝜆, 𝑞) =
∑
𝑖

(−𝑞)𝜆𝑖−𝑖+ 1
2 ,

which is a rational function in (−𝑞)1/2.
Lemma 5.3. The operators A(𝑞) and B(𝑞) are diagonalizable with eigenvectors
given by Schur polynomials s𝜆(𝑧) and eigenvalues 𝑒(𝜆, 𝑞) and 𝑒(𝜆

′, 𝑞), respectively.

Proof. In [OP3], the Gromov-Witten theory of P1 is given in terms of an operator
ℰ0
P1(𝑧) on the space of symmetric functions (identified with standard Fock space).

Its eigenvectors are given by Schur functions s𝜆(𝑧) with eigenvalues 𝑒(𝜆,−𝑒𝑧). More-
over, a direct comparison of the commutation relations with the Nakajima operators
shows that

A(𝑒𝑧) = ℰ0
P1(𝑧).

The statement for B(𝑞) follows from the fact that

𝜔(𝑠𝜆) = 𝑠𝜆′ .

□
The following proposition, including a vanishing statement, is an immediate

corollary of the above discussion.
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Proposition 5.4. The matrix M𝛼(𝑞) is diagonal with respect to the basis

J𝜆(𝑧)⊗ J𝜌(𝑧)

with eigenvalues

−𝑒𝜆′(𝑞) ⋅ 𝑒𝜌(𝑞).
Furthermore, given two distinct multipartitions �⃗� ∕= �⃗� such that either ∣𝜆𝑖∣ = ∣𝜂𝑖∣ or
∣𝜆𝑗 ∣ = ∣𝜂𝑗 ∣, then

⟨[𝐽�⃗�]∣ℰ𝛼(𝑞)∣[𝐽�⃗�]⟩ = 0mod(𝑡1 + 𝑡2).

5.3. Two-point correlators. We now prove a version of Proposition 4.3 for Ω+(𝑞).
Let Let Ω[𝑖,𝑗](𝑞, 𝑠𝑖, . . . , 𝑠𝑗−1) denote the contribution to Ω+ arising from monomi-
als in 𝑠𝑖, . . . , 𝑠𝑗−1 (or, equivalently, curve classes supported in [𝑖, 𝑗]). Recall the

multipartitions �⃗�, �⃗�, 𝜃, �⃗� from the statement of Proposition 4.2.

Proposition 5.5. We have the following evaluations for two-point correlators mod-
ulo (𝑡1 + 𝑡2):

⟨[𝐽𝜌]∣Ω[𝑖,𝑗]∣[𝐽�⃗�]⟩ = (−1)𝑚−1((𝑛+ 1)𝑡1)
2𝑚 (𝑚!)2

𝑚
log(1− (−𝑞)𝑚−1𝑠𝑖𝑗),

⟨[𝐽𝜃]∣Ω[𝑖,𝑗]∣[𝐽�⃗�]⟩ = (−1)𝑚−1((𝑛+ 1)𝑡1)
2𝑚 (𝑚!)2

𝑚
log(1− (−𝑞)−𝑚+1𝑠𝑖𝑗).

Proof. This immediately reduces to a claim regarding ℰ𝛼(𝑞). Using the commuta-
tion relations with Nakajima operators, it suffices to restrict to the case of 𝑛 = 1. If
we write everything in terms of symmetric functions, the first equality is equivalent
to

⟨s(𝑚)(𝑧)⊗ 1∣ℰ𝛼(𝑞)∣s(𝑚−1)(𝑧)⊗ s1(𝑧)⟩ = (−1)𝑚(−𝑞)𝑚−1.

This identity then follows from the eigenvalue calculations of the last section:

⟨s(𝑚)(𝑧)⊗ 1∣ℰ𝛼(𝑞)∣s(𝑚−1)(𝑧)⊗ s1(𝑧)⟩ = ⟨s(𝑚)(𝑧)⊗ 1∣ℰ𝛼(𝑞)∣𝔭−1(1)s(𝑚−1)(𝑧)⊗ 1⟩
−⟨s(𝑚)(𝑧)⊗1∣ℰ𝛼(𝑞)∣(s(𝑚−1)(𝑧) ⋅s1(𝑧))⊗1⟩ = ⟨𝔭∗−1(1)s(𝑚)(𝑧)⊗1∣ℰ𝛼(𝑞)∣s(𝑚−1)(𝑧)⊗1⟩
−⟨s(𝑚)(𝑧)⊗1∣ℰ𝛼(𝑞)∣(s(𝑚)(𝑧)+s(𝑚−1,1)(𝑧))⊗1⟩ = ⟨s(𝑚−1)(𝑧)⊗1∣ℰ𝛼(𝑞)∣s(𝑚−1)(𝑧)⊗1⟩

+ ⟨s(𝑚)(𝑧)⊗ 1∣ℰ𝛼(𝑞)∣s(𝑚)(𝑧)⊗ 1⟩ = (−1)𝑚−1𝑒(∅, 𝑞)(𝑒((𝑚− 1), 𝑞)− 𝑒((𝑚), 𝑞))

= −(−1)𝑚−1(−𝑞)𝑚−1.

For the second equality, we replace the partition (𝑚) with (1𝑚), which is equivalent
to replacing 𝑞 with 1/𝑞. □

6. Proofs of main results

6.1. Punctual contribution. In this section, we explain how to identify the punc-
tual contributions of the operators Θ and Ω, that is, to show (𝑡1+𝑡2)Ω0(𝑞) = Θ0(𝑞).
This contribution is expressed in terms of the two-point operator for Hilb(ℂ2). In
fact, Kiem and Li [KL] have used the case of ℂ2 to calculate the punctual two-point
operator for an arbitrary surface 𝑆 using a more general version of the reduced class
arguments we make here. However, since we need an equivariant statement, we ar-
gue directly.
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We first rewrite Ω0(𝑞) in terms of the identification ℱ𝒜𝑛
⊗ℚ(𝑡1, 𝑡2) =

⊗ℱℂ2 ⊗
ℚ(𝑡1, 𝑡2). It follows from the definition that

(𝑡1 + 𝑡2)Ω0(𝑞) = −(𝑡1 + 𝑡2)

𝑛+1∑
𝑖=1

∑
𝑘≥1

1

𝑤𝑖
𝐿𝑤

𝑖
𝑅

𝔭−𝑘([𝑝𝑖])𝔭𝑘([𝑝𝑖]) log

(
1− (−𝑞)𝑘
1− (−𝑞)

)
(6)

=
𝑛+1∑
𝑖=1

ΘC2,𝑖(𝑞),

where the last equality denotes the two-point operator for Hilb(ℂ2) acting on the
𝑖-th factor of the tensor product decomposition, as calculated in [OP1]. Our goal
is to prove the same statement for Θ0(𝑞).

The first step is to apply the reduced class construction to prove an analog of
the factorization statement.

Proposition 6.1. We have the following two identities for insertions labelled with
1:

⟨𝜇(1)
∏

𝜆𝑖(𝜔𝑖)∣Θ0∣𝜈(1)
∏

𝜌𝑖(𝜔𝑖)⟩ = ⟨𝜇(1)∣Θ0∣𝜈(1)⟩ ⋅ ⟨
∏

𝜆𝑖(𝜔𝑖)∣
∏

𝜌𝑖(𝜔𝑖)⟩
+ ⟨𝜇(1)∣𝜈(1)⟩ ⋅ ⟨

∏
𝜆𝑖(𝜔𝑖)∣Θ0(𝑞)∣

∏
𝜌𝑖(𝜔𝑖)⟩,

⟨𝜇(1)∣Θ0(𝑞)∣𝜈(1)⟩ = (𝑡1 + 𝑡2)⟨𝜇(1)∣Ω0(𝑞)∣𝜈(1)⟩.
Proof. For the first claim, we proceed exactly as in the proof of Proposition 3.2.
If 𝑙(𝜇) ≥ 𝑙(𝜈), we expand the cohomology class 1 in terms of fixed points [𝑝𝑖].
The same dimension analysis forces 𝑙(𝜇) = 𝑙(𝜈) and in fact 𝜇 = 𝜈. Moreover, we
again rewrite the invariant (up to a factor of (𝑡1 + 𝑡2)) as a nonequivariant reduced
invariant (

𝜇(1)
∏

𝜆𝑖(𝜔𝑖), 𝜈([𝑝])
∏

𝜌𝑖(𝜔𝑖)
)red

,

where 𝑝 is a point on 𝒜𝑛 away from the exceptional locus. Again, if the curve class
is not contracted over both 𝑝 and the exceptional locus, there is a second trivial
factor to the obstruction theory that forces vanishing. The only difference is that
both possibilities can now occur, since we have a punctual curve class. They give
the two contributions on the right-hand side.

For the second claim, we use the expression for Ω0(𝑞) from equation (6). Again,
it suffices to prove the claim after expanding 1 in terms of fixed points in the
insertions associated to 𝜈. The same nonequivariant-reduced argument shows that

⟨𝜇(1)∣Θ0(𝑞)∣
∏
𝜈𝑖([𝑝𝑖])⟩

⟨𝜇(1)∣∏ 𝜈𝑖([𝑝𝑖])⟩ =

𝑛+1∑
𝑖=1

⟨𝜇(1)∣Θ0(𝑞)∣𝜈𝑖([𝑝𝑖])⟩
⟨𝜇(1)∣𝜈𝑖([𝑝𝑖])⟩ .

The analogous equality is trivially true for Ω0(𝑞) using the tensor-product decom-
position of (6). This reduces the claim to the invariant ⟨𝜇(1)∣Θ0(𝑞)∣𝜇([𝑝𝑖])⟩ for fixed
𝑖. Since everything is concentrated at a single fixed point, we can directly identify
the invariant with a calculation on ℂ2 to give

⟨𝜇(1)∣Θ0(𝑞)∣𝜇([𝑝𝑖])⟩ = ⟨𝜇(1)∣ΘC2,𝑖(𝑞)∣𝜇([𝑝𝑖])⟩ = (𝑡1 + 𝑡2)⟨𝜇(1)∣Ω0(𝑞)∣𝜇([𝑝𝑖])⟩.
□
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Proposition 6.2.

⟨𝜇(1)
∏

𝜆𝑖(𝜔𝑖)∣Ω0∣𝜈(1)
∏

𝜌𝑖(𝜔𝑖)⟩ = ⟨𝜇(1)∣Ω0∣𝜈(1)⟩ ⋅ ⟨
∏

𝜆𝑖(𝜔𝑖)∣
∏

𝜌𝑖(𝜔𝑖)⟩
+ ⟨𝜇(1)∣𝜈(1)⟩ ⋅ ⟨

∏
𝜆𝑖(𝜔𝑖)∣Ω0(𝑞)∣

∏
𝜌𝑖(𝜔𝑖)⟩.

Proof. This follows immediately from the fact that the operators 𝔭𝑘(1) and 𝔭𝑘(𝜔𝑖)
commute. □

The main proposition now follows quite easily.

Proposition 6.3.

Θ0(𝑞) = (𝑡1 + 𝑡2)Ω0(𝑞).

Proof. We proceed by induction on the number of points 𝑚. We first observe that
if either −→𝜇 or −→𝜈 contains a part labelled by 1, then Propositions 6.1 and 6.2 along
with the inductive hypothesis establish the equality.

We work in the Nakajima basis with respect to the fixed points 𝑝𝑖. Given mul-
tipartitions −→𝜇 , −→𝜈 , there is a trivial vanishing

⟨
∏

𝜇𝑖([𝑝𝑖])∣Θ0(𝑞)∣
∏

𝜈𝑖([𝑝𝑖])⟩ = ⟨
∏

𝜇𝑖([𝑝𝑖])∣Ω0(𝑞)∣
∏

𝜈𝑖([𝑝𝑖])⟩ = 0

if there exists an 𝑖 for which

∣𝜇𝑖∣ ∕= ∣𝜈𝑖∣.
For Ω0(𝑞) this follows from the tensor-product decomposition; for Θ(𝑞) this is be-
cause the number of points concentrated at each fixed point must be constant for
punctual curves. In the general case, if we assume 𝜇1 ∕= ∅, we expand

[𝑝1] = 𝑐0 ⋅ 1 + 𝑐2[𝑝2] + ⋅ ⋅ ⋅+ 𝑐𝑛+1[𝑝𝑛+1]

for the insertions of 𝜇1. The terms corresponding to 𝑝2, . . . , 𝑝𝑛+1 cannot contribute
by the same trivial vanishing statement. We thus have

⟨
∏

𝜇𝑖([𝑝𝑖])∣Θ0(𝑞)∣
∏

𝜈𝑖([𝑝𝑖])⟩ = ⟨𝜇1(𝑐0 ⋅ 1)
∏

𝜇𝑖([𝑝𝑖])∣Θ0(𝑞)∣
∏

𝜈𝑖([𝑝𝑖])⟩

and the analogous equality for Ω0(𝑞). The claim then follows from our initial
observation. □

6.2. Proof of Theorem 2.1. For the nonpunctual contributions, the equality

Θ+ = (𝑡1 + 𝑡2)Ω+

follows from the arguments of Sections 4 and 5. More precisely, we have shown in
these sections that both operators satisfy factorization and vanishing statements.
These are Propositions 3.2 and 4.9 for Θ+ and Propositions 5.1 and 5.4 for Ω+.
The algorithm in Section 4 explains how these propositions reduce the calculation of
each operator to the precise calculations of Propositions 4.3 and 5.5, where equality
is proven directly. For the punctual contribution, the equality

Θ0 = (𝑡1 + 𝑡2)Ω0

is Proposition 6.3.
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6.3. Generation conjecture. Recall that Corollary 2.2 gives the operators for
quantum multiplication by divisors 𝐷 and (1, 𝜔𝑖):

𝑀𝐷 = 𝑀 𝑐𝑙
𝐷 + (𝑡1 + 𝑡2)𝑞

𝑑

𝑑𝑞
Ω(𝑞, 𝑠1, . . . , 𝑠𝑛),

𝑀(1,𝜔𝑖) = 𝑀 𝑐𝑙
(1,𝜔𝑖)

+ (𝑡1 + 𝑡2)𝑠𝑖
𝑑

𝑑𝑠𝑖
Ω+(𝑞, 𝑠1, . . . , 𝑠𝑛).

Since quantum cohomology defines a graded commutative ring, these operators
commute. It therefore makes sense to discuss the joint spectrum of these operators.
We conjecture the following nondegeneracy statement for this spectrum.

Conjecture. The joint eigenspaces for the operators 𝑀𝐷,𝑀(1,𝜔𝑖) are one-dimen-
sional for all 𝑚 > 0.

Under the assumption of this conjecture,1 we can immediately generate the full
quantum ring as well as all genus 0 invariants.

Corollary* 6.4. Assuming the above conjecture, the divisors 𝐷 and (1, 𝜔𝑖) gener-
ate the small quantum cohomology ring 𝐻∗

𝑇 (𝒜𝑛,ℚ). Moreover, we can calculate an
arbitrary 𝑘-point genus 0 Gromov-Witten invariant for Hilb(𝒜𝑛) in terms of these
operators.

Proof. The quantum cohomology ring 𝐻∗
𝑇 (𝒜𝑛,ℚ) ⊗ ℚ(𝑞, 𝑠1, . . . , 𝑠𝑛) is semisimple

since it is a deformation of the semisimple classical equivariant cohomology. The
idempotents are simultaneous eigenvectors for 𝑀𝐷,𝑀(1,𝜔𝑖). Given the nondegen-
eracy conjecture, a Vandermonde argument shows that the vectors

𝑀𝑎
𝐷

∏
𝑖

𝑀 𝑏𝑖
(1,𝜔𝑖)

(1𝑚), 𝑎, 𝑏𝑖 ≥ 0,

span the full cohomology ring. The second statement follows from standard recon-
struction statements for varieties whose small quantum cohomology ring is gener-
ated by divisors ([KM, OP1]). □

While we are unable to prove our nondegeneracy conjecture, we can show the
following partial result.

Proposition 6.5. The operator for the purely quantum contribution

𝑀𝐷(𝑞, 𝑠1, . . . , 𝑠𝑛)−𝑀 𝑐𝑙
𝐷 = (𝑡1 + 𝑡2)𝑞

𝑑

𝑑𝑞
Ω(𝑞, 𝑠1, . . . , 𝑠𝑛)

has distinct eigenvalues.

Proof. We will sketch the proof for 𝒜1; the same argument works in general. In
order to show that 𝑞 𝑑

𝑑𝑞Ω(𝑞, 𝑠) has distinct eigenvalues, we write our operator as a

power series in 𝑠 and apply a perturbation theory argument. That is, we write

𝑞
𝑑

𝑑𝑞
Ω(𝑞, 𝑠) = 𝑞

𝑑

𝑑𝑞
Ω0(𝑞) + 𝑠𝑞

𝑑

𝑑𝑞
ℰ(𝑞) +𝑂(𝑠2)

and study the restriction of 𝑞 𝑑
𝑑𝑞ℰ(𝑞) to the degenerate eigenspaces of the punctual

operator Ω0(𝑞). From the explicit form of Ω0(𝑞), we know that an eigenbasis is

1Statements that rely on this conjecture will be denoted with an asterisk.
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given by the Nakajima basis with fixed-point insertions; for every partition 𝜇 of 𝑚,
we have a degenerate eigenspace

𝑉𝜇 = Span{𝜇1([𝑝1])𝜇2([𝑝2])∣𝜇1 + 𝜇2 = 𝜇}.
It suffices to show that the restriction and projection of 𝑞 𝑑

𝑑𝑞ℰ(𝑞) to each 𝑉𝜇 has

distinct eigenvalues [K].
Let 𝑟𝑘 denote the multiplicity of 𝑘 as a part of 𝜇. Then the eigenspace 𝑉𝜇 admits

a tensor product decomposition:

𝑉𝜇 = ⊗𝑘𝑆
𝑟𝑘(𝑉(𝑘)).

Moreover, the first-order perturbation also admits a factorization

(1 + 𝑞)2

𝑞
ℰ0(𝑞)∣𝑉𝜇

= ⊗𝑆𝑟𝑘

(
(1 + 𝑞)2

𝑞
ℰ0(𝑞)∣𝑉(𝑘)

)
.

For each fixed part 𝑘, the eigenvectors of (1+𝑞)2

𝑞 ℰ0(𝑞)∣𝑉(𝑘)
are easily seen to be

1

2𝑡1
𝑘([𝑝1])− 1

2𝑡2
𝑘([𝑝2]),

1

𝑡2 − 𝑡1
𝑘([𝑝1]) +

1

𝑡1 − 𝑡2
𝑘([𝑝2])

with eigenvalues given by

1, 1 +
2

𝑘
((−𝑞)𝑘/2 − (−𝑞)−𝑘/2)2,

respectively. The eigenvectors and eigenvalues in the general case are obtained by
multiplying these eigenvalues over the distinct parts of 𝜇. The eigenvalues are given
by ∏

𝑘

(
1 +

2

𝑘
((−𝑞)𝑘/2 − (−𝑞)−𝑘/2)2

)𝑠𝑘

, 0 ≤ 𝑠𝑘 < 𝑟𝑘,

and are clearly distinct for different values of 𝑠𝑘. Finally, the eigenvalues for the
actual perturbation are obtained by taking the derivative of the above expression
and are again clearly distinct. □

We consider this proposition good evidence for the generation conjecture since
we are taking an operator-valued function of 𝑞 and 𝑠 with nondegenerate spectrum
and adding an operator with no 𝑞, 𝑠-dependence. Unfortunately, this fact alone is
not sufficient to prove the claim. In the case of ℂ2 where the purely quantum part of
the operator again has nondegenerate spectrum, it is possible to find a limit in the
equivariant parameters in which the classical contribution is suppressed. However,
a similar argument does not seem possible in our case.

6.4. Comparison with Gromov-Witten theory of 𝒜𝑛 × P1. Here we follow
the notation from Section 1.3 and Section 4.1 of [M]. The generating function

Z′
𝐺𝑊 (𝒜𝑛 ×P1)−→𝜇 ,−→𝜈 ,−→𝜌

encodes the all-genus Gromov-Witten theory of 𝒜𝑛 × P1 with relative conditions
given by the cohomology-weighted partitions �⃗�, �⃗�, �⃗�. In [M], it is explained how to
calculate these invariants when one of these relative conditions corresponds to a
divisor insertion. By comparing with our calculations here, we have the following
proposition.
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Proposition 6.6. Under the variable substitution 𝑞 = −𝑒𝑖𝑢, we have
(−1)𝑚⟨−→𝜇 , (2),−→𝜈 ⟩Hilb

𝒜𝑛
= (−𝑖𝑢)−1+𝑙(𝜇)+𝑙(𝜈)Z′(𝒜𝑛 ×P1)−→𝜇 ,(2),−→𝜈

and

(−1)𝑚⟨−→𝜇 , (1, 𝜔𝑘),
−→𝜈 ⟩Hilb

𝒜𝑛
= (−𝑖𝑢)𝑙(𝜇)+𝑙(𝜈)Z′(𝒜𝑛 ×P1)−→𝜇 ,(1,𝜔𝑘),

−→𝜈 .

Proof. Note that the substitution makes sense because our three-point functions
are rational functions of 𝑞. In [M], an analog of the root dependence and degree
scaling statement are proven; it therefore suffices to consider 𝒜1 and the coefficient
of 𝑠1. In that case, we can compare Ω+(𝑞, 𝑠) with the expression Θ∙(𝑢, 𝑠) from that
paper. □

There is a direct geometric relationship between the relative Gromov-Witten
theory of 𝒜1×P1 and the stationary theory of P1. This explains why the operator
controlling this latter theory played a role in Section 5.2.

We can use the all-genus relative Gromov-Witten theory of 𝒜𝑛 ×P1 to define a
new ring deformation of 𝐻∗

𝑇 (Hilb(𝒜𝑛),ℚ) over the ring

𝑅GW = ℚ(𝑡1, 𝑡2)((𝑢))[[𝑠1, . . . , 𝑠𝑛]].

Given three cohomology-weighted partitions −→𝜇 ,−→𝜈 ,−→𝜌 of 𝑚, we define a product
∗ using the following structure constants:

⟨−→𝜇 ,−→𝜈 ∗ −→𝜌 ⟩ = (−𝑖𝑢)−𝑚+𝑙(𝜇)+𝑙(𝜈)+𝑙(𝜌)Z′(𝒜𝑛 ×P1)−→𝜇 ,−→𝜈 ,−→𝜌 .

The following proposition is established in [M].

Proposition 6.7. The 𝑅GW-module 𝐻∗
𝑇 (Hilb(𝒜𝑛),ℚ) ⊗ 𝑅GW with the product

defined above satisfies the axioms of an 𝑅GW-algebra.

In terms of this ring structure, Corollary 2.2 states that we can identify the
multiplication operators for (2) and (1, 𝜔𝑖). Under the assumption of the genera-
tion conjecture, this would imply the following general statement of the Gromov-
Witten/Hilbert correspondence.

Corollary* 6.8. Under the variable substitution 𝑞 = −𝑒𝑖𝑢, we have
⟨−→𝜇 ,−→𝜈 ,−→𝜌 ⟩Hilb

𝒜𝑛
= (−𝑖𝑢)−𝑚+𝑙(𝜇)+𝑙(𝜈)+𝑙(𝜌)Z′(𝒜𝑛 ×P1)−→𝜇 ,−→𝜈 ,−→𝜌 .

In this form, this statement generalizes the correspondence proven for ℂ2 in [BP],
[OP1]. Heuristically, it states that the two ring deformations defined by quantum
cohomology and the relative theory of𝒜𝑛×P1 are isomorphic after a specific change
of variables.

Both ring structures defined in this correspondence make sense for an arbitrary
surface 𝑆. However, the precise relation given here does not hold in this generality.
For instance, in the case of 𝑚 = 1, the quantum cohomology structure constants
have no 𝑞-dependence, while the Gromov-Witten theory of 𝑆 × P1 in general will
have nontrivial 𝑢-dependence. This is already in the case of P2. The special feature
of the geometry that allows us to make such a simple matching is the existence of
a holomorphic symplectic form.

Notice that in the ring isomorphism no change of variables is required on the pa-
rameters corresponding to curve classes on the surfaces 𝒜𝑛. Similarly, the Nakajima
basis is identified directly with relative conditions in the Gromov-Witten theory of
𝒜𝑛 × P1. If we weaken this strong constraint on the change of variables, it is
reasonable to expect the correspondence to generalize.
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7. Further directions

7.1. Quantum differential equation. The quantum differential equation asso-
ciated to Hilb𝑚(𝒜𝑛) is the system of linear differential equations given by

(7)

{
𝑞 ∂
∂𝑞𝜓 = 𝑀𝐷𝜓,

𝑠𝑖
∂
∂𝑠𝑖

𝜓 = 𝑀(1,𝜔𝑖)𝜓,
𝜓(𝑞, 𝑠𝑖) ∈ 𝐻∗

𝑇 (𝐻𝑖𝑙𝑏𝑚(𝒜𝑛))((𝑞))[[𝑠𝑖]].

This system defines a flat connection ∇𝒜𝑛
(𝑡1, 𝑡2) on ℂ𝑛+1 for the trivial bundle

associated to 𝐻∗(Hilb𝑚(𝒜𝑛),ℂ) with regular singularities along the hypersurfaces

(−𝑞)𝑘 = 1, 𝑘 = 1, . . . ,𝑚− 1,(8)

(𝑠𝑖 ⋅ . . . ⋅ 𝑠𝑗−1)(−𝑞)𝑘 = 1, 𝑘 = −𝑚+ 1, . . . ,𝑚− 1, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛+ 1.(9)

In the case of ℂ2, the quantum differential equation can be viewed as a nonsta-
tionary extension of the Calogero-Sutherland system with extremely well-behaved
monodromy properties [OP1]. If we take the differential equation obtained by ten-
soring 𝑛+1 copies of this nonstationary system, (7) can be viewed as a deformation
of this system in the 𝑠-variables where the coupling between the different factors is
essentially controlled by our operator Ω+. Moreover, as we discuss next, many of
the qualitatively nice features of the monodromy of ∇ℂ2 extend to this deformation.

As an example, in the case of 𝑛 = 1 with 𝑚 = 2 points, the associated matrices
are given as follows. We order the standard basis of 𝐻𝑇 (Hilb2(𝒜1)) in the following
way:

𝔭2−1(𝐸)

2
𝑣∅,

𝔭−2(𝐸)

2
𝑣∅, 𝔭−1(𝐸)𝔭−1(1)𝑣∅,

𝔭2−1(1)

2
𝑣∅,

𝔭−2(1)

2
𝑣∅.

The notation 𝜃 = 𝑡1 + 𝑡2 is used in the formulas for the divisor multiplication
operators:

𝑀(1,𝜔) =

⎛⎜⎜⎜⎜⎜⎝
2𝜃𝑠(𝑞+1/𝑞+2𝑠)
(1+𝑠𝑞)(1+𝑠/𝑞)

𝜃𝑠(1/𝑞−𝑞)
(1+𝑠𝑞)(1+𝑠/𝑞) −1 0 0

2𝜃𝑠(1/𝑞−𝑞)
(1+𝑠/𝑞)(1+𝑠/𝑞)

𝜃𝑞(1+1/𝑞)2(1+𝑠)
(1+𝑠𝑞)(1+𝑠/𝑞)(1−𝑠) 0 0 −1

2𝑡1𝑡2 0 𝜃(1+𝑠)
𝑠−1 − 1

2 0

0 0 𝑡1𝑡2 2𝜃 0
0 2𝑡1𝑡2 0 0 2𝜃

⎞⎟⎟⎟⎟⎟⎠ ,

𝑀𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎝

2𝜃(𝑞+1/𝑞+2𝑠)
(1+𝑠𝑞)(1+𝑠/𝑞)

𝜃(1−𝑠2)
(1+𝑠𝑞)(1+𝑠/𝑞) 0 0 − 1

2
2𝜃(1−𝑠2)

(1+𝑠𝑞)(1+𝑠/𝑞)
𝜃(1+𝑠)2(1+𝑞)

(1+𝑠𝑞)(1+𝑠/𝑞)(1−𝑞) 1 0 0

0 −2𝑡1𝑡2 0 0 0
0 0 0 0 2𝑡1𝑡2

−4𝑡1𝑡2 0 0 −1 𝜃(1+𝑞)
1−𝑞

⎞⎟⎟⎟⎟⎟⎟⎠ .

7.2. Exponents and monodromy. We first calculate the eigenvalues of the resi-
dues associated to ∇ around its singularities. Notice in particular that, for integer
values of the level 𝑡1 + 𝑡2, these eigenvalues are integral. We do not discuss the
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residue along the first group of the singularities (8) because they are studied in
[OP1]:

Proposition 7.1. The residue of the operator 𝑀(1,𝜔𝑖) along the divisor

𝑠𝛼(−𝑞)𝑘 = 1

is zero if (𝛼, 𝜔𝑖) = 0. In general, it is diagonalizable and:

∙ There exists 𝑁 = 𝑁(𝛼, 𝑘) such that

𝑆𝑝𝑒𝑐(𝑅𝑒𝑠𝑠𝛼(−𝑞)𝑘=1𝑀(1,𝜔𝑖)) ⊂ {(𝑡1 + 𝑡2)𝑙(𝑘 + 𝑙 − 1)}𝑙=1,...,𝑁 .

∙ If 𝑘 ∕= 0, then 𝑁(𝛼, 𝑘) < 𝑚/𝑘.

For 𝑀𝐷, we have

𝑅𝑒𝑠𝑠𝛼(−𝑞)𝑘=1𝑀𝐷 = 𝑘𝑅𝑒𝑠𝑠𝛼(−𝑞)𝑘=1𝑀(1,𝜔𝑖)

for any 𝑖 such that (𝛼, 𝜔𝑖) ∕= 0.

Proof. If (𝛼, 𝜔𝑖) = 0, the vanishing statement is easy. Otherwise, let us introduce
an auxilary operator:

𝐺𝑙 = 𝑒−𝛼(−𝑘)𝑙𝑒𝛼(𝑘)𝑙, 𝐺1 = 𝑅𝑒𝑠𝑠𝛼(−𝑞)𝑘=1𝑀(1,𝜔𝑖).

The space 𝐻𝑇 (𝐻𝑖𝑙𝑏𝑚(𝒜𝑛)) is the weight space 𝑉 [Λ−𝑚𝛿] of the highest weight
representation. Hence there exists 𝑁 = 𝑁(𝛼, 𝑘) such that

𝑒𝛼(𝑘)
𝑁𝑉 [Λ−𝑚𝛿] = 0.

By the weight consideration, in the case 𝑘 ∕= 0 the number 𝑁 satisfies the proposed
inequality. The following consequence of the relations in the Lie algebra completes
the proof:

(𝐺1 − 𝑙(𝑘 + 𝑙 − 1))𝐺𝑙𝑣 = 𝐺𝑙+1𝑣,

for any 𝑣 ∈ 𝑉 . The claim on 𝑀𝐷 is immediate from our formulas. □

We sketch the construction of a level-raising operator identifying the monodro-
mies of ∇𝒜𝑛

(𝑡1, 𝑡2) and ∇𝒜𝑛
(𝑡1 − 𝑎, 𝑡2 − 𝑏) for 𝑎, 𝑏 ∈ ℤ. Let 𝒳 (𝑎, 𝑏) denote the

family of 𝒜𝑛 surfaces over P1 associated to 𝒪(𝑎)⊕𝒪(𝑏) by fiberwise quotient and
resolution. We set

S(𝑎, 𝑏)

to be the operator encoding its Gromov-Witten theory relative to the fibers over 0
and∞. Under the assumption of the generation conjecture, S(𝑎, 𝑏) can be computed
using the techniques of [M] and is given by rational functions in 𝑞 = 𝑒−𝑖𝑢, 𝑠1, . . . , 𝑠𝑛.
A localization argument (and the GW/Hilb comparison) shows that

∇𝒜𝑛
(𝑡1, 𝑡2)S(𝑎, 𝑏) = S(𝑎, 𝑏)∇𝒜𝑛

(𝑡1 − 𝑎, 𝑡2 − 𝑏)

so that S(𝑎, 𝑏) defines an intertwiner operator, identifying the monodromy provided
that 𝑡1, 𝑡2 avoid a finite set of rational numbers which give poles for S.

This generalizes the same construction for ∇ℂ2 given in [OP1]. One can again
show that at integer level 𝑡1 + 𝑡2 ∈ ℤ, the monodromy is abelian and is semisimple
provided that 𝑡1 and 𝑡2 avoid the singularities of S. At these values, the fundamental
solution to the QDE is basically given by rational functions of 𝑞, 𝑠1, . . . , 𝑠𝑛. In more
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detail, the fundamental solution to the QDE is of the form

𝐵(𝑞, 𝑠1, . . . , 𝑠𝑛) ⋅ 𝑞𝑀𝑐𝑙
𝐷

∏
𝑖

𝑠
𝑀𝑐𝑙

(1,𝜔𝑖)

𝑖 ,

where 𝐵(𝑞, 𝑠1, . . . , 𝑠𝑛) is a rational function of 𝑞 and 𝑠1, . . . , 𝑠𝑛.

7.3. Generalization to 𝐷, 𝐸 resolutions. Finally, we briefly explain how the
calculations of this paper can be extended to resolutions 𝑆Γ of rational surface
singularities associated to root lattices Γ of types 𝐷 and 𝐸. The argument here
was suggested to us by Jim Bryan and is based on an argument first used in [BKL].
As these singularites are no longer toric, there is only a ℂ∗-action on 𝑆Γ.

Dimension considerations reduce the two-point calculation to studying the non-
equivariant reduced virtual class. Let 𝑋0 → Δ be a smooth family of surfaces over
the disk Δ, obtained from a map from Δ to the versal deformation space of 𝑆Γ.
Its fiber over the origin is the resolved surface 𝑆Γ, while all other fibers are given
by affine surfaces; in particular, all compact curves on 𝑋 lie over the origin. This
family admits a deformation 𝑋𝑧 → Δ so that for 𝑧 ∕= 0, there are a finite number
of nonaffine fibers each isomorphic to 𝒜1. These nonaffine fibers are in bijection
with positive roots 𝛼 of Γ, and the smooth rational curve lies in the corresponding
curve class 𝛼.

For both 𝑋0 and 𝑋𝑧, we can take associated family of Hilbert schemes

Hilb(𝑋0/Δ),Hilb(𝑋𝑧/Δ)→ Δ

which are again deformation equivalent. An effective curve on Hilb(𝑋0/Δ) must be
contained in Hilb(𝑆Γ) ⊂ Hilb(𝑋0/Δ); similarly, an effective curve on Hilb(𝑋𝑧/Δ)
must be contained in one of the copies of Hilb(𝒜1) ⊂ Hilb(𝑋𝑧/Δ). The key obser-
vation is that, for nonpunctual curve classes 𝛽, we can identify the reduced virtual
class on Hilb(𝑆Γ) with the relative virtual class (defined in the usual sense) of the
family Hilb(𝑋0/Δ) over Δ:

[𝑀0,2(Hilb(𝑆Γ), 𝛽)]
red = [𝑀0,2(Hilb(𝑋0,Δ), 𝛽)]vir.

A detailed proof can be found, for instance, in [MP].The analogous statement holds
for 𝑋𝑧. Along with deformation invariance between 𝑋0 and 𝑋𝑧, this immediately
gives that only root curve classes contribute to reduced invariants and, in that case,
the calculation is given by the case of 𝒜1. The result is that the two-point operator
is again given by the same expression in terms of the action of type 𝐷,𝐸 affine
algebras �̂� on Fock space:

Θ+ =
∑

𝛼∈𝑅+

∑
𝑘

: 𝑒𝛼(𝑘)𝑒−𝛼(−𝑘) : log(1− 𝑠𝛼𝑞𝑘).
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