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Preface

We present an extensive introduction to quantum collision models (CMs), also known as

repeated interactions schemes: a class of microscopic system-bath models for investigating

open quantum systems dynamics whose use is currently spreading in a number of research

areas. Through dedicated sections and a pedagogical approach, we discuss the CMs

definition and general properties, their use for the derivation of master equations, their

connection with quantum trajectories, their application in non-equilibrium quantum

thermodynamics, their non-Markovian generalizations, their emergence from conventional

system-bath microscopic models and link to the input-output formalism. The state of the

art of each involved research area is reviewed through dedicated sections. The article is

supported by several complementary appendices, which review standard concepts/tools

of open quantum systems used in the main text with the goal of making the material

accessible even to readers possessing only a basic background in quantum mechanics.

The paper could also be seen itself as a friendly, physically intuitive, introduction to

fundamentals of open quantum systems theory since most main concepts of this are

treated such as quantum maps, Lindblad master equation, steady states, POVMs, quantum

trajectories and stochastic Schrödinger equation.
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Introduction and historical notes 1
The last two decades or so have seen the compelling emergence and

subsequent consolidation of a set of research areas that today usually go

under the joint name of quantum technologies [1]. This is the idea of taking
advantage of some distinctive features of quantum mechanics – such as

the superposition principle and entanglement – for devising a plethora

of novel, potentially groundbreaking, applications. These include tasks

such as quantum computing, quantum cryptography, quantum sens-

ing, quantum metrology, quantum simulation, quantum imaging. As a

paradigmatic instance (also in light of our goals here), harnessing “quan-

tumness" in order to challenge longstanding thermodynamics bounds

such as the Carnot efficiency so as to engineer more efficient thermal

machines is a possibility that is being more and more investigated these

days in the lively field of quantum thermodynamics [2–6].

The above scenario in particular gave momentum to the study of an

old, but always topical, quantum mechanics problem: the dynamics of

a system in contact with an external environment, namely a so called

open quantum system [7–9]. In some respects, this problem arises from

the hope to find an irreversible-dynamics analogue of the Schrödinger

equation that governs quantum systems coupled to a large bath (master
equation). No truly general master equation is known to date except for a

restricted, although conceptually prominent, class of dynamics known as

Markovian dynamics; and a very few others. It is likely that this formidable

problem may even be unsolvable as in general the system’s degrees of

freedom can get entangled with the bath in such a way that one cannot

give up keeping track of the environment dynamics, or at least a portion

of it. In various contexts such as quantum thermodynamics, this may

even be desirable e.g. in order to study energy or entropy exchange

between system and bath, which requires describing the latter as well.

In practice, especially when running experiments, “looking" at some

environment is inevitable. A measurement on the system of interest, for

instance, requires to make it interact with an external probe which is

then analyzed [10, 11].

On a methodological ground, tackling system–bath dynamics at a

microscopic level is in general a very hard task, which necessarily

demands for appropriate models. Traditionally, the standard scheme is

to decompose the bath � into a continuum of normal modes (defined by

its free Hamiltonian) and let them interact with the system ( according

to some physically-motivated coupling model [7, 8].



2 1 Introduction and historical notes

Figure 1.1: Collision model versus conventional system–bath model. In a collision model (a)

the bath is made out of a large, discrete, collection of smaller units (ancillas) with which

the open system ( interacts (collides) one at a time. In a conventional system–bath

model (b), instead, the bath typically comprises a continuum of normal modes and (
interacts with (generally) all of them at any time.

Many authors use the

name “collisional models".

Occasionally, it was used

“refreshing models" [13].

The last few years have yet seen a growing use of a less conventional

class of system–bathmodels known as quantum collision models (CMs) or

repeated interaction schemes. In its most basic formulation [see fig. 1.1(a)], a

CM model imagines the bath � as a large collection of smaller subunits

(ancillas) with which the open system ( interacts – one at a time –

through a sequence of pairwise, short unitary interactions (collisions).
Arguably inspired by the famous Boltzmann’s Stosszahlansatz [12] and
first adopted in the study of optical masers and weak continuous

measurements, quantum CMs are currently spreading across research

fields such as quantum non-Markovian dynamics, quantum optics and

quantum thermodynamics (where they have become now a standard

approach).

Compared to the conventional system–bath modeling mentioned before,

CMs differ in many respects. Two hallmarks in particular stand out. First,

they are intrinsically discrete: continuous time is effectively replaced by

a step number (although the continuous-time limit is often taken in

the end) and the bath is thought as a discrete collection of elementary

subsystems instead of a continuum as usual. Second, as schematically

pictured in Fig. . 1.1, in contrast to standard models where ( at each

time interacts with (generally) all the normal modes, in CMs (at least

memoryless ones) ( crosstalks with a single little portion of bath at a

time. This in a way decomposes the extremely complex system–bath

dynamics into simple elementary contributions, a traditionally effective

strategy in Physics.

To our knowledge, the first appearance of a quantumCM in the literature

dates back to the 60s through a paper by J. Rau [14]. Later on in the 80s,

CMs appeared in seminalworks onweakmeasurements byC.M.Caves and

G. J. Milburn [15–17]. CMs are indeed a natural microscopic framework

for introducing this important class of weak quantummeasurements [10,

11] because, taking a metrological viewpoint, ancillas can be seen as

a large collection of “meters" each of which being measured after the
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collision. More or less in the same years, Javanainen andMeystre [18–20]

developed the theory of micromaser whose basic setup features flying

atoms that one at a time interact with a lossy cavity mode. This can

be seen as a physically intuitive implementation of a CM with atoms

embodying ancillaswhich undergo collisionswith ( (the cavitymode).

A hallmark of the CM approach is viewing the system–bath dynamics as

a sequence of two-body unitary collisions. This is very similar in spirit to a

cornerstone of quantum information processing (and generally quantum

technologies) [21], namely that two-qubit gates (assisted by one-qubit

gates) are sufficient to carry out universal quantum computation, and

was probably the reason why CMs gained renewed attention in the early

2000s. V. Scarani et al.in 2002 approached the thermalization of a qubit

(two-level system) due to collisions with a bath of qubits as a quantum

task whose goal is taking ( to a Gibbs state no matter what state it

started from (“quantum thermalizing machine") [22, 23]. At about the

same time, A. Brun [24] used a CMmade out of qubits and the language

of quantum information to study basic concepts of quantum trajectories,

including the stochastic Schrödinger equation, connecting as well to the

aforementioned weak measurements.

Around the beginning of 2010s, a strong (still ongoing) interest arose

in attacking quantum non-Markovian dynamics and defining on a firm

basis the meaning of (non-)Markovian evolution in quantum mechan-

ics [25–28]. CMs are an ideal playground in this respect as was shown by

Rybar, Filippov, Ziman and Buzek [29], who demonstrated that CMs can

simulate any indivisible dynamics of a qubit, and by Ciccarello, Palma

and Giovannetti [30] who added ancilla–ancilla collisions to a basic CM

to derive a completely-positive non-Markovian master equation.

In the same years, the field of quantum thermodynamics was emerging,

prompted by a number of questions calling for manageable microscopic

models. Due to their simplicity and the possibility to describe system–

bath coupling non-perturbatively, CMs are a quite natural tool in this

framework so that it is hard establishing when they were used for

the first time. A comprehensive quantum thermodynamics theory of

CMs (repeated interaction schemes) was presented in 2017 by Strasberg,

Schaller, Brandes and Esposito [31]. In this context, CMs are actually

seen mostly as a resource to harness in order to design machines

with enhanced thermodynamic performances, possibly powered by

genuinely quantum features. A paradigm in this respect came from an

influential 2003 paper by Scully, Zubairy, Agarwal and Walther [32],

which considered a single-bath thermal machine made out of a stream

of three-level atoms flying through a cavity.

Having in mind a readership of physicists, even those armed with
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only a basic background in quantum mechanics, here we present a self-

contained introduction to quantum CMs theory, including overviews of

the state of the art and recent developments.

While to our knowledge this is the first, fully dedicated, comprehensive

reviewonCMs,wenote that there are somepapers andPhDdissertations

which introduce to certain aspects of CMs [24, 33–39]. Dedicated sections

on CMs can be found in the review on non-Markovian dynamics in

Ref. [27] and the review on irreversible entropy production in Ref. [40].

We also quote a recent perspective on the topic [41].

Finally a disclaimer. The present review does not cover mathematical

aspects, for which we point the interested reader to Ref. [42] and

references therein.



A general criterion is that

a reference is given if a cer-

tain property is used in the

main text but not proven

(nor in the appendices).

Outline and structure of the
paper 2

The body of the paper is organized into six big sections (each in turn

structured in a number of subsections): Basic collision model (chapter 4),
Equations of motion (chapter 5), Quantum trajectories (chapter 6), Non-
equilibrium quantum thermodynamics (chapter 7), Non-Markovian collision
models (chapter 8) and, finally, Collision models from conventional models
(chapter 9). As sketched in fig. 2.1, the paper’s central Sections are

chapters 4 and 5 with which each of the other sections is directly

connected.

.

4
basic collision 
model 5

equations of 
motion

6
quantum 
trajectories

7

non-equilibrium
quantum 

thermodynamics

non-Markovian
collision
models 8

collision models
from conventional
models

9

Figure 2.1: Structure of the paper. The body of the paper comprises six big sections,

numbered from 4 to 9. chapters 4 and 5 are the central ones, to which all the others

are directly linked to

Each of these six big sections is written with a quite pedagogical attitude.

In particular, we note that – similarly to a textbook – there intentionally

appear very few references in order not to distract the reader from the

main line of discussion. In the same spirit, in order not to interfere with

the main discussion, references to previous equations or sections often

appear between brackets like “(see Section xxx)" or “[see Eq. (xxx)]". Also,

a large use of footnotes is made, which supply extra details, explanations,

comments and disclaimers. Each big section, from 4 to 9, ends with a

dedicated State of the art subsection, reviewing relevant literature related

to the topic of the corresponding section.

We begin with a preliminary technical section (chapter 3), which is

intended to provide a sort of reading guide. The main conventions

underpinning thenotationweuse are explained alongwith the (relatively

few) acronyms appearing throughout the paper.



6 2 Outline and structure of the paper

chapter 4 defines the most basic CM section 4.1 focusing first on the open

dynamics of ( section 4.2 and then also that of ancillas in 4.3. Next, in

4.4, we discuss Markovianity, a property of utmost importance for CMs

and open quantum systems theory in general. Thereafter (section 4.5)

after introducing inhomogeneous CMs, we discuss a generalized no-

tion of Markovian behavior called CP divisibility (where CP stands

for “completely positive"). Some paradigmatic CMs are presented in

section 4.6 (all-qubit CM) and section 4.8 (cascaded CMs). A major issue

when dealing with open dynamics, i.e. the convergence to a steady state

(if any), is discussed in section 4.7. We close with section 4.9 which

studies the tensor-network structure of the joint system–bath state at

each step.

chapter 5 deals with the derivation of equations of motion for both

states and expectation values of observables. The basis is the second-

order expansion of the collision unitary operator with respect to the

collision time (section 5.1), resulting in finite-difference equations of

motion having the structure of discrete Lindblad master equations and

ensuing dynamical equations for expectation values (see section 5.2). The

Lindblad structure can be proven based on the spectral decomposition

of the ancilla’s initial state (see section 5.3) or solely in terms of bath

moments (see section 5.4), the analogous of the latter being next worked

out for expectation values as well in (section 5.5). We then show in

(section 5.6) how the intrinsically discrete dynamics can be turned into a

continuous-time one through coarse graining. The prominent example

of micromaser is then discussed in the extensive (section 5.7). The

possibility to define a strict continuous-time limit ΔC→ 0 by introducing

a diverging coupling strength is studied in (section 5.8). We close with

a section devoted to multiple baths (section 5.9) and one deriving the

master equation of cascaded CMs (section 5.10).

chapter 6 discusses quantum trajectories and weak measurements, these

being important general topics that are naturally introduced in the CM

language. The starting point (section 6.1) is to view ancillas as probes

and study how measurements of these condition the dynamics of (.

This framework is used in the following section 6.2 to introduce the

important general concept of POVM (Positive Operator-ValuedMeasure).

We then focus on a specific dynamics in the all-qubit CMs, which is used

to introduce the concept of quantum jumps (section 6.3), the stochastic

Schrödinger equation (section 6.4) and, finally, how averaging over

all trajectories returns the Lindblad master equation (section 6.5). We

conclude in (section 6.6) by deriving the stochastic Schrödinger equation

for a general interaction Hamiltonian, at the same time highlighting the

role of the bath’s first and second moments.

chapter 7 is dedicated to non-equilibrium quantum thermodynamics,
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beginning with the definition of quantum thermalization section 7.1 and

discussing next the important instance of a system thermalizing with a

bath of quantum harmonic oscillators (section 7.2) and the connection

between thermalization and energy conservation (section 7.3). There

follow instances of non-equilibrium steady states with baths at different

temperatures (section 7.4). The intrinsic time dependence of the system–

bath Hamiltonian, a major distinctive feature of CMs, is analyzed in

section 7.5. Following this, we present one by one the computation

of relevant thermodynamic quantities like: the change of system free

energy section 7.6, that of ancillas or heat section 7.7 andwork section 7.8.

We then derive the non-equilibrium version of the 1st and 2nd law of

thermodynamics (sections 7.9 and 7.11, respectively) and discuss the

Landauer’s principle in section 7.12. The energy balance of some of the

previously introduced instances is studied in 7.10.

chapter 8 deals with non-Markovian CMs. Three basic classes are

introduced, where each arises from the introduction of a memory

mechanism into the basic memoryless CM of chapter 4: ancilla–ancilla

collisions (section 8.1), initially-correlated ancillas section 8.3, multiple

system–ancilla collisions section 8.4. section 8.2 shows the derivation

of a fully CPT non-Markovian master equation based on the class in

section 8.1. A further class, the so called composite CMs, is presented in

section 8.5 and illustrated in a paradigmatic instance. We close with the

demonstration that, so long as the open dynamics is concerned, ancilla–

ancilla collisions can be mapped into a composite CM (section 8.6).

The last chapter 9 deals with the relationship between CMs and con-

ventional system–bath models (see 1.1). The two descriptions are shown

to be equivalent pictures in the case (recurrent in quantum optics) that

( is weakly coupled to a continuum of bosonic modes (field). All the

steps of the mapping are illustrated in detail in Sections 9.1, 9.2, 9.3,

9.4 and 9.5. Occurrence of Markovian behavior depends on the field’s

initial state (see 9.6). This is then specifically illustrated for the vacuum

state leading to spontaneous emission (see section 9.7), thermal states

yielding Einstein coefficients (section 9.8), coherent states and optical

Bloch equations section 9.9. These are all special cases of a general master

equation, fully defined by the field’s first and second moments, which

holds for Gaussian white-noise field states section 9.10. Non-Markovian

dynamics can occur for non-Gaussian initial states such as single-photon

wavepackets section 9.11. Finally, we explain the link to the input–output

formalism that is broadly used in quantum optics (9.12). We conclude

in chapter 10 with a discussion of future prospects and open questions

about quantum CMs.

In order to help the reader, in addition to the aforementioned reading

guide in chapter 3, there are a number of appendices. Those from A to
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F have a tutorial scope and recall basic notions: density matrices (A.1),

various entropic quantities (A.2), quantum maps (A.3), the dynamical

map (A.4), the Stinespring dilation theorem (A.5) and the Lindblad

master equation (A.6). There follow technical sections featuring mostly

proofs of properties used in the main text (appendices A.7 and A.12).
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3.1 Acronyms and

some terminol-
ogy . . . . . . . . 10

Hats are used throughout to identify all the operators, except density

operators and the identity operator I. When appearing, the identity

operator is frequently used without subscripts, the (sub)system it refers

to being often clear from the context. If an operator acts trivially on a

subsystem, e.g. $̂�⊗ I�, then the identity operator is generally omitted.

Usually, joint states (generally represented by density operators) of the

system plus bath are denoted with letter �, while � and � are used

for the reduced state of the open system ( and a single bath ancilla,

respectively.

Letter � but with a hat is also used for spin operators such as �̂± and
�̂I .

The eigenstates of �̂I are denoted with |0〉 and |1〉, having respectively

eigenvalues −1 and +1. We point out that this choice does not follow
the usual convention in the quantum information literature, where |0〉
(|1〉) corresponds to eigenvalue +1 (−1). The rationale of this choice is

that, in many cases, we deal with a ground and an excited state so that

|0〉 and |1〉 are understood as the state with zero and one excitations,

respectively.

Superoperators, including quantum maps, are denoted with capital

(usually calligraphic) letters and the argument is shown between square

brackets, e.g. M[*]. The symbol of composition of quantum maps is

most of the times omitted, thus

MM′[*] = (M◦M′)[*] =M[M′[*]].

Arguments of partial traces are shown between curly brackets.

Anti-commutators are denoted as [�̂, �̂]+ = �̂�̂ + �̂�̂ .

We use units such that ℏ = 1 throughout.

In some contexts such as Section 9, in order to avoid making the

notation cumbersome, dependencies on a continuous variable are shown

through a subscript (as is usually done with discrete time variables),

thus e.g. 5C = 5 (C).

The tensor product symbol ⊗ is often omitted.

The ancilla index usually appears as a subscript, e.g. �= stands for a state
of ancilla =.
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Time dependencies, where time is often embodied by the (discrete) num-

ber of steps, can appear as subscripts or superscripts, which generally

depends on the quantity or subsystem they refer to or on the considered

context.

We generally do not use the same symbol for different purposes depend-

ing on the context/section. Some exceptions are yet unavoidable (given

the considerable size of the paper), e.g. “"" stands for the number of

baths in Section 5.9 while in Section 8.5 it denotes the memory coupled

to (.

3.1 Acronyms and some terminology

CM = “Collision model"

ME = “Master equation"

CPT = “Completely positive and trace-preserving"

NM = “Non-Markovian"

“Qubit" = Two-level system (quantum bit), formally equivalent to

a spin-1/2 particle.
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4.1 Definition

Consider a quantum system with unspecified Hilbert-space dimension

called ( (open system) coupled to a quantum bath �. By hypothesis,

the bath is made out of a large collection of smaller identical subunits

(ancillas) labeled by an integer number =. It is assumed that ( and �

start in the joint state

�0 = �0 ⊗ � ⊗ � ⊗ · · · (4.1)

with �0 the initial state of ( and � the initial state common to all ancillas

[see Fig. 4.1(a)]. Here, �0, �0 and � are (generally mixed) density matrices

(see A.1). Note that �0 is a product state: neither correlations between (

and � nor between ancillas are present.

By hypothesis, as sketched in Fig. 4.1(a) and (b), the entire dynamics takes

place through successive collisions, namely pairwise short interactions

each involving ( and one ancilla of �. Collision (-1 (i.e., between (

and ancilla 1) occurs at step = = 1, then (-2 at step = = 2, then (-3

and so on. Importantly, each ancilla = collides with ( only once (at the
corresponding step =).

The dynamics of an elementary collision is described by the time

evolution unitary operator

*̂= = 4
−8(�̂(+�̂=++̂=)ΔC , (4.2)

with ΔC the collision duration, �̂( (�̂=) the free Hamiltonian of ( (=th

ancilla) and +̂= the (-= interaction Hamiltonian. Note that, although

only the ancilla subscript appears, +̂= acts on both ( and =, and so does

*̂= .

4.1.1 Conditions for Markovian behavior

Among the series of assumptions introduced so far that define the CM,

three in particular stand out:

(1) Ancillas do not interact with each other ;

(2) Ancillas are initially uncorrelated ;

(3) Each ancilla collides with ( only once .
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Hypotheses (1)–(3) crucially underpin many major properties of CMs,

in particular those related to Markovian behavior. Is worth pointing out

that the essential meaning of (3) is to rule out sequences of collisions

such as (-1, (-2, (-3, (-1, (-2, . . . , while dynamics like (-1, (-1, (-2, (-2,

. . . can be seen as not violating (3) provided that one simply redefines

the collision as a double collision with the same ancilla.

.
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⌘ ⌘ ⌘ ⌘

S

1 2                    

⌘ ⌘ ⌘

⇢0

⇢1

Û1

Û2
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⌘ ⌘

(d)
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(c) Û1
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⌘2
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Figure 4.1: Basic collision model. (a): First collision: the pairwise unitary *̂1 is applied on

( and ancilla 1 (initially in state �0 and �, respectively). At the end of the collision, (

is in state �1. (b): Second collision: unitary *̂2 is applied on ( and ancilla 2 (initially

in state �1 and �, respectively). (c): Quantum circuit representation of the first two

CM steps. Each wire represents a subsystem (( or an ancilla), while each rectangular

box is a two-body quantum gate (collision unitary). (d): Correlations: ( and all of the

ancillas it already collided with are jointly correlated, while each ancilla which still

has to collide with ( is yet in the initial state � (hence uncorrelated with ( and all the

remaining ancillas)

4.2 Open dynamics and collision map

After = collisions, i.e. at step =, the joint system–bath state reads

�= = *̂= · · · *̂1 �0 *̂
†
1
· · · *̂†= . (4.3)

In passing, we note that this dynamics can be represented [see Fig. 4.1(c)]

as a quantum circuit [21] where each wire stands for a subsystem ((

or an ancilla) while each rectangular box is a two-body quantum gate

(collision unitary *̂=).

By replacing �0 with the uncorrelated state 4.1, Eq. 4.3 can be expressed
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Map E does not depend

on = since we are assum-

ing a fully homogeneous

model (same initial state

for all ancillas and same

collision unitary *̂=). This

assumption will be relaxed

in Section 4.5.

The converse holds as

well, i.e., Eq. 4.8 implies

�= = E=[�0]. Eqs. eqs. (4.6)
and (4.8) are thus equiva-

lent.

as
1

�= = *̂= · · · *̂1 �0 �1 · · · �= *̂†
1
· · · *̂†= �=+1�=+2 · · ·

=

(
*̂= · · ·

(
*̂2

(
*̂1�0 �1*̂

†
1

)
�2*̂

†
2

)
. . . �=*̂

†
=

)
�=+1 · · · . (4.4)

In the last identity we used that *̂= acts on ( and =, hence it commutes

with any �< with < ≠ =. We see that, up to step =, ancillas �< with

< > = play no role and we will thus ignore them in the following.

Tracing off the bath, the corresponding state of the open system ( is

�= =TA�{�=} = TA= · · ·TA1{�=}

=TA=

{
*̂= · · · TA2

{
*̂2 TA1

{
*̂1�0 �1*̂

†
1

}
�2*̂

†
2

}
. . . �=*̂

†
=

}
, (4.5)

with TA< the partial trace [see Eq. A.2] over the <th ancilla and where

we used that TA= and *̂= do not involve ancillas different from =. We

next express eq. (4.5) in the compact form

�= = E
[
· · ·

[
E

[
E

[
�0

] ] ] ]
= E=[�0] , (4.6)

where we defined the quantum map (see A.3) on (

�′ = E[�] = TA=

{
*̂=

(
� ⊗ �=

)
*̂†=

}
(collision map) . (4.7)

Wewill henceforth refer to 4.7 as the collision map : the knowledge of map

Eallows to determine the state of ( at the end of a collision, �′, for any
state � prior to the collision. Note that map Edepends on the unitary 4.2

describing each collision (in turn depending on �(, �= and +̂=) as well

as on the ancilla’s initial state �. As a property of utmost importance in

CMs theory, the form of 4.7 ensures that E is a completely positive and
trace-preserving (CPT) map (see A.3). The essential reason behind this

property is that, before the (-= collision starts, ( is still uncorrelated

with ancilla = [see Fig. 4.1(a), (b) and (d)] this being a consequence

of assumptions (1)–(3) in 4.1.1. The breaking of even only one of these

generally brings about that the initial and final states of ( in a collision

are no longer connected to one another by a CPT map as we will discuss

extensively in Section 8.

Thus Eq. 4.6 states that, when looking only at the open system (, =

collisions correspond to = applications of collision map Eon �0 (initial

state of (). We immediately see that Eq. 4.6 entails

1
Note that subscript = is used here with different although related meanings. For (−�
and ( states, such as �= and �= , it refers to the time step. For single-ancilla states,

such as �= , it indicates which ancilla the state refers to.



14 4 Basic collision model

The ancilla’s reduced dy-

namics 4.10 can be equiva-

lently described as a CPT

map connecting different
Hilbert spaces in that its

input is a state of ( while

its output is the final state

of the =th ancilla after col-

liding with (. This shows

even more directly that

recording the whole dy-

namics of ( is required in

order to determine the an-

cilla evolution.

�= = E[�=−1] . (4.8)

Eq. 4.8 in fact governs the entire open dynamics and, as will become

clearer in Section 5, it can be regarded as the discrete analogue of a

time-local master equation (see A.6). In particular, it shows that the state

of ( at the current step depends only on that at the previous step. This

means that the dynamics keeps no memory of past history: if we are given

state �=−1 but we do not know what happened to ( up to step =−1, the

entire future evolution at any step < ≥ = can be predicted from 4.8.

This property no more holds for non-Markovian CMs to be discussed in

Section 8. Yet, the Markovian nature of a basic CM has a tremendous

conceptual relevance for all CMs, including non-Markovian ones, as will

become clear in the development of this paper.

4.3 Ancilla dynamics

While, as shown above, the open dynamics of ( is relatively easy to work

out, deriving the full bath dynamics is generally far more challenging

(see however Section 4.9). Although not directly coupled, indeed, ancillas

that already collidedwith ( get correlatedwith each other [see Fig. 4.1(d)].

However, if one is concerned only with the single ancilla dynamics (as is

often the case) this is simply obtained from Eq. 4.3 by tracing off ( and

all the remaining ancillas. The result is similar to the collision map 4.7

except that the partial trace is now over ( (instead of =)

�′= = TA({*̂=�=−1�=*̂
†
=} , (4.9)

Thereby, the collision with ( transforms the ancilla state as

�′= = A�=−1
[�=] (4.10)

with

�′ = A�[�] = TA(

{
*̂=

(
� ⊗ �

)
*̂†=

}
. (4.11)

Eq. 4.11 defines a CPT map on the ancilla, showing that this evolves at

each collision somewhat similarly to (. Yet, at variance with 4.8 which

can be determined once for all given *̂= and �, map 4.11 does depend

parametrically on the current state of (. Thereby, to work out �′= we need

to keep track of the open dynamics of ( (i.e. �=). Note that after colliding

with ( the ancilla’s state no longer changes [due to conditions (1)–(3) in

4.1.1], hence 4.10 fully specifies the single-ancilla dynamics. At the next

steps, however, the correlations between the ancilla and the rest of the

system (both ( and other ancillas) generally change [see Fig. 4.1(d)].
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4.4 Markovianity

It is convenient to introduce the dynamical map (see A.4))

�= = Λ=[�0] , (4.12)

which, given the initial state �0, returns the state of ( at any step =. The

dynamical map (in fact the propagator of the open dynamics) depends

on the collision unitary 4.2 and the initial state of ancillas. It is ensured

to be CPT since ( shares no initial correlations with the bath.

In terms of the dynamical map Λ= , Eq. 4.6 is simply expressed as

Λ= = E= , (4.13)

showing the exponential dependence of Λ= on the collision map E. It

immediately follows that, for any integer < between 0 and =,

Λ= = Λ=−< Λ< . (4.14)

This is the discrete-dynamics version of the so called semigroup property
(see A.6). It states that, like for any group (in themathematical sense), the

composition of dynamical maps produces another legitimate dynamical

map.Here, the prefix “semi" comes from the fact that dynamicalmaps are

generally non-unitary and thus cannot be inverted [see A.3] (physically

this means that they describe irreversible dynamics).

The semi-group property is another equivalent way to express the

memoryless nature of the dynamics [already stressed below Eq. 4.8]:

if we know the state at an intermediate step <, �< , no matter what

happened at previous steps, we can determine the following evolution

up to a final time =.

4.5 Inhomogeneous collision model and CP
divisibility

So far we assumed that the entire model is homogeneous: the ancilla’s

initial state � was assumed to be the same for all ancillas [cf. eq. (4.1)]

and so was the collision unitary 4.2. Accordingly, the open dynamics

resulted from repeated applications of the same map 4.7 [recall eqs. (4.6)

and (4.13)]. This homogeneity assumption, made mostly for the sake of

argument to better highlight general properties, can be relaxed straight-

forwardly. By still maintaining the assumption of initially uncorrelated
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This kind of integer sub-

script between brackets

will usually denote the step

number (discrete time).

ancillas (a constraint which we will relax in Section sections 8.3 and 9.11),

the initial state 4.1 can be generalized as

�0 = �0

⊗
=

�= (4.15)

with �= not necessarily the same state for all ancillas, while in the

collision unitary 4.2 �̂(, �̂= , +̂= can be different for different values of =.

Accordingly, the system’s collision map 4.7 is generally step-dependent

and we thus rename it E(=). Correspondingly, the dynamical map 4.13 is

generalized as

Λ= = E(=)E(=−1) · · · E(0) . (4.16)

The semigroup property 4.14 is replaced by the more general

Λ= = Φ=,< Φ<,0 , (4.17)

holding for any integer 0 ≤ < ≤ =. Here, we defined map

Φ=2 ,=1
= E(=2)E(=2−1) · · · E(=1) (=2 ≥ =1) , (4.18)

which, being a composition of CPT maps, is also CPT (this can be easily

shown).

Eq. 4.17 is the discrete version of a property called “CP divisibility" [9].

This is in fact the statement that the open dynamics can be divided

into a sequence of elementary CPT maps which generally need not

be the same. In the special case that they are the same, we recover

the semigroup property 4.14. Fulfillment of CP divisibility has been

proposed as a quantitative definition of Markovian behavior that is more

general than the traditional Markovianity associated with the semigroup

property [26, 43]. In this sense, the inhomogeneous CM defined above

can still be considered to be Markovian, an assessment in agreement

with the fact that conditions (1)–(3) of 4.1.1 are still matched.

4.6 All-qubit collision model

To illustrate more concretely some of the concepts introduced so far,

we next present one the simplest instances of CM which we will refer

to repeatedly in this paper as the “all-qubit CM". The open system (

is a “qubit" (two-level system), whose Hilbert space is spanned by the

orthonormal basis {|0〉 , |1〉} with �̂I |0〉 =− |0〉 and �̂I |1〉 = |1〉, where

�̂ ( = G, H, I) are the usual Pauli spin operators. Ancillas are also

qubits, each with orthonormal basis {|0〉= , |1〉=} (eigenstates of �̂=I ,
i.e. the I-component of the =th ancilla spin operator). We assume for
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Using eigenstates

and eigenvalues of

+̂= , *̂= is spectrally

decomposed as *̂= =

4−8 6IΔC (|00〉 〈00| + |11〉 〈11|)+
4−8(6−6I )ΔC |Ψ+〉 〈Ψ+ | +
4 8(6+6I )ΔC |Ψ−〉 〈Ψ− |. We

next expand |Ψ±〉 and then

use that �̂+⊗ �̂− = |10〉 〈01|

simplicity no free Hamiltonian for both ( and ancillas, i.e. �̂( = �̂= = 0,

and consider the (homogeneous) system–ancilla coupling Hamiltonian

+̂= = 6 (�̂+ ⊗ �̂− + �̂− ⊗ �̂+) + 6I �̂I ⊗ �̂I , (4.19)

where in each term the first (second) operator acts on ( (=th ancilla) and

with

�̂− = �̂†+ =
1√
2

(
�̂G + 8�̂H

)
= |0〉〈1| , (4.20)

the usual spin ladder operators. The eigenstates of +̂= are |00〉, |11〉 and

|Ψ±〉 = 1√
2

(|10〉 ± |01〉) (4.21)

with eigenvalues 6I , 6I and ±6 − 6I , respectively (we use the short

notation |01〉 = |0〉( |1〉=).

Hence, the collision unitary 4.2 for this class of CMs explicitly reads

*̂= = 4
−826IΔC (|00〉 〈00| + |11〉 〈11|)

+ cos

(
6ΔC

)
(|10〉 〈10| + |01〉 〈01|) − 8 sin

(
6ΔC

)
(�̂+�̂− + �̂−�̂+)

(4.22)

where we omitted an irrelevant phase factor 4 8 6IΔC and all tensor product

symbols.

Although the all-qubit CM at first may appear somewhat artificial, there

are realistic physical scenarios (see Section 9) where it provides an

accurate description of the dynamics (especially in the case 6I = 0).

4.6.1 Partial swap unitary collision

An important special case is when *̂= reduces to a partial swap, this
being a recurrent collision unitary in the CM literature.

Let us first define the SWAP unitary operator (̂= as the operator such

that

(̂=
��#〉

(
|"〉= = |"〉(

��#〉
=

(4.23)

for any pair of states

��#〉
and |"〉. In line with the notation used for +̂=

and *̂= , only the ancilla index appears in the subscript of (̂= (yet recall

that it acts on both ( and ancilla). Note that

(̂= (̂= = I . (4.24)

Thus operator (̂= is both Hermitian and unitary.
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The conversion from the

exponential to the trigono-

metric form straightfor-

wardly follows from (̂2

= =

I (the analogous property

holds for any spin-1/2 op-

erator).

Replacing

(̂==1/2 (I+2̂·2̂=), we get

*̂==4
−8 6/22̂·2̂=ΔC=4 8

6

2
ΔC 4−8 6(̂=ΔC .

Thus, � = 6ΔC up to phase

factor 4 8
6

2
ΔC
.

For 6I = 0, the collision

map reduces to a so called

amplitude damping chan-

nel [21].

Operator (̂= thus swaps the states of ( and the ancilla. Note that

definition 4.23 applies even if ( and ancilla = are not qubits, the essential

requirement being that they have the same Hilbert space dimension.

A partial swap is a generalization of the SWAP defined as

*̂= = 4
−8�(̂= = cos� I − 8 sin�(̂= , (4.25)

where angle � (such that 0 ≤ � ≤ �/2) measures the amount of

swapping. For � = 0, *̂= reduces to the identity corresponding to a

fully ineffective collision. For � = �/2, instead, the collision has the

maximum effect, swapping the states of the interacting systems.

4.6.2 Partial swap in the all-qubit CM

In the case of the all-qubit CM (( and ancilla = are both qubits), (̂=
leaves |00〉 and |11〉 unchanged while |01〉 and |10〉 are turned into one

another. It is then easily shown that the SWAP operator can be expressed

in terms of the identity and Pauli operators as

(̂= =
1

2
(I + 2̂ · 2̂=) . (4.26)

The partial swap unitary 4.25 occurs in the all-qubit model for 6I =

6/2 [cf. Eq. 4.19], corresponding to the Heisenberg exchange interaction
Hamiltonian

+̂= =
6

2

2̂ · 2̂= . (4.27)

Indeed, up to an irrelevant phase factor, the corresponding unitary 4.22

has the form 4.25 with (̂= given by 4.26 and � = 6ΔC.

4.6.3 Reduced dynamics of ( and ancilla

Take all ancillas initially in the same state �= = |0〉= 〈0| [cf. Eq. 4.1]. Using

basis {|0〉= , |1〉=} to carry out the partial trace over each ancilla, the

collision map 4.7 is worked out from 4.22 as

�′ = E[�] =  ̂0� ̂
†
0
+  ̂1� ̂

†
1
, (4.28)

where the Kraus operators  ̂: = = 〈: | *̂= |0〉= (see A.3) explicitly read

 ̂0 = 4
−8 6IΔC |0〉( 〈0| + 4 8 6IΔC cos

(
6ΔC

)
|1〉( 〈1| (4.29)

 ̂1 = −8 4 8 6IΔC sin

(
6ΔC

)
�̂− .
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Any qubit state has the general form

� =

(
〈1| � |1〉 〈0| � |1〉
〈1| � |0〉 〈0| � |0〉

)
=

(
? 2

2∗ 1−?

)
(4.30)

with 0 ≤ ? ≤ 1 and (1 − 2?)2 + 4|2 |2 ≤ 1 (to ensure that eigenvalues of

� are positive). Entries 2 and ? are routinely called “coherences" and

“populations", respectively.

Plugging 4.30 into 4.28 yields

�′ = E[�] =
(

cos
2(6ΔC) ? 428 6IΔC

cos

(
6ΔC

)
2

4−28 6IΔC
cos

(
6ΔC

)
2∗ (1−?) + sin

2(6ΔC) ?

)
, (4.31)

which is an alternative way to represent the collisionmap 4.28. The effect

of the map, as can be seen, is to multiply the coherences 2 by a factor

428 6IΔC
cos

(
6ΔC

)
and populations ? by cos

2(6ΔC). In light of Eq. 4.6, the

state of ( at step = is thus given by

�= = E=[�] =
(
?= 2=
2∗= 1−?=

)
(4.32)

with

?= = cos
2=(6ΔC) ? , 2= = 428 6I=ΔC

cos
=(6ΔC) 2 . (4.33)

This entails the following: provided that | cos

(
6ΔC

)
| < 1, no matter

what state ( started from (i.e. regardless of 2 and ?), the coherences and

populations vanish for = →∞meaning that ( asymptotically ends up in

state |0〉(. This is a rather extreme example of non-unitary, i.e. irreversible,

open dynamics, which can be pictured as a transformation mapping the

entire Hilbert space of ( into a single point representing the asymptotic

states |0〉(.

By replacing eqs. (4.22) and (4.32) into 4.10 for �= = |0〉= 〈0|, we get that

the state of ancilla = after colliding with ( is given by

�′= =

(
�= 3=
3∗= 1−�=

)
. (4.34)

with

�= = sin
2(6ΔC) cos

2(=−1)(6ΔC) ? (4.35)

3= = −8 sin

(
6ΔC

)
cos

=−1(6ΔC)428 6I=ΔC 2 .

Note that, as = grows up and for | cos

(
6ΔC

)
| < 1, �′= → |0〉= 〈0| =

�= , Namely, after a sufficient number of steps, ancillas basically no

longer change their state after colliding with (. This is consistent with
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The rigorousmathematical

statement is that, for any

� > 0, there exists =� such

that ‖�=−|0〉( 〈0| ‖ < � for
any = > =�, where ‖ . . . ‖
is some distance measure

between quantum states

(e.g. trace distance).

More formally, since a

fixed point is an eigen-

state of Ewith eigenvalue

1 [cf. Eq. 4.36], the map is

ergodic when 1 is a non-

degenerate eigenvalue of

E.

the convergence of ( to |0〉( since the collision leaves state |0〉( |0〉=
unaffected, i.e. *̂= |00〉(= 〈00| *̂†= = |00〉(= 〈00|.

4.7 Steady states

As discussed, Eq. 4.32 shows that for, | cos

(
6ΔC

)
| < 1, ( eventually ends

up in state |0〉(, i.e. �= → �∗ = |0〉( 〈0|. Once ( reaches this state, this

will be not be affected by collisions with ancillas. In these cases, we say

that �∗ is a steady or stationary state for (.

In the language of quantum maps (see A.3), a steady state �∗ is a fixed
point of the collision map, i.e.

E[�∗] = �∗ (sC403H state). (4.36)

This expresses the fact that �∗ is unchanged by the collisions, no matter

how many (since we also have E=[�∗] = �∗ for any =). Note that, in

general, map Ecould admit more than one fixed point, i.e. many steady

states can exist.When only one steady state is possible (as in the previous

instance), i.e. there is a unique fixed point, we say that the collision map

is ergodic.

Actually, the instance in the previous subsection fulfills a stronger prop-

erty in that �= → �∗ for any initial state �0. In the language of quantum

maps, in such cases map E is said to be mixing. A paradigm of mixing

processes is thermalization (which will be discussed in Section 7.1),

enforcing ( to end up in the Gibbs state at the reservoir temperature

no matter what state it started from. Importantly, note that a necessary

– but not sufficient – condition for a map to be mixing with respect to

a steady state �∗ is that this be a fixed point i.e. fulfill 4.36]. A more

stringent necessary condition, although still insufficient, is that �∗ be the
only fixed point, namely (see above) the collision map must be ergodic

(if there were two or more fixed points, mixingness clearly could not

occur).

A simple paradigmatic instance where ergodicity, hence mixingness,

does not take place is the all-qubit CM for 6ΔC = � and 6I = 0. The

corresponding collision map 4.31 then is

�′ = E[�] =
(
? −2
−2∗ 1−?

)
. (4.37)

This leaves populations unaffected, while coherences change sign.

Clearly, any mixture of |0〉( 〈0| and |1〉( 〈1| (zero coherences) is a fixed

point of map E [cf. Eq. 4.36]. Notably, there exist initial states giving rise
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to a dynamics where ( never reaches a steady state. For instance, observ-

ing that E[|±〉 〈±|] = |∓〉 〈∓| with |±〉 = 1√
2

(|0〉 ± |1〉) (eigenstates of
�̂G), we see that if �0 = |+〉 〈+| then ( will indefinitely oscillate between

states |+〉 (= even) and |−〉 (= odd).

We finally mention a special type of mixing dynamics called quantum
homogenization, which occurs when E is mixing with steady state �∗ such
that �∗ = � for any initial state � of ancillas. Note how this definition

poses the constraint that ( and each ancilla have the same Hilbert

space dimension (and moreover that all ancillas start in the same state).

Physically, the intuitive idea behind quantum homogenization is that,

since the bath is made out of a huge number of identical subsystems,

if ( “talks" long enough with them then its state will more and more

look like that of ancillas until becoming homogeneous with these. It

can be shown [22] that in the all-qubit CM quantum homogenization

occurs when the collision unitary *̂= is a partial swap [cf. Eq. 4.25]

corresponding to the Heisenberg exchange interaction 4.27.

4.8 Cascaded collision model

The basic CM of Fig. 4.1 comes with an intrinsic unidirectionality: (
explores the bath along a specific direction (say from left to right as

in Fig. 4.1). Remarkably, if we let ( be multipartite in such a way that

each ancilla collides with one subsystem of ( at a time, then the above

unidirectionality yields an interesting effect.

To see this, let ( comprise a pair of subsystems, (1 and (2. By hypothesis,

the collision with each ancilla consists of two cascaded sub-collisions (see
Fig. 4.2): = collides first with (1 and only afterward with (2. Accordingly,

the collision unitary reads

*̂= = *̂2,=*̂1,= . (4.38)

The remaining hypotheses of the basic CM in Section 4.1 are unchanged.

Already at this stage, it is clear that there exists an asymmetry between

(1 and (2 since *̂= does change if 1 and 2 are swapped (as *̂1,= and *̂2,=

generally do not commute). The open dynamics of (1 is indeed quite

different from that of (2, as we show next.

We first note that, just like in the basic collision model, the joint system
( undergoes a fully Markovian dynamics according to [cf. Eq. 4.7]

�= = E[�=−1] = TA=

{
*̂2,=*̂1,= �=−1�= *̂

†
1,=*̂

†
2,=

}
. (4.39)
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.
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Figure 4.2: Cascaded collision model. The open system ( is made out of two subsystems,

(1 and (2. At each collision, the ancilla interacts first with (1 (unitary *̂1,=) and

only afterwardwith (2 (unitary *̂2,=). Thus the collision consists of two time-ordered

sub-collisions according to the collision unitary *̂= = *̂2,=*̂1,= . Subsystem (1 always

collides with “fresh" ancillas (still in the initial state �), while (2 collides with “recycled"

ancillas that already interacted (and got correlated) with (1

We next ask whether or not the same statement holds for the reduced

dynamics of (1 and (2 (whose reduced stateswill be respectively denoted

as �1,= and �2,=). Let us start with (1: tracing off (2 in 4.39 yields
2

�1,= =TA2{�=} = TA2TA=

{
*̂2,=*̂1,= �=−1�= *̂

†
1,=*̂

†
2,=

}
=TA2TA=

{
*̂1,= �=−1�= *̂

†
1,=

}
. (4.40)

Since TA2{. . .} does not act on either (1 or ancilla =, it can be moved to

the right of *̂1,=

�1,= = TA=

{
*̂1,= TA2{�=−1}�= *̂†

1,=

}
= TA=

{
*̂1,= �1,=−1�=*̂

†
1,=

}
≡ E[�1,=−1] ,

where we introduced the usual collisionmap 4.7. Thus (1 evolves exactly

as if (2 were absent, entailing in particular that its dynamics isMarkovian.

This occurs because (1 always collides with “fresh" ancillas that are still

in the initial state � [see Fig. 4.2(a)]. Once the ancilla has collided with (1,

the following collision with (2 cannot affect the reduced state of (1.

In contrast, since it collides with “recycled" ancillas that already collided

with (1, the dynamics of (2 does depend on that of (1. Indeed, if we

now trace off subsystem (1 from Eq. 4.39 we get

�2,= = TA1TA=

{
*̂2,=*̂1,= �=−1�= *̂

†
1,=*̂

†
2,=

}
= TA=

{
*̂2,= TA1

{
*̂1,= �=−1�= *̂

†
1,=

}
*̂†

2,=

}
. (4.41)

2
We use that TA2TA=

{
*̂2,=�*̂†

2,=

}
≡ TA2TA= {�} since if {|:2 , :=〉} is an orthonormal

basis of system 2-= used to compute TA2TA={. . .} another legitimate basis to perform

the trace is {*̂†
2,= |:2 , :=〉} (recall that the trace can be carried out in any basis).
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An entangled state is a

state which is not sepa-

rable, i.e. such that the

corresponding density ma-

trix cannot be expressed

as a mixture of product

states. For bipartite sys-

tems, a separable state

reads �12 =
∑
9 ? 9�

(9)
1
⊗ �(9)

2

with

∑
9 ? 9 = 1 (this natu-

rally generalizes to # sys-

tems).

Here, |〉 and |:=〉 respec-
tively stand for |〉( and

|:=〉= , a light notation that

will be used again later on

in the paper.

At least two features stand out. First, the state of (2 is affected by the

previous subcollision (the one involving (1). Second, upon comparison

with �1,= , we see that �2,= does not evolve according to a CPT map. This

is because, after the first sub-collision but before the second one starts,

(2 is in general already correlated with ancilla =. Indeed, even if (1 and

(2 start in a product state, very soon they will get correlated during

the collisional dynamics due to their interaction with the common bath

of ancillas. Thus, as soon as ancilla = has finished colliding with (1, it

establishes correlations with both (1 and (2.

To summarize, in a cascaded CM, the two subsystems jointly undergo a

Markovian evolution. The reduced dynamics of (1 is Markovian as well

and completely insensitive to the presence of (2. Instead, the reduced

dynamics of (2 depends on that of (1 and is generally non-Markovian

since it cannot be divided into a sequence of CPT maps. This asymmetry
in the mutual dependence of the two reduced dynamics reflects the

intrinsic CM unidirectionality (causal order) that we discussed above.

The next subsection (connecting CMs with matrix product states theory)

is not indispensable to access the remainder of the paper. As such, it

could be skipped by the uninterested reader.

4.9 Collision models andMatrix Product States

We have previously focused on the reduced dynamics of either ( or an

ancilla. Here, we will consider the joint dynamics of ( and all ancillas

showing that it enjoys interesting properties.

Starting from state 4.1, as the collisional dynamics proceeds, multipartite

correlations are established so that the joint system evolves at step =

into a generally entangled state having the generic form

|Ψ=〉 =
∑

,:1 ,...,:=

2,:1 ,:2 ,...,:= |, :1, :2, . . . , :=〉 (4.42)

with {|〉} denoting a basis of ( and {|:=〉} a basis of the =th ancilla.

We will show next that state 4.42 can be expressed in a computationally

advantageous form. The basic idea is to view the expansion coefficients

2,:1 ,:2 ,...,:= (each labeled by = + 1 indexes) as a rank-(= + 1) tensor and
decompose it into = tensors each with the smallest possible rank.

For the sake of argument, we will refer to the basic CM of Section 4.1

and assume that  = 1, 2, . . . , 3( with 3( the Hilbert space dimension

of (, while := takes integer values from 1 to 3� with 3� the dimension
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of each ancilla. We consider an initial pure state �0 = |Ψ0〉 〈Ψ0 |, which

without loss of generality can be written as

|Ψ0〉 = |1, 11, 12, . . .〉 . (4.43)

At the end of the first collision, the joint state reads

|Ψ1〉 = *̂1 |Ψ0〉 =
∑
,:1

|, :1〉 〈, :1 | *̂1 |1, 11〉 ⊗ |12, 13, . . .〉 (4.44)

=
∑
,:1

U
(:1)
1 |, :1, 12, 13, . . .〉 ,

where we plugged in the identity operator I( ⊗ I1 expressed in terms of

basis |, :1〉 and defined

U
(:1)
′ = 〈

′, :1 | *̂1 |, 11〉 . (4.45)

This is a rank-3 tensor of dimension 3( × 3( × 3� due to dependence on

the three indexes , ′ and :.
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step 1 step 2 step n

Figure 4.3: Tensor-network representation of the joint CM dynamics. The joint state at

step = is generally defined by the rank-(= + 1) tensor 2,:1 ,...,:= [cf. Eq. 4.42]. This can

be decomposed into one rank-2 tensor of dimension 3( × 3� (leftmost square) and

= − 1 rank-3 tensors each of dimension 3( × 3( × 3� (squares with three legs) with

3( (3�) the Hilbert space dimension of ( (ancilla). A joined leg (each link between

nearest-neighbor squares) represents an index contraction. The steps = = 1 and = = 2

are also shown for comparison.

Using this, the joint state at the end of the second collision, |Ψ2〉 =
*̂2 |Ψ1〉, can be worked out as

|Ψ2〉 =
∑
,:1

U
(:1)
1 *̂2 |, :1, 12, . . .〉

=
∑
,:1

U
(:1)
1

∑
′,:2

|′, :2〉 〈′, :2 | *̂2 |, 12〉 ⊗ |:1〉 ⊗ |13, . . .〉

=
∑
,:1

∑
′,:2

U
(:1)
1 U

(:2)
′ |

′, :1, :2, 13, . . .〉

=
∑

′,:1 ,:2

(∑


U
(:1)
1 U

(:2)
′

)
|′, :1, :2, 13, . . .〉 . (4.46)

For = = 3, analogous steps lead to

|Ψ3〉 =
∑

′′,:1 ,:2 ,:3

(∑
′

U
(:1)
1, U

(:2)
′U

(:3)
′,′′

)
|′′, :1, :2, :3, 14, . . .〉 . (4.47)
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The rank-2 tensor is U
(:1)
11

,

which derives from the

rank-3 tensor 4.45 by fixing

one  index.

Finally, at the =th step, we get 4.42 with each coefficient given by

2,:1 ,...,:= =
∑

1 ,...,=−1

U
(:1)
11

U
(:2)
12

. . .U
(:=)
=−1 . (4.48)

Thus, as schematically sketched in Fig. 4.3, we get that the rank-(= + 1)
tensor 2,:1 ,...,:= can be decomposed in terms of = − 1 rank-3 tensors of

dimension 3( × 3( × 3� and one rank-2 tensor of dimensions 3( × 3�.
Interestingly, each of these low-rank tensors [cf. Eq. 4.45] corresponds

to a single collision: Eq. 4.48 thus reflects the decomposition of the

overall complex system–bath dynamics in terms of elementary two-

body unitaries. This way of expressing the multipartite (-bath state is

very close to the so calledmatrix product statesdecomposition [44–46]. The

idea is that reducing to low-rank tensors with small enough dimension

(if possible) allows to limit the computational complexity of the problem

(with clear advantages for numerical simulations of the dynamics). A

collisional dynamics typically has such features in that, as shown, the

dimension of each rank-three tensor is bounded in terms of the Hilbert

space dimensions of the open system ( and a single ancilla these being

often small.

4.10 Basic collision model: state of the art

Throughout we considered each collision to be described by a well-

defined unitary. One can yet consider random unitary collisions. These
were investigated in Ref. [47], where it was shown that ( reaches the

same asymptotic state which would be attained for repeated random

collisions with a single effective ancilla of suitable dimension.

A more general and formal treatment than 4.3 of the ancilla dynamics

was carried out in the context of so called non-anticipatory quantum
channels with memory [48]. Similarly to cascaded CMs (see Section 4.8),

this dynamics features an explicit causal ordering of the ancillas, which

reflects the different times at which these interact with (.

The Markovianity notion based on divisibility discussed in Section 4.5

is featured in the review paper Ref. [49], where CMs are used as an

effective way to visualize the memoryless properties characteristic of

quantum Markovian processes.

A thorough treatment of mixing channels and fixed points mentioned in

Section 4.7 can be found in Ref. [50]. Note that the properties of mixing

CPT maps which we referred to are directly connected with the concept

of forgetful channels introduced in 2005 by Kretschmann and Werner [51]

within the general framework of memory quantum communication lines
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(reviewed inRef. [48]). Thesemodels describe the evolution of anordered

collection of quantum information carriers, which sequentially interact

with a common reservoir. In this context, if the reservoir asymptotically

loses track of its initial state for a growing number of carriers then the

resulting transformation is said to be “forgetful". Accordingly, from the

point of view of the bath ancillas, any CM featuring a collision map E

that is mixing can be seen as a special instance of forgetful channel.

Quantum homogenization (see Section 4.7) was first considered by Zi-

man, Stelmachovic, Buzek, Scarani and Gisin in Ref. [22], where they

introduced a so called “universal quantum homogenizer" this being

in fact an all-qubit CM such that �= → � for any �0 and �. A related

paper [52] carried out a detailed analysis of the nature of correlations

(in the form of entanglement) between ( and the bath of ancillas that

are established during the collisional dynamics [cf. Fig. 4.1(d)]. We also

note that quantum homogenization was studied also in the more general

case that ( is a composite system (spin chain) colliding locally with a

bath of ancillas [53].

Cascaded CMs (Section 4.8) were first introduced in 2012 by Giovannetti

and Palma [54, 55] mostly with the goal of defining a simple microscopic

framework underpinning cascaded master equations (which will be

discussed in detail in Section 5.10).

Connections between CMs and matrix product states (for a friendly

introduction see e.g. Refs. [45, 46]) can be found in papers dealing

with the more general framework of non-Markovian dynamics, see

e.g. Ref. [56, 57] (which we will discuss in 8.7) and Ref. [58].
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A hallmark of CMs is their discrete nature, which is indeed a major

reason why these models are useful. Yet, most dynamics in Physics

are intrinsically continuous or, better to say, conveniently approached

through a continuous-time description, allowing to write down an

associated differential equation of motion.

When it comes to open quantum systems, a relevant equation of motion

is the so called master equation (ME) governing the time evolution of the

open system state � (much like the Schrödinger equation does for closed

systems). In some applications, such as quantum thermodynamics (see

chapter 7, it is yet often convenient working with a specific dynam-

ical equation for the expectation value of an observable of concern

(e.g. energy). Accordingly, in this section we will introduce both kinds of

equations of motion (although they are tightly connected to one another

of course).

In the last part of the present section, we will in particular revisit the

instances of CMs introduced in the previous section with the aim of

providing the corresponding ME for each.

5.1 Equations of motion for small collision
time: states

In light of an eventual conversion of the discrete collisional dynamics into

a continuous-time one, such that C= = =ΔC is turned into the continuous

time variable C, the collision duration ΔC must approach zero.

With this in mind, we are interested in the approximated expression

of the collision unitary in the regime of small collision time. We thus

consider the basic CM in section 4.1 and replace *̂= with the small-ΔC

approximation

*̂= ' Î − 8(�̂0 + +̂=)ΔC − 1

2
+̂2

=ΔC
2 , (5.1)
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This hypothesis will be par-

tially relaxed in section 7.8.

Note that eq. (5.3) is not re-

stricted to the memoryless

CMs specified by assump-

tions (1)–(3) in 4.1.1 (i.e. the

CM which we refer to in

the present section). In par-

ticular, it remains valid for

initially correlated ancillas

(see section 8.3).

where �̂0 is the total system–ancilla free Hamiltonian
1

�̂0 = �̂( + �̂= . (5.2)

Note that 5.1 is of the 2nd-order in +̂= but of the 1st order in �̂( and

�̂= . This is in fact due to a hypothesis of the CM that we are making:

second-order terms in ΔC that are not quadratic in +̂= are negligible. The
rationale of this assumption, requiring in fact that �̂( and �̂= be much

weaker than +̂= , will become clear later on.

Accordingly, at each collision, the joint (-bath state �= evolves according
to

Δ�= = −8 [�̂0 + +̂= , �=]ΔC +
(
+̂= �= +̂= − 1

2
[+̂2

= , �=]+
)
ΔC2 (5.3)

with Δ�= = �= − �=−1 and [ , ]+ the anti-commutator. We dropped

third-order terms in ΔC and, in line with the aforementioned hypothesis,

all second-order terms but those having a quadratic dependence on +̂= .

eq. (5.3) has a central role in CM theory.

eq. (5.3) can be equivalently arranged solely in terms of commutators as

Δ�= = −8 [�̂0 + +̂= , �=]ΔC − 1

2
[+̂= , [+̂= , �=]]ΔC2 , (5.4)

an alternative expression which is useful in some contexts.

We next focus on ( and the =th ancilla. Before colliding, they are in the

product state �=−1 ⊗ �= (see section 4.1). The collision changes their joint

state according to

Δ*(=
ΔC

= −8 [�̂0 + +̂= , �=−1 �=] + ΔC (+̂= �=−1 �= +̂= − 1

2
[+̂2

= , �=−1 �=]+) ,
(5.5)

with Δ*(= = *(= − �=−1 �= . This equation, which simply follows from

5.3 by tracing off all ancillas not involved in the collision and dividing

either side by ΔC, underpins memoryless CMs.

Note that eqs. (5.3) and (5.5) also hold for the general inhomogeneous

CM in section 4.5, in which case �̂(, �̂= , +̂= and �= are understood as

generally dependent on step =.

To get a closed equation for the reduced dynamics of ( we trace off the

1
Note that this lowest-order expansion relies on treating the (-ancilla Hamiltonian as

time-independent. If not, an additional 2nd-order termwould appear in the expansion

as is the case of eq. (9.8) in chapter 9 (see also Ref. [36]).
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This is sometimes called

“stroboscopic evolution" in

that we are not interested

in the dynamics at any pos-

sible instant but only at reg-

ular intervals of duration

ΔC.

=th ancilla in 5.5, obtaining

Δ�=
ΔC

= −8 [�̂(+TA={+̂= �=}, �=−1]+ΔC TA={+̂= �=−1�= +̂=−1

2
[+̂2

= , �=−1�=]+}
(5.6)

withΔ�= = �=−�=−1 = TA={Δ*(=}.Note that, sinceΔ�= = (E−I) [�=−1]
with I the identity map on (, eq. (5.6) in fact represents the short-time

expression of the collision map E [cf. eq. (4.7)].

By tracing off ( (instead of ancilla =) in eq. (5.5), a similar discrete-time

equation of motion can be obtained for the change of ancilla’s state

Δ�= = �′= − �= due to the collision with ( (see 4.3). This reads

Δ�=
ΔC

= −8 [�̂=+TA({+̂= �=−1}, �=]+ΔC TA({+̂=�=−1�= +̂=−1

2
[+̂2

= , �=−1�]+} .
(5.7)

Eq. 5.6 (discrete-time master equation) and eq. (5.7) are finite-difference

equations that govern the reduced dynamics of ( and ancilla =, respec-

tively, at the discrete times C= = =ΔC. We will show shortly (section 5.3)

that these equations are in the so called Lindblad form (see A.6).

5.2 Equations of motion for small collision
time: expectation values

While all the above equations of motion describe the evolution of states,

one may be interested in the evolution of the expectation value of a

given observable $̂, denoted as 〈$̂〉= = TA(�{$̂�=} (at this stage we

allow $̂ to generally act on the joined system, i.e. ( plus all the ancillas).

The general change of the expectation value Δ〈$̂〉==〈$̂〉= − 〈$̂〉=−1 at

each time step reads

Δ〈$̂〉= = TA(�{Δ$̂= �=−1} + TA(�{$̂= Δ�=} (5.8)

withΔ$̂= = $̂=−$̂=−1. The former and latter terms respectively describe

the contribution due to an intrinsic time dependence of operator $̂ (if

any) and that due to the evolution of state �= . For a time-independent

observable, only the second term can contribute.

Plugging eq. (5.3) in 5.8 and exploiting the cyclic property of trace, we

find that the rate of change of 〈$̂〉= is given by

Δ〈$̂〉=
ΔC

=

〈
Δ$̂=

ΔC

〉
+ 8 〈[�̂0++̂= , $̂]〉 +ΔC 〈+̂= $̂ +̂= − 1

2
[+̂2

= , $̂]+〉 , (5.9)

where on the right hand side 〈. . .〉 = TA(�{. . . �=−1}.
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Alternatively, expressing Δ�= in the form 5.4, we get

Δ〈$̂〉=
ΔC

=

〈
Δ$̂=

ΔC

〉
+ 8 〈[�̂0 + +̂= , $̂]〉 − 1

2
ΔC 〈[+̂= , [+̂= , $̂]]〉 . (5.10)

5.3 Lindblad form

The initial ancilla’s density operator state �= can be spectrally decom-

posed (see A.1) as

�= =
∑
:

?: |:〉= 〈: | . (5.11)

with

∑
: ?: = 1. Replacing this in 5.6 yields

Δ�=
ΔC

= −8 [�̂(+TA={+̂= �=}, �=−1]+
∑
::′

(
!̂::′�=−1!̂

†
::′ −

1

2
[!̂†
::′ !̂::′ , �=−1]+

)
(5.12)

with jump operators !̂::′ given by

!̂::′ =
√
?: = 〈:′|+̂= |:〉=

√
ΔC . (5.13)

Here, |:〉 and |:′〉 are eigenstates of � [cf. eq. (A.1)]. Note that operator

TA={+̂= �=} appearing in the commutator is Hermitian.

eq. (5.12) has the form of a discrete Lindblad master equation (see A.6).

An analogous reasoning, this time based on the spectral decomposition

of �=−1, shows that eq. (5.7) is also in Lindblad form.

The Lindblad form essentially arises because both ( and the ancilla

evolve at each step according to aCPTmap that can be expanded inKraus

operators [see eqs. (4.7) and (4.10)]. We stress that this crucially relies on

the fact that ( and each ancilla are uncorrelated before colliding (their

initial state �=−1 �= is factorized), which is guaranteed by assumptions

(1)–(3) in 4.1.1.

5.4 Reduced equations of motion in terms of
moments

eq. (5.12) relies on the spectral decomposition A.1 of the ancilla’s state,

whose calculation could be impractical in some cases. We derive next

an alternative form of eqs. (5.6) and (5.7) in terms of first and second

moments of thebath/systemoperator entering the couplingHamiltonian

+̂= , which is both technically advantageous and conceptually important
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It can be shown that there

always exists a decompo-

sition such that �̂� = �̂†�,
�̂� = �̂†� and 6� = 6∗�. Yet,
we prefer allowing for gen-

erally non-Hermitian oper-

ators since this is the natu-

ral form of many usual in-

teractions (e.g. atom-field

interactions, in which case

�̂� and �̂� are ladder oper-

ators).

in that it pinpoints the essential quantities controlling the reduced

dynamics of either subsystem.

The system–ancilla coupling Hamiltonian can be always decomposed as

+̂= =
∑
�

6��̂��̂� , (5.14)

with 6� generally complex coefficients and �̂�(�̂�) a set of (generally

non-Hermitian) operators on ( (ancilla) subject to the constraint +̂= = +̂
†
=

(index = is omitted in ancilla operators).

Let us define first and second moments of ( and ancilla as

〈�̂�〉 = TA={�̂��=−1}, 〈�̂��̂�〉 = TA={�̂��̂��=−1},
〈�̂�〉 = TA={�̂��=}, 〈�̂��̂�〉 = TA={�̂��̂��=} . (5.15)

Note that the moments of �̂� are calculated on the current state of (,

�=−1, to be updated after each collision. Regardless, both moments of

( and ancilla have an intrinsic dependence on step = when the CM

is inhomogeneous (see section 4.5; e.g. when ancillas are prepared in

different states).

In terms of the moments just defined, the contributions to the discrete

ME 5.6 can be decomposed as

TA={+̂= �=} =
∑
�

6�〈�̂�〉�̂� , (5.16)

TA={+̂=�=�=+̂=} =
∑
��

6�6�〈�̂��̂�〉 �̂��=�̂� ,

TA={[+̂2

= , �=−1 �=]+} =
∑
��

6�6�〈�̂��̂�〉 [�̂��� �=−1]+ .

Analogous expressions are worked out for eq. (5.7) in terms of moments

of �̂�’s calculated on state �=−1.

To summarize, Eq. 5.6 can be written as

Δ�=
ΔC

= −8 [�̂( + �̂′( , �=−1] + D([�=−1] (5.17)

with

�̂′( = TA={+̂=�=} =
∑
�

6� 〈�̂�〉�̂� , (5.18)

D([�=−1] =
∑
��

���〈�̂��̂�〉(�̂��=−1�̂� − 1

2
[�̂��̂� , �=−1]+) ,
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This holds only at the

=th step. At any other

step, since ancilla =

does not change its state,

Δ〈$̂=〉/ΔC = 〈Δ$̂=/ΔC〉.

while eq. (5.7) as

Δ�=
ΔC

= −8 [�̂= + �̂′= , �=] + D=[�=] (5.19)

with

�̂′= = TA({+̂=�=−1} =
∑
�

6� 〈�̂�〉�̂� , (5.20)

D=[�=] =
∑
��

���〈�̂��̂�〉(�̂��= �̂� − 1

2
[�̂��̂� , �=]+) , (5.21)

and where the rates appearing in the dissipators D( and D= are given

by

��� = 6�6� ΔC . (5.22)

We see that the (-bath interaction brings about two main effects on the

reduced dynamics. One is the appearance of an extra Hamiltonian term

(�̂′
(
and �̂′=) that adds to the free Hamiltonian (�̂( and �̂= , respectively).

Hamiltonian �̂′
(
, taken alone, would change the reduced dynamics of

( without yet affecting its unitary nature, despite the (-bath coupling

(and similarly �̂′= with respect to ancilla =). The other effect, embodied

by dissipator D( (D=), instead causes non-unitary dynamics.

Finally, note the explicit appearance of a ΔC factor in the rates 5.22,

which will be shown later to have consequences on the passage to the

continuous-time limit.

5.5 Equations of motion for expectation values
in terms of moments

In the (frequent) case of observables acting only on ( or ancilla, also the

equations of motion in section 5.2 can be simply decomposed in terms

of simple moments.

For an operator on (, in eq. (5.8) � can be replaced with � so that, in

light of eqs. (5.17) and (5.18), we get

Δ〈$̂(〉
ΔC

=

〈
Δ$̂(

ΔC

〉
+ 8 〈[�̂( , $̂(]〉 + 8

∑
�

6�〈�̂�〉 〈[�̂� , $̂(]〉

+
∑
��

���〈�̂��̂�〉〈�̂�$̂(�̂� − 1

2
[�̂��̂� , $̂(]+〉 . (5.23)

Likewise, in light of eqs. (5.19) and (5.21), the expectation value of an

operator on ancilla = evolves at the =th step as
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Δ〈$̂=〉
ΔC

=

〈
Δ$̂=

ΔC

〉
+ 8 〈[�̂= , $̂=]〉 + 8

∑
�

6�〈�̂�〉〈[�̂� , $̂=]〉

+
∑
��

���〈�̂��̂�〉〈�̂�$̂= �̂� − 1

2
[�̂��̂� , $̂=]+〉 . (5.24)

On the right hand sides of eqs. (5.23) and (5.24), expectation values

of operators on ( are computed on state �=−1 and those on the ancilla

on �= . Note that here subscript = must be intended as the ancilla

index, not the time step. Accordingly, the changes are understood as

Δ$̂= = $̂
(=)
= − $̂(=−1)

= and likewise for Δ〈$̂=〉, where each subscript

denotes the time step.

5.6 Continuous-time limit via coarse graining

So far we have considered finite-difference equations of motion, which

reflects a stroboscopic description of the dynamics at the discrete times

C= = =ΔC with ΔC short enough that *̂= can be replaced with its 2nd-

order expansion in ΔC. Clearly, if one observes the system evolution

on a time scale much larger than ΔC, then the dynamics will look like

effectively time-continuous.

This is illustrated in a simple case study in fig. 5.1, where the open

dynamics of the all-qubit CM of section 4.6 is considered for 6I = 0

with ( initially in state
1√
2

(|0〉( + |1〉() and each ancilla prepared in |0〉= .
Making ΔC too large (compared to 6−1

) results in a generally abrupt

change of the state of ( after each time step, which rules out a continuous

interpolation [see 5.1(a)]. This change is instead negligible by setting a

small collision time ΔC in a way that, for evolution times much longer

than ΔC, the dynamics will appear effectively continuous [see 5.1(b)].

Accordingly, if the collision time is small and for evolution times much

larger than ΔC, one can replace the elapsed time (after = collisions)

C= = =ΔC with a continuous time variable, i.e. C= → C, substituting at the

same time the incremental ratio in eq. (5.17) with a continuous derivative,

C= = =ΔC → C ,
Δ�=
ΔC
→

3�

3C
( coarse graining) . (5.25)

Of course, all the discrete functions depending on the step number

= (such as �=−1) become now continuous functions of time C. This

procedure is carried out after choosing a short enough but finite collision

time ΔC (coarse graining time) which is then kept always fixed [which

sets rates 5.22]. This coarse graining procedure turns the finite-difference

ME into a continuous-time ME. A prominent instance is the micromaser

dynamics, which we will discuss in the next subsection. In physical
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terms, the coarse-graining procedure means that we give up keeping

track of the dynamics in fine detail (i.e. on a time scale shorter than ΔC)

and are happy with a coarse description on a small but finite time scale

ΔC.

We point out that different choices of ΔC (but still small) will result in

generally different rates 5.22, hence the coarse-grainedME and associated

dynamics areΔC-dependent. Notably, as rates 5.22 are proportional toΔC,

if this is very short then the dissipator D( will become in fact negligible

with the only effect of the bath reducing to Hamiltonian �̂′
(
[cf. eqs. (5.17)

and (5.18)]. In this extreme regime of ultra-short collision times, the

open dynamics is thus unitary.

Figure 5.1: Continuous-time limit of the collisional dynamics. We consider the all-qubit

CM in section 4.6 for 6I = 0 with the ancillas prepared in �= = |0〉= 〈0| and (
initially in

��#0

〉
= 1√

2

(|0〉( + |1〉() [thus ? = 2 = 1/2 according to eq. (4.30)]. The

probability to find ( still in the initial state (survival probability) at the =th step is

given by 〈#0 |�= |#0〉 = 1

2
(1+ cos

=(6ΔC)) [cf. eq. (4.33)]. This is plotted in panel (a) for

6ΔC = 0.8�, while in panel (b) we set 6ΔC = 10
−1

(the inset shows the first 20 steps).

Clearly, the dynamics cannot be approximated as continuous in the case (a) due to the

generally non-negligible change of �= at each step, Δ�==�=−�=−1. Note that setting

an ultra-short collision time, e.g. 6ΔC = 10
−3

(not shown here), and keeping the same

total simulated time =m0GΔC as (a) or (b) would yield 〈#0 |�= |#0〉 ' 1.

5.7 Micromaser

The micromaser [59] is a system of utmost importance in CMs theory

as it is an experimental setup whose dynamics is, in fact by definition,

described by a CM. The paradigm of micromaser features a lossy cavity

pumped by a beam of atomswhich drive the cavity field into a lasing-like

state.
2
More specifically, as sketched in 5.2(a), a flux of Rydberg atoms

ejected from an oven is directed through a velocity selector toward a

high-finesse cavity where the atoms interact resonantly with a single

normal mode of the cavity (the interaction with the other modes is

off-resonant and thus can be neglected). In the ideal model, the atomic

2
This is the reason for the name “micromaser", where “maser" is intended as “mi-

crowave laser" since the cavity frequency is in the range of microwaves.
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beam is monochromatic (fixed velocity) and the rate of injection A is low

enough that the atoms cross the cavity one by one (i.e. there are never

two atoms in the cavity at the same time).

We have therefore a CM dynamics with ( embodied by the cavity mode

and ancillas by the flying atoms. In realistic conditions, atoms can be

assumed as non-interacting and initially uncorrelated with each other,

hence assumptions (1)–(3) in 4.1.1 are all satisfied meaning that the

dynamics is described by a basic Markovian CM. For simplicity, we will

neglect the cavity loss so that the atomic beam is the only environment

driving the cavity open dynamics. The interaction between the =th atom

and the cavity mode is well-described by the Jaynes and Cummings (JC)

model [59] in which a two-level atom (qubit) with ground state |0〉= ,
excited state |1〉= and energy spacing $0 [see 5.2(c)] couples to a cavity

mode of frequency $2 .

Figure 5.2:Micromaser. (a): Basic micromaser setup. Atoms are heated in an oven (on

the left). As atoms are ejected from the oven, a velocity selector filters only those of

desired velocity E. Each selected atom then travels at speed E towards the cavity (of

length !) until it crosses it. (b): Characteristic times. If ! is the cavity length, each atom

interacts with the cavity mode for a time � = E/!. Since � ≤ ΔC, where ΔC is the time

between two consecutive atomic injections, there are never two atoms in the cavity

at the same time meaning that the dynamics is naturally described by a basic CM

(atoms interact with the cavity mode one at a time). In the interaction picture, during

the interval [C=−1 + �, C=]when the =th atom is out of the cavity, the system does not

change its state. (c): Atomic and cavity-mode levels involved the interaction.

On resonance ($0 = $2), the JC Hamiltonian reads �̂J� = �̂( + �̂= + +̂=
with

�̂( = $2 0̂
† 0̂ , �̂= = $2 �̂=+�̂=− , +̂= = 6

(
0̂�̂=+ + 0̂†�̂=−

)
,

(5.26)

where 0̂ and 0̂† are bosonic annihilation and creation operators of the

mode such that [0̂ , 0̂†] = 1 while (as usual) �̂=− = �̂†=+ = |0〉= 〈1| are
pseudo-spin operators of the =th atom.

It is convenient to move to the interaction picture with respect to the

free Hamiltonian �̂0 = �̂( + �̂= . Accordingly, the field and atomic
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operators are transformed as 0̂ → 0̂4−8$2 C , �̂=± → �̂=±4±8$2 C in a way

that the coupling Hamiltonian +̂= is unaffected. We note that expansion

5.1 trivially holds here simply because the free Hamiltonians of ( and =

are zero in the interaction picture.

For the sake of argument, let us assume a constant atomic injection

rate A = 1/ΔC. Here, ΔC is the time elapsed between two consecutive

injections in terms of which we discretize time as C= = =ΔC, hence ΔC

embodies the CM time step [see 5.2(b)].

It can be shown that the collision unitary at each step [cf. eq. (4.2)] takes

the form [60]

*̂== exp

[
−8 6�

(
0̂ �̂=++0̂†�̂=−

)]
= Ĉ |1〉= 〈1|+ Ĉ′ |0〉= 〈0|−8 (Ŝ0̂ �̂=++0̂†Ŝ�̂=−)

where for convenience we defined the nonlinear field operators

Ĉ= cos

(
6�
√
=̂ + 1

)
, Ĉ′ = cos

(
6�
√
=̂
)
, Ŝ=

sin

(
6�
√
=̂ + 1

)
√
=̂ + 1

.

Here, � is the time spent by each atom inside the cavitywhich is generally

shorter than the injection time ΔC [see 5.2(b)].

Let the atoms be prepared each in the same incoherent superposition of

ground and excited states

�= = (1 − ?) |0〉= 〈0| + ? |1〉= 〈1| (5.27)

with ? a probability. Then the collision map, which fully describes the

cavity open dynamics [cf. eqs. (4.7) and (4.8)], is given by

�= =E[�=−1] = TA= {*̂= �=−1 � *̂
†
=} =

(1 − ?) ( Ĉ′�=−1 Ĉ′ + Ŝ 0̂ �=−1 0̂
†Ŝ) + ? ( Ĉ�=−1 Ĉ+ 0̂†Ŝ�=−1 Ŝ 0̂)

(5.28)

with TA= the trace over the =th flying atom.

5.7.1 Master equation of micromaser

We note that, in the interaction picture, �̂( = �̂= = 0 while +̂= is just the

same as in the Schrödinger picture (thus time-independent).

Using eq. (5.26), index � in the expansion 5.14 here takes values � =
± while �̂− = �̂†+ = 0̂, �̂− = �̂†+ = �̂=− and 6± = 6. In light of

eq. (5.18) and given the initial state 5.27, the only non-zero moments
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To achieve this, a slight gen-

eralization of section 5.1

is required since the in-

jection time ΔC (time step)

here can be generally larger

than the collision time

�. This leads to 5.18 but

with rates ��� redefined as

��� = 6�6� �2/ΔC.

In this regime, operators

5.27 entering *̂= cannot be

approximated as linear as

done above.

of ancilla (i.e. atomic) operators entering the finite-difference ME 5.17

are 〈0̂|�̂−�̂+ |0〉 = 〈1̂|�̂+�̂− |1〉 = 1 (the first-order Hamiltonian �̂′
(
is zero

since first moments vanish). Taking next the coarse-grained continuous-

time limit [cf. eq. (5.25)], one finds the ME [cf. eq. (5.17)]

¤� = (1 − ?)Γ
(
0̂�0̂† − 1

2
[0̂† 0̂ , �]

)
+ ? Γ

(
0̂†�0̂ − 1

2
[0̂ 0̂†, �]

)
, (5.29)

where we defined the rate Γ = 62 �2

ΔC . For � = ΔC, this reduces to the

simpler expression Γ = 62ΔC.

Eq. 5.29 shows that atoms in the excited state |1〉 act as an incoherent

pump (gain) on the cavity mode (corresponding to jump operator 0̂†),
while atoms in the ground state (jump operator 0̂) deplete the cavity

(loss).

We note that a full micromaser description must account for fluctuations

affecting the injection rate and, notably, cavity damping between atomic

transits (neglected above). In such a case, we have an interesting example

of a quantum system (cavity mode) in contact with two baths, namely

the atomic beam plus the external environment into which the cavity

leaks out. Indeed, the cavity field steady state depends crucially on the

balance between gain (due to the atomic pumping) and losses (due to

cavity leakage). This leads to an extremely rich physics in the nonlinear

strong-coupling regime 6� � 1, where trapping states can arise. In

general, the micromaser can produce non-classical light.

5.8 Continuous-time limit by introducing a
diverging coupling strength

As discussed in section 5.6, the coarse-graining procedure returns a

continuous-time ME with ΔC-dependent rates [cf. eq. (5.22)], where ΔC

is small but finite.

In some contexts, one may want to define a rigorous mathematical limit

ΔC → 0 yielding a continuous-time ME where any dependence on ΔC is

lost. Clearly, in order for this ME to feature a non-vanishing dissipator

D( (see final remarks of section 5.6), the price to pay is introducing

ΔC-dependent coupling strength(s) 6�. These must diverge in such a way

that rates ��� (hence D() keep finite [cf. eq. (5.22)]. Yet, this may still be

insufficient to get a well-defined continuous-time limit as illustrated by

the next example.

Consider the all-qubit CM (cf. section 4.6) with 6I = 6. Using eq. (4.19),

index � in the expansion 5.14 here takes values � = ±, Iwhile �̂− = �̂†+ =
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Indeed, it is easily checked

that, if ? = 1 and 2 =

0 [cf. eq. (4.30)], then

eq. (5.33) entails ?(C) =
4−�C , 2(C) = 0 namely the

(initially excited) atom de-

cays to the ground state

with emission rate �.

�−, �̂I = �̂I , �̂− = �̂†+ = �̂=−, �̂I = �̂=I and 6± = 6I = 6 [cf. eqs. (5.17)

and (5.18)]. Since �= = |0〉= 〈0|, the only non-zero moments of ancilla

operators entering the finite-difference ME 5.17 are 〈0|�̂=I |0〉 = −1 and

〈0̂|�̂=−�̂=+ |0〉 = 1. Hence, the first-order Hamiltonian and dissipator

[cf. eq. (5.18)] explicitly read

�̂′( = −6 �̂I , (5.30)

D([�=] = �
(
�̂− �=−1 �̂+ − 1

2
[�̂+�̂−, �=−1]+

)
+ �

(
�̂I �=−1 �̂I − �=−1

)
,

where we set [cf. eq. (5.22)]

� = 62ΔC . (5.31)

In order for the dissipator to survive the ΔC → 0 limit one can define a

diverging coupling strength as

6 =

√
�

ΔC
(diverging coupling strength) . (5.32)

Such a scaling ∼ 1/
√
ΔC of the coupling rate is a distinctive feature of

many quantum CMs.

However, while eq. (5.32) fixes the issue of the vanishing dissipator, it

has a potential drawback. Indeed, as the coupling strength is also the

characteristic rate of the 1st-order Hamiltonian �̂′
(
[cf. eq. (5.30)], its

divergence may cause �̂′
(
to diverge as well for ΔC → 0.

Thereby, in general, in cases such as the present instance the introduction

of a diverging coupling strength does not allow to perform awell-defined

continuous-time limit fulfilling the double constraint that the dissipator

and �̂′
(
must remain finite.Whether or not such a problem arises depends

on the system–ancilla coupling Hamiltonian +̂= as well as the initial

ancilla’s state. For instance, if in the considered example we set 6I = 0

and 6 =
√
�/ΔC [cf. eq. (4.19)] then of course �̂′

(
= 0 for any ΔC. Thus,

in the limit ΔC → 0, the finite-difference Eq. 5.17 is turned into the

well-defined continuous-time Lindblad ME

¤� = �
(
�̂− � �̂+ − 1

2
[�̂+�̂−, �]+

)
, (5.33)

which is identical to the well-known ME describing spontaneous emission
of a two-level atom. This is not accidental: in chapter 9, we will show

that the all-qubit CMwith the diverging coupling strength 5.32 (leading

to this ME) can be directly derived from a microscopic atom-field model

(see in particular section 9.7 discussing the field vacuum state).

As anticipated, however, also the initial state of ancillas matters. For
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instance, considering the above example for 6 =
√
�/ΔC and 6I = 0

but with the ancillas now initially in �= = |+〉= 〈+| will result again

(for ΔC → 0) in a diverging Hamiltonian in this case given by �̂′
(
=√

�/ΔC �̂G .

It is natural to ask whether ensuring that �̂′
(
= 0 is the only way for

�̂′
(
not to diverge (for ΔC → 0) due to 5.32. We show next that both �̂′

(

and the dissipator can remain finite if one allows for the ancilla’s state

itself to depend on ΔC. As a representative example in the all-qubit CM,

consider the initial ancilla’s state �= = |"〉= 〈" | with

|"〉= =
1

1 + |= |2ΔC

(
|0〉= + =

√
ΔC |1〉=

)
, (5.34)

where = is generally complex. Setting again 6 =
√
�/ΔC and 6I = 0,

the only non-zero ancilla moments [cf. eq. (5.15)] in this case are 〈�̂=−〉 =
〈�̂=+〉∗ = =

√
ΔC and 〈�̂=−�̂=+〉 = 1, where we neglected terms of order

ΔC or higher. These entail the 1st-order Hamiltonian and dissipator

�̂′( = 6 (= �̂− + ∗= �̂+) , D([�=] = �
(
�̂− �=−1 �̂+ − 1

2
[�̂+�̂−, �=−1]+

)
.

(5.35)

Neither �̂′
(
nor D( depends on ΔC, hence both remain finite for ΔC → 0.

This happens because the

√
ΔC on the denominator of the coupling

strength is canceled by that coming from the initial state with the latter

not affecting the dissipator to leading order.

In the case = = � 4−8$!C= with � > 0, by taking the continuous-time

limit of 5.35 we get the ME

¤� = −8
[
6 � (4−8$!C �̂− + 4 8$!C �̂+), �

]
+ �

(
�̂− � �̂+ − 1

2
[�̂+�̂−, �]+

)
.

(5.36)

This generalizes 5.33 to the case where a driving Hamiltonian is added.

This ME is equivalent to the well-known optical Bloch equations describ-

ing the evolution of an atom driven by a classical oscillating field while

undergoing spontaneous emission at the same time [61].

The assumption that we made of having a ΔC-dependent ancilla state

may appear somewhat artificial. In chapter 9, we will show in detail

that state 5.34 arises from an initial coherent state of the electromagnetic

field.

Before concluding the discussion on the continuous-time limit, it is

worth noting that a diverging coupling strength [cf. eq. (5.32)] allows

the condition underlying expansion 5.1 (i.e. �̂(, �̂= much weaker than

+̂=) to be satisfied for ΔC short enough.
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In the following subsections, we will consider equations of motion

for two important collisional dynamics: multiple baths and cascaded

CMs.

5.9 Multiple baths

In many realistic problems, the open system is in contact with many

baths at once. Accordingly, it is useful to define CMs where ( collides

with" ≥ 1 baths of ancillas, as shown in fig. 5.3(a) for the case of two

baths (" = 2). At each step, ( collides with" ancillas, one for each bath

8 = 1, . . . , ". To make contact with previous theory, it is convenient

to view the CM as featuring a single bath of "-partite ancillas, each
initially in state

�= = �(1)= ⊗ �(2)= ⊗ · · · ⊗ �(")= + "(c>AA)= . (5.37)

Figure 5.3: Collision model with two baths of ancillas. (a): System ( collides with two

baths of ancillas, labeled with 1 and 2. This CM can be formally seen as basic CM [see

4.1] where each ancilla is bipartite and initially in state �(1) ⊗ �(2) + "(c>AA) (in the panel

"(c>AA) = 0). (b): Same as (a) except that now system ( is itself bipartite, comprising

subsystems (1 and (2. Collisions with ancillas of bath 8 involve only subsystem (8 .

Here, �(8)= is the reduced state of ancilla of bath 8 = 1, . . . , ". Note we

allowed ancillas of different baths to share initial correlations described

by term "(c>AA)= . Thus when the " baths are uncorrelated, "(c>AA)= = 0.

The interaction Hamiltonian reads

+̂= = +̂
(1)
= + +̂ (2)= + · · · + +̂ (")= w8Cℎ +̂

(8)
= =

∑
�

6�8�̂�8 �̂�8 , (5.38)

where as usual we expanded each +̂
(8)
= (coupling Hamiltonian between

( and an ancilla of bath 8) in the form 5.14. Here, �̂�8 is an operator
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acting on the ancilla of bath 8 while �̂�8 is an operator of ( which we

allow to be generally 8-dependent. Note that +̂= can be written as

+̂= =
∑
8 ,�

6�8�̂�8 �̂�8 . (5.39)

This is still of the form 5.14 with the role of index � now embodied by the

double index (�, 8), hence all the theory in sections 5.4 and 5.5 applies

with the replacements �→ (�, 8), �→ (�, 9).

For uncorrelated baths, i.e. "(c>AA)= = 0 [cf. eq. (5.37)], all crossed second

moments of the bath factorize as

〈�̂�9 �̂�8〉 = 〈�̂�9〉〈�̂�8〉 f>A 8 ≠ 9 (5.40)

with 〈�̂�8〉 = TA 8{�̂�8�8}. This implies that when all the first moments

vanish, i.e. 〈�̂�8〉 = 0 for any � and 8, so do all the crossed second

moments. In this case, based on eqs. (5.17) and (5.18), we get that

Δ�=
ΔC

=

"∑
8=1

D
(8)
(
[�=−1] (5.41)

with D
(8)
(

the dissipator that would arise if ( were in contact only with

bath 8. We can thus say that the dissipative effects of uncorrelated baths

are additive. We point out that this holds as well (for ΔC short enough)

when 〈�̂�8〉 ∝
√
ΔC since in such a case 5.40 can be neglected. This can

happen with states like 5.34 as we discussed in section 5.8.

For correlated baths, namely "(2>AA) ≠ 0 [cf. eq. (5.37)], crossed second

moments are generally non-zero. An interesting consequence of this

occurs when ( itself is made out of" subsystems (1, . . . , (" such that

the collisions with ancillas of the 8th bath involve only subsystem (8 [see

fig. 5.3(b)]. In this case, therefore, operator �̂�8 in eq. (5.39) acts only on

(8 . Then, based on 5.18, we see that the dissipator entering the ME will

in particular contain terms of the form

∝ 〈�̂�9 �̂�8〉(�̂�8�=−1�̂�9 − 1

2
[�̂�9�̂�8 , �=−1]+) f>A 8 ≠ 9 . (5.42)

These represent incoherent interactions between subsystems (8 and ( 9
mediated by the baths. Thus, correlations between the baths enable the

establishment of correlations between the subsystems of ( even if these

are not directly coupled.
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Note that this is indeed the

only term in 5.45 which is

not invariant under the ex-

change (1 ↔ (2. Instead,

it transforms as Ĥ(= →
−Ĥ(=

5.10 Cascaded master equation

Asanother important instance,wenext derive theMEof the cascadedCM

of section 4.8. Recall that the collision unitary is given by [cf. eq. (4.38)]

*̂= = *̂2,=*̂1,= with *̂ 9 ,= describing the sub-collision with subsystem

( 9 (see 4.2). Equivalently, one can think of a single collision with a

time-dependent interaction that reads

+̂=(C) =
{
+̂1,= C ∈ [C=−1, C=−1 + ΔC/2[
+̂2,= C ∈ [C=−1 + ΔC/2, C=[

(5.43)

with +̂9 ,= the interaction Hamiltonian between = and ( 9 such that

*̂ 9 ,= = 4−8+̂9 ,=
ΔC
2 . Thus +̂= suddenly switches from +̂1= to +̂2= after the

first subcollision.

The framework that we developed previously (in particular sections 5.1

and 5.4) holds for a time-independent +̂= , hence it cannot be directly

applied for deriving the ME. We thus start over by expanding each sub-

collision unitary *̂ 9= to the second order in ΔC/2, eventually discarding

terms of order higher than∼ ΔC2. This yields the overall collision unitary

*̂= = *̂2=*̂1= ' Î − 8
(
+̂1= + +̂2=

)
ΔC′ −

(
1

2
+̂2

1= + 1

2
+̂2

2= + +̂2=+̂1=

)
ΔC′2.

(5.44)

with ΔC′ = ΔC/2 Note that this is not invariant under the swap 1↔ 2,

which is due to the intrinsic CMunidirectionality discussed in section 4.8.

To gain a better physical insight, we note that 5.44 can be equivalently

arranged as

*̂= ' Î − 8
(
+̂1= + +̂2= + 8 ΔC

′
2

[
+̂1= , +̂2=

] )
ΔC′ − 1

2

(
+̂1= + +̂2=

)
2

ΔC′2

(5.45)

Now observe that, if each ancilla collided with (1 and (2 at once during
the time ΔC′, then one would get the usual collision unitary 5.1 (for

ΔC → ΔC′) with the natural replacement +̂= → +̂1= + +̂2= . This matches

all the terms in 5.45 but the unitary contribution coming from the effective

Hamiltonian Ĥ(= . Hence, the intrinsic system’s unidirectionality, due

to the fact that ancillas collide first with (1 and then with (2, is fully

condensed in the appearance of the effective Hamiltonian Ĥ(= . To work

out the ensuing ME of (, let us expand +̂9 ,= as +̂9 ,= =
∑

� 6��̂ 9� �̂�
[cf. eq. (5.14)]. Plugging this into 5.45 and proceeding analogously to

sections 5.1 and 5.4, we get the discrete ME

Δ�=
ΔC

= −8 [�̂′( + �̂
′′
( , �=−1] + D([�=−1] (5.46)
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with

�̂′( =
∑
�

6′� 〈�̂�〉�̂�

�̂′′( = TA={Ĥ(=�=} = 8 ΔC
2

∑
��

6′� 6
′
�

〈
[�̂� , �̂�]

〉
�̂2��̂1� (5.47)

D([�=−1] =
∑
��

6′�6
′
� ΔC〈�̂��̂�〉

(
�̂��=−1�̂� − 1

2

[
�̂��̂� , �=−1

]
+

)
where we set 6′� = 6�/2 and defined the collective operators �̂� =

�̂1�+�̂2�. Here, �̂′
(
and D( have the same form as eq. (5.18) with �̂� now

intended as collective operators. Notably, the second-order Hamiltonian

Ĥ(= upon partial trace results in an effective coherent coupling between

(1 and (2 (mediated by the ancillas) described by Hamiltonian �̂′′
(
.

We point out that this is an effective second-order Hamiltonian of (, in

contrast to �̂′
(
[this being the analogue of the Hamiltonian in eq. (5.18)],

which in particular explains the notation we adopted.

As a significant example, let each ancilla be a qubit initially in state |0〉=
with +̂9 ,= of the form

+̂9 ,= =

√
2�
ΔC

(
�̂ 9 �̂=+ + �̂†9 �̂=−

)
. (5.48)

Then the only non-vanishing ancilla moments entering the ME are

〈�̂=−�̂=+〉 = 1. This yields

�̂′( = 0

�̂′′( =
�
2
(8�̂2�̂

†
1
− 8�̂1�̂

†
2
)

D([�=−1] = �
(
�̂ �=−1 �̂

† − 1

2
[�̂†�̂, �=−1]+

)
(5.49)

with �̂ = �̂1 + �̂2, hence in the CTL we end up with the ME

¤� = −8
[
�
2
(8�̂2�̂

†
1
− 8�̂1�̂

†
2
), �

]
+ �

(
�̂ � �̂† − 1

2

[
�̂†�̂, �

]
+

)
. (5.50)

5.11 Equations of motion: state of the art

Explicit derivations of the Lindblad master equation through the

continuous-time limit of a CM were given in Ref. [24, 62]. See also

Ref. [63] by the same authors of Ref. [62], which includes a general char-

acterization of decoherence channels of a qubit and their implementation

via suitably defined CMs.
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For a strong collision, the

collision unitary *̂= can-

not be approximated to the

lowest orders.

The dynamics most intuitively associated with a CM is arguably the

dissipative interaction of a system with a dilute gas of particles (ancillas).
In such a case, the time between two next system–ancilla collisions is

random, at variance with the assumption of time-periodic collisions (one

for eachΔC)made in our discussion. Yet, as shown inRef. [64], a Lindblad

ME can be worked out in this case as well even with strong collisions,

the associated rate � (entering the dissipator) being now the number of

collisions per unit time (similar CM andME appeared in Ref. [65]). Note

that, if the gas particles are quantum then a CM description relies on

approximating their motion as semiclassical. Ref. [66] showed that this

is equivalent to the low-density, fast-particle limit of a fully quantum

treatment.

Themicromaser theory (cf. section 5.7) was first introduced by Javanainen

and Meystre [18–20]. Works that use explicitly the CM approach in

particular for deriving the cavity field’smaster equation are e.g. Refs. [67,

68]. An introduction to micromaser can be found in the textbook by

Meystre and Sargent [61]. See also Ref. [60], which includes the master

equation. Basics of cavity QED and JC model, which we referred to in

section 5.7, can be found e.g. in the textbook by Haroche [59]. Issues

closely related to the continuous-time limit via diverging coupling

strength (see section 5.8) were carefully investigated in Refs. [36, 69] (see

also a previous paper by Milburn [70]). Particular attention was given to

the regime of ultra-short collision times yielding a unitary dynamics (as

we discussed). This paradigm of unitary CM was proposed to carry out

indirect quantum control [71] and universal two-qubit quantum gates in

spintronics systems [72].

Cascaded master equations like 5.50 were independently introduced

in 1993 by Carmichael [73] and Gardiner [74] using the input–output

formalism [61]. They were later derived through a CM in Refs. [54,

55] (introducing an internal bath dynamics as well) although with a

treatment somewhat different than the one in section 5.10. Note that,

for the sake of argument, we considered only a bipartite system (. The

generalization to more than two subsystems is straightforward, leading

to an interesting many-body Hamiltonian �̂′′
(
. Multipartite cascaded

CMs can be advantageously applied to work out MEs of complex

cascaded networks where interference effects can occur [75, 76]. From a

more general perspective, cascaded systems are currently receiving large

attention in quantum optics also due to recent experimental realizations

of chiral emission (e.g. in photonic crystals or fibers) [77].
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The possibility of interpreting the Lindbladmaster equation as the result

of an ensemble average of different stochastic quantum trajectories, each

corresponding to a particular sequence of measurement outcomes on

the environment, is a pillar of open quantum systems dynamics with

important applications in various fields such as quantum optics and

quantum transport [7, 10, 11, 59, 78].

Quantum trajectories emerge very naturally from a CM as soon as one

imagines to measure each ancilla right after its collision with (. This

and related concepts are the subject of the present section.

6.1 Collision model unraveling

Let us come back to the basic CM in section 4.1 and assume for the

sake or argument that ( and ancillas are initially in the pure states

��#0

〉
and {|"=〉}, respectively (thus �= = |"=〉 〈"= |). Accordingly, the initial
joint state is �0 = |Ψ0〉 〈Ψ0 | with |Ψ0〉 =

��#0

〉
⊗= |"=〉.1 At step =, this is

turned into

|Ψ=〉 = *̂= · · · *̂1

��#0

〉
|"1〉 · · · |"=〉 . (6.1)

Let now {|:=〉} be a single-ancilla orthonormal basis.Using the basis com-

pleteness, Eq. 6.1 can be equivalently arranged by putting

∑
:< |:<〉 〈:< |

in front of each collision unitary *̂< as

|Ψ=〉 =
(∑
:=

|:=〉 〈:= |
)
*̂= . . .

(∑
:1

|:1〉 〈:1 |
)
*̂1

��#0

〉
|"1〉 · · · |"=〉

=
∑
:=

· · ·
∑
:1

(
|:=〉 〈:= | *̂=

)
. . .

(
|:1〉 〈:1 | *̂1

) ��#0

〉
|"1〉 · · · |"=〉 .

(6.2)

Each ancilla state |"<〉 can now bemoved to the left and placed to the im-

mediate right of the corresponding unitary *̂< , while kets |:1〉 , . . . , |:=〉
can be moved to the right of

��#0

〉
. This allows to arrange |Ψ=〉 as

|Ψ=〉 =
∑
:=

· · ·
∑
:1

〈:= | *̂= |"=〉 . . . 〈:1 | *̂1 |"1〉
��#0

〉
|:1〉 · · · |:=〉 .

(6.3)

1
In the present section, we use a compact notation such that |"=〉 = |"=〉= (and similarly

for bras). This convention simplifies the formalism without affecting clarity.
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Figure 6.1: Quantum trajectories in the all-qubit collision model. Like the basic CM of

4.1, ancillas are prepared in ⊗= |0=〉 (thus uncorrelated) and (, initially in state |+〉,
collides with each sequentially. After the collision [shown in panel (a)], the ancilla gets

correlated with ( and (prior to the next collision) is measured in the basis {|0=〉 , |1=〉}
(b). If outcome 0 is recorded (c) no jump takes place and the state of ( is only slightly

affected. Instead, if outcome 1 is recorded (d) then ( abruptly jumps to state |0〉. Note

that, in either case, the ancilla is eventually uncorrelated with (, this being left in a

pure state. We assumed that ancillas from 1 to = − 1 were all measured in |0〉.

Each sandwich on the left of

��#0

〉
is effectively an operator on (

 ̂:< = 〈:< | *̂< |"<〉 , (6.4)

in terms of which eq. (6.3) is compactly expressed as

|Ψ=〉 =
∑
:=

· · ·
∑
:1

(
 ̂:= · · ·  ̂:1

��#0

〉)
|:1〉 · · · |:=〉 . (6.5)

Note that operators 6.4 are generally non-unitary. Thereby, the state of (

between brackets (. . .) is not normalized. We thus rearrange eq. (6.5) in

the equivalent form

|Ψ=〉 =
∑
:=

· · ·
∑
:1

√
?:1···:=

(
 ̂:= · · ·  ̂:1

��#0

〉
√
?:1···:=

)
|:1〉 · · · |:=〉 . (6.6)
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with

?:1···:= = ‖  ̂:= · · ·  ̂:1

��#0

〉
‖2 =

〈
#0

��  ̂†
:1

· · ·  ̂†
:=
 ̂:= · · ·  ̂:1

��#0

〉
,

(6.7)

where

∑
:= · · ·

∑
:1
?:1···:= = 1. Here, we used that Eq. 6.4 defines a set of

Kraus operators (see A.3) which thus fulfill

∑
:<  ̂

†
:<
 ̂:< = I.

The above shows that the CM dynamics can be seen as an average

over a (very large) ensemble of “histories" that result from projective

measurements on the ancillas.

Right after colliding with ( [see fig. 6.1(a)], each ancilla is measured in

the basis {|:<〉} [cf. Eq. 6.2] and the measurement outcome recorded, as

sketched in fig. 6.1(b). If this takes the specific value :< , then operator  ̂:<
is applied on (. A specific sequence of measurements results {:1, . . . , :=}
thus determines a particular history (realization), at the end of which

( is in state  ̂:= · · ·  ̂:1

��#0

〉
(up to a normalization factor), this history

occurring with probability ?:1···:= . Remarkably, in each history, the state

of ( remains pure at each step.

Note that the dynamics of histories does depend on the measurement

basis {|:<〉}. Different choices of this basis will result in different

unravelings of the same average dynamics (using a common jargon).

What we called histories so far usually go under the name of quantum
trajectories. The way the system evolves in a specific quantum trajectory

is said conditional dynamics: which Kraus operator 6.4 is to be applied on

( at each step is conditioned to the specific outcome of the measurement

on the ancilla (recall that in quantum mechanics measurement is an

intrinsically stochastic process). A quantum circuit representation of the

conditional CM dynamics is shown in fig. 6.2.

Figure 6.2: Quantum circuit representation of a CM conditional dynamics. Compared

to a basic CM (unconditional) dynamics [see 4.1(c)], each ancilla undergoes a pro-

jective measurement right after it collided with (. The double wire indicates that

the measurement outcome can be encoded as classical information [21]. The usual

CM (unconditional) dynamics can be equivalently seen as an ensemble average over

all possible conditional evolutions, each corresponding to a possible sequence of

measurement outcomes.
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6.2 POVM and weak measurements

The above framework, when the interaction of ( with each ancilla is

very weak, in fact defines the concept of weak measurements in quantum

mechanics.

Introductory textbooks to quantummechanics usually describemeasure-

ments on a quantum system in terms of an orthonormal basis {|:〉}, each
being the eigenstate of a certain observable with associated eigenvalue

: (assume for now that these are non-degenerate). According to the

wavefunction collapse axiom, a measurement with outcome : projects (

(initially in state

��#〉
) in the eigenstate |:〉 with probability ?: = |〈: |#〉|2.

In the density–matrix language, this is expressed (and generalized at

the same time) by saying that the act of measurement forces the state of

( to transform as

�→
Π̂:�Π̂:

?:
w8Cℎ

∑
:

Π̂: = I , (6.8)

whose associated probability is given by

?: = TA({Π̂:�} . (6.9)

Here, Π̂: is the projector onto the eigenspace of eigenvalue :.2 The Π̂: ’s

are a set of orthogonal projectors, i.e. Π̂:Π̂:′ = �:,:′Π̂: . Measurements of

this kind are called Von Neumann measurements.

One can now define a generalized quantum measurement as

�→
 ̂:� ̂†:
?:

w8Cℎ
∑
:

Π̂: = I , wℎ4A4 Π̂: =  ̂
†
:
 ̂: , (6.10)

the associated probability being ?: = TA({Π̂:�}. Here, the Π̂:’s are

a set of positive operators (due to the constraint ?: ≥ 0), which are

not constrained to be orthogonal (at variance with Von Neumann

measurements discussed before). Such a generalized quantum measure

is usually referred to as positive operator-valued measure (POVM).

Upon comparison of 6.10 with the framework discussed in the last

section, it should be clear that measuring each ancilla after the collision

effectively performs a sequence of POVMs on (, one at each step. In

this sense, the collisional dynamics is like continuously “watching" the

system. More specifically, when the system–ancilla coupling is weak [as

2
If : is non-degenerate, %̂: = |:〉 〈: |. Also, note that the expression of ?: was obtained

from TA{Π̂:�Π̂:} by using the cyclic property of trace and Π̂2

:
= Π̂: (as Π̂: is a

projector).
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we assumed in chapter 5, cf. Eq. 5.1] one talks about weak measurements.
The essential idea is that, instead of abruptly interrupting the dynamics

through an instantaneous Von-Neumann measurement, one performs a

gentlemeasurement that is yet diluted in time.Nevertheless, occasionally,

this may still result in sudden changes of state (quantum jumps), as

shown in the next section.

6.3 Quantum trajectories in the all-qubit
collision model and quantum jumps

To illustrate the framework in a concrete case, consider the (by now

usual) all-qubit model of section 4.6 for 6I = 0 and 6 =
√
�/ΔC. There,

we had already computed the Kraus operators 6.4 in the ancilla basis

{|0=〉 , |1=〉} [see Eq. 4.29]. Assume that, right before a collision, qubit (

is in a superposition state

��#〉
= 20 |0〉 + 21 |1〉 with |20 |2 + |21 |2 = 1 (we

omit the step index = for a while). The collision with ancilla = and a

subsequent measurement on = in the basis {|0=〉 , |1=〉} with outcome

|0=〉 projects ( into the (unnormalized) state

 ̂0 |#〉 =
(
|0〉 〈0| + cos

√
�ΔC |1〉 〈1|

) ��#〉
= 20 |0〉 + cos

√
�ΔC 21 |1〉 ,

(6.11)

and, if the measurement outcome is |1=〉, into the (unnormalized) state

 ̂1 |#〉 =
(
−8 sin

√
�ΔC |0〉 〈1|

) ��#〉
= −8 sin

√
�ΔC 21 |0〉 . (6.12)
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Figure 6.3: Four sampled quantum trajectories in the all-qubit collision model of

section 4.6 for 6I=0 and 6=
√
�/ΔC [cf. Eq. 4.19] when ( starts in state |+〉( and ancillas

are all prepared in |0=〉, each being measured in the basis {|0=〉 , |1=〉} right after the
collision with (. We plot the survival probability |〈+|#=〉|2 against the step number =,
where each blue (red) dot stands for the measurement outcome |0=〉 (|1=〉). In each case,

the survival probability tends to |〈+|0〉|2=1/2 witnessing that ( eventually converges

to |0〉. Throughout we set 6ΔC=
√
�ΔC=0.2. The plots were obtained through a simple

Monte Carlo simulation, where probabilities 6.13 are updated at each step and used to

randomly select a measurement outcome and hence the corresponding state in Eq. 6.14.

No jump occurs in trajectory (b), which exhibits a smooth exponential decay.

These outcomes occur with probabilities ?: =
〈
#
��  ̂†

:
 ̂: |#〉, which are
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All no-jump trajectories

have just the same evolu-

tion as that in 6.3(b).

If ΔC ∼ 6−1
both out-

comes will generally pro-

duce a sudden change in

the state of ( as is clear

from eqs. (6.11) and (6.12).

explicitly worked out as

?0 = |20 |2 + cos
2

√
�ΔC |21 |2 , ?1 = sin

2

√
�ΔC |21 |2 (6.13)

(note that we correctly get ?0 + ?1 = 1). Accordingly, the normalized

version of eqs. (6.11) and (6.12) reads

 ̂0 |#〉
‖ ̂0 |#〉‖

=
20 |0〉 + cos

√
�ΔC 21 |1〉√

?0

,
 ̂1 |#〉
‖ ̂1 |#〉‖

=
−8 sin

√
�ΔC 21 |0〉√
?1

≡ |0〉

(6.14)

up to an irrelevant phase factor in the last identity. Thus both  ̂0 and  ̂1

have the effect of enhancing the |0〉’s component of

��#〉
. This entails that��#=〉 asymptotically converges to |0〉. Therefore, we get that ( eventually

ends up in |0〉( (cf. section 4.7) even along single trajectories.

eqs. (6.13) and (6.14) can beused to simulate quantum trajectories through

a random number generator. Some samples are shown in 6.3, where we

plot the survival probability 〈+|#=〉〈#= |+〉 for 6ΔC =
√
�ΔC = 0.2 when

( starts in state |+〉. Trajectories typically exhibit a continuous evolution,

corresponding to repeated measurement outcomes |0=〉 [recall sketch
in 6.1(c)] interrupted by a sudden jump when outcome |1=〉 is recorded
[recall sketch in fig. 6.1(d)]. In the latter case, ( abruptly collapses to

|0〉 in agreement with 6.12 (signaled by the survival probability which

jumps to 1/2) and then no longer changes its state. The precise step at

which a jump occurs is unpredictable [e.g. compare jumps in fig. 6.3(a),

(c) and (d)]. Note that jumps may even not occur at all, as in fig. 6.3(b)

where no ancilla is detected in |1=〉.

The reason why in the considered example only outcome |1=〉 produces
a sudden jump is that we set a relatively short collision time such that

6ΔC � 1. Indeed, in this limit, eqs. (6.11) and (6.12) reduce to

 ̂0 |#〉 ' 20 |0〉+
(
1 − 1

2
�ΔC

)
21 |1〉 ,  ̂1 |#〉 ' −8

√
�
√
ΔC 21 |0〉 , (6.15)

the associated probabilities being

?0 ' 1 − �ΔC |21 |2 , ?1 ' �ΔC |21 |2 . (6.16)

We see that outcome |0=〉 is very likely and, when occurring, it causes a

tiny shrinking of the |1〉’s component. In contrast, outcome |1=〉 is rather
unlikely. However, if occurring, it causes a dramatic change of the state
of ( which is projected to |0〉 altogether in one shot.
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Using 1/
√

1 − G ' 1 + G/2,
the normalization factor

of  ̂0

��#〉
[cf. eqs. (6.17)

and (6.18)] is 1/√?0 '
1 + �

2
〈�̂+�̂−〉ΔC. Neglect-

ing terms in ΔC2, we thus

get the first identity in

6.19. Also, note that, in the

1= case, we could simply

write

��#=+1

〉
= |0〉.

6.4 Stochastic Schrödinger equation

As seen thus far, during the conditional dynamics the state of ( remains

pure all the time. However, its evolution is generally non-deterministic

due to the occurrence of quantum jumps. In the previous instance,

we saw that outcome |1=〉 causes a sudden jump, in contrast to |0=〉
producing only a small change in the state of (. We would like now both

these behaviors to be incorporated into a single equation that governs

the stochastic time evolution of state

��#〉
, like the usual Schrödinger

equationdoes for conventional unitary (deterministic) dynamics. We

next show how to achieve this for the CM and associated coupling

Hamiltonian +̂= considered in the previous section when ( starts in a

pure state (a generalization will be presented in section 6.6).

To this aim, we first express the low-order expansion of the Kraus

operators [scf. eq. (6.11)–6.12] in the more compact form

 ̂0 |#〉 =
(
I − 1

2
�ΔC �̂+�̂−

) ��#〉
,  ̂1 |#〉 = −8

√
�
√
ΔC �̂−

��#〉
, (6.17)

(we used that �̂+�̂− |#〉 = 21 |1〉 and �̂− |#〉 = 21 |0〉), the associated

probabilities being

?1 = 1 − ?0 = � 〈�̂+�̂−〉ΔC , (6.18)

where 〈�̂+�̂−〉=〈# | �̂+�̂− |#〉.

The normalized state of ( for each measurement outcome is thus��#=+1

〉
=

(
I − 1

2
�ΔC (�̂+�̂−−〈�̂+�̂−〉)

) ��#=〉 (f>A 0=)��#=+1

〉
=

�̂−
��#=〉√
〈�̂+�̂−〉

(f>A 1=) (6.19)

The corresponding changes in the state of (, Δ
��#=〉 = ��#=+1

〉
−

��#=〉,
read

Δ
��#=〉 = −1

2
�ΔC (�̂+�̂−−〈�̂+�̂−〉)

��#=〉 (f>A 0=)

Δ
��#=〉 = (

�̂−√
〈�̂+�̂−〉

− I
) ��#=〉 (f>A 1=) (6.20)

We next define a binary random variable Δ# , which can take on values 0

or 1 with probabilities ?0 and ?1, respectively. Clearly, (Δ#)2 ≡ Δ# and

Δ# = 0 · ?0 + 1 · ?1 = ?1. Hence, in light of Eq. 6.18,

Δ# = (Δ#)2 = ?1 = � 〈�̂+�̂−〉ΔC . (6.21)
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This continuous-time limit

corresponds to the one dis-

cussed in section 5.8 [in-

deed the coupling strength

was chosen here in agree-

ment with Eq. 5.32].

The meaning of Δ# should be clear: Δ# = 1 when outcome 1= is

recorded and ( thereby evolves as in the second identity 6.20. Now, we

combine together the two increments 6.20 as

Δ
��#=〉 = −1

2
�ΔC (�̂+�̂−−〈�̂+�̂−〉)

��#=〉 + (
�̂−√
〈�̂+�̂−〉

− I
) ��#=〉 Δ# .

(6.22)

When Δ# = 0, Δ
��#=〉 reduces to that for outcome 0= . When Δ# = 1,

instead, we would get the sum of the two possible increments. However,

for ΔC short enough (as we are assuming), the term ∼ Δ# dominates

[plots such as those in 6.3 could have been generated using Eq. 6.22].

Now, we naturally take the continuous-time limit ΔC → 0, obtaining

3
��#〉

= −1

2
� (�̂+�̂−−〈�̂+�̂−〉)

��#〉
3C +

(
�̂−√
〈�̂+�̂−〉

− I
) ��#〉

3# , (6.23)

where

3# = (3#)2 = � 〈�̂+�̂−〉 3C . (6.24)

Eq. 6.23 fully describes the stochastic evolution of ( and indeed usually

goes under the name of stochastic Schrödinger equation. Note that, in

contrast to the usual (deterministic) Schrödinger equation, this is highly

nonlinear. An equivalent way to write it is

3
��#〉

= −8�̂
e 5 5

��#〉
3C + 8 �

2
〈�̂+�̂−〉

��#〉
3C +

(
�̂−√
〈�̂+�̂−〉

− I
) ��#〉

3# ,

(6.25)

where

�̂
e 5 5 = −8 �

2
�̂+�̂− (6.26)

is an effective non-Hermitian Hamiltonian.

6.5 Unconditional dynamics: recovering the
master equation

Based on the discussion in section 6.1, the ensemble average of 6.23,

namely the average over all possible outcomes of the random variable

3# , must return the Lindblad ME (recall sections 5.3, 5.4 and 5.8). To

prove this, we first work out the density–matrix version of Eq. 6.23. The

differential increment of � =
��#〉 〈

#
��
is

3� = 3
(��#〉 〈

#
��) = (

3
��#〉) 〈

#
�� + ��#〉

3
〈
#
�� + 3 ��#〉

3
〈
#
�� . (6.27)
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As a point of utmost importance, note that, although of second order

with respect to 3#, the last term must be retained since (3#)2 is in fact

of first order in 3C [cf. Eq. 6.24]. After plugging 6.23 and its bra in 3
��#〉

and 3
〈
#
��
, respectively, we replace 3# and (3#)2 with their common

average 6.24. To first order in 3C, this yields as expected the Lindblad

ME (see A.7 for details)

3� = �
(
�̂−� �̂+ − 1

2

[
�̂+�̂−, �

]
+

)
3C ,

which we formerly derived in a different way in section 5.8.

Consistently with the previous terminology (see end of section 6.1), any

reduced dynamics discussed in chapters 4 and 5 – in particular that of ( –

is referred to asunconditional dynamics. In real experiments, unconditional

dynamics are usually not directly measurable but rather inferred by

averaging over a large enough number of quantum trajectories. In this

sense, although inherently stochastic, quantum trajectories reflect more

closely the experimental reality. In contrast, the unconditional dynamics

has a somewhat more indirect relationship with experiments but is fully

deterministic.

We mention that the connection with the Lindblad master equation

just discussed has major computational applications in that it provides

the basis for the widely used quantum jump method or Monte Carlo
wave function [59, 78–80]. This allows to work out the dynamics of

open quantum systems, especially of large dimension, by keeping track

of their wavefunction over simulated quantum trajectories (and then

averaging), thus bypassing the computationally demanding use of the

density matrix.

6.6 A more general stochastic Schrödinger
equation

Consider again the general (Markovian) CM in section 5.4 with cou-

pling Hamiltonian 5.14 [which we assumed in the derivation eqs. (5.17)

and (5.19)]. The low-order collision unitary 5.1 then explicitly reads

*̂= ' I − 8
∑
�

6��̂��̂�ΔC − 1

2

∑
��

6�6��̂��̂��̂��̂� ΔC
2 . (6.28)

For simplicity we do not consider free Hamiltonian terms, which would

simply result in an additional term ∼ ΔC (we come back to this point at

the end).
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For the sake of argument

and to better highlight the

physics, as done through-

out this Section, we will

keep assuming that both

the system and ancilla ini-

tial states are pure. The ex-

tension to mixed states is

straightforward.

The two quantities be-

tween brackets are eas-

ily shown to be mutually

adjoint by recalling that∑
� 6��̂� �̂� is Hermitian.

We will restrict to qubit ancillas (initially uncorrelated as usual), each

prepared in state |"=〉. We also assume that first moments of the bath

vanish [recall Eq. 5.15], i.e. 〈�̂�〉 = 〈"= |�̂� |"=〉 = 0 for all � and =.

Based on section 6.1 [see in particular eqs. (6.4) and (6.5)], the =th

collision transforms the state of ( and ancilla = as

*̂=

��#=−1

〉
|"=〉 =  ̂0

��#=−1

〉
|0=〉 +  ̂1

��#=−1

〉
|1=〉 , (6.29)

where, combining eqs. (6.4) and (6.28), operators  ̂: are given by

 ̂: = 〈: |"=〉 I +  ̂(1): ΔC +  ̂
(2)
:
ΔC2 , (6.30)

with

 ̂
(1)
:
= −8

∑
�

6�〈: |�̂� |"=〉 �̂� ,  ̂
(2)
:
= −1

2

∑
��

6�6� 〈: |�̂��̂� |"=〉 �̂��̂� .

(6.31)

From now on, we drop index =. We consider next the case that : = 0, 1

with |"〉 = |0〉, i.e. we measure the ancilla in a basis whose an element

is just the initial state |"〉. This together with our initial assumption

〈�̂�〉 = 0 in particular yield

〈: |"〉 = �:,0 I ,  ̂
(1)
0
= 0 , 〈0|�̂��̂� |"〉 = 〈0|�̂� |1〉〈1|�̂� |0〉 , 〈1|�̂��̂� |"〉 = 0 ,

where to compute the second moments we inserted |0〉 〈0| + |1〉 〈1| = I

between �̂� and �̂�. Thereby

 ̂
(2)
0
= −1

2

∑
�

6� 〈0|�̂� |1〉�̂�︸                ︷︷                ︸
= �̂†

∑
�

6�〈1|�̂� |0〉�̂�︸                ︷︷                ︸
= �̂

,  ̂
(2)
1
= 0 , (6.32)

where we suitably defined an operator �̂ on (.

Putting together all the above and setting 6� =
√
��/ΔC, we conclude

that

 ̂0 = I − 1

2
!̂†!̂ΔC ,  ̂1 = −8!̂

√
ΔC (6.33)

with associated probabilities

?1 = 1 − ?0 = 〈!̂†!̂〉ΔC , (6.34)

where the jump operator !̂ is given by

!̂ =
√
ΔC �̂ =

∑
�

√
�� 〈1|�̂� |0〉�̂� . (6.35)

In the example of section 6.4 [see in particular eqs. (6.17) and (6.34)],
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!̂ =
√
� �−.

Since the structure of Kraus operators 6.33 is identical to 6.17, the

reasoning followed in section 6.4 can be formally repeated leading to the

general stochastic Schrödinger equation [cf. eqs. (6.23) and (6.24)]

3
��#〉

= −1

2
(!̂+!̂−−〈!̂+!̂−〉)

��#〉
3C +

©«
�̂−√
〈!̂†!̂〉

− I
ª®®¬
��#〉

3# , (6.36)

where 3# = (3#)2 = 〈!̂+!̂−〉 3C. In the common case where an ex-

ternal drive or local field is applied on ( one simply needs to add

the extra term −8�̂(

��#〉
3C, where Hamiltonian �̂( could generally be

time-dependent.

6.7 Quantum trajectories: state of the art

We already mentioned in the Introduction the seminal works by Caves

andMilburn (see in particular Ref. [17]). Therein, each ancilla is modeled

as a quantum harmonic oscillator which gets displaced due to the

interaction with (. Measuring the resulting displacement implements

a POVM. The corresponding unconditional dynamics is described by

a characteristic ME, whose dissipator (when ( is a harmonic oscillator

itself) has the form D([�] = − [Ĝ , [Ĝ , �]]with  > 0 and Ĝ the position

operator [17]. A bipartite generalization of this collision model (with

additional feedback) has been used more recently in some gravitational

decoherence theories to construct a classical channel that accounts for

Newtonian interaction [81, 82]. These are critically reviewed in Ref. [36],

which encompasses as well a general presentation of metrological

aspects of CMs (another one can be found in an introductory section of

Ref. [38]).

A significant part of the discussion we developed relies on the seminal

paper by Brun [24] already mentioned in the Introduction. At variance

with Caves and Milburn, Brun employs qubit ancillas taking advantage

of the quantum information approach [21].

It is important to note that in the considered instances we always

measured the ancillas in a basis containing the initial state |"=〉. If this
is not the case, then two different outcomes could have comparable

probabilities [unlike e.g. Eq. 6.34 where ?0 � ?1]. The treatment in

section 6.6 up to Eq. 6.31 would still apply, but the stochastic Schrödinger

equation would be different. A case of this kind is presented in the Brun’s

paper and shown to lead to a quantum state diffusion equation [24].



56 6 Quantum trajectories

We point out that micromaser (see section 5.7) is a setup enabling direct

measurement of the state of each ancilla (embodied by a flying atom).

The related statistics of detections thus supplies informations on the

cavity field and has been extensively studied, see e.g. Refs. [83].

Finally, we mention that the collisional picture of quantum trajectories

can be profitably applied to quantum steering [84] and engineering

of quantum jump statistics [85]. Important applications to stochastic

quantum thermodynamics and quantum optics will be discussed in

sections 7.13 and 9.13, respectively.
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We now address the thermodynamics of quantum CMs in non - equi-

librium transformations, this being arguably the area in which CMs

(also known in this context as repeated interaction schemes) occur most

frequently. As the field is growing fast, the related body of literature

is already considerable enough that several relevant topics cannot be

covered here. Thus, given the pedagogical attitude of our paper, the

present section aims to provide the reader with some basic tools for

applying CMs in quantum thermodynamics problems. A number of

topics that we do not discuss, e.g. exploiting CMs as a resource for

improving thermodynamic performances, are mentioned in the state of

the art 7.13 and related references supplied therein.

Before formulating general definitions and laws, we discuss a specific

but quite paradigmatic non-equilibrium process: the relaxation to an

equilibrium state.

7.1 Relaxation to thermal equilibrium

In section 4.7, we introduced mixing collision maps, namely those

dynamics such that ( reaches a state �∗ no matter what initial state it

started from (i.e. �= → �∗ for any �0) . If so, then �∗ is necessarily the

only possible steady state, i.e. the unique fixed point of the collision

map (E[�∗] = �∗). It is natural to ask whether, by converging to �∗, (
inherits some intensive property of the bath. The most natural one is

temperature: if the bath is in an equilibrium state at a given temperature,

will ( asymptotically end up in a Gibbs state at the same temperature?

In other words, we wonder whether ( will thermalizewith the ancillas.

We can formally define thermalization in terms of a basic CM (cf. sec-

tion 4.1) where each ancilla is initially in the Gibbs state (henceforth

referred to as thermal state)

�
tℎ =

4−��=

/=
(7.1)

with � = 1/( )) the inverse temperature and /= = TA=
{
4−��=

}
the

partition function. We say that thermalization occurs when �= → �∗ for
any �0 such that the asymptotic state �∗ is a thermal state of ( at the
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A Fock or number state

|:〉= (for :=0, 1, 2, . . .)

fulfills �̂= |:〉= =$0: |:〉= .
Hence, 4−��̂= =∑
: 4
−�$0: |:〉= 〈: |.

same temperature as each ancilla, i.e.

�∗ =
4−��(

/(
. (7.2)

This definition can be generalized in many ways. For instance, one can

conceive a generalized thermalization whose steady state is given by

7.2 but � generally differs from the bath’s one. If so then equilibrium is

never reached. Another possibility is that ( ends up in a thermal state

like 7.2 even though the bath is not in a thermal state (this would again

entail lack of equilibrium).

7.2 System thermalizing with a bath of
quantum harmonic oscillators

Atypical instance to illustrate thermalization is the basicCM in section 4.1

in the case that ancillas are quantum harmonic oscillators (with associ-

ated bosonic ladder operators 1̂= and 1̂†= such that [1̂= , 1̂†=′] = �=,=′). The

free Hamiltonian of ( (ancilla =) is �̂(=$0�̂+�̂− (�̂==$0 1̂
†
= 1̂=), while

for the interaction Hamiltonian we take +̂==
√
�/ΔC (�̂+1̂= +H.2.). The

nature of �̂±, which are ladder operators of ( fulfilling [�̂( , �̂±]=±$0�̂±,
will be left unspecified for a while.

Each ancilla is initially in the Gibbs state [cf. Eq. 7.1]

�
tℎ =

4−��=

/=
=

∑
:

4−�$0:

/=
|:〉= 〈: | , (7.3)

with {|:〉=} the basis of Fock states. Recalling eqs. (5.17) and (5.18), we

see that �̂′
(
= 0 while the dissipator is given by

D([�=−1] =� 〈1̂= 1̂†=〉(�̂−�=−1�̂+ − 1

2
[�̂+�̂−, �=−1]+)+

� 〈1̂†= 1̂=〉(�̂+�=−1�̂− − 1

2
[�̂−�̂+, �=−1]+) . (7.4)

Replacing 1̂= 1̂
†
= = 1̂†= 1̂= + 1 and introducing the thermal number of

excitations

=̄$0
= 〈1̂†= 1̂=〉 = TA={1̂†= 1̂= �=} =

1

4�$0 − 1

, (7.5)

the dissipator is written as

D([�=−1] =�−( �̂−�=−1�̂+ − 1

2
[�̂+�̂−, �=−1]+)+

�+(�̂+�=−1�̂− − 1

2
[�̂−�̂+, �=−1]+) , (7.6)
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where we defined the emission and absorption rates

�− = � (=̄$0
+ 1) , �+ = � =̄$0

. (7.7)

This is a well-known master equation describing a system in contact

with a thermal bath, where we can recognize the Einstein coefficients [86]
�� = � (spontaneous emission rate) and �E = � =̄$0

(stimulated

emission/absorption rate). These are related to rates 7.7 according

to �− = �E + �E and �+ = �E. Note that eqs. (7.5) and (7.7) entail

�+
�−

= 4−�$0 . (7.8)

This identity connects rates (associated with relaxation, thus a non-

equilibrium process) to temperature (defined for equilibrium states).

Similar conclusions hold when ancillas are qubits (instead of harmonic

oscillators), i.e. �̂= = $0�̂=+�̂=− and +̂= =
√
�/ΔC

(
�̂+�̂=− +H.2.

)
. The

resultingME dissipator is identical to 7.6 except that the thermal number

of excitations of each ancilla is nowgiven by =̄$0
= 1/(4�$0+1) [instead of

7.5]. This is just ME 5.29 which we encountered in section 5.7, describing

the cavity dynamics of amicromaserwith the atomic population given by

? = =̄$0
and for � = ΔC, 6 =

√
�/ΔC (where in that case ( is a harmonic

oscillator such that �̂− = �̂†+ = 0̂). Note that this rules out atomic initial

states such that ? > 1/2, i.e. that cannot be regarded as thermal states at

any temperature (unless one defines a negative temperature such that

� < 0).

Mostly for the sake of argument, in all the forthcoming instances we will

refer to the case that ( is a qubit (ancillas being still harmonic oscillators),

thus we will set �̂± = �̂±.

In the basis {|0〉 , |1〉} of (, ME 7.6 translates into a pair of differential

equations for the excited-state population ? and coherences 2 [recall

Eq. 4.30], which read

¤? = �+(1 − ?) − �−? , ¤2 = −1

2
(�++�−)2 . (7.9)

Under stationary conditions the derivatives vanish, yielding 2 = 0 and

? =
1

1 + (�+/�−)−1

. (7.10)

Using 7.8 this means that, regardless of the initial state, ( eventually

ends up in

�
tℎ =

4−��(

TA(
{
4−��(

} = 1

1 + 4−�$0

|0〉( 〈0| +
4−�$0

1 + 4−�$0

|1〉( 〈1| , (7.11)
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The state can still be ar-

ranged as a thermal state

but at an effective tempera-

ture different from the an-

cilla’s one.

namely the thermal state at the same temperature of ancillas (defined

by �). Thus thermalization occurs.

Although very common, the thermalization process considered here

regards a specific class of systems. In the next section, we consider a

general situation where ( and ancillas are unspecified, shedding some

light at the same time on the reason why thermalization may take

place.

7.3 Thermalization and energy conservation

Occurrence of thermalization depends, in particular, on the form of

system–ancillaHamiltonian. For example, let us consider the last instance

of the previous section and simply add a detuning to ( such that

�̂( = ($0 + �)�̂+�̂−. The ancilla thermal state �= and rates 7.7 are

unaffected by � and thus ME 7.6 continues to hold unchanged, hence

( still asymptotically converges to 7.11. Yet, this is not the thermal state

of ( at the ancilla temperature, thus thermalization now does not take

place.

An important necessary (although generally not sufficient) condition

for thermalization to occur is that collisions be energy-conserving. This
means that �̂( + �̂= (total free Hamiltonian of ( and =th ancilla) is a

constant of motion in the =th collision, i.e. it commutes with the collision

unitary

[*̂= , �̂( + �̂=] = 0 . (7.12)

This is because if this is true then the (-ancilla state

4−��(

/(
⊗ 4
−��=

/=
∝ 4−�(�̂(+�̂=)

(7.13)

is clearly unaffected by the =th collision. It follows that state 7.2 is a fixed

point of the collision map (i.e. a steady state), this being a necessary

condition for thermalization as we discussed in sections 4.7 and 7.1.

Based on the form of the collision unitary [cf. eqs. (4.2) and (5.1)], energy

conservation can be equivalently expressed as

[+̂= , �̂( + �̂=] = 0 . (7.14)

In the example mentioned at the beginning of this subsection, when

� ≠ 0 7.14 does not hold thus thermalization cannot occur.

Physically, conservation of �̂( + �̂= means that if the free energy of (

decreases then that of the colliding ancilla grows by exactly the same
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From Eq. 7.15,

�̂(�̂� = �̂��̂( − $��̂�.

Hence, �̂(�̂� |�〉 =

�̂��̂( |�〉 − $��̂� |�〉 =

��̂� |�〉 − $��̂� |�〉 =

(� − $�)�̂� |�〉, showing

that �̂� |�〉 is eigenstate of
�̂(. The property for �̂†� is
proven likewise by noting

that [�̂( , �̂
†
�] = $��̂

†
�.

Note that �̂� |�〉 (or

�̂†� |�〉) could be zero:

e.g. for a qubit of Hamil-

tonian $0 |1〉 〈1| we have

�̂− |0〉 = �̂+ |1〉 = 0.

amount (and viceversa). This intuition can be made formally rigorous

as follows.

Let us first define an eigenoperator �̂� of �̂( with eigenvalue $� as an

operators on ( fulfilling

[�̂( , �̂�] = −$��̂� . (7.15)

Likewise, eigenoperators of �̂= are defined as

[�̂= , �̂�] = −F��̂� (7.16)

with F� the associated eigenvalues. Here, �̂� and �̂� are defined as

dimensionless operators. Note that the values taken by index � in

eqs. (7.15) and (7.16) are generally different.

Now, for given �̂( and �̂= , it can be shown (see A.8) that the most

general class of interaction Hamiltonians +̂= satisfying 7.14 has the form

+̂= =
∑
�

6�

(
�̂†� �̂� + �̂� �̂

†
�

)
w8Cℎ $� = F� . (7.17)

It can be immediately checked that 7.17 fulfills 7.14.

Many coupling Hamiltonians appearing throughout this paper can be

recognized as falling within this class. Note that +̂= ≠ 0 only provided

that there exist eigenvalues common to both �̂( ad �̂= . To make clear

the physical meaning of 7.17, it suffices to consider a generic eigenstate

|�〉 of �̂( with energy � and note that �̂� |�〉 is another eigenstate

but with energy � − $, while �̂†� |�〉 is an eigenstate with eigenvalue

� + $. Analogous properties hold for �̂�. Thereby, according to +̂= , if (

undergoes a transition |�8〉 →
��� 5 〉 changing its energy by the amount

$ = � 5 − �8 then the ancilla will make a simultaneous transition with

energy change −$. For instance, in section 7.1, if ( is a qubit making

the transition |0〉 → |1〉 with energy gain $0 then a harmonic-oscillator

ancilla can only decay from a Fock state |:〉 to |: − 1〉 losing the same

amount of energy $0.

The general ME corresponding to interaction 7.17 can be calculated

in terms of the ancilla’s moments [see section 5.4 and Eq. 5.17]. Since

�= is a thermal state (mixture of eigenstates of �̂=), each
ˆ̂
�� (in light

of the aforementioned properties) has vanishing expectation value.

Thus �̂′
(
= 0 [cf. Eq. 5.18]. Regarding the dissipator D(, we note that
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〈�̂�′�̂�〉 = 〈�̂†�′�̂†�〉 = 0 for all � and �′. Therefore,

D([�=−1] =
∑
�,�′

��,�′〈�̂�′�̂†�〉(�̂��=−1�̂
†
�′ − 1

2
[�̂†�′�̂� , �=−1]+)+∑

�,�′
��,�′〈�̂†�′�̂�〉(�̂†��=−1�̂�′ − 1

2
[�̂�′�̂

†
� , �=−1]+) . (7.18)

7.4 Non-equilibrium steady states with baths
at different temperatures

We have dealt so far with a non-equilibrium process where however (

eventually ends up in an equilibrium state. We next consider a dynamics

where( never attains equilibriumalthough it reaches a (non-equilibrium)

steady state. This is the simultaneous interaction with many thermal

baths at different temperatures, which is a paradigmatic dynamics to

illustrate e.g. thermal conduction, where it is known that ( can reach

an effective thermal state at a temperature which is a weighted average

of those of the reservoirs. CMs are very effective in handling multiple

baths as discussed in section 5.9.

We thus focus on a CM comprising " = 2 baths of ancillas labeled

with 1 and 2 as shown in fig. 5.3(a). Ancillas of bath 8 = 1, 2 are in a

thermal state �(8) = �(8)
tℎ

with inverse temperature �8 [cf. Eq. 5.37 for

"(c>AA)= = 0] where in general �1 ≠ �2. The coupling Hamiltonian ruling

each collision has the form 5.39. As in the instance in section 7.1, we

assume that first moments vanish for each bath, i.e. 〈�̂�8〉 = 0. Hence,

¤� = D([�]with [cf. Eq. 5.41]

D([�] = D
(1)
(
[�] + D

(2)
(
[�] , (7.19)

where D
(8)
(

is the dissipator that would arise if ( collided only with

ancillas of bath 8.

As an illustrative instance, fully in line with section 7.1, we model each

ancilla of bath 8 as a harmonic oscillator of frequency $0 initially in a

thermal state like 7.3 with inverse temperature �8 . The coupling with

( has the same form as in section 7.1 with coupling strength

√
�8/ΔC.

Note that ( and all ancillas. have the same frequency $0 in a way that, if

�2 were zero (meaning that bath 2 is decoupled from (), then ( would

reach thermal equilibrium with bath 1 (and viceversa).

Due to 7.19 we see that the dissipator is analogous to 7.6 under the

replacements �±→ �′± with the effective emission and absorption rates
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We write down the ana-

logue of 7.8 under the re-

placements � → �e 5 5 and
�± → �′± and then solve

for �e 5 5 .

More in detail, �̂
(=)
(

can

e.g. be defined as the time

average of �̂((C) during

the =th time interval.

given by

�′± = �(1)± + �
(2)
± , (7.20)

where

�(8)− = �8 (=̄(8) + 1) , �(8)+ = �8 =̄
(8)

w8Cℎ =̄8 = (4�8$0 − 1)−1 . (7.21)

As the ME is formally identical to that in section 7.1, ( asymptotically

converges to an effective thermal state of the form 7.11 with inverse

temperature �
e 5 5 given by

�
e 5 5 =

1

$0

log

�′−
�′+

=
1

$0

log

(�1 + �2)4(�1+�2)$0 − �14
�1$0 − �24

�2$0

�2

(
4�1$0 − 1

)
+ �1

(
4�2$0 − 1

) .

(7.22)

This entails that �
e 5 5 is generally different from both �1 and �2 (confirm-

ing that a non-equilibrium steady state is reached), reducing to �1 for

�2 = 0 and to �2 for �1 = 0. Thermal equilibrium is retrieved when the

two baths have the same temperature, in which case 7.22 predicts (as

expected) �
e 5 5 = �1 = �2 regardless of �1 and �2.

Since CMs can keep track of the bath dynamics in a relatively straight-

forward way, they are an advantageous tool for calculating the rate

of change (or flux) of thermodynamic quantities in non-equilibrium

transformations (such as thermalization) even beyond theweak coupling

regime [i.e. when the collision unitary cannot be approximated with the

lowest-order expansion 5.1]. The general definition and calculation of

these, as well as the basic laws governing them, will be a main subject of

the following subsections.

7.5 Time dependence of the total system–bath
Hamiltonian

We allow the free Hamiltonian of the open system ( to be generally

time-dependent. This allows to encompass situations where ( is subject

to an external classical drive such that one or more parameters of �̂(

can be deterministically modulated in time according to an assigned

protocol. For instance, in the CM considered in section 7.1, we could

have �̂((C) = $0(�C) |4〉〈4 |, describing a time-modulated detuning with

�C some smooth function of time defining the protocol. We also assume

that the characteristic time over which �̂((C) changes is much larger than

ΔC, hence during the =th collision we can approximate �̂((C) ' �̂(=)( so

that �̂( becomes step-dependent.
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Accordingly, the total (-bath Hamiltonian at an arbitrary time C has the

general expression

�̂(�(C) = �̂((C) + �̂� + +̂(C) , (7.23)

with the (time-independent) bath Hamiltonian given by

�̂� =
∑
=

�̂= (7.24)

and the (-� coupling Hamiltonian by

+̂(C) =
∑
=

Θ=(C) +̂= , (7.25)

where Θ=(C) = 1 for C=−1 ≤ C < C= and zero otherwise.

Notably, besides the possible time dependence coming from �((C), the
total Hamiltonian has an intrinsic time dependence due to the sudden

replacement of the bath ancilla interacting with ( at times C = C= . This

time dependence, due to the periodic switching (on and off) of the

interaction with ancillas, is a distinctive feature of CMs not present in

conventionalmicroscopic system–bathmodels. This generally introduces

a contribution to the work as we will see in section 7.8.

7.6 Rate of change of energy of (

We generally define the internal energy (or simply energy) of ( as the

quantum expectation value �( = 〈�̂(〉 = TA({�̂(�}. Since in general

both the operator �̂( itself and the state of ( evolve in time, the change

of �( at each step has two contributions

Δ�( = TA({Δ�̂( �=−1} + TA({�̂( Δ�=} (7.26)

with Δ�̂( = �̂
(=)
(
− �̂(=−1)

(
(subscripts between brackets denote the step

number). Using Eq. 5.23, in terms of the usual decomposition 5.14 of +̂= ,

the rate of change of �( at each collision (i.e. during the time interval

C=−1 ≤ C < C=) is generally given by

Δ�(

ΔC
=

〈
Δ�̂(

ΔC

〉
+8

∑
�

6�〈�̂�〉 〈[�̂� , �̂(]〉+
∑
��

���〈�̂��̂�〉〈�̂��̂(�̂�−1

2
[�̂��̂� , �̂(]+〉.

(7.27)
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7.7 Heat flux

Analogously to (, the energy of the =th-ancilla is defined as �= = 〈�̂=〉.
As ancillas are uncoupled to one another, �= can change only during

the =th collision. Accordingly, Δ�= at the =th step is also the change

of energy of the entire bath �, i.e. Δ�= = Δ�
(=)
�

. This in fact gives the

exchanged heat whose definition reads

�& = −Δ�(=)
�
= −Δ�= . (7.28)

Therefore, using Eq. 5.24, the heat flux (exchanged heat per unit time) is

given by

�&
ΔC

= −8
∑
�

6�〈�̂�〉〈[�̂� , �̂=]〉−
∑
��

���〈�̂��̂�〉〈�̂��̂= �̂�−1

2
[�̂��̂� , �̂=]+〉

(7.29)

(note that, unlike �̂(, �̂= is time-independent).

7.8 Work rate

Work is the contribution to the change of total energy �(� = 〈�̂(�〉
due to the time dependence of the total Hamiltonian operator �̂(�(C)
[cf. Eq. 7.23]. Thus a natural definition of the work performed in each

time step C=−1 ≤ C < C= reads

�, = TA(� {Δ�̂(� �=−1} (7.30)

with Δ�̂(� the change of operator �̂(� in the considered time interval.

Since the only time-dependent terms in �̂(�(C) are (in general) �̂((C)
and +̂(C), we can split �, into a pair of corresponding terms

�, = �,3 + �,sF (7.31)

with

�,3 = TA( {Δ�̂( �=−1} , �,sF = TA(� {Δ+̂ �=−1} , (7.32)

where subscript 3 stands for “drive" (we used that �̂( acts only on ().

Here, �,sF is the contribution due to the time dependence of +̂(C). We

call it switching work since, physically, it is the work (generally) required

for replacing an ancilla which completed its collision with a fresh one.

Now a subtle but relevant issue arises since the time derivative of Θ=(C)
[cf. Eq. 7.25] is singular at times C = C= (for any =). At these times, +̂(C)
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time tn
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<latexit sha1_base64="DjGMBFw37RiaDvFYs8ysTdqUG1Y=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTm9EkbT6ql+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn83ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzJ4nA6E5QzmxhDIt7K2EjaimDG1EJRuCt/zyKmldVL1a9fK+Vqnf5HEU4QRO4Rw8uII63EEDmsBAwjO8wpvz6Lw4787HorXg5DPH8AfO5w+VJo+u</latexit>

V̂n+1

<latexit sha1_base64="eFe++2yZwd7BAHg32yFufCbvafc=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoiFT0WvXisYD+gCWWz3bZLN5uwOxFK6N/w4kERr/4Zb/4bt20O2vpg4PHeDDPzwkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkgNl0LxJgqUvJNoTqNQ8nY4vpv57SeujYjVI04SHkR0qMRAMIpW8v0RRdLqZerCm/bKFbfqzkFWiZeTCuRo9Mpffj9macQVMkmN6XpugkFGNQom+bTkp4YnlI3pkHctVTTiJsjmN0/JmVX6ZBBrWwrJXP09kdHImEkU2s6I4sgsezPxP6+b4uAmyIRKUuSKLRYNUkkwJrMASF9ozlBOLKFMC3srYSOqKUMbU8mG4C2/vEpal1WvVr16qFXqt3kcRTiBUzgHD66hDvfQgCYwSOAZXuHNSZ0X5935WLQWnHzmGP7A+fwBOeyRKg==</latexit>

V̂n�1

<latexit sha1_base64="a5XeKXlHAumvODMzWFLRZqxzb4M=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBiyWRih6LXjxWsB/QhLLZbtulm03YnQgl9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6SGS6F4EwVK3kk0p1EoeTsc38389hPXRsTqEScJDyI6VGIgGEUr+f6IImn1MnXhTXvlilt15yCrxMtJBXI0euUvvx+zNOIKmaTGdD03wSCjGgWTfFryU8MTysZ0yLuWKhpxE2Tzm6fkzCp9Moi1LYVkrv6eyGhkzCQKbWdEcWSWvZn4n9dNcXATZEIlKXLFFosGqSQYk1kApC80ZygnllCmhb2VsBHVlKGNqWRD8JZfXiWty6pXq1491Cr12zyOIpzAKZyDB9dQh3toQBMYJPAMr/DmpM6L8+58LFoLTj5zDH/gfP4APPiRLA==</latexit>

(a)

time tn

<latexit sha1_base64="txBIm3onkdz7u+mkmoVIpCx1W0o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+yrfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpHVR9WrVy/tapX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2SkjeE=</latexit>

tn�1+"

<latexit sha1_base64="uP29NRkeqz6l/pczBb/YzJeHWe0=">AAACAHicbVBNS8NAEN3Ur1q/qh48eFksgiCWRCp6LHrxWMF+QBvKZjtpl242YXdTKCEX/4oXD4p49Wd489+4aXPQ1gcDj/dmmJnnRZwpbdvfVmFldW19o7hZ2tre2d0r7x+0VBhLCk0a8lB2PKKAMwFNzTSHTiSBBB6Htje+y/z2BKRioXjU0wjcgAwF8xkl2kj98pHuJyK5SJ00OU97EyIhUoxnTsWu2jPgZeLkpIJyNPrlr94gpHEAQlNOlOo6dqTdhEjNKIe01IsVRISOyRC6hgoSgHKT2QMpPjXKAPuhNCU0nqm/JxISKDUNPNMZED1Si14m/ud1Y+3fuAkTUaxB0PkiP+ZYhzhLAw+YBKr51BBCJTO3YjoiklBtMiuZEJzFl5dJ67Lq1KpXD7VK/TaPo4iO0Qk6Qw66RnV0jxqoiShK0TN6RW/Wk/VivVsf89aClc8coj+wPn8AXemW6g==</latexit>

tn+"

<latexit sha1_base64="U9DaIh/tr77K6VDSUjjvzX8/0cI=">AAAB+nicbVBNS8NAEJ3Ur1q/Wj16CRZBEEoiFT0WvXisYD+gDWWz3bZLN5uwO6mU2J/ixYMiXv0l3vw3btoctPXBwOO9GWbm+ZHgGh3n28qtrW9sbuW3Czu7e/sHxdJhU4exoqxBQxGqtk80E1yyBnIUrB0pRgJfsJY/vk391oQpzUP5gNOIeQEZSj7glKCResUS9mRyPutOiGKR5iLVyk7FmcNeJW5GypCh3it+dfshjQMmkQqidcd1IvQSopBTwWaFbqxZROiYDFnHUEkCpr1kfvrMPjVK3x6EypREe67+nkhIoPU08E1nQHCkl71U/M/rxDi49hIuoxiZpItFg1jYGNppDnafK0ZRTA0hVHFzq01HRBGKJq2CCcFdfnmVNC8qbrVyeV8t126yOPJwDCdwBi5cQQ3uoA4NoPAIz/AKb9aT9WK9Wx+L1pyVzRzBH1ifP9KalGA=</latexit>

(b)

tn�"

<latexit sha1_base64="1f+5Ao6hjJw1oI8h8vf/LyWYfP4=">AAAB+nicbVBNS8NAEJ3Ur1q/Wj16CRbBiyWRih6LXjxWsB/QhrLZbtulm03YnVRK7E/x4kERr/4Sb/4bN20O2vpg4PHeDDPz/EhwjY7zbeXW1jc2t/LbhZ3dvf2DYumwqcNYUdagoQhV2yeaCS5ZAzkK1o4UI4EvWMsf36Z+a8KU5qF8wGnEvIAMJR9wStBIvWIJezI5n3UnRLFIc5FqZafizGGvEjcjZchQ7xW/uv2QxgGTSAXRuuM6EXoJUcipYLNCN9YsInRMhqxjqCQB014yP31mnxqlbw9CZUqiPVd/TyQk0Hoa+KYzIDjSy14q/ud1YhxcewmXUYxM0sWiQSxsDO00B7vPFaMopoYQqri51aYjoghFk1bBhOAuv7xKmhcVt1q5vK+WazdZHHk4hhM4AxeuoAZ3UIcGUHiEZ3iFN+vJerHerY9Fa87KZo7gD6zPH9W6lGI=</latexit>

tn

<latexit sha1_base64="txBIm3onkdz7u+mkmoVIpCx1W0o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+yrfrniVt05yCrxclKBHI1++as3iFkacYVMUmO6npugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/NTp+TMKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5sMhOYM5cQSyrSwtxI2opoytOmUbAje8surpHVR9WrVy/tapX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH2SkjeE=</latexit>

II

<latexit sha1_base64="K7jPkX+vW7JpuHd/FLilm+dV+2k=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9mVih6LXuytgv2AdinZNNuGJtk1yQpl6Z/w4kERr/4db/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbR0litAWiXikugHWlDNJW4YZTruxolgEnHaCyW3md56o0iySD2YaU1/gkWQhI9hYqZv2lUCNxmxQrrhVdw60SrycVCBHc1D+6g8jkggqDeFY657nxsZPsTKMcDor9RNNY0wmeER7lkosqPbT+b0zdGaVIQojZUsaNFd/T6RYaD0Vge0U2Iz1speJ/3m9xITXfspknBgqyWJRmHBkIpQ9j4ZMUWL41BJMFLO3IjLGChNjIyrZELzll1dJ+6Lq1aqX97VK/SaPowgncArn4MEV1OEOmtACAhye4RXenEfnxXl3PhatBSefOYY/cD5/AKNkj7c=</latexit>

I

<latexit sha1_base64="QtMS5OoNTRKkxEz+S172EF3nuFo=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BL3qLYB6QLGF2MpsMmccyMyuEJR/hxYMiXv0eb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1oU2iuNKdCBvKmaRNyyynnURTLCJO29H4dua3n6g2TMlHO0loKPBQspgRbJ3UznpaoPtpv1zxq/4caJUEOalAjka//NUbKJIKKi3h2Jhu4Cc2zLC2jHA6LfVSQxNMxnhIu45KLKgJs/m5U3TmlAGKlXYlLZqrvycyLIyZiMh1CmxHZtmbif953dTG12HGZJJaKsliUZxyZBWa/Y4GTFNi+cQRTDRztyIywhoT6xIquRCC5ZdXSeuiGtSqlw+1Sv0mj6MIJ3AK5xDAFdThDhrQBAJjeIZXePMS78V79z4WrQUvnzmGP/A+fwANaI9k</latexit>

�Wsw = 0

<latexit sha1_base64="IOmKZ3IhnRR0pLf+xu4J89VBp48=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiSi6EYounFZwT6gCWEymbRDZyZhZqKEUH/FjQtF3Poh7vwbp20W2nrgwuGce7n3njBlVGnH+bYqK6tr6xvVzdrW9s7unr1/0FVJJjHp4IQlsh8iRRgVpKOpZqSfSoJ4yEgvHN9M/d4DkYom4l7nKfE5GgoaU4y0kQK77kWEaQR7QeFJDtXj5MoJ7IbTdGaAy8QtSQOUaAf2lxclOONEaMyQUgPXSbVfIKkpZmRS8zJFUoTHaEgGhgrEifKL2fETeGyUCMaJNCU0nKm/JwrElcp5aDo50iO16E3F/7xBpuNLv6AizTQReL4ozhjUCZwmASMqCdYsNwRhSc2tEI+QRFibvGomBHfx5WXSPW26Z83zu7NG67qMowoOwRE4AS64AC1wC9qgAzDIwTN4BW/Wk/VivVsf89aKVc7UwR9Ynz/5lpRX</latexit>

�Wsw 6= 0

<latexit sha1_base64="phZ9cgzmyfpqmcosZqOPxpS9fxY=">AAACAHicbVBNS8NAEN34WetX1IMHL4tF8FQSqeix6MVjBfsBTQib7bRdutnE3Y1SQi7+FS8eFPHqz/Dmv3Hb5qCtDwYe780wMy9MOFPacb6tpeWV1bX10kZ5c2t7Z9fe22+pOJUUmjTmseyERAFnApqaaQ6dRAKJQg7tcHQ98dsPIBWLxZ0eJ+BHZCBYn1GijRTYh14PuCa4HWSejLB6zD0B99gJ7IpTdabAi8QtSAUVaAT2l9eLaRqB0JQTpbquk2g/I1IzyiEve6mChNARGUDXUEEiUH42fSDHJ0bp4X4sTQmNp+rviYxESo2j0HRGRA/VvDcR//O6qe5f+hkTSapB0NmifsqxjvEkDdxjEqjmY0MIlczciumQSEK1yaxsQnDnX14krbOqW6ue39Yq9asijhI6QsfoFLnoAtXRDWqgJqIoR8/oFb1ZT9aL9W59zFqXrGLmAP2B9fkD+FOWAg==</latexit>

Figure 7.1: Redefinition of the time step. (a): The interaction with ancilla = (yellow area) is

switched on at time C=−1 and then turned off at C= = C=−1+ΔC, at which time interaction

+=+1 is switched on (green). To correctly take into account the work required for the

switching (if any), we redefine the time interval as [C=−1 , C=[ → [C=−1 + �, C= + �[with

� → 0
+
. (b): The redefined time step in turn can be split into a pair of consecutive

intervals: [C=−1 + �, C= − �[ (interval I) and [C= − �, C= + �[ (interval II). In I, +̂(C) = +̂=
(constant). During II, instead, +̂(C) jumps as +̂= → +̂=+1 at C = C= .

Note that states must be

continuous functions of

time, hence in particular

�(C=−�) = �(C=) = �= .

undergoes the instantaneous switch +̂= → +̂=+1. To take this switch into

due account, all the changes throughout must be intended as computed

over the time interval [C=−1 + �, C= + �[ as sketched in 7.1(a) with the

understanding that � → 0
+
. As the singularity of 7.23 at time C = C=

comes only from +̂(C), this slight change of time interval does not

affect all the thermodynamic quantities other than �,sF (in particular

�,3) with the only exception of �′
(
= 〈�̂′

(
〉 which will be analyzed in

section 7.9.

Now, the redefined time step [C=−1 + �, C= + �[ can be conveniently de-

composed into apair of consecutive intervals [see 7.1(b)]: [C=−1 + �, C= − �[
(interval I) and [C= − �, C= + �[ (interval II). As +̂(C) is constant all over
interval I, the switching work �,sF is performed only in the very

short time interval II [within which +̂(C) undergoes the sudden jump

+̂= → +̂=+1]. Accordingly, the switching work is correctly worked out

as �,sF = TA(�{(+̂=+1 − +̂=)�̂(C=−�)}. More explicitly, using that +̂=+1

and +̂= respectively involve ancillas = and = + 1, we get

�,sF = TA(,=+1 {+̂=+1 �=�=+1} − TA(,= {+̂= *(=} , (7.33)

where *(= (cf. section 5.1) is the joint state of ( and ancilla = right after
they collided with one another.

7.9 First law of thermodynamics

During a single collision, the dynamics of ( and the involved ancilla is

governed by the total Hamiltonian

�̂
c>;; = �̂( + �̂= + +̂= . (7.34)

Since operators �̂= and +̂= are time-independent,Δ�̂
c>;; = Δ�̂(.Making

now the replacements 〈Δ�̂
c>;;〉 = Δ�( + Δ�= + TA(,= {+̂= Δ*(,=} and
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This is reasonable since

�,sF is in fact the contribu-

tion to the change of 〈�̂′
(
〉

coming from a step de-

pendence of operator �̂′
(

[cf. eqs. (5.18) and (7.32)].

[cf. Eq. 7.32] 〈Δ�̂(〉 =,3, we get

Δ�( − �& + TA(,= {+̂= Δ*(=} = �,3 , (7.35)

where we used 〈Δ�̂
c>;;〉 = 〈Δ�̂(〉 =,3 and Δ�= = −�& [cf. Eq. 7.28].

To connect the last identity with the switching work, in Eq. 7.33 we

replace *(= = �=−1�= + Δ*(= obtaining

�,sF = TA(,=+1 {+̂=+1 �=�=+1} − TA(= {+̂= �=−1�=} − TA(,= {+̂= Δ*(=} .
(7.36)

Combining this with 7.35 and recalling the definition of �̂′
(
[cf. Eq. 5.18]

and total work 7.31, we finally end upwith the 1st law of thermodynamics

Δ�( + Δ�′( = �& + �, , (7.37)

where Δ�( +Δ�′( can be identified as the total energy change of ( when

also the bath-induced Hamiltonian �̂′
(
is accounted for.

The analogous law for instantaneous rates/fluxes (in the continuous-time

limit) reads
¤�( + ¤�′( = ¤& + ¤, .

An important case occurs for energy-conserving interactions [see sec-

tion 7.3 and eq. (7.14), 7.34]. In this case, in the absence of drive i.e. for

�,3 = 0, we get [�̂( , �̂c>;;] = −[�̂= , �̂c>;;]. Hence,

Δ�( = �& . (7.38)

This formalizes energy conservation in thermodynamic terms: energy

lost (gained) by ( is absorbed from (released to) the bath of ancillas in

the form of heat. Note that 7.37 in this case reduces to Δ�′
(
= Δ,sF ,

namely the work (done by some external agent) for switching on and off

the interaction with ancillas is entirely converted into extra energy of (

which adds to �(. This work yet vanishes for interaction Hamiltonians

and ancilla states such that TA={+̂= �=} = 0, as in section 7.1.

7.10 Qubit coupled to baths of harmonic
oscillators

To illustrate the thermodynamic quantities introduced so far and the

1st law, let us reconsider the CM of section 7.1 when ( is a qubit and

each ancilla a quantum harmonic oscillator. Since the interaction is

energy conserving, Eq. 7.38 holds. Moreover, �,3 = 0 (no drive) and

TA={+̂= �=} = 0, hence Δ�′
(
= 0. Consistently, the switching work

vanishes since, using Eq. 7.37, ,sF = Δ�(−Δ& = 0. Thus overall no
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First-order terms van-

ish since in this case

[�̂� , �̂=] ∝ 1̂= , 1̂
†
= whose

expectation value on

�= is zero. We also

used |0〉(〈0| = �̂−�̂+ =

I( − �̂+�̂− and [1̂= , 1̂†=] = 1.

work is performed. Hence, in this thermalization process, Eq. 7.38

coincides with the 1st law.

Using Eq. 7.29 or the opposite of 7.27, after simple calculations we get

that in the continuous-time limit the heat flux is given by

3&

3C
= $0

[
�+ (1 − ?) − �−?

]
. (7.39)

where the introduced the excited-state probability ? = 〈�̂+�̂−〉 = 1 −
〈�̂−�̂+〉 and the previously defined rates 7.7. Using Eq. 7.9, we get as

expected that
¤& = $0

¤? = ¤�(. We see that the heat flux undergoes an

exponential decay (in magnitude) until it stops when ( reaches thermal

equilibrium.

Next, as in the beginning of section 7.3, we add a detuning to ( such

that �̂( = ($0 + �)�̂+�̂−. As the evolution of ? is just the same, heat flux

7.39 is identical. However, since now [�̂( , �̂=] ≠ 0,
¤& no longer matches

¤�(. Indeed, applying Eq. 7.27 in the continuous-time limit yields

3�(

3C
= ($0 + �)

[
�+ (1 − ?) − �−?

]
. (7.40)

Upon comparison with 7.39, this shows that
¤�( differs from ¤& whenever

� ≠ 0. Their difference, using the 1st law 7.37 and �̂′
(
= 0, is the switching

work per unit time

¤,sF = ¤�( − ¤& = �
[
�+ (1 − ?) − �−?

]
. (7.41)

This provides the complete energy balance at each instant, showing that

in order for ( to reach the asymptotic state work must be performed by

an external agent.

Note that, in the situation just analyzed, ¤? = 0 entails
¤& = ¤�( = ¤,sF = 0,

meaning that no energy flux occurs throughout the system once the

steady state is reached. This is true regardless of � since �+(1−?)−�−? =
¤?.

Differently from the case just seen, let us now illustrate an instance

featuring an uninterrupted heat flux. This is the dynamics of section 7.4

featuring system ( is contact with two baths at different temperatures, in

which case (as explained at that time) the open dynamics of ( is formally

the same (so that ( reaches a steady state) except that the absorption

and emission rates are replaced by �±→ �′± [cf. eqs. (7.20) and (7.21)].

Thus in particular

¤? = �′+(1 − ?) − �′−? , (7.42)
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Accordingly,

3�(

3C
= $0

[
�′+ (1 − ?) − �′−?

]
. (7.43)

Instead, the heat flux of bath 8 [cf. Eq. 7.29] is given by

3&8

3C
= $0

[
�(8)+ (1 − ?) − �(8)− ?

]
. (7.44)

Since �′± = �(1)± ± �
(2)
± we get the energy balance

3&1

3C
+ 3&2

3C
=
3�(

3C
(7.45)

(the switching work vanishes). This embodies a continuity equation for

heat [see fig. 7.2].

Figure 7.2: Stationary heat flux in a CM with two baths. System ( collides with two baths

of thermal ancillas, one at temperature )1 one at )2 with )1 ≠ )2. In general, the

continuity equation for heat current reads
¤&1 + ¤&2 = ¤�( , meaning that the net energy

entering/exiting from the dashed region must balance the change of energy of (. As

stationary conditions are reached, the energy of ( no longer changes and a permanent

heat current
¤&1 = − ¤&2 flows from the hot to the cold bath.

Asymptotically,
¤�( = 0 so that

3&1

3C
= −3&2

3C
, (7.46)

showing that stationary heat current flows from one bath to the other.

In these conditions, by deducing from 7.42 the steady value of ? and

using 7.20–7.21, we get the heat current

3&1

3C
= −3&2

3C
=

�1�2 (=̄1 − =̄2)
�1 + �2 + 2(�1=̄1 + �2=̄2)

. (7.47)

As expected, for =̄1 > =̄2 that is )1 > )2,
¤&1 > 0 meaning that heat flows

from bath 1 towards bath 2.
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Inside the trace, we

added and subtracted

a term �tℎ log�tℎ and

used TA={Δ�=} = 0 (since

the state of ancilla of

course remains normal-

ized). We finally used

�& = −TA={�̂=(�′= − �tℎ)}.

7.11 Second law of thermodynamics

Each collision changes the joint state of ( and the involved ancilla, which

evolves from �=−1�= (uncorrelated) to *(= (generally correlated). The

relative entropy of these two states, which we call entropy production Σ
for reasons that will be clear shortly, fulfills

Σ = S(*(= ‖ �=−1�=) ≥ 0 , (7.48)

which simply follows from the property that relative entropy is always

non-negative (see A.2). If, due to the interaction during the collision,

*(= is a correlated state then it must be different from the initial state

�=−1 ⊗ �= , entailing Σ > 0. Thus the strict positivity of Σ witnesses

establishment of system–ancilla correlations at each collision.

It can be shown
1
that Σ can be split into the two contributions

Σ = I(= + S(�′= ‖ �=) ≥ 0 , (7.49)

where I(= stands for the mutual information (see A.2) of ( and ancilla

= at the end of the collision, while S(�′= ‖ �=) is the relative entropy (see

A.2) between the final and initial states of the ancilla. Now, since ( and

= are initially uncorrelated (mutual information zero), we have

I(= = ΔS( + ΔS= (7.50)

with ΔS( = S(�=) − S(�=−1) and ΔS= = S(�′=) − S(�=) the change

of entropy of ( and ancilla, respectively. Here, we used that the (-=

dynamics during the collision is globally unitary, hence it cannot change

the entropy of the joint state, i.e. ΔS(= = S(*(=) − S(�=−1�=) = 0.

While the above holds for any ancilla state �= , we now focus on a thermal

bath of ancillas, i.e. we take �= = �
tℎ [cf. Eq. 7.3]. In this case, recalling

Eq. B.4, the second term of 7.49 is given by,

S(�′= ‖ �tℎ) = −TA{�′= log�
tℎ − �′= log�′=} = −ΔS= − ��& . (7.51)

Replacing eqs. (7.50) and (7.51) in Eq. 7.49, we end up with the 2nd law

1
This is worked out as

S(*(= ‖ �= ⊗ �=) =TA{*(= log *(=} − TA{*(= log �= ⊗ �=} =
TA{*(= log *(=} − TA{�= log �=} − TA{�′= log�=} =
TA{*(= log *(=} − TA{�= log �=} − TA{�′= log�=} .

Now, adding and subtracting TA{�′= log�′=} yields S(*(= ‖ �= ⊗ �=) = I{*(=} −
TA{�′= log�=} + TA{�′= log�′=} = I{*(=} + S(�′= ‖ �=) ≥ 0 .
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in the form

ΔS( ≥ � �& , (7.52)

which in terms of instantaneous rates (in the continuous-time limit)

reads
¤S( ≥ � ¤&.

In particular, note that we get an identity connecting a thermodynamic

quantity to an information-theoretical one. Hence, production of entropy

in (the thermodynamics sense) results from creation of system–ancilla

correlations as well as perturbation of the ancilla thermal state (caused

by the interaction with ().

We point out that the above derivation of the 2nd law for each time step
relies crucially on having used a CM, this allowing to decompose the

bath into distinct uncorrelated units which ( interacts with one at a time.

In particular, we exploited that ( at each step is initially uncorrelated

with the involved ancilla and this is still in the respective thermal state.

The analogue of Eq. 7.49 for the entire bath � holds only if it is referred to

the entire evolution up to the considered step (i.e. replacing C=−1 → C0).

This is because ( is uncorrelated with all the ancillas and these are all in

a thermal state only at the initial time C = C0 [see fig. 4.1(a) and (d)]. From

this viewpoint, it is remarkable that we got inequality 7.52 connecting

the entropy change of system ( with the heat exchanged with the full

bath �. This highlights particularly well a major advantage of employing

a collisional description of non-equilibrium processes.

7.12 Landauer’s principle

Let us define S̃ = −S and &̃ = −& in a way that ΔS̃ represents the

decrease of entropy while &̃ > 0 is positive when heat flows from ( to

�. Then 7.52 yields

� �&̃ ≥ ΔS̃. (7.53)

This is the quantum version of the so called Landauer’s principle [87],

stating that the heat dissipated into the bath is lower-bounded by the

entropy decrease of system (. It entails that, in order to decrease the

entropy of the open system so as to gain more information about it (see

A.2), a finite amount of heat must be dissipated into the reservoir. In

the continuous-time limit, the corresponding statement in terms of heat

flux and instantaneous entropy decrease per unit time reads � ¤& ≥ ¤̃S.

As an illustration, consider once again the CM analyzed at the beginning

of section 7.11. The dissipated heat per unit time is given by the opposite

of 7.39. The entropy instead reads (( = −(1 − ?) log ? − ? log ? (we
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assume zero coherences 2 for simplicity). Hence,
¤̃
(( = −¤? log

(
1−?
?

)
and

we get

� ¤̃& − ¤̃( = �

(
�$0 + log

?

1 − ?

) (
(1 + 4�$0)? − 1

)
. (7.54)

Both factors between brackets on the right hand side change their sign

when ? becomes greater than 1/(1 + 4�$0), meaning that the product is

indeed non-negative at any time C.

7.13 Non-equilibrium quantum
thermodynamics: state of the art

The definition of thermodynamic quantities and derivation of thermo-

dynamics laws are largely based on Refs. [31, 88, 89] (see also Ref. [90]

where some aspects concerning the use of CMs in quantum thermo-

dynamics are discussed). Note that Eq. 7.49 was first derived for bath

thermal states in Ref. [91] and then generalized in Refs. [31, 92].

We present next an overview of the quantum thermodynamics literature

focusing on works that make explicit use of a collisional approach (our

concern being mostly the methodological relevance for CMs theory).

The use of a CM to gain insight into the thermalization of a quantum

system (see Sections section 7.1, section 7.2,section 7.3) appeared in a

seminal work published in 2002 [23] (related to Ref. [22] mentioned in

4.10). This linked together dissipation, fluctuations (by deriving a CM-

based version of the fluctuation–dissipation theorem [93]) and maximal

system–ancilla entangling power. Notably, the CM approach allowed

the authors to explicitly show how, due to entanglement, a dissipative

(thus irreversible) process can result from a jointly unitary system–bath

dynamics (see also Ref. [94]). Roughly in the same period, a similar

CM was used by Diosi, Feldmann and Kosloff [95], where however the

joint dynamics is made irreversible by randomizing identities of the

ancillas.

Deviations from thermalization, in particular because of lack of energy-

conserving interactions (see section 7.3), were investigated in Refs. [96–

98].

In the context of resource theories, Ref. [99] introduced a resource theory

called “elementary thermalization operations" (ETOs) and showed that

Markovian ETOs are closely linked to memoryless CMs. Ref. [100]
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instead studied almost thermal operations by relaxing the constraint of

having identical ancillas all in the same thermal state.

Since only the reduced state of ( is involved in the definition of thermal-

ization, an interesting question is whether or not ( can share correlations

with the ancillas even after reaching thermalization. Strong evidence

that ( gets asymptotically uncorrelated with the bath was provided in

Ref. [101].

Note that not only a CM can model thermal baths, but can even imple-

ment an effective thermometer as proposed in Refs. [102, 103] showing

that collective measurements on the ancillas can provide quantum

metrological advantages (an extension to stochastic collisions has been

recently put forward in Ref. [104]) .

A class of problems where the collisional approach is very helpful are

non-equilibrium dynamics in the presence of multiple, usually thermal,

baths (see sections 5.9 and 7.4). A standard case typically features a

multipartite open system ( [cf. fig. 5.3(b)] comprising a generally large

number of subsystems {(1, . . . , (# } which are coupled to one another

(modeled e.g. as a spin chain) [88, 89, 105–109]. Note that switching work

(see section 7.8) was first identified in a system of this kind by Barra in

Ref. [88] and then further investigated in Refs. [31, 89].

As seen in section 5.9, uncorrelatedmultiple baths typically result inMEs

of the form 5.41 featuring only local dissipators. The thermodynamic

consistency of such localMEs (regardless of theway they are derived)was

disputed [110]. In this context, Ref. [89] considered a CM with multiple

baths and coupled subsystems yielding a local ME. By highlighting

the key role of switching work (see section 7.8), full consistency with

both laws of thermodynamics (see Sections Sections 7.9 and 7.11) was

demonstrated.

Note that, while the baths are commonly assumed to be uncorrelated,

Ref. [111] studied how inter-bath correlations affect thermal machine

performances. This corresponds to a CM with multiple baths where in

Eq. 5.37 "c>AA
= ≠ 0, resulting in ME terms that couple the subsystems to

one another [cf. Eq. 5.42]. The correspondingME can then be arranged in

terms of collective jump operators as first demonstrated in Ref. [112]. The

effect of correlated ancillas was also recently studied in the derivation of

quantum Onsager relations via a collision model [113].

Multiple baths naturally enter thermal machines (see next) as these

usually operate between reservoirs at different temperatures.

In 2003, Scully, Zubairy, Agarwal and Walther [32] proposed a heat

engine based on the micromaser setup of Sections section 5.7 with

the difference that each thermal atom is a three-level system featuring
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a nearly two-fold-degenerate ground state (doublet). They showed

that coherences stored in the doublet can work as an added control

parameter to extract work from a single heat bath with some features

unattainable by classical engines [32]. This established a paradigm of

proposed engines/thermal machines whose working principle exploits

some genuine quantum property (such as entanglement) [114–121].

CMs have become a routine description tool to investigate thermal

machines, mostly in the quest for quantum-enhanced performances [122–

127] and/or with the aim to explore quantum non-Markovian effects (see

8.7). Note in particular the possibility of using CMs to model processes

with partial thermalization, which was investigated in Refs. [128–130].

A topical research line is investigating thermodynamics laws in the

presence of non-thermal reservoirs, mostly motivated by the hope that

bath in non-classical states could enable improved thermodynamic

performances. Ref. [131] considered a CM with each ancilla prepared in

a thermal state with added coherences of the order of ∼
√
ΔC quite like

state 5.34 in section 5.1. A bound was derived demonstrating explicitly

that the consumption of bath quantum coherences can convert heat into

work on (. Ref. [132] showed that coherences in the energy basis can

both enhance (or deteriorate in some cases) the performance of thermal

machines and let themoperate in otherwise forbidden regimes. Ref. [133]

showed that coherences in the bath can cause a thermalization to an

apparent temperature which could be spectroscopically inferred [133].

A major class of bath quantum states with promising thermodynamic

advantages are squeezed states. A broadband (white-noise) squeezed

reservoir can be simulated via a CM featuring identical harmonic

oscillator ancillas each prepared in the same one-mode squeezed state,

which could be implemented through an array of beam splitters as

proposed in the 90s in Ref. [134] (see also section 9.10). Such scheme

can be generalized by considering non-identical ancillas each initially

in a squeezed-thermal state (so as to encompass a thermal reservoir as

a special case). Baths of ancillas prepared in squeezed-thermal states

were used in Refs. [135–137].

The collisional approach to the Landauer’s bound for fluxes (see sec-

tion 7.12)was introduced inRef. [138],where amajor focuswas exploring

the bound when ( is part of a larger multipartite system which causes

deviations from the Markovian behavior. One of the considered case

studies was the cascaded configuration of Sections 4.8 and 5.10, where

the dependence of heat fluxes in the transient regime on intra-system

correlations was formerly studied in Ref. [139]. We also note that, al-

though not explicitly connected with CMs, a pertinent basic reference
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on the Landauer’s principle adopting the language of quantum maps is

a 2014 paper by Reeb and Wolf [140].

An intensively investigated topic in quantum thermodynamics is the

possibility to define thermodynamic quantities and non-equilibrium

laws at the level of single quantum trajectories (instead of unconditional

dynamics as assumed throughout the present section) in a way that the

resulting thermodynamics acquires an intrinsically stochastic nature

(see the recent review in Ref. [141]). As discussed in chapter 6, CMs are

the natural microscopic framework for describing quantum trajectories,

which explains their use as an advantageous tool in studies of stochastic
quantum thermodynamics [92, 142–148].

Amajor appeal of CMs in quantum thermodynamics (and beyond) is that

they allow relaxing the standard weak-coupling assumption and thus

exploring the “ultra-strong" coupling regime where counter-rotating

terms cannot be neglected as done e.g. in Refs. [89, 149–151].

CMs can be used to introduce decoherence for extending fluctuations
theorems to quantum non-unitary transformations [152].

Although not discussed in section 7.8, the work on ( can be seen as

resulting from collisions with a bath of ancillas in the case that the

unitary collision is approximated to first order, resulting only in �̂′
(

[cf. Equations (5.17) and (5.18)]. This was used for proposing a definition

of work independent of the ( free Hamiltonian [153]
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So far we have been focusing on memoryless (i.e. Markovian) CMs. Yet,

an important application of CMs is the description of non-Markovian
(NM) dynamics. This will be the subject of the present section.

Corresponding to assumptions (1)–(3) (cf. 4.1.1) underpinning the basic,

Markovian, CM (see 4.1.1), one can identify three main classes of NM

extensions of CMs:

(i) CMs with added ancilla–ancilla collisions;

(ii) CMs with initially-correlated ancillas;

(iii) CMs with multiple collisions.

It is understood that each class relaxes the corresponding hypothesis

in section 4.1 without breaking the other two. Of course mixed cases

relaxing two or all of the hypotheses are also possible, an instance being

the so called composite CMs (which will be introduced in section 8.5)

which have connections with both classes (1) and (3).

In the following, we introduce each of the above three classes discussing

some related basic properties.

8.1 Ancilla–ancilla collisions

Introducing ancilla–ancilla collisions is physically motivated since it

natural to think that ancillas can generally interact with one another. In

its (arguably) simplest formulation (see 8.1), such a CM is obtained from

the basic CM of section 4.1 by adding extra pairwise ancilla–ancilla (AA)

collisions between system–ancilla (SA) collisions. As sketched in 8.1, the

CM dynamics starts with a standard collision between ( and ancilla 1

(unitary *̂1). Then ancillas 1 and 2 collide together (unitary ,̂12). This is

followed by an SA collision between ( and ancilla 2 (unitary *̂2), then an

AA collision 2–3, then (-3 and so on. As a key feature, AA collisions are

interspersed with SA collisions: for instance, prior to the collision with (,

ancilla 2 interacts with ancilla 1 (with which ( is correlated due to the

previous collision). As a result of this AA collision, ( and ancilla 2 are

thus already correlated before collision (-2 starts. Hence, regarding the

open dynamics of (, the second step (ending with (-2 collision) cannot

be described by a CPT map and so cannot all the remaining steps. The

CP-divisibility condition [cf. Eq. 4.16] thereby does not hold, making the

dynamics non-Markovian.
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Calling ,̂=,=−1 the unitary describing the AA collision between ancillas

= − 1 and =, the joint (-� dynamics is given by

�= = *̂
′
= · · · *̂′2 *̂′1 �0 (*̂′

1
)† (*̂′

2
)† · · · , (*̂′=)† (8.1)

with the step unitary *̂′= defined as

*̂′= = *̂=,̂=,=−1 (f>A = ≥ 2) , *̂′
1
= *̂1 , (8.2)

hence (except for = = 1) *̂′= describes an AA collision followed by a

SA one. This can be contrasted with Eq. 4.3 holding for a basic CM. As

usual, we take as initial state �0 = �0 ⊗= �= featuring no correlations.

Figure 8.1: Non-Markovian collision model with ancilla–ancilla collisions. Just like the basic
CM of 4.1, all ancillas are initially uncorrelated and in the first step ( collides with

ancilla 1 (a), getting correlated with it (not shown here). Yet, before ( collides with

= = 2, ancillas 1 and 2 collide together (b). As a result of this AA collision, (, ancilla
1 and ancilla 2 are jointly correlated (c). Now, ( collides with 2 (d) with which it is

however correlated already before collision (-2 starts. Collisions with ancillas < > 3

are obtained by iteration.

To understand the main features of the open dynamics entailed by this

CM, it is helpful to take each AA collision unitary in the form of a partial

SWAP [cf. Eq. 4.25]

,̂=,=−1 =
√
@ I + √? (̂=,=−1 (8.3)

with @ = 1− ?, where we recall that unitary (̂=,=−1 ≡ (̂†=,=−1
[cf. Eq. 4.23]

swaps the states of ancillas = − 1 and =. Here, the swap probability ?

can be regarded as a measure of the effectiveness of AA collisions.

For ? = 0, ,̂=,=−1 = I, thus AA collisions are fully ineffective. We
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In the case = = 3,

we get *̂′
3
*̂′

2
*̂′

1
=

*̂3(̂3,2*̂2(̂2,1*̂1 =

*̂3(̂3,2((̂2,1*̂
2

1
) =

(̂2,1(̂3,2 *̂
3

1
, where

we used that

((̂2,1(̂3,2)*̂3((̂3,2(̂2,1)=(̂2,1*̂2(̂2,1 =

*̂1 and ((̂2,1(̂3,2)2 = I.

Indeed,

(*̂=)==(4−8�̂c>;;ΔC)==4−8�̂c>;; C=

(with C= = =ΔC as usual).

retrieve in this case the standard memoryless CM [cf. section 4.1] where

( undergoes the usual Markovian dynamics given by

�= = E=[�0] (8.4)

with E the usual collision (CPT) map [cf. Eq. 4.7].

Let us now study the other extreme case ? = 1, when ,̂=,=−1 is just a

swap and AA collisions have the maximum effect. First note that the

unitary transformation defined by (̂=,=−1 turns an operator acting on (

and = into its analogue on ( an ancilla = − 1

$̂(,=−1 = (̂=,=−1$̂(,= (̂=,=−1 . (8.5)

Using this and (̂2,1(̂2,1 = I, the overall unitary at step = = 2 can be

arranged as

*̂′
2
*̂′

1
= *̂2(̂2,1*̂1 = ((̂2,1(̂2,1) *̂2(̂2,1*̂1 = (̂2,1((̂2,1*̂2(̂2,1)*̂1 = (̂2,1*̂

2

1
,

(8.6)

where we used that (̂2,1*̂2(̂2,1 = *̂(,1 [due to Eq. 8.5].

Upon iteration, at step =

*̂′= · · · *̂′1 = (̂2,1 · · · (̂=−1,=−2(̂=,=−1 *̂
=
1
. (8.7)

Thereby, we get that the CM dynamics can be equivalently seen as the

usual collision between ( and ancilla 1 yet repeated = times, followed by

a sequence of AA swaps. This property, along with the assumption that

ancillas start all in the same state �= , allows to work out the evolution of

( as (see A.9)

�= = F=[�0] = TA1{*̂=
1
�0 �1*̂

†=
1
} . (8.8)

This can be contrasted with the case ? = 0 [see Eq. 8.4] which, since �=
is the same for all ancillas, can be written as

�= = E=[�0] w8Cℎ E[�] = TA1{*̂1 � �1 *̂
†
1
} ≡ F1[�] . (8.9)

Interestingly, from a formal viewpoint, maps eqs. (8.8) and (8.9) differ

for the fact that, while in 8.8 the exponentiation to power = involves the

collision unitary, in 8.9 the exponentiation is instead over the collision

map (i.e. the exponentiation is carried out after the partial trace).

Physically, Eq. 8.8 describes just the same open dynamics which (would

undergo if it were interacting all the time with the same ancilla. Notably,

adopting such a viewpoint, even Eq. 8.9 could be seen as resulting from

an everlasting interaction with the same ancilla, yet with the crucial
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difference that the ancilla state is periodically reset to �1 at each time step

ΔC.

The reason why, when ? = 1, the open dynamics effectively results from

a non-stop interaction always with the same ancilla [cf. 8.8] is easily

grasped. As pictured in 8.2, at the end of collision (-1 [see 8.2(a)], ( and

ancillas 1–2 are in state *(,1 ⊗ �2 with *(,1 a correlated state. Swap (̂2,1 is

now applied [see 8.2(b)], yielding

(̂2,1*(,1 ⊗ �2(̂2,1 = �1 ⊗ *(,2 , (8.10)

which transfers altogether the joint (-1 state to ( and ancilla 2, while

1 returns to state � uncorrelated with ( and 2 [see 8.2(c)]. This entails

that the (-2 collision [see 8.2(d)] is seen by ( (open dynamics) just as

if the collision with ancilla 1 resumed and then continued up to time

C = C2. We point out that, while the above in particular implies that 1

and 2 swap their respective reduced states (during the AA collision),

this alone would not be sufficient for Eq. 8.8 to hold. The transfer of

system–ancilla correlations from (-1 to (-2 brought about by 8.10 is

thus essential. Analogous considerations apply at any step with (-=

correlations transferred to ( and ancilla = + 1.

Figure 8.2: Fully swapping ancilla–ancilla collisions. The unitary describing each AA

collision is a full swap, ,̂=,=−1 = (̂=,=−1. At the end of the first SA collision (a), a swap is

applied on ancillas 1 and 2 (b). Thereby, in particular, state �′, is transferred to ancilla 2

with 1 thus returning to the initial state � (c). Actually, it is the joint (correlated) state of

( and 1 which is transferred altogether to ( and 2 (c). Thus, in terms of open dynamics,

it is just as if the first SA collision resumed with the same ancilla, lasting a further time

ΔC until C = C2 (d).

It is worth stressing that the mapping into a continuous interaction with

the same ancilla does not hold for the joint dynamics. A major appeal of
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Note that the same state-

ment applies to the dynam-

ics of each single collision

even for a basic memory-

less CM. Yet, this lasts only

a short time ΔC, so that on

a time scale far larger than

ΔC the dynamics is Marko-

vian.

Despite we use the same

symbol, map T8 here is dif-

ferent from map T= intro-

duced in 4.3.

the CMs with ancilla–ancillas collisions as defined here is that the open

dynamics can be analytically described, as will be shown in section 8.5

by connecting these models with composite CMs. Moreover, under an

appropriate redefinition of AA collisions, one can evenwork out a closed

ME for ( as discussed next.

8.2 Non-Markovian master equation in the
presence of ancilla–ancilla collisions

In the previous CM when AA collisions are full swaps (? = 1), the

dynamics is strongly non-Markovian. Formally, this is because there is

no way of decomposing map 8.8 into a sequence of CPT maps, one

for each step, thus the CP divisibility condition 4.16 is not satisfied.

To understand the physical reason behind NM behavior, think of a

continuous coherent interaction between ( and another system �. If this

dynamics were memoryless, the knowledge of the reduced state �(C′)
at an intermediate time C′, such that C0 < C′ < C, would be sufficient for

determining the evolution of � between C′ and C (if the Hamiltonian is

known). This cannot be the case as during the evolution the two systems

are generally in a correlated state *(�(C) such that �(C) = TA�{*(�(C)}:
knowing only �(C) does not allow reconstructing the joint state *(�(C).

To sum up, if ? = 0, to get �= it is enough knowing the state of ( at the

previous step and apply map E= F1, i.e. �= = F1[�=−1]. In contrast, if

? = 1, we need to know in which state ( ultimately started at C = C0 and

apply map F= , i.e. �= = F=[�0]. We might expect these two evolutions

to be special cases of a recurrence rule, valid for any swap probability ?,

expressing �= generally in terms of �0, �1, . . . , �=−1 in a way that, as ?

tends to 1, the number of previous steps which �= in fact depends on

grows up. Unfortunately, it is not possible to work out such a closed

relationship unless one introduces a little modification in the CM, as

shown next.

First of all, it is convenient to introduce a compact formalism for unitary

operators and partial traces expressing them as quantum maps

U[�] = *̂�*̂† , T8[�] = TA 8[�] , (8.11)

where 8 can be any subsystemof the joint systemwhich state � generically

refers to (here *̂ is intended as a generic unitary). For instance, in terms

of 8.11, the usual open dynamics of a basic CM of Section [cf. section 4.1]

could be expressed as

�= = T= · · ·T1 U= . . . U1[�0] = T= U= · · ·T1 U1[�0] (8.12)
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Using Eq. 8.5, we get

(̂=,=−1*̂= . . . *̂
†
= (̂=,=−1 =

(̂=,=−1*̂= (̂
2

=,=−1
. . . (̂2

=,=−1
*̂†= (̂=,=−1 =

*̂=−1(̂=,=−1 . . . (̂=,=−1*̂
†
=−1

,

proving the identity.

(any T= commutes with U=′≠=). When AA collisions are added, each

U< is replaced by U<W<,<−1.

It is immediate to check that an AA collision in the form of a partial

swap [cf. Eq. 8.3] is described by the map

W=,=−1[�] = @� + ?(̂=,=−1�(̂=,=−1 +
√
@? [�, (̂=.=−1]+ . (8.13)

The aforementioned modification of the CM with partial swaps consists

in removing terms ∼ √@?, namely we replace 8.13 with the new map

W=,=−1 = @I+ ?S=,=−1 . (8.14)

This is a well-defined CPT map, having

√
@ I and

√
? (̂=,=−1 as Kraus

operators (see A.3). Note that, while the removal of such terms affects

the collisional dynamics, all the salient features discussed so far hold. In

particular, map W=,=−1 swaps the states of ancillas with probability ? or

leave them unchanged.

To get a closed ME for �= , we note that the joint state at each step evolves

as

�= = U= (@I+ ?S=,=−1) [�=−1] = @ U=[�=−1] + ? U=S=,=−1[�=−1]
(8.15)

for = ≥ 2 and �1 = U1[�0].

For = = 2, we explicitly get �2 = @ U2 [�1] + ? U2 S2,1[�1]. Replacing
next �1 = U1[�0] only in the second term yields

�2 = @ U2 [�1] + ? U2 S2,1 U1[�0] = @ U2 [�1] + ? U2

2
[�0] , (8.16)

where we used the identity S=,=−1 U=−1 = U=S=,=−1 along with the

invariance of the initial state �0 under any swapof ancillas (see section 8.1).

Notably, Eq. 8.16 is now arranged so as to feature only powers of U2.

We can accomplish an analogous task at step = = 3 starting from

�3 = @ U2 [�2] + ? U2 S2,1[�2]. Similarly to what done in the previous

step, we replace �2 with 8.16 only in the second term, obtaining

�3 =@ U3[�2] + @? U3S3,2 U2[�1] + ?2 U3S3,2 U
2

2
[�0] =

@
(
U3[�2] + ? U2

3
[�1]

)
+ ?2 U3

3
[�0], (8.17)

which now features only powers of U3.

Upon induction, at the =th step we get

�= = @
=−1∑
9=1

? 9−1 U
9
= [�=−9] + ?=−1 U=

=[�0] , (8.18)
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This is obtained by re-

placing in the defini-

tion [cf. Eq. 8.8] *̂= =

(4−8�̂c>;;ΔC)= = 4−8�̂c>;; C=

with *̂(C) = 4−8�̂c>;; C
(with

C= → C).

containing only powers of U= (collision unitary corresponding to the

last SA collision). Note that the larger the power of U= the older is the

state it acts on. This property is remarkable since, given that U= does

not act on ancillas different from the =th one, the trace over all ancillas

yields an equation formally analogous to 8.18 with �= replaced by �=
and each power U

9
= by map F9 [cf. Eq. 8.8]

�== @
=−1∑
9=1

? 9−1F9 [�=−9] + ?=−1F=[�0] . (8.19)

As promised,we thus end upwith a closed equation for the reduced state

of (, which holds for arbitrary swap probability ?. The corresponding

dynamics interpolates between the memoryless case for ? = 0 and the

strongly NM dynamics for ? = 1 [cf. Eq. 8.8]. For arbitrary ?, note that,

due to the exponential weights ? 9−1
and ?=−1

, the current state is more

affected by the latest steps. This formalizes the property that the system

keeps memory of its past evolution, whose memory length ranges from 1

(Markovian case occurring for ? = 0) to = (strongly NM case occurring

for ? = 1).

Most remarkably, by defining a memory rate Γ through ? = 4−ΓΔC in
a way that, for ΔC � Γ−1

, ? ' 1 − ΓΔC, one can convert Eq. 8.19 into a

corresponding ME in the continuous-time limit (see A.10) which reads

¤� = Γ
∫ C

0

3C′4−ΓC
′
F(C′)

[
¤�(C−C′)

]
+ 4−ΓC ¤F(C)[�0] . (8.20)

Here, F(C) is the continuous-time version of map 8.8.

This kind of integro-differential non-Markovian MEs are called memory-

kernel MEs. Independently of its derivation as the continuous-time limit

of an intrinsically CPT discrete dynamics, it can be shown that Eq. 8.20

correctly entails a continuous-time CPT dynamics for any Γ > 0 [30].

8.3 Initially-correlated ancillas

Consider the basic CM of section 4.1 where the initial state of the ancillas

is generalized as

�� =
"∑
<=1

?< "< , (8.21)

where probabilities {?<} fulfill
∑"
<=1

?< = 1 while

"< = �<1 ⊗ �<2 ⊗ . . . . (8.22)
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Here, {�<=} are an arbitrary set of " states of ancilla =. When all the

?<’s but one are zero, we recover the memoryless CM [cf. Eq. 4.1]. In

the general case, however, 8.21 is a not a product state and thus describe

initially correlated ancillas [see panel (a) of 8.3]. After = collisions, the

joint initial state �0 = �0 ⊗ �� evolves into (cf. Eq. 4.3)

�= =
"∑
<=1

?< *̂= · · · *̂1 �0 ⊗ "< *̂†
1
· · · *̂†= . (8.23)

The corresponding open dynamics of ( is given by

�= =
"∑
<=1

?< TA�

{
*̂= · · · *̂1 �0 ⊗ "< *̂†

1
· · · *̂†=

}
=

"∑
<=1

?< Λ<=[�0] ,

(8.24)

where

Λ<= = (E<)= (8.25)

with the CPT map E< defined by

�′ = E<[�] = TA=

{
*̂=� �<= *̂

†
=

}
. (8.26)

The evolution is thus a mixture of " dynamics, each described by a

dynamical map Λ<= (cf. 4.4) with associated collision map E< . As

shown by 8.25, each Λ<= alone describes a fully Markovian collisional

dynamics [cf. Eq. 4.13].

According to 8.24, the dynamical map of the present collision model

reads

Λ= =

"∑
<=1

?< Λ<= . (8.27)

Remarkably, while each Λ<= can be divided into elementary CPT

collision maps [cf. Eq. 8.25] thus being Markovian [cf. 4.4] this is

generally not possible forΛ= despite it results from a seemingly innocent

mixture of Λ<=’s. This is best illustrated with a simple counterexample,

which is discussed next.

S

1 2                    

⇢0

Û1(a) (b)
S

1 2                    

correlated correlated

Figure 8.3: Non-Markovian collision model with initially-correlated ancillas. Before interact-
ing with (, ancillas are initially correlated with one other (a). Thereby, after colliding

with ancilla 1, ( gets correlated with all the bath ancillas. Thus each collision (starting

from the second one) is generally not described by a CPT map on (, making the

dynamics non-Markovian.
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Consider the all-qubit CM [see section 4.6] with the ancillas starting in

the correlated state

�� = ? |00 · · ·〉� 〈00 · · ·| + @ |11 · · ·〉� 〈11 · · ·| , (8.28)

where |88 · · ·〉 = ⊗= |8〉= with 8 = 0, 1 and with ? = 1 − @ a probability.

Assuming that ( starts in state |1〉(, at the end of the first collision the

joint state reads

�1 =?
(
*̂1 |10〉(1

〈01| *̂†
1

)
|00 · · ·〉

23··· 〈00 · · ·| +

@
(
*̂1 |11〉(1

〈11| *̂†
1

)
|11 · · ·〉

23··· 〈11 · · ·| . (8.29)

Taking for simplicity 6I = 0 [cf. Eq. 4.19] and based on 4.22, we have

*̂1 |10〉(1
= cos

(
6ΔC

)
|1〉( |0〉1 − 8 sin

(
6ΔC

)
|0〉( |1〉1

*̂1 |11〉(1
= |1〉( |1〉1 . (8.30)

By replacing these in 8.29 and tracing over ancilla 1, we get the reduced

state of ( and ancillas 2,3, . . .

TA1{�1} =?
(
22 |1〉( 〈1| + B2 |0〉( 〈0|

)
⊗ |00 · · ·〉

23··· 〈00 · · ·| +
@ |1〉( 〈1| ⊗ |11 · · ·〉

23··· 〈11 · · ·| , (8.31)

where we set 2 = cos

(
6ΔC

)
and B = sin

(
6ΔC

)
.

For 0 < ? < 1, this is a correlated state between ( and all ancillas 2,3, . . . .

This means that each collision starting from the second one is generally

not described a CPT map. It follows that the overall dynamical map Λ=

does not satisfy the CP-divisibility condition 4.16, which witnesses the

non-Markovian nature of the dynamics.

We note that, since a dynamics like 8.26 is a mixture of Markovian

dynamics, if each of these admits a continuous-time limit then one

can work out as many Lindblad master equations ¤�< = L<[�] having
a form like Eq. 5.17. Solving these, the overall dynamics then results

from the mixture of the respective solutions �(C) = ∑
< ?<�<(C). Due to

non-Markovianity, however, �(C) generally cannot be expressed as the

solution of a well-defined Lindblad master equation.

It is worth pointing out that, while state 8.21 is not entangled as it

is a mixture of product states,
1
the essential conclusions on the non-

Markovian nature of the dynamics apply to entangled states as well as

1
Yet, one such state can still feature non-classical correlations in the form of so called

quantum discord [154].
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is for instance the case of single-photon wavepackets to be discussed in

section 9.11.

8.4 Multiple collisions

Another mechanism for introducing memory in a CM is allowing each

ancilla to collide with ( at many distinct, non-consecutive, steps, instead

of only one [as in the basic CM of section 4.1]].

Figure 8.4: Non-Markovian collision model with non-local collisions. Like in a basic CM,

ancillas are non-interacting and initially uncorrelated. Yet, system ( interacts with the

bath non-locally in the following sense: at the =th step, ( collides at once with ancillas

= − 3 and = (bi-local collision). As a major consequence, ancilla = collides with the

system twice: the first time at step = (a) and then again at step = + 3 (b). Thus 3 is the
delay between the two collisions with the same ancilla. Before the second collision

starts, ancilla = and ( are already correlated so that the CP-divisibility condition 4.17

does not hold, making the dynamics NM. Notice that, until step = = 3−1 (c), no

memory effect can occur as each ancilla underwent at most one collision with ( [the

dotted square in (c) is a phantom ancilla].

A simple instance is a CM featuring a sequence of collisions like

*̂1 , *̂2 , *̂3 , *̂1 , *̂4 , *̂5 , *̂1, . . .

such that (-1 collision takes places every three steps.

While several possible multiple-collision schemes can be conceived (see

also 8.7), here we focus on CMs with non-local collisions that naturally
arise in quantum optics dynamics where delay times (light retardation)

are non-negligible. The paradigm of such dynamics is shown in 8.4:

at each step, ( simultaneously collides with many ancillas (two in the

simplest case, as in the figure). More in detail, at the =th step, ( collides

with ancillas = − 3 and 3, where 3 is an integer such that 3 ≥ 1 [see

8.4(a)]. Accordingly, at step = + 3, the collision will involve ancillas =

and = + 3 [see 8.4(b)]. It follows that a generic ancilla labeled with =

collides with ( twice: the first time at step = and then again at step = + 3.
The resulting collisional dynamics is evidently non-Markovian: before

the second collision starts (step = + 3), ( is already correlated with
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Sincemore than one ancilla

collides with the system at

each step, we can longer

use a common index for la-

beling the colliding ancilla

and time step.

Due to the specific type

of calculations involved, in

this subsection we define

the generic step as the time

interval between times C=
and C=+1, instead of C=−1

and C= as usually done

throughout the paper. This

helps keeping notation rel-

atively light.

ancilla = due to the first collision (step =), hence the dynamical map

will generally not fulfill the CP divisibility condition [cf. Eq. 4.17]. As a

paradigmatic, analytically solvable, instance consider the usual all-qubit

model of section 4.6 with �̂( = �̂= = 0 and the interaction Hamiltonian

describing the =th collision now replaced by

+̂ (=) =
√

�
ΔC �̂+ (�̂=,− + 4

8) �̂=−3,−) +H.2. (8.32)

Here and throughout the present subsection, superscript “(=)" refers
to the time step. For completeness, we allowed for a phase shift )
between the couplings to the two ancillas. As initial state, we take (

in state |1〉 and each ancilla in state |0〉. Thus the joint initial state is��Ψ(0)〉 = |1〉( ⊗< |0〉< .
Defining the total number of excitations as #̂ = |1〉(〈1| +

∑
< |1〉< 〈1|, we

note that this is conserved at all steps since [+̂ (=), #̂] = 0. The eigenspace

of #̂ with eigenvalue # = 1 (single-excitation sector) is spanned by

|4(〉 = |1〉( ⊗< |0〉< (excitation on () and |4<′〉 = |0(〉 ⊗<≠<′ |0〉< ⊗ |1〉<′
(excitation on ancilla<′). Thereby, since

��Ψ(0)〉 = |4(〉, the joint dynamics

remains at all steps within the single-excitation sector. Accordingly, the

joint state at step = can be expanded as��Ψ(=)〉 = (=) |4(〉 +
∑
<

�(=)< |4<〉 . (8.33)

In terms of excitation amplitudes (=) and �(=)< , the initial state |Ψ(0)〉
reads (0) = 1 and �(=)< = 0 for any <. For formal convenience, we

will assume that the excitation amplitudes are defined also for negative

values of the step index =, taking values (=≤0) = 1,�(=≤0)
< = 0 (for any<).

The evolution of the joint state at each step reads

��Ψ(=+1)〉 = *̂=+1

��Ψ(=)〉
where the collision unitary is defined by *̂= = exp

[
−8+̂ (=)ΔC

]
with +̂=

having the form 8.32.

At short enoughΔC (we limit the analysis to this regime only), we expand

*̂=+1 to the 2nd order in +̂ (=) and then apply it to 8.33. Projecting the

resulting state on |4(〉 yields a recurrence relation for amplitudes (=)

and �(=)< , which reads

(=+1) = (=) − �ΔC (=) − 8
√
�ΔC 4 8)�(=)

=−3 . (8.34)

Here, we used that �(=)= = 0 since, at step =, the =th ancilla is still in

the initial state |0〉= [see 8.4(a)]. Our goal is expressing �(=)
=−3 in terms

of {(=)} so as to end up with a closed equation for {(=)} (which fully

describes the open dynamics).
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This equation usually ap-

pears in the literature with

phase )→ )+�, i.e. with-

out the minus sign in the

second term.

Considering first the case = ≥ 3, note that ancilla = − 3 collides with (

the first time at step = − 3 and then at step =. Thus the corresponding

amplitude at step = − 3 + 1 cannot change any more until step =

�(=)
=−3 = �(=−1)

=−3 = · · · = �(=−3+1)
=−3 . (8.35)

Amplitude �(=−3+1)
=−3 can be worked out, similarly to (=+1)

in Eq. 8.34, by

applying the collision unitary *̂=−3+1
to

��Ψ(=−3)〉 and projecting next to

|1=−3〉. This yields

�(=−3+1)
=−3 = −8

√
�ΔC (=−3) + 1

2
�ΔC �(=−3)

=−23
. (8.36)

Due to Eq. 8.35, this coincides with �(=)
=−3 so that Eq. 8.34 becomes

(=+1) − (=) = −�ΔC (=) − �ΔC 4 8) (=−3) ,

where the term ∼ �(=−3)
=−23

was neglected being of order ∼ ΔC3/2. We thus

get

Δ(=)

ΔC
= −�(=) − �4 8)(=−3) f>A = ≥ 3 . (8.37)

where Δ(=) = (=+1) − (=).

We are left with the case 0 ≤ = < 3. For these values of =, Eq. 8.34 misses

the last term because of the initial conditions [see below Eq. 8.33], thus

reducing to Δ(=)/ΔC = −�(=).

To sum up, we thus conclude that the dynamics of ( is governed by the

finite-difference equation

Δ(=)

ΔC
=

{
−� (=) f>A = < 3

−� (=) − �4 8)(=−3) f>A = ≥ 3
. (8.38)

We can understand this equation as follows. Until step = = 3 − 1 [see

8.4(c)], each ancilla undergoes at most one collision with (: in this

initial stage, the dynamics is identical to a memoryless basic CM with

(=) undergoing a standard exponential decay just like for spontaneous

emission [cf. Eq. 5.33]. Step = = 3 is the first featuring an ancilla

undergoing a second collision with ( (this is ancilla < = 1). From this

step on, thereby, memory effects come into play as witnessed by the

presence of term (=−3).

In the continuous-time limit, such that C= → C and 3ΔC → � with � a

characteristic delay time, Eq. 8.38 is turned into

¤ = −�(C) − �4 8)(C − �)�(C − �) , (8.39)
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which is a so called delay differential equation [here �(G) = 1 for G > 0

and �(G) = 0 otherwise].

8.5 Composite collision models

Besides the three non-Markovian generalizations of CM discussed so far,

each constructed so as to directly break one of the assumptions (1)–(3) in

4.1.1, there is a further natural scheme to endow a CM with memory.

M
(a)

S
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Figure 8.5: Composite collision model. The composite system ( [see panel (a)] is made

out of subsystems S (the open system under study) and " (“memory"). System (
undergoes collisions with the ancillas (just like in a memoryless CM) which however

involve only subsystem ". Before each "-ancilla collision [see panel (c)], Sand "

collide with one another [see (b)] through unitary *̂S" , hence they are generally

correlated. Due to these correlations, the open dynamics of Scannot be divided into a

sequence of CPT maps, one for each step, and is thus non-Markovian. In contrast, the

dynamics of ( (i.e, Splus") is fully Markovian since no correlations with ancilla =

exists prior to the *̂"= collision.

Consider a memoryless CM where ( is bipartite as sketched in 8.5(a).

Its two susbsytems are Sand ", the latter referred to as the “memory".

The former, namely S, is the open system we are concerned with. By

hypothesis, ancillas collide only with memory " [see fig. 8.5(a) and

(c)] through unitaries *̂"= . Between two next collisions, however, S

undergoes a collision with" described by unitary *̂S" [see fig. 8.5(b)].

Now, while the reduced dynamics of ( is of course fully Markovian,

so is not that of Swhich will be generally correlated with " before

each internal collision *̂S" . More explicitly, if * (=−1)
S"

is the (generally

correlated) state of Sand" at the end of collision *̂",=−1, the state of

Sat step = is given by
2

�= = TA"TA={*̂"=*̂S" * (=−1)
S"
⊗ �= *̂†S"*̂

†
"=} . (8.40)

This is not a CPT map on Sbecause unitary *̂"=*̂S" acts on a state

featuring correlations between Sand"-= (since * (=−1)
S"

is not a product

state).

2
In the present subsection, �= denotes the state of Snot (
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We assume � to be the

same for all ancillas. If

not, M simply becomes =-

dependent.

One could define yet more

general compositeCMs fea-

turing non-unitary colli-

sions.

We see that in this dynamics the effective environment in contact with S

in fact comprises the ancillas plus ". Only the former are still “fresh"

when colliding with (. In contrast, " is continuously recycled, thus

keepingmemory of the evolution at previous steps. Note that, in contrast

to S, the reduced dynamics of ( is always fully memoryless (in this

specific respect similarly to the cascaded CMof section 4.8). One can thus

describe the non-Markovian systemSas “embedded" into theMarkovian

system (, in line with a common jargon in the open quantum systems

literature. Indeed, this way of endowing a dynamics with memory

ultimately is a typical one in the theory of open quantum systems. We

also note that, as anticipated, a composite CM does not originate from

breaking a single hypothesis among (1)–(3) (see beginning of the section).

Indeed, as the effective bath seen by S comprises in fact both " and

ancillas in a way that" could be seen itself as an additional ancilla, we

could say that both hypotheses (1) and (3) do not hold (since" keeps

interacting with the other ancillas and because ( collides with" more

than once). We will yet see in the next subsection that, so long as only

the open dynamics is concerned, one can establish a precise mapping

between CMs with ancilla–ancilla collisions and composite CMs.

In order to express the open dynamics in terms of the compact notation

for unitaries and partial traces defined in Eq. 8.11, let us define the

collision map on" (corresponding to the"-= collision) as

M[. . .] = TA={*̂"= . . . ⊗ �=*̂†"=} = T= U"=[ . . . ⊗ �=] . (8.41)

Accordingly, the initial state of ( after = steps turns into

�= = T" (MUS")= [�0 ⊗ �"] , (8.42)

where the leftmost partial trace returns the final reduced state of S (we

assumed that the system starts in state �0 = �0 ⊗ �" ⊗= �=).

As an illustrative instance, consider a qubit S, a memory qubit "

and a bath of qubit ancillas, whose pseudo-spin ladder operators are

respectively denoted as �̂±, �̂"± and {�̂=±}. The S-" and "-ancilla

collisions are described by unitaries

*̂S" = exp

{
[−8+̂S"ΔC]

}
, *̂"= = exp

{
[−8+̂"=ΔC]

}
(8.43)

with

+̂S" = � (�̂+�̂"−+�̂−�̂"+) , +̂"= = 6 (�̂"+�̂=−+�̂"−�̂=+) . (8.44)

Both unitaries 8.43 conserve the total number of excitations #̂ = |1〉(〈1|+
|1〉" 〈1| +

∑
= |1〉= 〈1|. Accordingly, if all ancillas and " are initially in
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state |0〉 and S is in state |1〉, a reasoning analogous to that in section 8.4

[around Eq. 8.33] entails that the joint state at each step necessarily has

the form ��Ψ(=)〉 = (=) |4S〉 + �(=) |4"〉 +
=∑

<=1

�(=)< |4<〉 , (8.45)

where, in analogy to section 8.4, |48〉 with 8 = S, ", < is the state where

subsystem 8 is in the excited state |1〉 and all the others in |0〉. Here, the

subscript on each amplitude denotes the time step.

Using Eq. 4.22 with the replacements 6I = 0 and (→ ", the effective

representation of unitary *̂S" in the present dynamics reads

*̂S" = |00〉S" 〈00| + cos(�ΔC)(|10〉S" 〈10| + |01〉S" 〈01|) (8.46)

− 8 sin�ΔC)(|01〉S" 〈10| + |10〉S" 〈01|) ,

wherewe used that state |11〉 is never involved in the dynamics. The form

of *̂"= is identical provided that � is replaced by 6 and S" → "=.

Based on Eq. 8.45, applying *̂"=*̂S" on

��Ψ(=−1)〉
yields for (=) and

�(=) the recurrence relation (see Appendix A.11 for details)(
(=)

�(=)

)
= D .

(
(=−1)

�(=−1)

)
w8Cℎ D =

(
� −82(
−8( 2 �

)
, (8.47)

where for brevity we set 2 = cos

(
6ΔC

)
, B = sin

(
6ΔC

)
, � = cos(�ΔC),

( = sin(�ΔC). The solution of this equation is simply given by(
(=)

�(=)

)
= D= .

(
(0)

�(0)

)
(8.48)

with (0) = 1 and �(0) = 0.
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Figure 8.6:Dynamics of a composite collision model. SystemS, memory" and all ancillas

are qubits, while the collision unitaries have the form 8.43. Initially, S is in the excited

state with" and each ancilla in the ground state. Each panel shows ?( = |(=) |2 with

the corresponding ?" = |�(=) |2 in the inset. Throughout we set 6 =
√
�/ΔC. The first

three panels [(a)–(c)] report the dynamics in the case � = 1 for ΔC = 2 (a), ΔC = 1 (b)

and ΔC = 0.1 (c), while in panel (d) we set � = 0.1, ΔC = 0.1.

In 8.6, we plot the evolution of the excited-state population of Sand ",

respectively denoted with ?S = |(=) |2 and ?" = |�(=) |2, for 6 =
√
�/ΔC

and � = 1 [panels (a)–(c)], � = 0.1 (d), where energies are expressed
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Given the approximations

made, *̂S" and *̂"=

commute. Hence, we

can replace *̂S"*̂"= '
4−8(+̂S"++̂"= )ΔC

, which can

now be effectively thought

as a single collision of

duration ΔC.

As no Fock states with

more than one photon are

involved in such dynamics,

the bosonic ladder opera-

tors of the cavity can be

equivalently replaced with

ladder spin operators (here

denoted as �̂"±).

Specifically, this

yields �(C) =

−8 �
∫ C

0

dC′ exp

[
− �

2
(C − C′)

]
(C′).

in units of � = 62ΔC. As ΔC decreases, the curves become more and

more continuous as shown (for the case � = 1) by panels (a)–(c). We see

that when � is large [(a)–(c)], Sand " keep exchanging an excitation

which eventually leaks out and gets dissipated into the bath of ancillas.

In particular, S undergoes damped oscillations, exhibiting revivals

which fade away for = large enough. For � small enough, however, the

excitation of Smonotonically decays and no revivals show up, while ?"
reaches a maximum and then decays. In the latter regime (small �), the

interaction of " with ancillas dominates over the S-" coupling so that

as an excitation is transferred from S to" this is immediately released

into the bath before being reabsorbed by S.

The above behavior is analogous to the dynamics of an atom coupled

to a lossy cavity mode, a longstanding paradigm of non-Markovian

dynamics [59]. Specifically, the regimes of damped oscillations [see

fig. 8.6(a)–(c)] and monotonic decay [see 8.6(d)] respectively correspond

to the so called strong and weak coupling regimes of cavity QED. This

linkwith cavity-QEDdynamics can be formulated as an explicitmapping

if we assume

�ΔC � 6ΔC � 1 (8.49)

and expand accordingly the overall unitary for short ΔC as [cf. eq. (8.43)–

8.44]

*̂S"*̂"= ' I − 8(+̂S" + +̂"=)ΔC − 1

2
+̂2

"=ΔC
2 . (8.50)

This expression is now identical to Eq. 5.1 of section 5.1 with �̂0 = +̂S"

and +̂= = +̂"= . It follows that the coarse-grained ME of the composite

S-" system is given by [cf. eqs. (5.17) and (5.18)]

¤�S"=−8 [�(�̂+�̂"−+�̂−�̂"+), �S"]+�
(
�̂"−�S" �̂"+−1

2
[�̂"+�̂"−, �S"]+

)
,

(8.51)

where as usual � = 62ΔC. This is the bipartite ME of a two-level atom

coupled to a leaky cavity mode initially in the vacuum state. Now, if (C)
[�(C)] is the excited-state amplitude of S (") at time C, it can be shown

(see Appendix A.12) that ME 8.51 is equivalent to the pair of coupled

equations

¤ = −8�� , ¤� = −8� − �
2
� . (8.52)

Solving the latter equation for �(C) and replacing in the former yields

the integro-differential equation

¤ = −�2

∫ C

0

dC′ 4−
�
2
(C−C′)(C′) , (8.53)

whose solution is

(C) = 4−
�
4
C
[
cos

(
�C
2

)
+ �

2� sin

(
�C
2

) ]
w8Cℎ �=

√
4�2 − 1

4
�2

(8.54)
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We will consider unitary

AA collisions, yet the prop-

erty can be extended to

non-unitary collisions (as

those in section 8.2).

Note that the definition

of step adopted here

is slightly different from

eqs. (8.1) and (8.2). This

yet has no effect on the

open dynamics, which is

our focus. Also, at vari-

ance with section 8.1, here

we explicitly show the (-

dependence of SA colli-

sion unitaries, which facil-

itates establishing the con-

nection with the notation

used for introducing com-

posite CMs.

8.6 Mapping ancilla–ancilla collisions into a
composite collision model

In section 8.1, we saw that the open dynamics of a CM with fully-

swapping ancilla–ancilla (AA) collisions reduces to a continuous inter-

action between ( and the same ancilla. Note that this can be seen as a

special case of a composite CM with the memory trivially decoupled

from the bath. Accordingly, one could guess that, when it comes to

arbitrary AA collisions, the open dynamics is effectively described by a

suitably defined composite CM. We will show next that this is indeed

the case and, remarkably, it is true no matter the form of AA unitaries.

Let '̂= = ,̂=+1,=*̂(= · · · ,̂3,2*̂(2,̂2,1*̂(1 be the unitary describing the

joint dynamics at the =th step. Unitaries '̂= then fulfill

'̂= = ,̂=+1,=*̂(= '̂=−1 . (8.55)

Let us also define for convenience a pairwise unitary on ancillas = and

= − 1 as

,̂ ′=,=−1
= (̂=,=−1,̂=,=−1 (8.56)

with (̂=,=−1 the usual swap operator.

At step = = 2, we can arrange the total unitary as

'̂2 = ,̂3,2*̂(2,̂2,1*̂(1 = ,̂3,2((̂2,1*̂(1(̂2,1),̂2,1*̂(1 = ,̂3,2(̂2,1*̂(1,̂
′
2,1*̂(1 ,

(8.57)

where we expressed *̂(2 in terms of *̂(1 via 8.5 and used definition

8.56.

At step = = 3, using Equations (8.55) and (8.57), we get

'̂3 = ,̂4,3*̂(3,̂3,2(̂2,1*̂(1,̂
′
2,1*̂(1 = ,̂4,3((̂3,2*̂(2(̂3,2),̂3,2(̂2,1*̂(1,̂

′
2,1*̂(1

= ,̂4,3(̂3,2*̂(2,̂
′
3,2(̂2,1*̂(1,̂

′
2,1*̂(1.

Now, recalling that $̂= (̂=,=−1 = (̂=,=−1$̂=−1, we move swap (̂2,1 to the

left until it is placed to the right of (̂3,2. This turns *̂(2,̂
′
3,2

into *̂(1,̂
′
3,1

,

hence we get

'̂3 = ,̂4,3(̂3,2(̂2,1*̂(1,̂
′
3,1*̂(1,̂

′
2,1*̂(1 = ,̂4,3((̂3,2(̂2,1)*̂(1,̂

′
3,1*̂(1,̂

′
2,1*̂(1 .

By induction, at step =

'̂= = ,̂=+1,=((̂=,=−1(̂=−1,=−2 . . . (̂2,1) *̂(1,̂
′
=,1*̂(1,̂

′
=−1,1 . . . *̂(1,̂

′
2,1*̂(1 .

To get the reduced dynamics of (, we evolve the initial state via unitary
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This is because, if

{|:1 , :2 , . . . , :=〉} is an

ancillas’ basis, any given

sequence of two-ancilla

unitaries applied to all

basis states |:1 , :2 , . . . , :=〉
yields another valid basis

for computing the partial

trace over the ancillas.

In this respect, the col-

lisional dynamics in sec-

tion 8.2 is a remarkable ex-

ception which relies cru-

cially on the non-unitary

nature of AA collisions

[cf. Eq. 8.14].

'̂= and trace off the ancillas as usual. In doing so, we add a further

(̂=+1,= to get another ,̂ ′ operator and move all the swaps to the left.

Due to the partial trace, the sequence of swaps is eventually eliminated

so that we end up with

�= =TA1,2,...,={'̂= �0 ⊗ �= '̂†=} = (8.58)

T1T2 . . . T= W′=+1,1 U(1 W
′
=,1 U(1 W

′
=−1,1 . . . U(1 W

′
2,1 U(1[�0 ⊗< �<]

where as usual U(1 and W′
=,1

are respectively the unitarymaps associated

with *̂(1 and ,̂
′
=,1

[cf. Eq. 8.11]. This open dynamics is identical to that of

a composite CM as can be seen more explicitly by introducing a collision

map on ancilla 1 as M= T=W
′
=,1

so that Eq. 8.58 can be written as

�= = T1 (MUS1)= [�0 ⊗ �1]. (8.59)

Upon comparison with Eq. 8.42, we see that the open dynamics is

indeed that of a composite CM where ancilla 1 embodies the memory.

In this equivalent picture, the original SA collision unitary turns into

the unitary describing the collision internal to the composite (-1 system,

while the original AA unitary now embodies the collision describing

memory–ancilla collisions.

The fact that it is enough to consider a single ancilla in order to get

a composite system jointly undergoing Markovian dynamics clearly

follows from the pairwise nature of each AA collision. For instance, if

between two next SA collisions there occurred AA collisions overall

involving three ancillas, then the composite Markovian system would

comprise two ancillas (besides (). Thus the size of the effective composite

system somehow measures how big is the portion of bath which we

have to keep track in detail in order to describe our non-Markovian

open dynamics. This effectively illustrates a distinctive feature of many

non-Markovian dynamics, namely the impossibility to trace off the entire

bath dynamics even if one is interested solely in the open dynamics.

8.7 Non-Markovian collision models: state of
the art

Non-Markovian CMs with ancilla–ancilla collisions (see sections 8.1

and 8.2) were first introduced in Refs. [30, 155] in the form of incoherent

partial swaps [cf. 8.14] alongsideME 8.20. CMs of the same class but with

unitary ancilla–ancilla collisions, typically in the form of partial swaps

[cf. Eq. 8.3], were considered in Refs. [156–159] mostly with the goal of
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investigating the relationship between non-Markovianity and system–

environment correlations (and changes in the bath state). Notably, this

type of CMs are a convenient tool to introduce non-Markovian effects in

quantum thermodynamics studies (see chapter 7), which was applied

in particular to investigate the Landauer principle of section 7.12 in the

presenceof bathswithmemory [160–162], the temperaturedependenceof

non-Markovianity [163], quantum engine performances [164, 165] and a

non-Markovian generalization of quantum homogenization (see Section

section 4.7) [166]. Remarkably, collisional dynamics with ancilla–ancilla

collisions can be experimentally implemented in all-optical setups [167,

168]. While most of these works considered qubits, continuous-variable

versions of CMs with ancilla–ancilla collisions were proposed and

studied in Ref. [169], featuring multipartite ancillas (environmental

blocks), and Ref. [170], where both beam-splitter-like and two-mode-

squeezing ancilla–ancilla interactions were investigated. It is also worth

mentioning that ME 8.20 stimulated the study of a corresponding class

of well-defined memory-kernel MEs [171–177].

A CM with initially-correlated ancillas (see section 8.3) was introduced

in Ref. [29]. The authors showed that any CPT map on a qubit ( can be

simulated by a CMwhere ( collides with qutrits (i.e., three-level ancillas)

initially prepared in a suitable, generally correlated, state. This includes

the so called indivisible quantum channels [178], namely CPT maps that

cannot be decomposed into infinitesimal CPT maps, thus violating in

particular Eq. 4.17. The link discussed in section 8.3 between correlated

ancillas and mixtures of dynamical maps was extensively studied in

Ref. [179] within a broader framework connected with concepts such as

eternal CP indivisibility [180] and pictorially illustrated through Pauli

maps (see also Ref. [181]). Note that in a condensed-matter scenario it is

natural to consider ancillas as coupled spins described by a many-body

Hamiltonian and, as such, initially correlated [182]. While one might ex-

pect that for growing inter-ancillary correlations the dynamics becomes

more and more non-Markovian, correlations alone are yet insufficient

to ensure non-Markovian behavior which indeed depends as well on

the specific features of system–ancilla interaction. This was shown by

Bernardes et al. [183] in terms of the non-Markovianity measure of

Ref. [43] and then experimentally tested in all-optical [184] and NMR

settings [185]. The CM in Ref. [183] was used as well to investigate the

relationship between coarse-graining time and correlation time [186]. A

collisional dynamics with initially-correlated ancillas was also experi-

mentally implemented through the IBM Q Experience processors [187].

We also quote the use of such class of CMs in Ref. [188] investigating

the relationship between CP divisibility and non-Markovianity.

CMs with multiple collisions (see section 8.4) were proposed as a
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paradigm of non-Markovian quantum chain [189] (see also Ref. [190])

and recently applied in the study of quantumMarkov order [191] and

quantum cooling [192].

The derivation of Eq. 8.38 follows Ref. [193]. The equation is usually

derived without resorting to the collisional approach, see e.g. Refs. [194,

195]. Note that the phase ) which we included for completeness in the

coupling Hamiltonian 8.32 significantly affects the emission.

This class of CMs with multiple, non-local, collisions were introduced in

quantum optics by Refs. [56, 196] which considered quantum emitters

under a continuous drive [a dynamics considerably more involved than

Eq. 8.38]. Ref. [56] showed that the problem can be efficiently solved

numerically using Matrix Product States (MPS), while Ref. [196] pro-

posed an elegant diagrammatic technique mapping the non-Markovian

dynamics of the emitter into the Markovian dynamics of a cascade of

fictitious emitters. An algorithm for describing non-Markovian quantum

trajectories based on such CMs was proposed in Ref. [197], while a

thorough comparison between the collisional andMPS approach to time-

delayed quantum optics dynamics was recently carried out in Ref. [57].

We note that this class of CMs with non-local collisions describe the

dynamics of so called giant atoms [198] (a new paradigm of quantum

optics) in the regime of non-negligible time delays [199].

Another typeofCMswithmultiple collisionswas considered inRef. [200]

(see also [201]) considering an open system ( undergoing random col-

lisions with a two-ancilla bath. At each step, both the ancilla colliding

with ( and the collision unitary are selected randomly. It was found that

the purity of ( as well as bipartite and tripartite entanglement reach

time averaged equilibrium values characterized by large fluctuations.

Composite collision models of section 8.5, whose theory was formulated

in Ref. [202], are used as a versatile tractable model for investigating non-

Markovian problems [58, 138, 162, 163, 203, 204], including generalized

versions where each subsystem is in contact with a different bath of

ancillas [109]. The descriptive power of composite CMs (generalized to

multiple baths) was studied in Ref. [205], where it was shown that they

can simulate efficiently the Markovian dynamics of any multipartite

open quantum system, i.e. with an error and resources (in terms of size

and number of memory systems ") that scale polynomially with the

size of ( and simulation time.

The mapping of a CM with ancilla–ancilla collisions into a composite

CM (see section 8.6) was introduced in Ref. [206]. In Ref. [158], the

mapping was further developed and used for defining the concept of

“memory depth". These works consider unitary ancilla–ancilla collisions,

yet even when these are incoherent partial swaps (as in section 8.2) a
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mapping into a suitably-defined composite CM is still possible as shown

in Ref. [207].
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We saw in section 5.7 that the micromaser is naturally described by a

CM. The micromaser is an instance of engineered, intrinsically discrete

dynamics. In the present section,wediscuss anothermajor scenario (com-

mon in quantum optics) that admits a CM description. The paradigmatic

model is a system ( – in typical cases a cavity mode or atom(s) – cou-

pled to a white-noise bosonic field (we clarify later what “white-noise"

means).

The present section is conceptually important in that it shows how

CMs are related to conventional system–bath microscopic models. The

latter ones typically describe the bath as a continuum of modes which

interact with (, in general, all at the same time [see 1.1(b)]. This is in

stark contrast with (memoryless) CMs [see 1.1(a)], where ( interacts

with the bath units (ancillas) one at a time (a major reason why CMs

are an advantageous theoretical tool). Another key difference between

the two frameworks is that, while in a CM the total Hamiltonian of

( and all the ancillas is intrinsically time-dependent (as we discussed

in particular in sections 7.5 and 7.8), conventional microscopic models

usually feature a time-independent total Hamiltonian. The latter case

matches the physical expectation that, since ( and the bath form a

closed system, no intrinsic time-dependence is expected to arise in

the total Hamiltonian. These issues (in particular) will be clarified in

what follows, from which the CM will emerge as an effective picture to
study a dynamics originally formulated in a conventional microscopic

model. Notably, this will provide physical intuition about a number of

properties of CMs postulated on a rather abstract ground in sections 4.1

and 5.1.

9.1 White-noise bosonic bath and
weak-coupling approximation

Let ( be a quantum system of frequency $0 coupled to a continuum

of bosonic modes 5 (field), whose normal-mode ladder operators 1̂$

and 1̂†$ fulfill the commutation rules [1̂$ , 1̂†$′] = �($−$′), [1̂$ , 1̂$′] =
[1̂†$ , 1̂†$′] = 0. The total Hamiltonian reads

�̂ = �̂( + �̂ 5 + +̂ (9.1)
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with

�̂( = $0 �̂
†�̂ , �̂ 5 =

∫ ∞

−∞
3$ ($0 + $) 1̂†$ 1̂$

+̂ =

√
�

2�

∫ ∞

−∞
3$

(
�̂†1̂$ + �̂ 1̂†$

)
. (9.2)

The ( operators �̂ and �̂† could be fermionic or bosonic, the essential

requirement being only that �̂ is an eigenoperator of �̂(, i.e. [�̂( , �̂] =
−$0�̂ [cf. Eq. 7.15]. Three major features of the Hamiltonian model 9.1

stand out:

(a) The coupling strength is $-independent (white coupling);

(b) +̂ does not contain counter-rotating terms ∼�̂1̂$, �̂†1̂†$;
(c) Frequency $ takes values on the entire real axis.
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extended 
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Figure 9.1: Sketch of involved frequencies. Here, $0 is the frequency of ( while the blue

strip represents the spectrum of normal frequencies of the bath (i.e. the field 5 ; we

consider a single frequency band for simplicity). The open system ( significantly

couples only to field modes with frequency lying within a narrow window of width �
centered at $0. Accordingly, once can extend the field spectrum to the entire $-axis
(light blue strip) by introducing fictitious modes (including in particular frequencies

$ < 0).

These are all idealizations: in reality, the coupling depends on$, counter-

rotating terms are present and$ is lower-bounded. The validity of (a)–(c)

relies on the weak coupling approximation, namely the weakness of (-

� interaction (a usual situation, e.g. in quantum optics).
1
Because of

it, ( undergoes a significant energy exchange only with field modes

whose frequency $ lies within a narrow window around $0 of width

∼ � such that � � $0 (see 9.1). Accordingly, it makes no difference if

the coupling rate at any frequency $ is replaced with its value at $0,

which we called

√
�/2� in Eq. 9.2, at the same time extending integrals

over $ to the entire real axis (see 9.1) by introducing in particular

negative-frequency fictitious modes (these remain uncoupled to ( in

fact). Moreover, counter-rotating terms rotate fast compared to the time

scale �−1
and are thus discarded (rotating wave approximation or RWA).

Note that, for self-consistency, introduction of negative frequencies and

1
For a derivation of Hamiltonian 9.1–9.2 through the weak-coupling approximation

see e.g. Appendix A of Ref. [199].
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In the Schrödinger pic-

ture, time modes do cou-

ple to one another since �̂ 5

clearly cannot have a diag-

onal form when expressed

in terms of time modes

(note that these are not nor-
mal modes).

RWA must be performed together: without the latter, an unphysical

resonance at $ = −$0 would arise.

9.2 Time modes

Instead of normal modes (ladder operators 1̂$), the bosonic bath can be

equivalently represented in terms of time modes (henceforth all integrals

are intended to run from −∞ to∞)

1̂B =
1√
2�

∫
3$ 1̂$4

−8$B , (9.3)

which are thus related to 1̂$ through Fourier transform. As is easily

checked, time modes fulfill bosonic commutation rules

[1̂B , 1̂†B′] = �(B − B′) , [1̂B , 1̂B′] = [1̂†B , 1̂†B′] = 0 . (9.4)

Despite having dimensions of time, B should be regarded for now as just

a label and time modes as an alternative way to represent the field (the

connection with true time C will become clear shortly).

9.3 Interaction picture

In the interaction picture with respect to �̂0 = �̂(+ �̂ 5 , ladder operators

transform as �̂→�̂4−8$0C
and 1̂$ → 1̂$4

−8($0+$)C
so that the joint (-field

state � evolves as ¤� = −8 [+̂C , �]with

+̂C =
√
� �̂† 1̂B=C +H.2. , (9.5)

hence, in the interaction picture: (i) time modes are non-interacting with

each other, (ii) at time C, ( only couples to the time mode 1̂B=C ≡ 1̂C . Note

that (i) and (ii) strongly recall, respectively, assumptions (1) and (3) of

4.1.1, representing in fact a continuous version of these.

A consequence of the interaction picture is that +̂C becomes time-
dependent, hence the time evolution operator (propagator) is given

by

ÛC = T̂4
−8

∫ C

C
0

3B +̂(B)
(9.6)

with T̂ the time-ordering operator.
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We assume that C/ΔC is an
integer. If not, the error

committed becomes negli-

gible for vanishing ΔC.

This perturbative expan-

sion of the propagator is

known as Magnus expan-

sion [208].

9.4 Time discretization and coarse graining

Let us next consider a mesh of the time axis defined by C= = =ΔC with =

an integer and C0 = 0. In terms of this mesh, the propagator 9.6 can be

split as

ÛC = *̂C/ΔC · · · *̂2 *̂1 w8Cℎ *̂= = T̂4
−8

∫ C=

C=−1

3B +̂B
. (9.7)

We take a time step much shorter than the characteristic interaction time,

i.e., ΔC � �−1
. This allows us to expand each *̂= to second order in ΔC,

which yields

*̂= ' I − 8 (+̂= + +̂′=)ΔC − 1

2
+̂2

= ΔC
2

(9.8)

with

+̂= =
1

ΔC

∫ C=

C=−1

3B +̂B , +̂′= =
8

2ΔC

∫ C=

C=−1

3B

∫ B

C=−1

3B′ [+̂B′ , +̂B] . (9.9)

9.5 Emergence of the collision model

It can be shown (see Appendix B of Ref. [199]) that term +̂′= gives

negligible contribution for ΔC short enough. Thus each elementary

unitary 9.8 reduces to

*̂= = I − 8 +̂= ΔC − 1

2
+̂2

= ΔC
2 , (9.10)

where, using Eq. 9.5, +̂= has the explicit form

+̂= =

√
�
ΔC

(
�̂†1̂= + �̂ 1̂†=

)
, (9.11)

where we defined

1̂= =
1√
ΔC

∫ C=

C=−1

3C 1̂C . (9.12)

It is easily verified that 1̂= fulfill standard bosonic commutation rules

[1̂= , 1̂†=′] = �=,=′ , [1̂= , 1̂=′] = [1̂†= , 1̂†=′] = 0 . (9.13)

This is precisely the basic CM of section 4.1 in the case that each ancilla is

a quantum harmonic oscillator of frequency $0. A number of comments

follow.

(1) Note how the characteristic 1/
√
ΔC dependence of the coupling

strength – which we assumed repeatedly in this paper (see e.g. sec-

tion 5.8) – here in fact results from the model’s white coupling
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Commutation rules 9.13

crucially rely on having in-

corporated a factor 1/
√
ΔC

in the definition of 1̂=
[cf. Eq. 9.12].

[cf. Eq. 9.2] combined with the need for well-defined bosonic

commutation rules of the 1̂=’s.

(2) The CM arises in the interaction picture [recall Eq. 9.5], which

explains the time-dependent nature of the collisional Hamiltonian.

(3) The interaction picture is key in order for ( to collide with a new

ancilla 1̂= at each time step and for the ancillas to be mutually non-

interacting. In the Schrödinger picture, ( would be interacting all

the time with the same ancilla and the ancillas would be coupled

to one another (reflecting an analogous properties of continuous

time modes).

(4) Among the three hypotheses in section 4.1 which ensure lack of

memory, the CM that we derived fulfills (1) and (3). Whether or

not (2) holds (initially-uncorrelated ancillas) depends on the field

initial state, as shown next.

9.6 Initial state of ancillas and condition for
Markovian dynamics

We assume throughout that ( and the bosonic bath are initially un-

correlated, that is �0 = �0 ⊗ � 5 . The field initial state � 5 is usually

expressed in terms of the continuous normal modes (frequency domain)

or through the time modes (time domain). Thus, in order to derive the

corresponding initial state of ancillas, one first needs to express � 5 in

terms of modes 1̂= . At this point, we observe that, for an unspecified ΔC,

modes 1̂= in Eq. 9.12 clearly embody only part of the field degrees of

freedom. This can be formally seen by Fourier-expanding 1̂C can in each

time interval [C=−1, C=[ as

1̂C =
∞∑

==−∞

∞∑
:=−∞

Θ=(C) 1√
ΔC
4−8

2�:
ΔC C 1̂=,: w8Cℎ 1̂=,: =

1√
ΔC

∫ C=

C=−1

3C 4 8
2�:
ΔC C 1̂C

(9.14)

[recall that Θ=(C) = 1 inside interval C=−1 ≤ C < C= while Θ=(C) = 0

elsewhere]. Here, ladder operators 1̂=,: are defined so as to obey bosonic

commutation rules, [1̂=,: , 1̂†=′:′] = �=,=′�:,:′, [1̂=,: , 1̂=′:′] = 0. Note that

for : = 0 we retrieve ancillas’ modes 9.12, that is 1̂= ≡ 1̂=.0. It is easily
shown that modes 1̂=,:≠0

contain only field frequencies $ that diverge

in the limit ΔC → 0 [38]. Accordingly, it is reasonable to assume that for

all practical purposes these modes remain always unexcited, that is one

in fact always deals with field initial states of the form

� 5 = ��
⊗
=

⊗
:≠0

|0〉=,: 〈0| , (9.15)
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Note that the approxima-

tion according to which

modes 1̂=,:≠0 remain un-

excited all the time is

consistent with eqs. (9.10)

and (9.11) where only

modes 1̂= ≡ 1̂=,0 appear.

In passing, this justifies

the convention to define

|1〉 such that �̂I |1〉 =

|1〉, which we followed

throughout the paper.

where �� stands for the state of modes 1̂= = 1̂=,0 (our ancillas) while

|0〉=,: is the vacuum state of each mode 1̂=,: .

Based on the above, the initial state of ancillas (modes 1̂=) is generally

inferred from � 5 (initial state of the bosonic bath) by decomposing the

field into modes 1̂=,: through the inverse of transform 9.3 followed by

9.14 (or only the latter when � 5 is already expressed in terms of time

modes).

Notably, besides properties (1) and (3) of 4.1.1 (always matched as

discussed before), property (2) will be fulfilled whenever � 5 is such that

�� =
⊗
=

�= (condition for Markovian dynamics) (9.16)

with �= the initial state of mode 1̂= . In this case, the emerging CM is

memoryless (see sections 4.1 and 4.5). It turns out that condition 9.16 is

fulfilled by a number of relevant classes of field states, some of which

are illustrated next.

9.7 Vacuum state

The field vacuum state |v02〉 is defined as the state such that 1̂$ |v02〉 = 0

for any $. Since the analogous statement clearly holds for time modes,

Eq. 9.14 entails that 1̂=,: |v02〉 = 0 for any =, :. Hence, �� is of the form

9.16 – meaning that the dynamics is Markovian – with

�= = |0〉= 〈0| . (9.17)

In the case that ( is a qubit, namely �̂ = �̂− [cf. Eq. 9.2], conservation of

the total number of excitations �̂+�̂−+
∑
= 1̂
†
= 1̂= entails that the state of

each ancilla must lie in the subspace spanned by the pair of Fock states

|0〉= and |1〉= with |1〉= = 1̂†= |v02〉. Thus ancillas behave as effective

qubits. We thus recover the all-qubit CM of section 4.6 (when 6I = 0 and

each ancilla is prepared in |0〉), which we used in particular to derive

the spontaneous-emission ME 5.33.

9.8 Thermal states

Formally, a thermal state of the bosonic bath at inverse temperature

� = ( ))−1
would read

� 5 = /
−14−��̂ 5

(9.18)
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Unlike section 7.1, here an-

cillas do not have a free

Hamiltonian since in the

interaction picture chosen

above the only Hamilto-

nian term is that describing

the (-field interaction. Yet,

the reduced dynamics of (

is the same as in section 7.1

because the (-ancilla cou-

pling and the ancilla initial

state are identical.

For a discrete bosonic

field, a multimode coher-

ent state has the form⊗
9 exp

(
 9 1̂†9−

∗
9
1̂ 9

)
|v02〉 =

exp

[∑
9( 9 1̂†9−

∗
9
1̂ 9)

]
|v02〉,

whose Eq. 9.22 repre-

sents the continuous

version [86].

with / = TA 5 {4−��̂ 5 } the field partition function. In our case, replacing

�̂ 5 with the expression in Eq. 9.2would yield anunphysical thermal state

due to the absence of a lower bound of the field spectrum. To get around

this difficulty, it is customary to make the brute-force approximation

consisting in replacing �̂ 5 in 9.18 with

�̂ 5 ' $0

∫ ∞

−∞
3$ 1̂†$ 1̂$ . (9.19)

Upon comparison with �̂ 5 in Eq. 9.2, we see that this is equivalent

to stating that the field normal modes are perfectly resonant with (

(neglecting the dispersion). This again relies onweak coupling according

to which only field normal modes within a narrow bandwidth around

$0 (cf. 9.1) exchange a significant amount of energy with (. Under

approximation 9.19, by noting that

∫
3$ 1̂†$ 1̂$ is the total number of

bosonic excitations, which can be equivalently expressed as

∫
3C 1̂†C 1̂C =∑

=,: 1̂
†
=,:
1̂=,: [cf. Eq. 9.14], we have

� 5 '/−14−�$0

∫
3$ 1̂†$ 1̂$ = /−14−�$0

∫
3C 1̂†C 1̂C =

/−14
−�$0

∑
=,: 1̂

†
=,:
1̂=,: =

⊗
=,:

/−1

=,:
4
−�$01̂

†
=,:
1̂=,: . (9.20)

with /=,: = TA=,:{4−�$01̂
†
=,:
1̂=,: }. Thereby, Eq. 9.16 holds with

�= = /
−1

=,0 4
−�$01̂

†
= 1̂= . (9.21)

It follows that ( is governed by the same finite-temperature master

equation that we obtained in section 7.1 to describe thermalization.

9.9 Coherent states

A generic coherent state of the bosonic bath field has the form � 5 =
|〉 〈 | with

|〉 = 4
∫
3$

(
$ 1̂†$−∗$ 1̂$

)
|v02〉 (9.22)

with $ the pulse shape in the frequency domain. The standard

continuous-wave case occurs for $ ∝ �($ − $3) with $3 the drive

frequency. The state can be equivalently expressed in terms of time

modes as

|〉 = 4
∫
3C

(
C 1̂†C−∗C 1̂C

)
|v02〉 , (9.23)
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Strictly speaking, when (

is a qubit each ancilla

behaves as an effective

three-level system (with

Hilbert space spanned

by {|0=〉 , |1=〉 , |2=〉}) due
to the possible transition

|1(〉 |1=〉 → |0(〉 |2=〉. Yet,
in the limit of shortΔC, this

has negligible probability

compared to |0(〉 |1=〉 →
|1(〉 |1=〉 since the |1=〉’s
component of state 9.26 is

of order ∼
√
ΔC so that

the all-qubit CM is effec-

tively retrieved (as usual,

|0(〉 and |1(〉 are respec-

tively the ground and ex-

cited states of ().

where C = 1/
√

2�
∫
3$ $4

−8$C
encodes the pulse shape in the time

domain. By decomposing 1̂C through 9.14, the exponent of 9.22 becomes

∫
3C

(
C 1̂
†
C −H.2.

)
=

∑
=,:

1√
ΔC

(∫ C=

C=−1

3C C 4
8 2�:
ΔC C

)
1̂†
=,:
−H.2. . (9.24)

Accordingly, condition 9.16 for Markovian dynamics is matched for

�= = |=〉= 〈= |, where

|=〉 = 4=
√
ΔC 1̂†=−∗=

√
ΔC 1̂= |0=〉 w8Cℎ = = 1

ΔC

∫ C=

C=−1

3C C (9.25)

(= is the mean value of C on interval [C=−1, C=]).

Thus each ancilla is initially in a (single-mode) coherent state of ampli-

tude =
√
ΔC (note the

√
ΔC-proportionality). For ΔC small enough this

can be approximated to the lowest order as

|=〉 = 4−
1

2
|= |2ΔC

∞∑
:=0

(=
√
ΔC):√
:!

|:=〉 '
1

1 + |= |2ΔC

(
|0〉= + =

√
ΔC |1〉=

)
,

(9.26)

which is normalized to the first order inΔC (here |:=〉 = (1̂†=):/
√
:! |v02〉).

We thus retrieve state 5.34, which we considered in section 5.8 for the

all-qubit CM showing that it leads to optical Bloch Eqs. 5.36.

9.10 General white-noise Gaussian state

By definition, a Gaussian state of the field is fully specified by the knowl-

edge of first and second moments 〈1̂C〉 and 〈1̂†C 1̂C′〉, 〈1̂C 1̂C′〉 with 〈. . .〉 =
TA 5 {. . . � 5 }. For �-correlated second moments, namely e.g. 〈1̂C 1̂C′〉 ∝
�(C − C′), � 5 is a so called white-noise Gaussian state. The standard way

to express its general form is [10]

〈3�̂C〉 = �C 3C , 〈3�̂†C 3�̂C〉 = # 3C , 〈3�̂C 3�̂C〉 = " 3C . (9.27)

with # ≥ 0 and where �C and" are complex coefficients subject to the

constraint |" |2 ≤ #(# + 1). Here," measures the amount of squeezing
of the field, while 3�̂C =

∫ C+3C
C

3B 1̂B is the so called quantum noise

increment fulfilling the commutation rule [3�̂C , 3�̂†C ] = 3C [following

from [1̂C , 1̂†C′] = �(C−C′)]. Thus Eq. 9.27 gives first and secondmoments of

noise increments at the same time, while those at different times vanish

(meaning, in particular, that time modes are initially uncorrelated).
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Any two-mode Gaussian

state �12 such that 〈1̂†
1
1̂2〉 =

〈1̂11̂2〉 = 0 is necessarily

a product state, i.e., �12 =

�1 ⊗ �2 (third- or higher-

order correlation functions

are zero since Gaussian

states are by definition

fully specified by first and

second moments). This is

naturally generalized to

more than two modes.

In the present subsection,

time arguments appear in

the standard form (not as

subscripts or superscripts).

Using 9.12 this entails that first and second moments of ancillas are

given by

〈1̂=〉 = �=
√
ΔC , 〈1̂†= 1̂=′〉 = �=,=′ # , 〈1̂= 1̂=′〉 = �=,=′" (9.28)

with �= themean value of �C on the =th interval. Secondmoments vanish

for = ≠ =′, guaranteeing that condition 9.16 holds. Corresponding to

the continuous field state [cf. Eq. 9.27], here # is the average number of

excitations of each ancilla while" measures its squeezing.

The states discussed in the previous sections are special cases of 9.28:

�= = # = " = 0 (vacuum), �= = " = 0 and # = =̄$0
(thermal state),

�= = = , # = |= |2 and" = 0 (coherent state) [recall definition 7.5].

In light of eqs. (5.17) and (5.18), the above in fact provides the most

general master equation of ( for an arbitrary white-noise Gaussian state

of the field. Note that the continuous-time limit [cf. section 5.8] is always

well-defined since 〈1̂=〉 ∝
√
ΔC [cf. Eq. 9.28].

9.11 Initially-correlated ancillas

There are a variety of field states such that condition 9.16 does not hold,

which makes the dynamics non-Markovian. The simplest instance is

probably a single-photon state like

|Ψ〉 5 =
∫

3CΨC 1̂
†
C |v02〉 , (9.29)

whereΨC is a photonic wavepacket. Using 9.14, the corresponding initial

state of the ancillas reads �� =
��#〉

�
〈# | with��#〉

�
=

∑
=

2= |1=〉 w8Cℎ 2= =
1√
ΔC

∫ C=

C=−1

3CΨC , (9.30)

which is a generally entangled, thus correlated, state [cf. section 8.3].

9.12 Connection with input–output formalism

The collisional picture of the dynamics (see section 9.5) was defined

above in terms of evolution of states. Yet, one can let equivalently evolve

operators so that each collision is governed by the operatorial equation

3

3C
1̂=(C) = 8 [+̂= , 1̂=(C)] = −8

√
�
ΔC �̂(C) . (9.31)
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where we used Eq. 9.11. Since ΔC is very short we can replace the

derivative with Δ1̂=/ΔC, where Δ1̂= = 1̂=(C=) − 1̂=(C=−1) (recall that the
=th collision occurs in the time interval C=−1 ≤ C < C=). This yields

1̂=(C=) = 1̂=(C=−1) − 8
√
�ΔC �̂(C=−1) . (9.32)

This equation can be understood by interpreting 1̂=(C=−1) as an input
discrete field, whose interaction with ( produces an output field 1̂=(C=).
Indeed, 9.32 can be seen as the discrete version of the central equation

underpinning the so called input–output formalism of quantum optics

(see e.g. Ref. [10])

1̂(oDC)(C) = 1̂(i=)(C) − 8√� �̂(C) (9.33)

with 1̂(i=)(C) and 1̂(oDC)(C) being the continuous limits of 1̂=(C=−1)/
√
ΔC

and 1̂=(C=)/
√
ΔC, respectively.

9.13 Collision models from conventional
models: state of the art

The above derivation of the CM from the microscopic bosonic model is

largely based on Refs. [37, 38, 199] (see also Ref. [209]). In particular,

Ref. [199] encompasses the extension to a multipartite system ( that can

couple to the field non-locally. This brings about a new feature in that,

relaxing the hypothesis that ( is point-like (as assumed throughout in

the above), term +̂′= in the elementary unitary 9.8 has a contribution due

to vacuum fluctuations that yields an effective (second-order) induced

Hamiltonian for ( [199]. In the case of systems each interacting with a

waveguide field at multiple coupling points (such as “giant atoms" [198]

or oscillators in looped geometries [210]), this effective Hamiltonian can

be made decoherence-free [211]. This phenomenon was predicted in

Ref. [212] (throughmethods not based on CMs) and then experimentally

observed in a circuit-QED setup [213]. Mapping the dynamics into an

effective CM allows for a full-fledged interpretation of the physical

mechanism underlying such class of decoherence-free Hamiltonians,

which was shown in Ref. [211].

Note that, while for vacuum and coherent states (sections 9.7 and 9.9)

the field time bins naturally behave as effective qubits, this is generally

not the case (for instance for thermal or squeezed states). However, as

shown in Ref. [38], one can always replace the time bins with suitably

defined qubits yielding the same open dynamics of (.
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In themodel we considered, �̂( is time-independent. One can yet extend

the framework so as to account for an external drive on (, an approach

that was successful in studying directional emission into a waveguide

from a quantum emitter subject to a pulsed laser [214].

Relying on its tight link with the input–output formalism (see 9.12), the

CMmapping was recently exploited to infer equations of motion and

input–output relations of cavity-waveguide systems [215, 216], carry

out quantum simulations of coherent light–matter interactions [217,

218], design qubit-oscillator circuits for implementing quantum error

correction codes [219] and investigate non-equilibrium thermodynamics

(see chapter 7) in waveguide QED [220].

The CMmapping discussed here can be extended to a system ( coupled

to the field at many points in the regime of non-negligible delays. This
results in non-Markovian CMs with multiple non-local collisions (see
section 8.4), which were applied in Refs. [56, 193, 196].

Due to the natural connection of CMs with quantum trajectories (see

chapter 6), another promising application of the collisional mapping are

non-Markovian extensions of photon counting and quantum trajecto-

ries (usually formulated for Markovian dynamics [10, 78]). Examples

are non-Markovian dynamics induced by single-photon states (see sec-

tion 9.11) [221–223], superposition of coherent states [224] and delayed

coherent feedback [57, 197].

We finally mention that, formally, even in the case of micromaser

(cf. section 5.7) one can define an effective quantum field whose the

two-level atoms are the corresponding quanta [225].
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In this paper, by adopting a pedagogical approach we presented the

theory of quantum collisions models (CMs), reviewing at the same time

the related state of the art. In line with 2.1, our discussion analyzed first

the basic properties of CMs in chapters 4 and 5 and then considered the

major areas of application of CMs to date: quantum trajectories/weak

measurements (chapter 6), non-equilibrium quantum thermodynam-

ics (chapter 7), non-Markovian extensions of CMs 8 and white-noise

microscopic models (chapter 9), the latter being recurrent in quantum

optics.

Besides those featured in the previous state-of-the-art sections, there

exist further interesting applications of CMs (and new ones keep being

proposed). One of these is quantum Darwinism [226–230], where a CM

description allows for a dynamical study of information spreading across

the bath. Very recently, CMs started being applied to quantum biology
problems, mostly as a versatile tool for modeling decoherence including

non-Markovian effects (see chapter 8). In particular, Ref. [231] inves-

tigated quantum transport across a Fenna–Matthews–Olson complex,

while Ref. [232] studied decoherence of an avian-inspired quantummag-

netic sensor. Other recent applications include: quantum classifiers [233]

simulation of the Unruh effect [234], quantum friction [235], information

scrambling [236], quantum batteries [237] and quantum metrology

[238].

Needless to say, while the paper dealt with well-established theory,

there are a number of problems which are still open some of which are

mentioned next.

chapter 8 introduced various classes of non-Markovian CMs. The rela-

tionships between these classes are still unexplored, e.g. whether or not

it is possible to map one class into another, which was proven only for

ancilla–ancilla collisions and composite CMs (see section 8.6). This is an

interesting question also from a fundamental viewpoint since it would

help clarifying the relationship between seemingly different memory

mechanisms corresponding to the relaxation of one of assumptions

(1)–(3) in 4.1.1.

Another open issue concerns the derivation of CMs from conventional

microscopic models, which was carried out in chapter 9 only for bosonic

baths. The procedure we followed there does depend on the bosonic

commutation rules of the field, allowing to define in a relatively natural
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way independent ancillas (in the sense that operators of different ancillas

are mutually commuting). A strictly analogous procedure for fermionic

fields would lead to non-commuting ancillas, hence a suitable non-

trivial extension is demanded. It appears reasonable to expect that a

CM mapping exists also in this case since Markovian dynamics and

Lindblad master equations occur for fermionic baths as well. This

problem is arguably related to the definition of input–output formalism

for fermionic fields [239].

While writing this paper, the interest in CMs keeps growing as e.g. wit-

nessed by regular submissions of preprints to the Los Alamos archive.

A natural question is to what extent the field of application of CMs

could be enlarged. Should one envisage such approach becomes one day

the conventional methodology? This is a non-trivial question to answer.

One of the key points is the ability of CMs to describe non-Markovian

dynamics. While research along this line is still in the early stages, one

can expect (see e.g. sections 8.1 and 8.6) that the higher is the degree

of non-Markovianity the larger will be the number of (effective) bath

ancillas one has to keep track with the same level of detail as the open

system ( (see also Ref. [58]). Aside from the obvious difficulty to account

for many degrees of freedom, we note that at some point this might

even question the very nature of the collisional approach whose spirit is

reducing complex dynamics to a sequence of simple interactions. This is

well-illustrated by the instance in 8.4 to describe which we needed to

cope somehow with all ancillas at each step (which was possible only

because a single excitation was involved in the problem).

What appears by now well-assessed is that the collisional approach

performs extremely well in a number of problems such as derivation

of well-defined master equations, both Markovian and non-Markovian,

the calculation of thermodynamic rates in non-equilibrium processes

(where handling conventional microscopic models is often beyond

reach), the physical interpretation of complex dynamics, the study of

non-Markovianity.

An interesting future direction would be to synergically combine CMs

or CM-inspiredmethods with other techniques (such as tensor network),

as recently done in Ref. [240].

On a merely pedagogical ground, we envisage that CMs could become a

standard strategy for introducing students to the basics of open quantum

systems theory. In this respect, note that our discussion dealt with most

main concepts of this field such as quantummaps, Lindbladmaster equa-

tion, steady states, POVMs, quantum trajectories, stochastic Schrödinger

equation, Stinespring dilation theorem. The required background is in

fact some familiarity with elementary quantum mechanics. Moreover,
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developing a physical intuition of the various topics (e.g. the conditions

for the Lindblad master equation to hold) is facilitated compared to

conventional microscopic models (cf. A.6).

We hope that the systematic settlement of the CMs theory that we tried

to carry out here could spur an increasing use of CMs among students

and researchers or at least stimulate a “collisional thinking" of open

quantum systems problems in addition to, or possibly in combination

with, other methods.
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AppendixA
A.1 Density matrices

The most general state of a quantum system ( is described by a density operator � (often

referred to as density matrix). This is a Hermitian, positive semi-definite operator of trace

one. As such, it can always be expanded (“spectrally decomposed") as

� =
∑
�

?� |�〉〈� | (A.1)

with ?� ≥ 0 (positivity
1
) and TA� =

∑
� ?� = 1 (normalization). Here, {|�〉} are the

eigenstates of �, i.e. �|�〉 = ?� |�〉 for all �, which form an orthonormal basis of the Hilbert

space of (. When all probability ?� vanish but one, � reduces to a simple projector, in

which case we say that the state is pure. In all other cases, we deal with a mixed state. While

the usual description through kets is always possible for pure states, the density–matrix

language is indispensable for representing mixed states.

Spectral decomposition A.1 expresses � as a mixture of orthogonal (pure) states. A density

matrix can however be alternatively expressed as a mixture of non-orthogonal states, for

instance a legitimate state for a qubit is � = 1/2|0〉〈0| + 1/2|+〉〈+| with |±〉 = 1√
2

(|0〉 + |1〉),
where |0〉 and |+〉 are non-orthogonal.

The density–matrix language is essential for describing subsystems. Assume that ( is part

of a larger bipartite system, the other subsystem being � (no matter how big). Then, if � is

the joint ( − � state, the state of ( is given by the partial trace over �

� = TA� � =
∑
�

�〈�|� |�〉� , (A.2)

where {|�〉�} is an arbitrary orthonormal basis of � (it is easily checked that this satisfies

the definition of density operator).

A.2 Von-Neumann entropy, mutual information and
relative entropy

Given a (generally mixed) state � the Von Neumann entropy is defined as [21]

S(�) = −TA{� log �} . (B.1)

1
Rigorously speaking, this expresses non-negativity, but we will refer to this property as “positivity" to

simplify the language.
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This is the natural quantum analogue of the Shannon entropy occurring in classical

information theory. This can be seen by spectrally decomposing � as in Eq. A.1, which

entails

S(�) = −
∑
�

?� log ?� . (B.2)

Also, this shows thatS(�) ≥ 0 for any �. Specifically, entropy vanishes for pure states and is

non-zero for mixed states. This matches the picture of a mixed state as a statistical mixture

of pure states. For instance, consider the qubit state � = 1/2 |0〉 〈0| + 1/2 |1〉 〈1| = 1

2
I. This

can be interpreted by saying that we are fully ignorant about whether ( is in |0〉 or |1〉.
Entropy is a measure of such ignorance. Indeed, in the considered instance, it takes its

maximum value S= log 2.
2
In contrast, S(|0〉 〈0|) = 0 as we are fully sure that ( is in the

pure state |0〉. An important property of the Von Neumann entropy is that it does not

change under a unitary transformation, i.e.

S(�) = S(*̂�*̂†) (B.3)

for any state � and unitary *̂ . This is immediately seen from A.1 by noting that *̂� *̂† has
the same spectral decomposition as � under the change of basis {|�〉} → {*̂ |�〉}.

The Von Neumann entropy underpins the definition of two useful quantities, quantum

relative entropy and quantum mutual information.

Unlike Von Neumann entropy which is associated with a single state, the quantum relative
entropy depends on a pair of states, say � and �′. It is defined as

S(� ‖ �′) = −TA{� log �′} − S(�) = TA{� (log � − log �′)} . (B.4)

It can be shown that S(� ‖ �′) ≥ 0 (non-negativity) with S(� ‖ �′) = 0 if and only if � = �′.
Relative entropy is useful because it is a measure of the distinguishability between two

quantum states. Notably, it is not symmetric under swap of states, i.e. S(� ‖ �′) ≠ S(�′ ‖
�).3

Another entropic quantity is quantum mutual information, the quantum version of mutual

information (a longstanding measure of correlations). Given a pair of systems ( and �, it is

defined as

I(� = S(�() + S(��) − S(�(�) (B.5)

with �(� the joint state and �((�) = TA�((){�(�} the reduced states. Mutual information

fulfills I(� ≥ 0 with

I(� = 0 ⇔ �(� = �( ⊗ �� . (B.6)

Thus I(� > 0 witnesses the existence of (-� correlations.

2
This is the maximum value for a qubit. In general, for a system with Hilbert space dimension 3, the
maximum entropy is ( = log 3 (for a qubit, 3 = 2)

3
This is a reason why relative entropy cannot be used to define a metric in the Hilbert space.
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A.3 Quantum maps

Transformations of density matrices are described by quantum maps. A quantum map

transforms a state � into another state �′, which is expressed as �′ =M[�]. A major class of

quantum maps is that defined by

�′ =M[�] =
∑
<

 ̂< �  ̂†< w8Cℎ
∑
<

 ̂†< ̂< = I . (C.1)

These are called completely positive and trace-preserving (CPT) maps.4

The rightmost expansion in C.1 is called Kraus decomposition and  ̂< the Kraus operators.

The Kraus decomposition (demonstrably) ensures that, if � is a well-defined density matrix,

then so is �′. The importance of CPT maps indeed relies on the fact that they describe

physically-legitimate transformations, e.g. due to a dynamical evolution or measurement,

i.e. they map physical states into physical states.

Note that, like any operator, a unitary transformation transforms a density matrix as

�′ = *̂� *̂† subject to *̂†*̂ = I, which is a special case of quantum map C.1 having

only one Kraus operator *̂ . Actually, a unitary transformation fulfills *̂*̂† = I as well,

while in general

∑
<  ̂< ̂

†
< ≠ I this expressing the fact that a quantum map is generally

non-unitary.

Non-unitarity most notably entails that the scalar product of two states is not invariant

under a quantum map. The best instance to see this is probably the decay of a two-level

atom: the excited state |4〉 eventually evolves into the ground state

��6〉, while the ground

state is unaffected. Thus |4〉 and
��6〉 (which are orthogonal states) are both mapped into

the same state

��6〉, with the scalar product thereby changing from zero to one.

A.4 Dynamical map

If ( is closed (decoupled from anything else) its state � evolves in time according to the Von

Neumann (or quantumLiouville) equation (recall that we set ℏ = 1) ¤� = −8[�̂( , �]. This is in
fact just the Schrödinger equation expressed in the density–matrix formalism. Accordingly,

the time evolution of � is unitary, �C = *̂(C�0*̂
†
(C
, with *̂(C = 4−8�̂(C the time-evolution

operator.

If ( is open then its time evolution is generally non-unitary. This can be seen in the case that

( and � overall form a closed system so that they jointly evolve unitarily as �C = *̂C �0 *̂
†
C .

Hence, tracing off �, the state of ( at time C is given by

�C =
∑
�

� 〈�| *̂C �0 ⊗ �� *̂†C |�〉� , (D.1)

4
We do not discuss here the concept of complete positivity, using C.1 as the definition of a CPT map.
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where we assumed that ( and � start in the uncorrelated state �0 = �0 ⊗ ��. Replacing now

�� with its spectral decomposition �� =
∑

� ?� |�〉�〈�|, � can be arranged in the form

�C = ΛC[�0] =
∑
��

(√
?� �〈�| *̂C |�〉�

)
�0

(√
?� �〈�| *̂C |�〉�

)†
. (D.2)

Eq. D.2 defines the so called dynamical map: for any given initial state of (, �0, ΛC returns

the dynamically evolved state at time C, �C . The dynamical map ΛC can be seen as the

open-system counterpart of the time-evolution operator. Remarkably, by comparing Eq. D.2

with C.1, we see that ΛC is a CPT map whose generic Kraus operator, labeled by the double

index (�,�), reads
 ̂�� =

√
?� �〈�| *̂C |�〉� . (D.3)

A.5 Stinespring dilation theorem

We have just seen in A.4 that, starting from an uncorrelated (-� state, a global unitary

dynamics results upon partial trace in a CPT map on (. According to the Stinespring

dilation theorem, the converse property holds as well: given a CPT map M [cf. Eq. C.1] one

can always find an ancillary system �, an initial state of �, ��, and a global unitary *̂(�

(acting on ( and �) such that

�′ =M[�] = TA�

{
*̂(� � ⊗ �� *̂†(�

}
. (E.1)

Note that in general there are infinite pairs (�� , *̂(�) producing the same CPT map M

through E.1. We stress that the lack of initial correlations between ( and � in Eq. E.1 is

essential for a CPT map to emerge.

For more detailed treatments of the topics from A.1 to A.5 see e.g. Refs. [21, 241].

A.6 Lindblad master equation

Consider the class of dynamical maps such that

ΛC = ΛC−C′ ΛC′ . (F.1)

for any C and C′ such that 0 ≤ C′ ≤ C. (F.1) is called semigroup property and can be regarded

as a formal definition of a Markovian, i.e. memoryless, dynamics.

It can be shown [7] that, if F.1 holds, then � = ΛC[�0] is the solution of a master equation

(ME) having the general form

3�

3C
= −8 [Ĥ, �] +

∑
�

��
(
!̂��!̂

†
� − 1

2
[!̂†� !̂� , �]+

)
(F.2)



A.6 Lindblad master equation 123

with Ĥa Hermitian operator and �� ≥ 0 for each �. Here, !̂� are a set of operators on (

called jump operators. Eq. F.2 is the so called Gorini–Kossakowski–Sudarshan–Lindblad

equation, more often referred to simply as Lindblad ME (or ME in Lindblad form).

A.6.1 Microscopic derivation from a conventional system–bath model

We ask under what physical conditions the Lindblad ME correctly describes the open

dynamics. Thus consider the generic system–bath Hamiltonian

�̂ = �̂( + �̂� + +̂ . (F.3)

In the interaction picture with respect to �̂0 = �̂(+ �̂�, the joint (-� state evolves according

to the Von-Neumann equation ¤� = −8 [+̂C , �]. Solving it formally yields

�C = �0 − 8
∫ C

0

3C′ [+̂C′ , �̂C′] . (F.4)

. Plugging this back into the Von-Neumann equation one gets

3�
3C

= −8 [+̂C , �0] −
∫ C

0

3C′ [+̂C , [+̂C′ , �C′]] . (F.5)

We assume no initial correlations between system and environment, i.e. �0 = �0 ⊗ ��,
where �0 and �� are respectively the initial reduced density operators of ( and �. Also, we

assume TA�[+̂C , �0] = 0, which is the case e.g. when �� is such that [�̂� , ��] = 0 (e.g. in the

case of a thermal state). Using these and tracing off the bath � in Eq. F.5 yields

3�

3C
= −

∫ C

0

3C′ TA�
{
[+̂C , [+̂C′ , �C′]]

}
. (F.6)

Although system and bath start in a product state, as a consequence of their interaction,

mutual correlations between the two will build up. However if � is a reservoir (very large

number of degrees of freedom), one intuitively expects its reduced state to be little modified

by the interaction with the system. Accordingly, in Eq. F.6 one can approximate

�C ' �C ⊗ �� , (F.7)

which is known as Born approximation.5 At the same time, we expand the interaction

Hamiltonian as +̂C =
∑

� 6��̂�C �̂�C (always possible), where �̂�C = 4 8�̂(C�̂�4
−8�̂(C

and

�̂�C = 4
8�̂�C �̂�4

−8�̂�C
are a set of operators on respectively ( and � in the interaction picture

(�̂� and �̂� are Hermitian). With these replacements and the Born approximation F.7, F.6

5
We point out that approximation F.7 is made only in Eq. F.6 determining the reduced dynamics of (.
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takes the form

3�

3C
= −

∑
�,�

6�6�

∫ C

0

3C′ TA�
{[
�̂�C �̂�C , [�̂�C′�̂�C′ , �C′��]

]}
=

= −
∑
�,�

6�6�

∫ C

0

3C′
(
(�̂�C�̂�C′�C′ − �̂�C′�̂C′�̂�C)〈�̂�C �̂�C′〉

+(�C′�̂�C′�̂�C − �̂�C �̂C′�̂�C′)〈�̂�C′�̂�C〉
)
, (F.8)

where we defined

〈�̂�C′�̂�C〉 = TA�{�̂�C′�̂�C��}.

For a large reservoir �, each two-time correlation function 〈�̂�C �̂�C′〉 is strongly peaked

around C − C′ ' �2 with �2 usually referred to as the correlation time. This entails that any
fluctuation in the bath state due to its interaction with the environment dies out on a time

scale of the order ∼ �2 . This time is typically very short, in particular when compared to

the evolution timescale of (. Accordingly, in each integral over C′ appearing in Eq. F.8, we

can approximate

�C′ ' �C , (F.9)

which is known as theMarkov approximation.

A.6.2 Secular approximation

For each �̂�, we now conveniently define �̂�$ =
∑′
�,�′ Π̂��̂�Π̂�′ with Π̂� the projector onto

the eigenspace of �̂( of energy � and where the sum runs over all pairs (�, �′) such that

�′−� = $. It is then easily checked that �̂� =
∑

$ �̂�$ and, moreover, [�̂( , �̂�$] = −$�̂�$.

It follows that, in the interaction picture, �̂�C =
∑

$ 4
−8$C�̂�$. Replacing this and F.9 in

Eq. F.8 this can be arranged in the form

3�

3C
=

∑
$,$′

∑
�,�

4 8($
′−$)C ���($)

(
�̂�$��̂

†
�$′ − �̂†�$′�̂�$�

)
+H.2. (F.10)

with

���($) =
∫ ∞

0

3B4 8$B 〈�̂†�C �̂�(C−B)〉 , (F.11)

where in the last integral we approximated the upper limit of integration with +∞ since

the integrand function (see above) decays with a characteristic time �2 . For �� such that

[�̂� , ��] = 0 (e.g. a thermal state), the above two-time correlation function actually depends

only on the time difference B and thus can be replaced with �̂†�B �̂�0.

The secular approximation consists in throwing away all counter-rotating terms in Eq. F.10,

i.e. those corresponding to $ ≠ $′. This results in an equation with time-independent
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coefficients, which reads

3�

3C
=

∑
$

∑
�,�′

���′($)
(
�̂�′$��̂

†
�$ − �̂†�$�̂�′$�

)
+H.2. (F.12)

A.6.3 Master equation in Lindblad form

Defining next

(��′($) = 1

28

(
���′($) − �∗�′�($)

)
���′($) = ���′($) + �∗�′�($) =

∫ ∞

−∞
3B 4 8$B TA�{�̂†�(B)�̂�′(0)} , (F.13)

Eq. F.8 takes the form

3�

3C
= −8[Ĥ, �] + D[�] (F.14)

with

Ĥ=
∑
$

∑
�,�′

(��′($)�̂†�($)�̂�′($) (F.15)

D[�] =
∑
$

∑
�,�′

���′($)
(
�̂�′$��̂

†
�$ − 1

2
[�̂†�$�̂�′$ , �]+

)
.

This master equation can be put in the standard Lindblad form F.2 upon diagonalization of

each matrix ���′($).

The above derivation of the Lindblad master equation from the Hamiltonian model F.3

follows standard textbooks, in particular Refs. [7, 78], to which the reader is referred for

further details. In the context of the present paper, it serves the purpose of illustrating

that the derivation of the Lindblad ME from a standard microscopic model is a relatively

involved procedure which requires a number of non-trivial approximations.
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A.7 Lindblad master equation from the stochastic
Schrödinger equation

Using eqs. (6.23) and (6.24), the three terms in Eq. 6.27 are worked out as

(
3
��#〉) 〈

#
�� = −1

2
� (�̂+�̂−−〈�̂+�̂−〉)

��#〉
〈# | 3C +

(
�̂−√
〈�̂+�̂−〉

− I
) ��#〉 〈

#
�� 3#

= −�
2
�̂+�̂−� 3C + �

2
〈�̂+ �̂−〉 � 3C + �√

〈�̂+ �̂−〉
�̂− � 3C − �〈�̂+ �̂−〉 � 3C , (G.1)��#〉 (

3
〈
#
��) = −1

2
�
��#〉 〈

#
�� (�̂+�̂−−〈�̂+�̂−〉) 3C + ��#〉 〈

#
�� ( �̂+√
〈�̂+�̂−〉

− I
)
3#

= −�
2
� �̂+�̂− 3C + �

2
〈�̂+ �̂−〉 � 3C + �√

〈�̂+ �̂−〉
� �̂+ 3C − �〈�̂+ �̂−〉 � 3C , (G.2)

3
��#〉

3
〈
#
�� = (

�̂−√
〈�̂+�̂−〉

− I
) ��#〉 〈

#
�� ( �̂+√
〈�̂+�̂−〉

− I
)
3#2

= � �̂−� �̂+ 3C − �√
〈�̂+ �̂−〉

�̂− � 3C − �√
〈�̂+ �̂−〉

� �̂+ 3C + �〈�̂+ �̂−〉 � 3C , (G.3)

where in the second line of eqs. (G.1) and (G.3) we replaced � =
��#〉 〈

#
��
and ne-

glected terms ∼ 3C2 and ∼ 3C 3# [note that instead (d#)2 ∼ 3C]. Summing the three

increments, it can be seen that many terms cancel out in a way that we are left with

3� = �
(
�̂−� �̂+ − 1

2

[
�̂+�̂−, �

]
+

)
3C.

A.8 Equivalence between eq. (7.14) and 7.17

For simplicity, we assume here that both ( and ancilla = are finite-dimensional systems (the

derivation can yet be easily extended to infinite dimension). Let us introduce the spectral

decompositions of �̂( and �̂= as

�̂( =
∑
9

� 9Π̂
9

(
,

∑
9

Π̂
9

(
= I( , (H.1)

�̂= =
∑
8

48Π̂
8
= ,

∑
8

Π̂8
= = I= , (H.2)

where � 9 (48) is the generic eigenvalue of �̂( (�̂=) and Π̂
9

(
(Π̂8

=) the projector on the

corresponding eigenspace. Projectors associated with different energies are orthogonal,

i.e.

Π̂
9

(
Π̂
9′

(
= �(� 9 − � 9′)Π̂9

(
, Π̂8

=Π̂
8′
= = �(�8 − �8′)Π̂8

= . (H.3)

Here, we conveniently defined �(G) as a function taking value 1 for G = 0 and 0 otherwise.
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Accordingly, by denoting with �̄ℓ the eigenvalues of �̂( + �̂= this can be spectrally-

decomposed as

�̂( + �̂= =
∑
ℓ

�̄ℓ Π̂
ℓ
(= , (H.4)

where Π̂ℓ
(=

are the (complete) orthonormal projectors on the system–ancilla Hilbert space

defined by

Π̂ℓ
(= =

∑
9 ,8

�(� 9 + 48 − �̄ℓ ) Π̂9

(
⊗ Π̂8

= . (H.5)

Now, we observe that the commutation between +̂= and �̂( + �̂= [cf. Eq. 7.14] is equivalent

to stating that +̂= can be spectrally decomposed in the same basis of projectors {Π̂ℓ
(=
} as

�̂( + �̂= [cf. Eq. H.4], i.e.

+̂= =
∑
ℓ

Eℓ Π̂
ℓ
(= =

∑
9 ,8

∑
ℓ

Eℓ �(� 9 + 48 − �̄ℓ ) Π̂9

(
⊗ Π̂8

= . (H.6)

Here, in the last step we replaced Π̂ℓ
(=

with H.5.

Consider now the operator defined by∑
9′′, 9′,8′′,8′

�(� 9′′ + 48′′ − (� 9′ + 48′))Π̂9′′

(
⊗ Π̂8′′

= +̂= Π̂
9′

(
⊗ Π̂8′

= =∑
9 ,8

∑
ℓ

Eℓ �(� 9 + 48 − �̄ℓ ) × (H.7)∑
9′′, 9′,8′′,8′

�(� 9′′ + 48′′ − (� 9′ + 48′)) Π̂9′′

(
⊗ Π̂8′′

= (Π̂
9

(
⊗ Π̂8

=) Π̂
9′

(
⊗ Π̂8′

= ,

where in the last step we replaced +̂= with H.6. This operator coincides just with +̂= . Indeed,

using the orthogonality relations H.3, the last expression can be arranged as∑
9 ,8

∑
ℓ

Eℓ �(� 9 + 48 − �̄ℓ ) ×∑
9′′, 9′,8′′,8′

�(� 9′′ + 48′′ − (� 9′ + 48′))�(� 9′′ − � 9)�(48′′ − 48)�(� 9 − � 9′)�(48 − 48′) Π̂9

(
⊗ Π̂8

=

=
∑
9 ,8

∑
ℓ

Δℓ �(� 9 + 48 − �̄ℓ ) Π̂9

(
⊗ Π̂8

= = +̂= . (H.8)

Thereby,

+̂= =
∑
9 , 9′,8 ,8′

�(� 9 + 48 − (� 9′ + 48′)) Π̂9

(
⊗ Π̂8

= +̂= Π̂
9′

(
⊗ Π̂8′

= . (H.9)

Plugging now +̂= =
∑

� 6��̂
′
��̂
′
� [cf. Eq. 5.14] on the right-hand side yields

+̂= =
∑
�

6�
∑
9 , 9′,8 ,8′

�(� 9 − � 9′ + 48 − 48′) Π̂9

(
�̂′� Π̂

9′

(
⊗ Π̂8

= �̂
′
� Π̂

8′
= . (H.10)
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By defining �̂� = Π̂
9

(
�̂′� Π̂

9′

(
for 9 < 9′, we note that it is an eigenoperator of �̂( with

eigenvalue $� = � 9 − � 9′ [cf. Eq. 7.15]. Likewise, �̂� = Π̂8
= �̂
′
� Π̂

8′
= with 8 < 8′ is an

eigenoperator of �̂= with eigenvalue F� = 48 − 48′ [cf. Eq. 7.16]. Therefore H.10 is exactly of

the same form as 7.17, which completes the proof.

A.9 Fully swapping ancilla–ancilla collisions: proof of
Eq. 8.8

Using Eq. 8.7, the reduced state of ( at the =th step is given by

�= = TA1,2,...,={((̂2,1 · · · (̂=−1,=−2(̂=,=−1) *̂=
1
�0⊗=<=1

�< *̂
†=
1
((̂=,=−1(̂=−1,=−2 . . . (̂2,1)} . (I.1)

Taking now advantage of the homogeneity of �= , we can write

((̂3,2 · · · (̂=−1,=−2(̂=,=−1)�2 ⊗ �3 ⊗ · · · ⊗ �= ((̂3,2 · · · (̂=−1,=−2(̂=,=−1)† = �2 ⊗ �3 ⊗ · · · ⊗ �= .

Replacing back in I.1, this reduces to (we refer to a basis |:1, :2〉12 for computing the partial

trace)

�= = TA1,2 {(̂2,1*̂
=
1
�0 �1 �2 *̂

=†
1
(̂2,1} =

∑
:1 ,:2

〈:1, :2 |(̂†
2,1 *̂

=
1
�0 �1 �2 *̂

=†
1
(̂2,1 |:1, :2〉

=
∑
:1 ,:2

〈:1, :2 |*̂=
1
�0 �1 �2 *̂

=†
1
|:1, :2〉 =

∑
:1

〈:1 |*̂=
1
�0 �1 *̂

=†
1
|:1〉 = TA1{*̂=

1
�0 �1 *̂

=†
1
} ,

where we used that (̂2,1 |:1, :2〉 is another valid basis for computing the partial trace (this
being invariant under a change of basis). This completes the proof of Eq. 8.8.

A.10 Ancilla–ancilla collisions: derivation of master
equation 8.20

By subtracting from Eq. 8.19 the analogous equation for �=−1 we get

Δ�= = (1 − ?)
=−2∑
9=1

? 9−1F9[Δ�=−9] + (1 − ?)?=−1F=−1[�1] + Δ
(
?=−1F=

)
[�0] , (J.1)

where, as usual, Δ�= = �= −�=−1 with � a map or state. By expressing each power of ? in

the form of an exponential as ? 9 = 4−Γ(ΔC 9) = 4−ΓC
′
with C′ = 9ΔC and likewise ?= = 4−ΓC , in
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the limit ΔC � Γ the three terms on the right hand side of Eq. J.1 become

(1 − ?)∑=−2

9=1
?(9−1)E9

[
�=−9 − �=−1−9

]
ΔC

' Γ
∫ C

0

3C′4−ΓC
′
E(C′)

[
3�(C − C′)
3(C − C′)

]
,

(1 − ?)?=−1E=−1

ΔC
[�1] ' Γ4−ΓCE(C) [�0] ,

Δ(?=−1E=)
ΔC

=
?=−1E= − ?=−2E=−1

ΔC
' 4
−Γ(C+2ΔC)E(C + ΔC) − 4−Γ(C+ΔC)E(C)

ΔC
=
3

3C

(
4−ΓCE(C)

)
.

Thus in the continuous-time limit, Eq. J.1 reduces to Eq. 8.20.

A.11 Composite CMs: derivation of the recurrence relation
8.47

From eq. (8.45) (for = → = − 1) and 8.46 it follows

*̂"= = |00〉"= 〈00|+cos

(
6ΔC

)
(|10〉"= 〈10|+|01〉"= 〈01|)−8 sin

(
6ΔC

)
(|01〉"= 〈10|+|10〉"= 〈01|) ,

(K.1)

*̂"=*̂S"

��Ψ(=−1)〉 = *̂"=

(
(�(=−1) − 8(�(=−1)) |4S〉 + (��(=−1) − 8((=−1)) |4"〉 +

=∑
<=1

�(=−1)
< |4<〉

)
= (�(=−1) − 8(�(=−1)) |4S〉 + (2 ��(=−1) − 82((=−1)) |4"〉

+
=−1∑
<=1

�(=−1)
< |4<〉 − 8B(��(=−1) − 8((=−1)) |4=〉 . (K.2)

Comparing with Eq. 8.45, we get the recurrence relation 8.47 for the excitation amplitudes

of Sand".

A.12 Composite CMs: derivation of linear system 8.52

By looking at Eq. 8.45 we see that, upon trace over the bath, the joint state of Sand" has

the form

�S" = |= |2 |10〉 〈10| + |�= |2 |01〉 〈01| + (=�∗= |10〉 〈01|+H.2.) + (1−|= |2−|�= |2) |00〉 〈00| .
(L.1)
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This remains true when = → (C) and �= → �(C). Replacing �S"(C) into master equa-

tion 8.51 this is turned into the coupled differential equations

d

dC | |
2 = 8�(�∗−∗�) , d

dC |� |
2 = −8�(�∗−∗�)−� |� |2 , d

dC

(
�∗

)
= −�

2
�∗+8

[
�(| |2−|� |2)

]
.

(L.2)

It is easily checked that these are indeed equivalent to 8.52 (e.g.
d

dC | |2 is obtained from

∗ ¤ = −8�∗� by adding to either side the respective c.c.). This completes the proof.
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