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Quantum-mechanical phase-space distributions, introduced by Wigner in 1932, provide an intuitive alterna­

tive to the usual wave-function approach to problems in scattering and reaction theory. The aim of the 

present work is to collect and extend previous efforts in a unified way, emphasizing the parallels among 

problems in ordinary quantum theory, nuclear physics, chemical physics, and quantum field theory. The 

method is especially useful in providing easy reductions to classical physics and kinetic regimes under suit­

able conditions. Section II, dealing in detail with potential scattering of a spinless nonrelativistic particle, 

provides the background for more complex problems. Following a brief description of the two-body prob­

lem, the authors address the N-body problem with special attention to hierarchy closures, Boltzmann­

VIasov equations, and hydrodynamic aspects. The final section sketches past and possibly future applica­

tions to a wide variety of problems. 
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I. INTRODUCTION 

In recent years one can discern an increasing interest in 

the use of quantum-mechanical phase-space distributions 

for the formulation and solution of scattering and produc­

tion problems. These distributions, which are quantum 

generalizations of Boltzmann's N-particle distribution 

fN(PtR" ... ,pNRN,t), provide an intuitive picture of 
complex collision processes. 

As is well known (Tolman, 1938), the 6N dimensional 

phase space of the position coordinates qi and momenta Pi 

provides a useful arena for the description of classical 

mechanics. Quantum mechanics, which forbids states 

having simultaneously definite Pi and q;, requires the re­

placement of the phase-space distribution function by the 

density "matrix" (von Neumann, 1955). An attractive 

version of the density matrix discovered by Szilard and 

Wigner (Wigner, 1932) allows the expression of quantum 

dynamics in a form directly comparable with the classical 

analog. The authors' interest in this approach occurred 

when they noticed that the field-theoretic formulation of 

inclusive production process involved second-quantized 

analogs of the Wigner distribution function (Carruthers 

and Zachariasen, 1974, 1976). In this formulation theN­

particle covariant distribution functions are directly con­

nected with the inclusive differential cross sections. Be­

cause of the mathematical complexities of the relativistic 

field-theory problem, no useful predictions have yet come 

out of this formalism. In nuclear physics, Remler and 

collaborators initiated and developed a program in which 

nuclear reaction theory is formulated in the language of 

the Wigner distribution function (Remler, 1975, 1981; 

Remler and Sathe, 1975, 1978). Meanwhile, phase-space 

methods (sometimes classical) were being developed by 

quantum chemists in order to elucidate chemical reaction 

problems (Brown and Heller, 1982; Eu, 1971, 1975; Hell­

er, 1976, 1977; Lee and Scully, 1980; Miles and Dahler, 

1970). We hope that the present work will encourage 
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communication among these disciplines and will lead to 

the recognition of the phase-space method as one of 

universal utility. 
Over the years, several authors noted the possibility of 

expressing potential scattering cross sections in tenns of 

Wigner functions (Irving and Zwanzig, 1951; Ross and 

Kirkwood, 1954; Mori, Oppenheim, and Ross, 1962; 

Huguenin, 1973; Prugoveeki, 1978a). However, the prin­

cipal interest in these years was the derivation of 

quantum-kinetic or Boltzmann equations for uniform or 

almost uniform extended systems. Some other works con­

cerned with the Boltzmann equation are Uehling and 

Uhlenbeck (1933); Mori and Ross (1958); Snider (1960); 

Snider and Sanctuary (1971); Prugoveeki (1978b). The 

generalization of this approach to nonrelativistic field 

theory and the modem formulation of the many-body 

problem is explained in the book by Kadanoff and Baym 

(1962). The most important qualitative consequence of 

the modem formulation is the natural manner in which 

"self-consistent field" theories appear in the simplest ap­

proximation. According to the nature of the system and 

the statistics of the particles, these approximations carry 

the names of Vlasov, time-dependent Hartree-Fock 

(TDHF), and random-phase approximation. Secondly, 

the transport equation can be obtained by suitable trunca­

tion of the coupled equations of motion. These tech­

niques can be carried over to relativistic matter. One of 

the earliest such works, using Green's-function tech­

niques, is that of Bezzerides and DuBois (1972). The 

reader is referred to the review of Hakim ( 1978) and the 

thesis of de Boer (1979, 1980) for further information and 

references on this subject. 

The relation of transport equations to classical or quan­

tum dynamics, as expressed through the coupled hierar­

chy of distribution functions, continues to be a problem of 

fundamental interest (Cohen, 1968). In this paper we 

shall indicate how such equations can (under suitable con­

ditions) describe a portion of a collision process involving 

many particles. 

Another fundamental line of investigation concerns the 

representation of quantum mechanics by phase-space dis­

tributions. Among the works on this topic, we mention 
the following: Groenewald (1946); Moyal (1949); Baker 

(1958); Barut (1957); Imre, Ozizmir, Rosenbaum, and 

Zweifel (1967); Brittin (1971); Wigner (1971); Ali and 

Prugovecki (1977a, 1977b); Grossman and Huguenin 

(1978); Prugoveeki (1978c); Balazs (1980); O'Connell and 

Wigner (1981a, 1981b). A review of the formalism of the 

Wigner function and its relation to the Weyl transforma­

tion (Weyl, 1927) has been given by de Groot and Suttorp 

(1972). A related topic in this area of research is the 

analysis of alternative definitions of distribution functions 

designed to satisfy special criteria (Baker, 1958; Glauber, 

1963; Cohen, 1966; Agarwal and Wolf, 1968; Lax, 1968). 

For our purposes we do not need to worry about these 

fine points. In the description of inclusive scattering pro­

cesses, the Wigner function arises naturally (especially in 

second quantization). Cross sections are directly related 

to it, and other issues are of secondary concern. 
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Recently the increased activity in heavy-ion physics has 

led to greater interest in phase-space distributions. 

Currently popular models (intranuclear cascade model, 

"hot spot" model, hydrodynamical models) which em­

phasize collective and transport behavior are especially 

suitable for examination in this framework. It was, in 

fact, our earlier interest in the Landau hydrodynamical 

model (Landau, 1953) of particle production which led to 

our search for an underlying kinetic formulation of that 

theory. We hope that the present work will lay the foun­

dation for a proper description of nucleon-nucleus and 

nucleus-nucleus collisions. We also remark that pion­

nucleus scattering fits conveniently into the field-theoretic 

version of our formalism, with a proper (non-wave­

function) description of the pion field. References to 

these developments are given in Sec. VI. 

The aim of the present review is to formulate in phase­

space distribution language the nonrelativistic N-particle 

scattering of particles interacting via two-body potentials. 

Technical complications introduced by spin, statistics, 

and other degrees of freedom (e.g., isospin) will usually be 

suppressed. The work should be regarded as a personal 

essay. It is partly review and partly original, and is most­

ly taken from our notebooks and lecture notes dating back 

several years. Points of contact will be found with many 

of the references, however. Our main hope is to explain 

the lucid physical meaning of this approach to collision 

theory and to carry the development far enough to inspire 

realistic calculations. We always keep in sight the proper­

ties special to this formalism, namely, the description of 

collective modes and the transport and hydrodynamic 

behavior. Unfortunately, many of the applications will 

require extensive numerical work. However, that is the 

nature of the problems of principal interest. 

II. NONRELATIVISTIC POTENTIAL SCATTERING 

A. Definitions 

We consider in some detail the scattering of a nonrela­

tivistic, spinless, particle from a static potential well V. 

Since we are ultimately interested in the detailed space­

time evolution of complicated systems, we use wave pack­

ets throughout. The usual results can be obtained by tak­

ing suitable limits. 

As is well known, one has to give up the concept of 

particle trajectories in quantum theory. The density of 

particles is expressed in terms ofthe wave function by 

n (}1,t)= ll/J(J1,t) 12. (2.1) 

Writing 1/J as 

I d 3p. ip·B. 
1/J(J1,t)= 312 C(p,t)e- , 

(21T) -
(2.2) 

we see that the momentum distribution implied by 1/J is 

n(E_,t)= I C(E_,t) 1 2 • (2.3) 

One cannot specify simultaneously the position and 
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momentum better than indicated by Heisenberg's uncer­

tainty principle: 

(2.4) 

(Planck's constant 17 is set equal to unity except when 

necessary to clarify physical interpretations.) 

The demise of the orbit also casts a pall on the tradi­

tional formulation of statistical mechanics in terms of 

distribution functions defined on phase space. The sim­

plest of these, the one-particle function f(p,R,t), immor­

talized by Boltzmann, is defined so that j(p,R,t)d3R d 3p 

is the probability of finding a particle of momentum p 

and position R in the phase-space volume d 3R d 3p. The 

coordinate and momentum densities are, correspondingly, 

n(B_,t)= J d 3pf(p_,B.,t), 

n (p_,t)= J d 3Rf(p_,/l,t), 

(2.5) 

(2.6) 

with the overall normalization taken as unity. Note that 

the f suitable to a single classical particle in a pure state, 

f(p_,/l,t) =b(/l-/l(t) )b(p -p_(t)) (2.7) 

where R(t) defines the classical orbit andp(t)=mR(t), is 

in direct conflict with the uncertainty principle. 

Wigner (1932) has proposed a construction which both 

respects the rules of quantum mechanics and recaptures 

most of the desired features of the Boltzmann function. 

Notice that the density matrix (for a pure state) 

(2.8) 

has six c-number variables besides t. Introducing relative 

and center-of-mass coordinates by 

r.=(~2-~d' 
(2.9) 

/l=(~, +~2)/2' 

we obtain the Wigner function by making a Fourier 

transform on the relative coordinate: 

J d 3r -ip·r..J,* ( I )•!•( I 
f(p_,Jl,t) = (Z1T) 3 e - '~' 11- Tl.,t '~' /l + Tl.,t) . 

(2.10) 

The variable p is not an operator, but is simply a judi­

ciously chosen-ordinary vector. It is also useful to write/ 

in terms of the momentum basis 

d3 . 
f(p,/l,t)= J __!L 3 e'~·Kc*(p-+q,t)C(p++q,t). - (21T) - - - -

From these definitions we see that 

J d3p J<p_,Jl,t>= I 1/J<Jl,t> 12 , 

J d 3Rf(p_,/l,t)= I C(p_,t) 12 ' 

in analogy to Eqs. (2.5) and (2.6). 

(2.11) 

(2.12) 

(2.13) 

The function f is real, but not necessarily positive de­

finite. The lack of assured positivity will not concern us 

unduly since we are mainly concerned with computation 
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of positive definite asymptotic quantities like (2.13), 

which give the differential cross sections. 

Since Eq. (2.10) is nothing but a particular representa­

tion of the density matrix, what we have is essentially the 

density-matrix formulation of quantum mechanics. Our 

approach is also closely connected with the Green's­

function treatment of the many-body problem, as will be­

come clear in Sec. V.E describing the second-quantization 

formulation of the problem. (In that section we shall con­

sider more general density matrices.) Although the 

density-matrix description of quantum dynamics has little 

to offer in simplicity for easy problems involving only a 

few particles, it really comes into its own for complex, 

many-particle dynamics. We shall argue that the Wigner 

version, suitably generalized, is the most natural way to 

formulate and solve such problems. 

The simplest example is a free particle, 

C (p,t) = C (p) exp(- ip 2t /2m) , 
- - 3 (2.14) 

J d q +iq·(R-v t) I I 
fo<p_,/l,t)= (Z1T) 3 e - =-e C*(p_- 2 q)C(p_+ 2 q), 

where !2p =p_ /m. For a wave packet made up of free par­

ticles, / 0 depends on 11 as /l-Qt. The example of the 

Gaussian momentum packet (peaked at p 0 and R 0 ) is 

especially useful and interesting, 

exp[ -(p -p0 )2/4u] . 
C(p_)= (21Tu)3/4 exp( -zp_·/lo)' (2.15) 

exp[ -(p -p0 )2/2u] 
fo(p_,/l,t)= (21Tu)3/2 

exp[ -(R -R0 vpt)2 12L] 

X (21TL)3/2 
(2.16) 

where L is defined by L = 1/4u. We point out some in­
teresting features of Eq. (2.16): 

(a) It does not spread with time for fixed p, even though 

the underlying wave function does. However, contours of 

constant f, described by a generalized ellipse, do spread in 
the phase plane. 

(b) The momentum and position distributions obey the 

uncertainty relation ll.px!::..Rx ~ T· Hence an equation like 

(2.7) is out of reach, except as a special limit involving 

17---+0. 

(c) As L tends to infinity f 0 becomes spread uniformly 

over space, while the momentum factor is sharp in 

momentum. 

The Gaussian packet (2.16) is an especially good proto­

type incident-free packet. Since we shall use these results 

for large L, the normalizations appropriate to the contin­

uum counterparts are listed (as L---+ oo ): 

(L)314C(p_)---+b(p_-p_0 ), 

(L/21T)314t/lp0 (/l)---+exp[ip_o(/l-/lo)] , 

(L /21T)312f 0 (p_,/l,t)---+b(p_ -p_0 )/(21T)3 • 

(2.17) 

The indicated continuum normalization is 1/(21T)3 parti-

cles per unit volume. 
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Other examples of analytically calculable phase-space 

distributions will be given in Sec. II.F. 

Before taking up the question of computing j(p,R,t), 

we explain how to express the result of a scattering exper­

iment in the present formalism. We imagine (Fig. 1) a 

nearly uniform wave packet with momentum components 

p ~Po incident on a localized potential V. The extent of 

the packet L 112 needs to be much larger than the size of 

the potential (called a) if we use Eq. (2.16) as our proto­

type packet. (Figure 1 has been drawn for R 0 equal to 

zero; for L- oo, the memory of R 0 disappears from the 

problem.) After the incident packet scatters off V, the 

outgoing signal is detected in the solid angle dfl (Fig. 2). 

As time tends to infinity all particles pass by the detector. 

We rewrite Eq. (2.1) in differential form, giving 

dNscatt I 3 
--3-= d Rj(p,B.,t lt--->oo. 

dp -
(2.18) 

To calculate the incident flux and consequently the cross 

section, we note that the probability current is 

j(!i,t)=-2
1 . (t/J*V.,P-V.,P*t/1) 

- mz 

(2.19) 

the latter following an easy calculation. Therefore, the in­

cident integrated flux along the beam direction Po is 

dNinc I"" . A ---;u-= ""dtJ_o'Pofo(p,R,t). (2.20) 

Using Eq. (2.14) for fo and noting that in the limit of 

sharp wave packets!!.. ~l!..o• q ~o, we can derive 

dNinc I 3 I 3 A I ---;u-= d p d q[)(q_·vo)C*(J!..-Tq) 

XC(p+-}q)/(27d. 

The differential cross section is then 

I d 3Rj(p,R, 00) 

dNincldA 

(2.21) 

(2.22) 

In this form one can take the continuum limit. Note that 

0 

FIG. 1. A smooth free-particle Wigner distribution with mo­

menta peaked near J!.o approaching a localized potential V. 

Rev. Mod. Phys., Vol. 55, No.1, January 1983 

since our f includes the incident particles, the definition 

(2.22) does not agree with the traditional one in the for­

ward direction p 0 • This question will be clarified in Sec. 

II. E. 

B. Equation of motion: relation 

to the classical limit 

The equation of motion for f follows directly from the 

Schrodinger equation, 

i ap(R,t) = [ - V2 + V(R) ]·'·(R t) . (2.23) 
at 2m - 'I'_, 

The result is more complicated formally, involving essen­

tially the commutator of H with the density matrix. But 

this form is directly related to the Poisson bracket form 

of classical mechanics, as shown below. 

The kinetic term is most easily computed in momen­

tum basis, giving 

I d3q eiq·R [ (J!..+-}q_)2- (J!..--}q_>2]c*( _2.. t) 

(27T)3 2m 2m !!.. 2q_, 

1 ip 
XC(p+ 2 q,t)=- ~VRf(p,R,t). (2.24) 

- - m -

The full equation of motion is then 

.!2[_= [~+v ·V l/(p R t) 
Dt at "4' -·-· 

=-1- I ~e-ie_·r.I"[V(R 2..r)-V(R-2..r)] 
ifz (27Tfz)3 -- + 2- - 2 

(2.25) 

We have temporarily reinstated the correct factors of fz in 

order to facilitate our discussion of the classical limit. 

Equation (2.25) can be usefully rewritten as 

FIG. 2. The outgoing particle's density in phase space. This al­

lows the evaluation of the cross section d u in the solid angle 

dO. 
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[ V(E. + T!.)- V(E.- T_r)Jf(p',E_,t) 
(2.26) 

= f d 3p' K(p_' -p_,E.)/(p_',/i,t) , 

where the function K, 

K(p'-p R)=-1- J ~ei<e.'-e.l!:.HI[ V(R+2.r) 
- _,_ ifz (21rli)3 - 2-

- V(R _2-r)] 
- 2 

(2.27) 

occurs in many of our calculations. We shall also use the 

Fourier transform 

iK(p'-p,q)= V(q)[ fJ(p'-p +Tq) 

-fJ(p' -p- +q>J . (2.28) 

The difference of potentials occurring in Eq. (2.27) is 

important only for r ;Sa, where a is the range of the po­

tential. Hence the significant momentum differences 

p_' -p_ occurring inK are of order lp_' -p_ I _:Sfz/a. There­

fore, in the equation of motion (2.26), the potential has 

the effect of connecting f 's with p' in the range 

p' ~p±fz/a. The finite contributions for r = ±2R ±a os­

cillate if R >>a and do not contribute for short-range po­

tentials. 

In the classical limit, (2.26) becomes local in momen­

tum space, too. In the limit fz---+0, expanding 

V(R +112r)-V(R -1/2r)~r·VV 

and writing r =iVp/fz leads to the classical one-particle 

Liouville equation, 

Hence Eq. (2.26) may be regarded as a quantum Liouville 

equation. Information on classical scattering theory in 

the phase-space language can be found in Prigogine (1959) 

as well as in Miles and Dahler (1970) and Eu (1971, 1973). 

Equation (2.29) is equivalent to the constancy of the 

phase-space density (df /dt =0), provided the particles 

move on classical orbits specified by Newton's laws: 

dr.!dt =p /m, dp !dt =- VV. The solution is then 
f[p(t),r.fi)]. -

ff we keep all terms in the expansion of V, we easily 

derive 

[ ;t +v·V k(p,R,t) 

(ifz)n-1 
= ~ n- 1 1 (Vp·VR)nV(R)j(p,R,t) 

nodd 2 n. 

=~sin [ fzVp;VR ] V(R)f(p,R,t). (2.30) 

Here and subsequently it is understood that V R acts only 
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on V. The form (2.30) is most easily derived by writing 

V(/i± 1!2r.)=exp( ± l/2V)V 

in Eq. (2.27), which leads to 

2 [fzV ·VR 
K(p'-p,R>=-,;sin P2 ] V(R)fJ(p'-p). 

(2.31) 

In either the quantum case [Eq. (2.26)] or the classical 

case [Eq. (2.29)] the motion is ballistic in the absence of a 

scattering potential. More precisely, the equation 

..Q.f= [~+v ·V ]/=0 (2.32) 
Dt at >qJ 

is solved by any function of R -12pt. The initial condition 

for the scattering problem is of this form. 

The differential operator occurring in Eqs. (2.29) and 

(2.30) has the form 

If we expand f formally in a power series in fz, 

f=fo+fzf1+fz2fz+ · · · , 

we find the sequence of equations 

[~~-Do ko=O, 
[ ~~ -D0 k1 =0, 

[ ~~ -Do k2 =Dzfo , 

[ ~~ -Do k3 =Dz/1 , 

[~~-Do k4=Dzfz +D4fo, 

[ ~~ -Do ks =Dz/3 +D4f1 . 

(2.33) 

(2.34) 

(2.35) 

These equations are solved in sequence by simply integrat­

ing along the classical orbits, keeping in mind the initial 

distributions, whose fz content will vary with the problem. 

For example, having found / 0 , we calculate / 2 from the 

equation 

/ 2 =/~ 0 l + J~,., dt'(Dzf0 )[p(t'),r(t')] . (2.36) 

In this manner the entire quantum distribution is con­

structed in terms of the underlying classical orbits. 

When the boundary condition is independent of fz, only 

even powers of fz occur in the formal series (2.34). One of 

the first applications of the quantum phase-space distri­

bution (Wigner, 1932) was the calculation of quantum 

corrections to the Boltzmann distribution. Although such 

results seem to make sense for thermally averaged quanti-
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ties, the formal expansion does not exist (Heller, 1976) in 

many important cases. The reason is that essential singu­

larities spoil the expansion of Eqs. (2.34). A very simple 

example is the free Gaussian distribution, Eq. (2.16), in 

which the fi dependence is of the form h 3 exp( -A /fi2 ). 

Hence every Vp brings in factors fi- 1 and fi- 2, canceling 

factors of fi in the expansion (2.34). We refer the reader 

to the work of Heller (1976) for further information as 

well as for the description of a method to explicitly ex­

tract the singularities responsible for the failure of the 

naive approach outlined above. The essence of his 

method is to remove the essential singularities through a 

selective summation of the infinite series in fi. The prob­

lem is sufficiently important to deserve further study. 

The phase-space distribution method has been used to 

illustrate various features of the (tricky) classical limit. 

The reader is referred to the following authors for further 

information and references: Heller (1977); Berry (1977); 

Berry and Balazs (1979); Berry, Balazs, Tabor, and Voros 

(1979). Particularly interesting is the semiclassical 

(WKB-derived) phase-space distribution derived and stud­

ied by Berry (1977). We expect that further development 

of these ideas for scattering theory will lead to important 

practical applications. 

It is instructive to note that we can easily prove an 

"Ehrenfest theorem" using the Wigner distribution 

d(p > = I d3 d3R at<p,/i,tl =-vv. 
dt P !!.. at 

(2.37) 

A similar calculation for (E.) leads directly to 

d(/i) = {p_) 

dt m 
(2.38) 

For these simple moments, the classical procedure of 

computing expectation values coincides with the usual 

quantum-mechanical rules. For discussion of the general­

ity of this, one should consult the references. 

C. Integral form of the scattering equations 

As is usual in scattering theory, it is useful to formally 

integrate the equation of motion to exhibit the incoming 

boundary condition explicitly. In anticipation of our later 

development, we pose the problem not only for j(p,R,t), 

but for the corresponding space and time Fourier 

transforms. 

Consider the equations 

[ ;t +.!!.·V ]t(p_,/i,t)=S(p_,/i,t), 

[i ;t -q·.!!. )tcp_,q_,tl=iS(p_,q_,tl, (2.39) 

(w-q_·.!!.)/(p_,q_,w)=iS(p_,q_,w), 

where 

f( )- I d3 -i•rB.J< p_,q_,t = R e f!..,/i,t) , 

/(p_,q_,w)=. I d3R dt eimt-i'1_·B.f(p_,/i,t) ' 

with analogous expressions for the transforms of S. 

The Green's functions corresponding to Eqs. 

obey 

[ ;t +.!!.·V ]G(p_,/i,t)=6(/i)6(t), 

[i ;t -q_·Q ]G(p_,q_,t)=iB(t), 

(w-q_·Q)G(p_,q_,w)=i. 

(2.40) 

(2.39) 

(2.41) 

As usual, one has to define the pole suitable to the desired 

boundary condition (here retarded). The result is 

i 
G ret(p,q,w) = . ' 

w+ze-q_·Q 

Gre1(p,q,t)=it(t)e-iq·vt, (2.42) 

when {t(t) is the usual step function: unity for t > 0 and 

zero for t < 0. 

The integral forms of Eq. (2.36) are evidently 

j(p,/i,t)= f 0 (p_,/i,t) 

+ I~"" dt'S[p_,Ji -Yp(t -t'),t'] ' 

f(p_,q_,t) = fo(p_,q_,t) (2.43) 

I
t -iq·v.(t -t') 

+ -co dt'e _, S(p_,q_,t'), 

iS (p,q ,w) 
f(p,q,w)=fo(p,q,w)+ . . 
-- -- w+ze-q_·Q 

Here f 0 solves the homogeneous equation suitable to the 

three descriptions: as t---+- oo, f---+ f 0 • The retardation 

factors, which have an obvious physical meaning, find 

differing expression in the three forms of Eq. (2.39). Ap­

plying these results to the equation of motion (2.26) leads 

to the scattering integral equation 

f(p_,/i,t)= fo(p_,/i,t) 

+It dt'd 3p'K[p'-p,R-v (t-t')] 
-oo P 

Xf[p',Ji -Yp(t -t'),t'] . (2.44) 

Physically, it is clear that the values of f at retarded 

points build up the whole function. The kinematical­

kinetic content of Eq. (2.44) is exposed by iterating. To 

illustrate, the second-order term is 

t t' 

I dt' I dt" I d 3p' I d 3p"K[p' -p,R -v (t -t')]K[p" -p',R -v (t -t')-v' (t' -t")] 
-oo -oo P P P 

xJ[p",R -vP(t -t')-v; (t' -t"),t"] . (2.45) 
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Pictorially [Fig. 3(a)] the particle density begins at timet", is deflected from p" top', propagating with velocity v; until 

t', when the potential changes the momentum top. Then the density propagates between t' and t with velocity vP. 

In nth order we have 

In (dtid 3pi)K(p2-Pt>RI) ... K(p,. -Pn-i>R,.)f(p,.,R,.,t,.)' (2.46) 
i=i 

where the variables are given by 

R 1 =R -vp1Bti> Bt1 =t -t' , 

The physical interpretation is again suggested by Fig. 3(b). 

For many purposes the (q,w) language is convenient. The scattering integral equation is 

f(p,q,w)=fo(p,q,w)+ . 1 I (d2
3
q)'3 V(q')[f(p-+q',q-q',w)-f(p++q',q-q',w)], 

w+LE-q_·~ 1T 
(2.47) 

where the incoming distribution function is 

fo(p,q,w)=21TB(w-q_·~)C*(p -+q)C(p ++q). (2.48) 

It is easy to show that the differential cross section is the residue of a pole inf(p,q,w) at w=O for q_=O. For f!_=/=-f!_o we 

have 

(2.49) 

It is instructive, though tedious, to solve Eq. (2.44) by iteration, 

f=fo+f1+h+ · · · , 

where 

1 d 3 , 
fn+l(p,q,w)= . I~ V(q')[f,.(p -+q',q -q',w)-j,.(p ++q',q -q',w)]. 

-- w+zE-q_·~ (21T) 
(2.50) 

' 

Note that since fo exhausts the normalization we have 

I f,.(p,R,t)d 3p d 3R =0, n;:;::: 1 . (2.51) 

f 1 does not contribute to the cross section as anticipated 

(it is linear in V). Working through the details, one finds 

the flux factor (2.21) explicitly, giving in second order 

v d3u =(27T)-2 1 V(p -pol I 2B(E -Eo) · 
dp - -

(2.52) 

Rather than derive this explicitly, we shall show how our 

formalism leads to the general formula wherein the Born 

cross section (2.52) is replaced by the identical formula 

with V replaced by the transition matrix. Our calculation 

is somewhat similar to that of Gottfried ( 1966), who uses 

the density matrix. 

D. Exact formula for the scattering cross section 

In order to derive the generalization (2.48), we begin by 

expressing the Fourier transform of (2.11) in Dirac's 

bracket notation, 

f(l!_,q_,t)=C(f!_ + Tq_,t)C* (f!_- Tq_,t) 

=<l!_++q I 1/l(t))(l/l(t) IP -+q>. (2.53) 

The wave function 1/1 obeys the usual equation 
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1/l(t)=cp(t)-i I~"' dt'e -iHo<t-t'lVt/l(t'), (2.54) 

where 1/1-cp as t-- oo and the exponential oscillations 

are to be tamed by the adiabatic hypothesis. We can ex-

(Rn-2!n-2l Pn-1 

FIG. 3. Iterative contributions to the scattering integral equa­

tion. (a) The structure of the second-order iterate [Eq. (2.45)]. 

The retardation terms propagate the phase-space densities freely 

between interactions with the potential. (b) The structure of the 

nth-order iterate. 
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pand 1/J and cp in terms of the stationary wave functions 

exp(ik·.!.) and 1/Jt(,!.), respectively, using the same expan­

sion coefficient X(p): 

( ) J d 3p X( )eiE:lf-iE , 
qJ ,!.,t = (21T)3/2 !!_ p ' 

(2.55) 

·'·(x_,t)= J d3p X(p)·'·+(x)e-iEp' 
'I' (21T)3/2 - 'l'p - ' 

where Ep=p 2!2m. For a sharp X(p)=(21T) 312 fj(p--k), 

we find the usual result 

1/Jt(,!.)=eih+ .1 V!/Jt(x) . (2.56) 
Ek+1e-H0 

The usual transition matrix for scattering from momen­

tum state k to k' is 

(2.57) 

In our calculations it will be useful to use the related am­

plitude 

Tp(t)= (p I vI 1/J(t) > 

(2.58) 

Here we have labeled X with a momentum p 0 , about 

which we shall eventually make Xp0 (k) peak. The equa-

tion of motion is 

[i :t -llp·q_ k(p_,q_,t)=(p ++q I vI 1/J(t)}(!/J(t) IP -+q )-(p ++q I 1/J(t)}(!/J(t) I v IP -+q>. (2.59) 

As it stands, Eq. (2.59) exhibits only one explicit Von the right-hand side. But the desired structure, containing two 

V's and two 1/J's, results immediately on substituting the integral equation (2.50), converting the right-hand side of Eq. 
(2.59) to: 

(p + +q I v I 1/J >< cp I P - +q > - (p + +q I cp >< 1/J I v I P - +q > 

+i(p + Tq IV I 1/J(t)) J~ .. dt' exp[iEp-q;2(t -t')]( 1/J(t' I VIP- Tq) 

+i J~ .. dt'exp[-iEp+q/2(t-t')](p+Tq I VI!/J(t'))(!/J(t}l Vlp-+q). (2.60) 

The first two terms are nonzero only in the forward direc­

tion p 0 for q =0 and will be dropped here. The time in­

tegrals in the third and fourth terms are evaluated using 

Eq. (2.55). Further performing the time Fourier 

transform gives 

J d 3kd 3k' 
21T 3 Xp0(k)X; (k')6(w+Ek·-Ek) 

(21T) 0 

X [ Ek-E:+:12-ie + Ek·-Ep~q 12 +ie 
X(p++q I Vl1f!t><1f!tl Vlp-+q>. (2.61) 

Making the substitutions k=P+Q/2, k'=P-Q/2, we 

can express Eq. (2.59) in the form 

J d 3
Pd:Q X*(£-+Q)X<E+TQ)6(w+E·Q/m) 

(21T) - - -

[ 
1 1 

X EP-QI2-Ep-ql2+ie - EE.+Qn-Ep-q/2-ie 

X(p++q I VI!/JP+Q/2)(1/Jt-Q/21 Vlp-+q>. 

(2.62) 

We are interested in the limit of this expression for 

q_=w=O and for the wave-packet coefficients Xp0 sharply 

peaked around p0 • This allows us to set Q =0, p =Po in 

slowly varying functions. Hence for p_ol=p_o we find -
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-i[wj(p_,Q,w)].,=o=21Tfj(EPo-EP) I (pI VI 1/J"Jo) 12 

X f d3Pd3Q X*(P-2.Q) 
(21T)3 2 

XX(P + TQ)f)(P·Q!m) . 

(2.63) 

Recognizing .the flux factor from Eq. (2.21) and using 

(2.49) leads directly to 

v d3a =(21T)-2fj(E -Eo) I (p IV I 1/J"J) 12' (2.64) 
dp 0 

where v =p0 /m is the incident velocity. 

We now clarify the special features of the wave in­

terference behavior in the forward direction and in so do­

ing show how the optical theorem arises in the present 

formalism. · Our previous definition of the cross section 

(2.22) was unorthodox in counting all final particles, in­

cluding the incident beam. This approach is too tied to 

the classical approach and obscures the important 

phenomenon of diffraction scattering. 

To clarify this question, we note that corresponding to 

the decomposition 

(2.65) 

to which (2.54) tends as t---+ oo, we have for the Wigner 

distribution 
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/=/o+/int+fsc • (2.66) 

where / 0 , lint• and /sc are, respectively, the incident, in­
terference, and scattered components. In the equation of 
motion / 0 drops out. In Eq. (2.60) the first two terms 

dropped are exactly the interference terms which arise 
from the overlap of the incident and scattered wave. 

Therefore, the necessary correction to Eq. (2.22) is the 

subtraction not only of the fo contribution (exactly as in 
classical mechanics), but also of the interference term. 

From Eq. (2.60) we see that this interference term is just 

the imaginary part of the T matrix, as one should expect, 
in the limit q ~0. 

The continuum limit of Eq. (2.60) is easy to take. In 

that limit the various states become energy-momentum 

E. The eikonal approximation 

eigenstates and the left-hand side vanishes as q---+-0. The 

vanishing of the right-hand side then produces the optical 

theorem as a constraint. From Eq. (2.56) we see that a 

suitable normalization for continuum states is 

(2'7T)3l>(e' -e>· Performing the trivial time integrations 
gives 

(21T)3li(e-eo>[(p IT IPo)-(p IT IPo>*J 

+21Tili(E -Eo> I TPPo 12=0 . (2.67) 

Integration over d 3p gives the usual form, 

High-energy, small-angle potential scattering is well described by the eikonal approximation (Glauber, 1959). This re­
sult can be easily derived in the present formalism by one simple approximation, i.e., replacing the velocity in the drift 
term v·V by the incoming velocity v0 =p0 /m. 

We write the equation of motion in the form (2.26) 

. [a ] J d 3rd 3p' i(n'-p)·r I I 
z at+v0 ·V j(p,R,t)= (21Ti e "" - [V(B.+-rr>-VCB.--rr)]/(p',R,t). 

Noting the convolution structure in momentum, we can rewrite this in terms of 

j(y,R,t)= J ~e 1 l!.'lj(p,B_,t) 
(217") -

as 

i [ :t +vo·V k(y,R,t)=[V(R +fy>- V(R -fy)]/(y,R,t). 

[Note that the exact equation corresponds to replacing v0 by -iVy in Eq. (2.71).] 
Equation (2.71) is solved by integration, 

f(y,R,t)=fo(y,R,t)exp [ -i f~oo dt'{ V[R +TY -v0 (t -t')]- V[R -fy -v0 (t -t')]}] , 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

where / 0 is as usual the incoming density function, transformed as in Eq. (2.66). Therefore, the desired phase-space den­
sity is 

/(p,R,t)= J d 3y e-ip·yfo(y,R,t)exp [ -i J~oo dt'{ V[R + TY -v0 (t -t')]- V[R- TY -vo(t -t')]} ) . (2.73) 

Defining variables parallel and perpendicular to v0 in the obvious way and writing z =R 11 -v0 (t -t') allows us to 
rewrite Eq. (2.73) as 

/(p,R,t)= J d 3y e -lp·yf0 (y,R,t) exp { ~oi J~~ dz [ V [z + Yii ,R1 + y; ] - V [z- Yii ,R1 - y2
1 ] ] } • (2.74) 

Now all the time dependence has been placed in an espe­

cially simple, controllable function, namely, the free 

motion described by / 0 . 

We now use the Gaussian / 0 of Eq. (2.16) to simplify 

(2.74). We find, setting R 0 =0, 

. -CR -u0t> 212L 

J(y R t)=-1-e'Po'Ye-uy212...:..e ____ _ 
' ' (217")3 (21TL)312 

(2.75) 

where eventually we shall want to take the limits a---+-0, 

L---+- oo. To obtain the cross section, we need to integrate 
Eq. (2.74) over Rand study the behavior as tot---+- oo. To 
accommodate the structure of the potential term, it is use-
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ful to change variables as follows: 

I 

Yt=R +-rY, 

I 
Y2=R --rY · 

Further writing 

Yt 11 =Zl>Yl =lzt , 

Y2 11 =z2,Y21 =l2.2 

(the b1 will be impact parameters), we obtain after a little 

arithmetic 
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f d 3Rf(p,R,t)= f d 2htd2b2exp[-i(p-p0 )1 ·(b 1-b2)]exp l- [ bt:b 2 rt-L j 

Xexp[ -u(bt -b2 )2 /2] f dz1dz2 exp[ -i(p -po)II(Zt -z2)] exp l- [ 21 : 22 -v0 t r;2L j 

where the function <I> is defined by 

[ i Jzl l <l>(z,b)=exp -- dz V(z,b) 
Vo -oo 

(2.77) 

The complex expression (2.79) simplifies greatly in the 

limit t---+ oo, since then the only contributions come from 

z 1 +z2 ---+oo,too. Actually,z1 andz2 tend to +oo togeth­

er for finite u because of the factor exp[ -u(z1 -z2 )2 /2]. 

For finite-range potentials <l>(z,b)=<l>( oo,b) as soon as z 

exceeds the potential range. Hence the Zt>Zz dependence 

of the potential functions <I> disappears as t---+ oo . Going 

over to coordinates z =z 1 -z2 , Z =(z 1 +z2 )/2, we can do 

the two integrations explicitly, 

-(Z-v0t)2!2L 

f dZe J dze-(u/2)z2e -(P-Polllz 

(21TL)I12 

;:::;21TI>(pi!-Po);:::;21Tvoi>(E -Eo)' 

reinterpreting the u---+0 integral as an energy-conserving 

delta function. 

Letting u---+0, L---+ oo inside the fl. integrations, we find 

f d 3Rj(p,R,oo)= 2
1L - 1- 3 21Tvoi>(E-E0 ) 

1T (21T) 

X I J d2b e -l4:11<1>( oo ,fl.) 12 ' 

(2.78) 

where fl=p -p0 is the momentum transfer. 

The coefficient 1/(21TL) is nothing but the flux factor 

(2.20) evaluated for the Gaussian as L ---+ oo : 

[ dN J 2 1 -d =exp( -R 1 /2L)/21TL---+-- . 
A 21TL 

Finally, writing 

d 3p =p 2 dp dE dn 
dE 

and integrating over E gives 

(2.79) 

du = l_p_ J d2be-il:..-bexp [--i J"" V(Z,b)dZll2 
dfl 21T v0 -oo 

(2.80) 

This formula differs from the usual one by the absence of 

a - l accompanying the exponential. The - l comes 

from subtracting the incident wave to define a scattered 

amplitude. Our formalism, which involves the full J, in­

cludes everything, and therefore the definition (2.22) does 
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(2.76) 

not coincide with the traditional definition of the cross 

section in exactly the forward direction. That is, of 

course, where the discrepancy lies, in that the - 1 term 

produces a I)(Jl) on performing the b integration. Equa­

tion (2.80) involves the full J, while squaring <I> -1 leads 

to an immediate identification with the terms in Eq. 

(2.66). 

F. The bound-state problem 

In the preceding sections we have formulated the quan­

tum scattering problem in terms of the time-dependent 

solutions to the Liouville equation 

Lf=iaf 
at ' 

(2.81) 

where the quantum Liouville operator L is defined by 

L (p,R )/ (p,R, t) = - ivp · "i1 Rf (p,R, t) 

+if d 3p'K(p' -p,R)j(p',R,t). 

(2.82) 

For energy eigenstates, t/Jn -e -iE.tf is time independent, 

so that Inn constructed from such wave functions must 

satisfy 

Lfnn=O · (2.83) 

It might be imagined that Eq. (2.84) is a combined 

eigenfunction-eigenvalue problem for En and the associat­

ed phase-space distributions. It turns out that, in contrast 

to the scattering problem (for which the boundary condi­

tions are different), the Liouville equation does not deter­

mine the Wigner function in this case. 

A first indication of this comes from a closer inspec­

tion of the equation of motion (2.45) in the case when f 
has no explicit time dependence. For bound states there 

is, in addition, no incident wave packet. Shifting vari­

ables to r=t' -t gives the bound-state equation 
0 

fB(p,R)= J -oo dr J d 3p'K(p_' -p_,B. +12prl 

X/(p_',B. -12pr) . (2.84) 

In Fourier transform language this becomes 

q·!lpfB(p,q)= f dV3 V(q')[fB(p ++q',q -q') 
- (21T) 

-fB(p- +q',q -q')] 

(2.85) 
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in agreement with Eq. (2.47) adapted to bound states. To 

illuminate this equation further, we rederive Eq. (2.85) 

from the bound-state Schrooinger equation in momentum 

space: 

[E- ..£.__2 
2 ]X(q)= f dq' 3 V(q')X(q -q') , (2.86) 
m (21T) 

where the X's are defined (and called C) in Eq. (2.2). 

From Eq. (2.11), we find for f(p,q) 

I I 
j(p,q)=X*(p --zq)X(p +-zq). (2.87) 

We now constructj(p,q) in two ways usipg Eq. (2.86): 

(E -Ep_912 )X*(p --}q)X(p +fq> 

f __!}ff__ I I = 3 V(q')X*(p--zq+q')X(p+-zq), 
(21T) (2.88) 

I I 
(E -Ep+q12 lX*(p --zq)X(p +-zq) 

= f __!}ff__ V(q')X*(p- ...!...q)X(p + ...!...q -q'). 
(21T)3 2 2 

Identifying the integrands as j(p + -}q',q -q') and 

j(p- -}q',q -q') and subtracting gives Eq. (2.85), since 

Ep+qi2-Ep-ql2=p-q/m . 

The cancellation of the energy eigenvalue in going from 

Eq. (2.88) to Eq. (2.85) leads to the suspicion that the 

latter may not, in general, determine the energies or eigen­

functions of the bound states. This is in contrast to Eq. 

(2.86), which poses a standard eigenvalue-eigenfunction 

problem. 

In order to clarify this situation, we note that the basic 

equation of motion (2.81) is a particular realization of the 

density-matrix equation of motion 

i*=[H,p]. (2.89) 

As a consequence, the solution to the more general eigen­

value problem 

(2.90) 

(A. real but not necessarily positive) is easily surmised by 

inspection of Eq. (2.91). Writing Pmn = I m) (n I, where 

I n ) , I m ) represent energy eigepstates, we see that 

.aPmn 
z-,.-=(Em-E,lpm, · 

ot 
(2.91) 

Recalling the relation between the density matrix and the 

Wigner distribution [Eq. (2.10)], we see that the eigen­

functions of L corresponding to Eq. (2.91) are the off­

diagonal generalization off: 

~" ( >-J d 3r -te:r..'·"'( 1 ) Jmn p,R,t = --3 e .,.,, R --zr,t. 
. (21T) 

I 
Xt/Jm(R +-zr,t), 

Lfmn=(Em-EII)fmn • 

I" ( )- -i(Em-En)tl" (0) 
Jmlt t -e Jmn • 

Rev. Mod. Phys., Vol. 55, No.1, January 1983 

(2.92) 

where the phase-space integral of f m11 vanishes. We now 

see that the energy eigenvalues are to be constructed from 

the eigenvalue spectrum of L. 

Since the Pmn form a complete set of matrices by which 

any operator can be represented, so do the f mn of Eq. 

(2.92) form a complete set. In particular, a general f can 

be represented as 

f(p,R,t)= ~ Cm,fm,.(p,R,t). (2.93) 
mn 

It is useful to state here the completeness and ortho­

gonality conditions obeyed by the f mil. (For this purpose, 

we remove the time dependence of the energy eigenstates.) 

Straightforward calculations using the completeness and 

orthogonality of the wave functions lead to 

(2.94) 

~fm,(p,R)j;,,.(p',R')=B(R -R')B(p -p')/(21T)3 . 
mn 

In the particularly interesting case when the system is 

subjected to an external potential Vex CB., t ), the Cm, 's be­

come time dependent and induce transitions among the 

various "stationary" solutions f mn (cf. Sec. II.H). 

The construction (2.92) provides the desired solution to 

Eq. (2.90). However, an attempt to solve (2.90) does not 

lead uniquely to Eq. (2.92). A symptom of this difficulty 

is easily seen from the form of the density-matrix analog 

to Eq. (2.90): 

(2.95) 

Clearly any solution to this equation can be multiplied by 

an arbitrary function of the constants of the motion 

without changing the eigenvalues. 

The problem evidently is that the single equation (2.90) 

is not completely equivalent to the Schrodinger equation. 

The proper resolution of this situation has been clearly 

laid out in a recent paper by Dahl (1981). In addition to 

the commutator structure Lf++[H,p ], we need the an­

ticommutator analog .LJ~-}[H,p]+, with the associated 

eigenvalue problem 

(2.96) 

Clearly we can reconstruct the usual Schrooinger eigen­

value problem from L and L. The (p,R) form for L is 

easily obtained by suitably changing signs in Eqs. (2.24) 

and (2.25). Noting that f mn also solves Eq. (2.96), 

we find for the kinetic energy term 

I L 1 2 
-z[T,p]+-+ 2mfm,- 8m VRfmn · 

(2.97) 

(2.98) 

Combining this with the potential energy term, we find 
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+ f d 3 p 1 K(p~-p,R)tmn<P 1 ,R), 

(2.99) 

where the kernel K is given by 

K( ~- R)=.2.. J ~ei(p'-p)·r 
p p, 2 (21d 

X[V(R +Tr)+V(R -+r)]. 

(2.100) 

Note that the time dependence of tmn cancels out in Eq. 
(2.99). 

Equations (2.90) and (2.99) provide the required con­

straints to solve the eigenvalue-eigenfunction (matrix) 

problem. Note that tmn will have to vanish for r~oo, 

p ~ oo if m and n are both bound states. In the continu­

um, of course, the eigenvalue is arbitrary and Eq. (2.91) 

suffices to determine the solution to the scattering prob­

lem. 

If we expand in r.., we find 

K = V(R )B(p 1 -p)- .2.. V:.'!(R )__E_ __E_B(p 1 -p) + ... 
s 'J apj apj 

(2.101) 

Note that the leading term is just 

[£ l I Hclass(p,R)tmn= 2m +V(R) tmn=-:z(Em+E,.)tmn' 

(2.102) 

the classical equation of motion, whose energy is the aver­

age of the two quantum energies. 

In order to demonstrate this and other points, we exam­

ine the one-dimensional harmonic oscillator. In coordi­

nate space, the stationary Liouville equation is 

_i!__E__t(p,x)=i J dp 1K(p 1 -p,x)t(p 1,x), 
m ax 

where for V = +mw2x 2, the kernel simplifies to 

iK(p' -p,x)=mw2x aa B(p 1-p) . 
. lfJ 

t therefore must satisfy 

at =(mw)2 at . 
ax2 ap 2 

(2.103) 

(2.104) 

(2.105) 

For our discussion of the oscillator, it is useful to express 
x and p in units of the zero-point motion values x 0 and 

p0 • x~ is (2mw)- 1, while x 0p0 =+ defines p 0 • These 

values correspond to the minimum uncertainty character 

of the ground-state wave function 
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1 2 2 ¢0(x)= 114 112 exp( -x /4x 0 ). 
(21T) x 0 

(2.106) 

From this wave function, we easily compute the Wigner 

function 

t<p,x)= 1 exp(-x 2 /2x~-p 2 /2p~), (2.107) 
21TXoPo 

which is (not surprisingly) a joint Gaussian in p,x. Not­

ing that (mw) 2 =p~/x~, we write Eq. (2.96) in the form 

at at 
a(x/xo)2 = a(p/p~) . 

(2.108) 

Clearly the ground-state result (2.108) satisfies this condi­

tion, but so does any Gaussian exp[ -A (x 12 +p 12 )], where 

the prime denotes the natural dimensionless variables 

x/x,p/p0 • 

Writing the energy in these units, 

H(p,x)=+w(p' 2 +x 12 ), 

we can easily confirm from Eq. (2.107) that 

E 0 = J dpdxH(p,x)t(p,x)=+w, 

(2.109) 

(2.110) 

but the differential equation (2.108) does not determine 

t<p,x), and so the ground-state energy is correspondingly 

undetermined. 

Next we see that the more general equation (2.83) does 

give the energy eigenvalues, even though the t mn are not 
uniquely determined. 

Using Eq. (2.104) for the oscillator kernel, we can write 

the Liouville operator in the form 

L . [ I a I a ] 
=lW X apl -p ax' . (2.111) 

As in the classical case, the Liouville operator acts as a 

rotation in the phase plane. Naturally, H (or the action, 

classically) commutes with L. Introducing action angle 

variables in the phase plane as in Fig. 4, 

x =J coscp, 

p =Jsincp, 

where J 2 is proportional to H, we find 

H= const 

(2.112) 

FIG. 4. The harmonic oscillator phase plane. The condition 

H = const defines a circle in the phase plane, when p and x are 

normalized to their zero-point values. 
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L =iliJ_E_ . 
acp 

(2.113) 

Hence the single-valued eigenfunctions and eigenvalues 

are 

fn =e-incp' 
(2.114) 

An =nliJ, n =0, ± 1, ±2, ... 

These fn may, of course, be multiplied by an arbitrary 

function of the action J, without changing An. 

To determine the f mn we may supplement the foregoing 

with Eq. (2.99). For the oscillator the expansion (2.101) 

terminates after the second term, giving 

[L mliJ2 _1_ [Jt... m2liJ2v2] ]1 
2m + 2 - 8m ax 2 + P mn 

I 
=-z(Em+En>fmn. (2.115) 

Dahl (1981) points out that the equation is identical to the 

two-dimensional oscillator Schrodinger problem. The 

solutions are in terms of the generalized Laguerre polyno­

mials L:;', 

I" =N ex (-_!_S)·S(I/2)In;-nji.L ln;-nji(S) 
J njni m;nj P 2 n 

(2.116) 

where n is the greater of n;,n1 and the other variables are 

defined by 

S = _i_Hclass =(p'2 +X'2 ) • 
li) 

1 _ 1 n 1 _ 1 n' 
r= --tan __r__ = --tan ~ , 

liJ m liJX liJ X 

r 
n/ j 1/2 

1 (n;!)3 

N;i = --;; 2 e ifliJ 

(2.117) 

with b;1 an arbitrary phase. x',p' are the dimensionless 

variables defined following Eq. (2.100). For the usual 
ifl.. R· 

choice of phases e '1 = ( -1) '. The result (2.116) general-

izes earlier results found by Groenewald ( 1946), Uhlhorn 

(1956), Heller (1976), and Takabayashi (1954). (Dahl has 

2 in place of 1 hr in Nil; we have changed to conform to 

our convention that 11= 1.) 

The ease of obtaining explicit f mn for the one­

dimensional oscillator allows us to illustrate several fur­

ther points. First of all, from our previous analysis we 

know that the functions of fno computed from the correct 

wave functions must be proportional to the eigenfunctions 

fn -e -inrp of the Liouville operator. For example, expli­

cit calculation gives 

fw=(x'-ip')j00 (p',x')a::e-irp, (2.118) 

in agreement with Eq. (2.117). 

As mentioned earlier, the Wigner distribution for 

bound states typically becomes negative in some regions 

of phase space. Let us examine the definition (2.10) for 
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bound states to understand better where negativity will 

occur. First of all, the variable R has to be in the poten­

tial well for 1{1 to be large; r cannot exceed the range a in 

the integration. The more highly excited the state, the 

more nodes in the wave function and the greater the prob­

ability of negative values. For r -a, we can expect signi­

ficant negative contributions so long as p < 1/a, i.e., 

wavelengths of the order of or larger than the potential 

range. For sufficiently large p, the exponential oscillation 

restricts r to small values so that the overlap becomes pos­

itive. Hence, for R in the potential, we can expect nega­

tive values off whenever p < 1/a. 

A nice example of these qualitative remarks is given by 

the first excited state of the oscillator, 1{11 a::x1{10(x). An 

elementary calculation yields 

ill (p,x)= 21T;oXo (x'2+p'2-l )exp(- +x•2_ TP'2) . 

(2.119) 

The circle x'2 +p'2 = 1 divides phase space into domains 

of positivity and negativity. As claimed, we need x in the 

well (x' < 1) and sufficiently small p to reach the negative, 

nonclassical domain for / 11 • For general n, Eq. (2.116) 

specializes to the simple form 

(2.120) 

where Ln is the ordinary Laguerre polynomial and f 00 is 

defined in Eq. (2.107). The domains of negativity are 

clearly annuli (Fig. 5) in the x'p' phase plane, since the Ln 

+ + 

x/x 0 

+ + 

(o) 

+ + 

(b) 

{c) 

FIG. 5. Domains of positivity of the Wigner distribution for 

the first three excited states of the one-dimensional harmonic 

oscillator. For the first excited state, f 11 is negative within the 

unit circle. For the second state, the inner circle is positive, fol­

lowed by an annulus where f 22 is negative, and finally a positive 

region. For large enough action fnn is always positive. The an­

nulus structure reflects the simple properties of the Laguerre 

polynomial of Eq. (2.120). 
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have n real zeros. The signs are such that Inn is positive 

for large values of the argument. 

Finally, we note two especially useful Wigner distribu­

tions involving the harmonic oscillator. The first corre­

sponds to the density matrix for thermal equilibrium, 

p=exp( -/3H)/Trexp( -/3H) . (2.121) 

The phase-space distribution for this has been computed 

by Davies and Davies (1975) to be 

1 I 
l(p,x)= -tanh ( 2/3w) 

1T 

X exp[- +<p'2+x'2)tanh ( +/3w)] . (2.122) 

The second example concerns the coherent state I a) 

(Glauber, 1963); Carruthers and Nieto, 1965, 1968) 

p=la)(al, 

la(t))=e-<112llal2 f an(t: In)' 
n=O Vn. 

(x la)=t/Ja(X) 

(2.123) 

- \ 114 exp[-(x-(x) 2 /2x~+i(p)x], 
(21Tx 0 ) 

where a(t)=ae-i"'t. The phase-space distribution is 

l(p,x,t)= 2 
1 exp{ -[x -x(t)] 2 /2x~ 

1TXoPo 
-[p -p(t)] 2 /2p~} (2.124) 

Hence I is distributed in a Gaussian manner about the 

classical motion, in faithful correspondence to the intui­

tive interpretation of the coherent state. 

In each of these cases, which involve summation over 

the excited oscillator states, I is positive throughout phase 

space. The negative-valued regions, which are uninter­

pretable classically, correspond to bound-state problems. 

The motion of the center of mass, however, is described 

by an essentially smooth positive phase-space distribution. 

Phase-space plots of l(p,x) for the first four energy 

levels of the one-dimensional square-well potential may be 

found in the work of Baker, McCarthy, and Porter (1960). 

In the case of a linear potential, one gets an Airy func­

tion, as discussed by Heller (1977) and Dahl (1981). 

From these examples and the general discussion, it is 

clear that bound-state wave functions typically (except for 

the ground state) give regions of negativity. This is in 

contrast to the scattering problem, where sufficiently 

smooth packets give rise to positive joint distributions like 

the Gaussian packet, Eq. (2.16). In any case, the cross 

section arises from the positive quantity (2.13). Similarly, 

the cross section for the production of a many-body 

bound state is given by an expression like Eq. (2.13), with 

the internal variables (and negative phase-space regions) 

integrated out. 

G. Hydrodynamic aspects 

It was found very early (Madelung, 1926) that 

Schrodinger's equation could be recast as a hydrodynamic 
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pair of equations (continuity and an Euler equation for ir­

rotational flow). Writing tf!=a exp(i/3), (a,/3 real), we 

note that the probability current is 

j_=a2V/3/m , (2.125) 

so that we can identify the velocity as 

!:J.=V/3/m. (2.126) 

This suggests that /3/m plays the role of a velocity poten­
tial cp. 

The same current, obeying the usual conservation law, 

an v. 0 -+ ']= 
at -

(2.127) 

(n =a2), is obtained as the imaginary part of the 

Schrodinger equation in the (a,/3) variables. The real part 

can be identified with the (irrotational) Euler equation. 

We now explore the hydrodynamical connection in the 

context of the Wigner distribution, beginning with the 
equation of motion (2.26). 

Integration over d 3p gives immediately 

an 
-+V·(nu)=O 
at • 

where local average velocity !:J.(R,t) is defined by 

I d3p Jdpl<p.R >.t> 
u(R,t)= I 
- d3p l<e.R.,t> 

(2.128) 

(2.129) 

(vp =elm). The potential term disappears, since I d 3p 

produces a B(z:.) under the d 3r integral. 

The analog of Newton's law follows on taking the first 
moment 

nu; =I d 3p vp,f<e.R..t) 

in the equation of motion, 

a a I 3 -a (nu; >+-a d p vp.vpj(p,R,t) 
t Xj I 

=I d 3p d 3p'K(p' -p,R)vp,f(p',R,t) 

1 
=--(V;V>n, 

m 

(2.130) 

(2.131) 

the latter form following on using the explicit form for K. 
We compare this with the usual momentum equation of 

continuum hydrodynamics, 

a a 
-a (pu;>+-a-T;k=O, 

t Xk 
(2.132) 

T;k=pu;uk+B;kP, (2.133) 

where pis the mass density and p the pressure. We now 

see that the stress tensor for the Schrodinger equation is 

Tfk =p( V;Vk > +Bijp• , 

Vp•=nVV, 

I d 3p vpj(p,R,t) 
( V;Vk) = -=----'---­

I d 3p l(p,R,t) 

(2.134) 

(2.135) 

(2.136) 
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Equation (2.136) involves the correlation (v1vk ), in 

contrast to the uncorrelated velocities u1uk in Eq. (2.133). 

By reexpressing (2.136) in terms of uncorrelated velocities, 

we make contact with the usual Euler equation. 

Making use of the identity 

(v1vk)=:((v1 -u1 )(vk-uk))+u1uk, (2.137) 

we rewrite (2.131) as 

a a a 
-a (putl+-a (putuk)=-nVV--a-Pti, 

t xk xk 
(2.138) 

where the kinetic pressure tensor is given by 

I d 3p(v1 -u1 )(vk-uk)f(p,R,t) 

Ptk =p I d3p f(p,R,t) 
(2.139) 

Expanding derivatives on the left-hand side and using 

current conservation reduces Eq. (2.138) to Euler's equa­

tion 

P [ a:rt +.«·Vut] = -p v::- a:i Pti , (2.140) 

when -pV1 V /m is the external force density. Similar 

considerations have been discussed by Kan and Griffin 
(1977). 

H. Effect of an external potential 

Our discussion so far has dealt with pure scattering or 

bound-state problems. In the presence of a time­

dependent external potential, we can excite bound states 

(either to other bound states or to the continuum) or can 

induce "capture" of the free particle into a bound state. 

In principle, these processes are symmetrical, but the usu­

al experimental arrangement leads to a somewhat dif­

ferent treatment. 

Corresponding to the choice of potential energy, 

V(R)+ Vex(R,t) , (2.141) 

we write the basic equation of motion as 

[ :t +v·V ]t(p,R,t)- I d 3p'K(p'-p,R)f(p',R,t) 

=I d 3p'Kex(p'-p,R,t)j(p',R,t) . (2.142) 

For an initial bound state, Eq. (2.44) no longer holds, 

since fn does not obey the homogeneous equation, but in­

stead 

~Jn(p',R,t)- I d 3p'K(p'-p,R)fn(p',R,t)=0. 

(2.143) 

Of course, the ti~e dependence actually goes away, as dis­

cussed in Sec. II.F. In addition, Eq. (2.143) does not 

determine f B. 

In order to solve Eq. (2.142), we clearly need the in­

teracting Green's function 

i]!_G(p,R,t)-i I d 3p'K(p'-p,R)G(p',R,t) 
Dt 

=8(_e)8(£)8(t) (2.144) 

subject to suitable boundary conditions. For example, the 

Wigner function for an initial bound state satisfies 

f(p,R,t)=fn+ I~oo dt' I d 3p' I d 3R'Gret(p'-p,R',t')Kex(p'-p,R',t')j(p',R',t'). (2.145) 

If the initial particle is free, we can still use Eq. (2.54) 

with K +Kex replacing K. In this case, the final state will 

contain both bound-state and continuum components. 

Since the wave function can be written as an expansion in 

energy eigenfunctions as 

1/1= l:an..Pn+ I d 3kC(khpt, (2.146) 
B 

only energy-degenerate cross terms survive in the time­

averaged Wigner function. In particular, the contribution 

of the final bound state B (assuming no accidental degen­

eracy) is ian 1 2/nn. as expected. 
The explicit calculation of the retarded Green's func­

tion obeying Eq. (2.144) is usually quite complicated. We 

content ourselves with expressing G in terms of the 

"eigenmatrices" f mn of the Liouville operator [of Eq. 
(2.93)]. Introducing the Fourier transform G(p,R,co) 

obeying 

(L -co )G (p,R,co) = 8(_e )8(£) , 

and expanding G = l: Gmnf mn gives 

l: Cm,.(Am11 -co)/m11 (p,R)=8(p)8(R). 
mn 
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(2.147) 

(2.148) 

The orthogonality relation (2.93) is now used to evaluate 

Cmn• giving 

G ( R )- ~ .t:,,(O,O)/m11 (p,R) 
R p,_,co - ~ , . 

- mn "'mn -co+l£ 
(2.149) 

when the ie is added to enforce the right boundary condi­

tion in the continuum. 

Many commonly occurring problems, e.g., excitation 

through interaction with an external system, are con­

veniently modeled by the introduction of an external po­

tential energy Vex(~,t). The total Hamiltonian is then 

H r = T + V + Vex• and it is natural to express the evolu­
tion of the phase-space distribution in terms of the f mn 

referred to the Hamiltonian T + V of the system being 

perturbed. We therefore write the expansion 

f(t)= l: Cm,(t)fmn(t), (2.150) 
mn 

where the Cmn depend on time by virtue of Vex. The f mn 

form a complete set, though the orthonormality relations 
are not very simple. 

The expansion coefficients are exactly those of the den­

sity matrix. For a pure state, we have 
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p= 1~><~1 

m,n mn 
(2.151) 

m 

where Pmn = I m ) ( n I is the same as occurred in Eq. 
(2.56). 

Beginning with this result, one can do time-dependent 

perturbation theory in the standard manner by writing 

c -c<o>+A.c< 0 +A.2c<2>+ ... mn- mn mn mn (2.152) 

(where Vex is of order A.). We then obtain the set of cou­

pled iterative equations 

;cw>=o, 
•• (I) - (0) - (0) 
lCmn = ~ ( V mk Ckn - Vkn Cmk) • (2.153) 

k 

.'(2) - (I)- (I) 
lCmn= ~(VmkCkm-VkmCmk) · 

k 

By normalization the diagonal C's must obey the con­

straint 

~Cmm=1. (2.154) 
m 

These results can be applied to nondegenerate ground­

state excitation in the standard way. For A.=O, 

C~1=BmoBno· If t<O, Vex=O and C~~(t<0)=0. The 
c:..On remain constant in time. 

1. Gauge invariance 

In the presence of external electromagnetic potentials, it 
is necessary to modify the definition (2.10) in order to ob­

tain a gauge-invariant phase-space distribution function. 

Under a gauge transformation the potentials transform 

like 

A'=A +VX, qJ'=qJ-! ~~ . (2.155) 

The form of the Schrodinger equation is unchanged when 

the wave function transforms as 

(2.156) 

From this it is clear that the integrand of Eq. (2.10) re­

quires modification by a path-dependent phase factor 

I' I d 3r -tp·r Jp(p,R,t)= --3 e -
(21T) 

(2.157) 

where the line integral runs along a path P beginning at 

B.- fc. and ending at B.+ fc.. 
In a simply connected region, the loop integral of A 

will vanish and the particular path P makes no difference. 
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For multiply connected domains, such as are encountered 

in the Aharonov-Bohm experiment, the phase factor be­

comes crucial. 

The distribution (2.157) has an equation of motion 

whose classical limit is the one-particle Liouville equation 

(2.28) when the force term - VV is replaced by the usual 

Lorentz force (de Groot and Suttorp, 1972; Bialynicki­

Birula, 1977). 

J. Spin variables 

We note briefly the extensions required to describe the 

spin variable in the most important case of spin f. Let­

ting a,b denote the z component of the spin, we define a 

2 X 2 matrix Wigner function f with elements 

- I ~ -te·c..,.* ..!... ) fab(p,R,t)- 3 e 'f'b(R- 2 r,t 
(21T) 

The ordinary density is then 

j(p,R,t)=Trf 

(2.158) 

- I ~ -ip·r.,,,*(R _!__ )·'·( _!__ ) - 3 e - '~' - 2 r,t '~' R + 2 r,t . 
(21T) 

(2.159) 

The reality of f for the spinless case is now replaced by 

Hermiticity f+ =f, i.e., 

(2.160) 

Such an f can be represented by two independent func­

tions/a and/1 and a real unit vector fi'as follows: 

f=fo+rz:fi'f1 · (2.161) 

The polarization density can be computed from the expec­

tation value of the spin operator as follows: 

Q:.(e_,B.,t) = Tr(Q:.f) 

I d 3r -ip-r t 1 1 
= (21T)3 e - '1/J (R - 2 r,t)Q:.~(R + -zr,t) . 

(2.162) 

We can express the ordinary and spin densities in terms of 

/ 0 and/1 as follows: 

j(e_,Ji,t)=2fo(P,R,t) , 

Q:.(e_,Ji,t)=2fi'/l(E_,B.,t). 

(2.163) 

(2.164) 

Ill. THE NONRELATIVISTIC TWO-BODY PROBLEM 

A. Definitions 

The two-body problem exhibits in simplified form some 

of the kinematical features of the N-body system. Of 
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course, one recovers the one-body problem in the absence 

of external potentials when the two-body potential de­

pends on the distance between the particles. Until the fi­

nal parts of this section, we treat the problem of two spin­

less, distinguishable particles of the same mass, with 

Hamiltonian 

PT p~ 
H= 2m+ 2m +vC!:t-,!.z)+Vt(,!.l>t)+V2 (,!.2,t). 

(3.1) 

The external potentials V; act on the ith particle. We 

have in mind two classes of problems: 

(1) scattering of particles 1 and 2, 

(2) breakup of a bound state by external potentials. 

The V; are imagined to have a finite extent in space. An 

example of case (2) is the photodisintegration of the deu­

teron, where particle 1 is a proton, particle 2 a deuteron, 

while V1 represents an external electric potential and V2 

vanishes. 

In order to generalize Eq. (2.10), we again take the 

Fourier transform on the relative coordinates xj -xl> 

xi -x2 in the density matrix 'll*(xl>x2 )'11(xj ,xi). Mak­

ing the definitions 

I ' R I 
,!.t=Rt-271> ,!.t=-t+2!.t' 

we define the two-particle distribution to be 

/z(p_t .Rt ,p_2,R2,tl 

=I 

(3.2) 

(3.3) 

Expanding in momentum basis, we have the alternative 

form 

(3.4) 

B. Equation of motion 

FIG. 6. Kinematical space variables suitable for the two­

particle distribution [see Eq. (3.3)]. The x;,x; label the split 

points of the wave function. R 1, R 2 tum out to be the effective 

locations of particles 1 and 2, while R=+(R 1+R 2 ) and 

r = R 1 - R 2 have the usual significance of total and relative 
coordinates. 

Although / 2 itself need not be positive definite, the joint 

momentum and coordinate distributions are, as expected, 

I d 3ptd 3P2f2(/?_1Rt>f.2/?_2t)= I 'II(R!>R2t) 1 2 ' 
(3.5) 

I d 3Rtd 3R2f2(/?_tRI>/?_2R2t)= I C(p_!>/?_2,t) 1 2 . 

As suggested by the notation, (p;,R;) have the signifi­

cance of the position and momentum variables in the 

kinematical phase space. 

Our analysis will require additional position variables 

defined by Fig. 6: 

- I 
e.=c.t -l.z, R = 2(!.1 +1:2) • (3.6) 

1 , , 1 
,!.J-,!.2=c.-2e.• ,!.t -,!.2 =c.+2e. · 

As suggested by the notation, (R,r) are the em and rela­

tive coordinates. In addition, we shall require total and 

relative momenta, 

I 

p_=e_t +p_2, /?_=2(/?_t-/?_2), 

PT p~ L +P2 I 
-+-= -- (p=-m, M=2m). 
2m 2m 2p 2M 2 

(3.7) 

The two-particle Boltzmann drift term can then be ex­

pressed as 

(3.8) 

v=(pt-P2)/m, V=f.IM. 

A similar decomposition can be made for particles of un­

equal mass. 

The equation of motion for / 2 is derived in direct analogy to the one-particle case. We find 

[ ;t +.ll.t"Vt +11.2"V2 k2(/?_I>Rt/?_2R2t)= I d 3pjd 3p2K2(p_j -e_te_i -p_2,RtR2)/2(PiRtP2R2t) 

+I d 3piKt(P't -e_t,Rt,tl/2(p_!Rt/?_2R2t) 

+ I d 3p2Kt(e_i -p_2,R2t)/2(/?_IRte_iR2t)' 
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(3.9) 
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where v1 isp1/m, V1 is a;aR1, etc. The kernels K1 are defined exactly as in the one-body problem except that the po­

tentials V1,2 can be time dependent. The kernel K 2comes from the interparticle potential 

. , , _ J 2 d 3
rj t<ej -I!.J>·rj 2_ 2_ 2_ _2. ] 

zK2(PI-PttP2 -p2,RttR2>= II --3 e [v(RI + 2l.1.R2+ 21:2)-v(B,.I- 2l..R2 2l.2) · 
- - - - J=l (21T) 

K 2 simplifies greatly by virtue of v depending only on the relative coordinate. After a suitable change of variables, we 

find 

I d 3R d 3p - I - I I I 
iK2(pj -p1,pi -p2,Rt.R2)= 6 exp[i(pj -p1HR +Tp)+i(pi. -p2HR -Tp)][v(r +Tp)-v(r -2p)] 

(21T) 

=B(pj +pi -PI-P2) J ~exp[i(p'-p)·p][v(r++p)-v(r-1-p>] 
(21T) 

which is independent of R. The kernel conserves overall 
momentum (an expression of translation invariance), 

while the action of the potential is determined by the rela­

tive variables. In the presence of external potentials, the 
overall space-time translation invariance is lost, and ener­

gy and momentum can be exchanged with the two-body 

system. 
We now demonstrate in detail the separation of the 

center-of-mass and relative motion starting from Eq. 

(3.9). The assumed wave function is 

[ ~I +~2 ] 
'I' =X 2 ,t <1>(~1 -~2,t) . (3.11) 

X is a wave packet representing the center-of-mass motion 
of the form of Eq. (2.2) with Cas in Eq. (2.14), and with 

P the total em momentum peaked around P 0 • An elemen­
tary calculations leads to the phase-space distribution 

fz <e1 R 1 .1!.28.2 t) 

[ R1+R2 l [Pt-P2 l =/o l!.t +e2 2 ,t I 2 ,Rt-R2,t ' 

(3.12) 

where fo is the free-packet function of Eq. (2.14) and f, 
given by 

_ J ..!!.!.e._ -trern. *( 2. )m.( 2. ) f(l!_,[.,t)- (211")3 e - "¥ l.- 2p,t "¥ r.+ 2p,t ' 

(3.13) 

is time independent for the case of an energy eigenstate. 

Note that /o is a function of R-Et, as expected. There­
fore, a;at + V·V R gives zero when acting on / 0 , so that 
the left-hand side of Eq. (3.9) becomes 

(3.14) 

To see that /o also factors out of the right-hand side, we 
use Eq. (3.10) to simplify. Noting that the Jacobian is un­
ity on going from {p 1,p2)--"'(J!.,p), we find 
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(3.10) 

d 3P'd 3p' J (211")3 8(P' -P)K 1 (p' -p,r)j0 (P',R,t)f(p',r,t) 

! fl._ , , 
=fo(P,R,t) (21T)3 K 1(p -p,r)f(p ,r,t). 

(3.15) 

Hence the relative motion is described by the one-body 

equation of motion with K, and calculated from the po­

tential v (r). Note that the factorization occurs indepen­
dently of the shape of the em wave packet. 

C. Technical interlude: free N-particle 

retarded Green's functions 

In order to cast the equation of motion in integral form 
suitable for scattering problems, we need the generaliza­

tion of the retarded Green's function to two and more 
particles. 

Consider the defining equation for N particles, 

DG 
Dt (l!_tRI · · 'l!_N&tl=B<Rtl8(B,.2 ) • • • 8(IiN)8(t), 

D a N 
-=-+ ~.!l;·V;. 
Dt at i=l 

Writing Gas a Fourier transform, 

N d3qi 
G<etRt · · ·eN&t>= f II~ 

j=l (21T) 

gives the equation 

(3.16) 

(3.17) 

(3.18) 

[i :t- f ~·.!!. 1 ]G(l!_t~J.t · · 'l!_Nq_Nt)=i8(t) . (3.19) 
j=l 

Finally, transforming in time gives 
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(3.20) G(p,q, ... PNqN{J))= +. ~ ' 
-- - - {J) .1€- ~j 9_j'Jl.j 

where the i E has been added to enforce a retarded boun-

dary condition. 

In R,t variables, we find easily 

aR<ed!., · · · eN&tl 

=-3(t)BCB. 1-Q1t)B(B.2 -Q2 t) · · · B<&-QJft). 

(3.21) 

an intuitive result whose correctness can be verified 

directly. 

In passing, we note another intuitive but important re­

sult, 

D 
-F(R ·-V·t)=O. Dt _, _, (3.22) 

=-3(t)exp( -i 1: q.]"ll.Jt) • (3.23) 
j 

D. Equations of motion in the (p,q) basis 

It is often convenient to rewrite the formalism by car­

rying out Fourier transforms on the space and time vari­

ables. The conventions associated with such transforms 
are as in Eq. (2.40). 

In momentum space, the kernels become 

iK1(p 1 -p,q,t)= V(q,t)[B(p -p 1 -+q)-B(p -p 1 ++q)], 
(3.24) 

iKz(p~, -p,,pi -pz,ql>qz)=v(q"qz)[ B(p, -pj --i-qdB(pz -pi -+qz) -B(p,-pj +-i-q, )li(pz -pi+ -i-q2 )] • 

In the usual case where v depends on the relative coordinate, we find 

From now on, we write our equations for this case only. 

The equation of motion can be written as 

[i :t -q,·v,-qz'Vz ]tz(p,q,pzqzt) 

d3 I 

I q, ( I)[/ ( 1 I I 1 I I ) I ( 1 I I I I I )] 

= (21r)3 V q, zPI-Tql,ql-ql,pz+Tql>qz-ql,t- zP!+Tql>ql-ql,pz-Tql>qz+q,,t 

d3 I 

+ I ( 2 ;)~ V(qj ,t)[/z(p,- +qj ,q, -qj ,pzqzt)-fz<P1 + +qj ,q, -qj ,pzqzt)] 

d3 I 

+I (2;)
2
3 V(qi,t)[/z(p,ql>pz--i-qz,qz-qit)-/z(p,q"pz+-i-qz,qz-qit)). (3.25) 

It is also of occasional interest to know the equation for the reduced distribution function for (say) particle 1, in which 

one does not care what particle 2 is doing. The definition is 

/ 0 >(p 1R 1t)=. I d 3p 2d 3R:z/2(p 1R 1p 2R 2t). (3.26) 

Note that the I d 3R 2 integration simply amounts to going to the limit q 2-.0. The equation of motion for t<o is 

[ ] 
d3 I 

i :t -v,·q, / 0 >(p,q,t)= I (2;)
1
3 v(qj I d 3pz[/z(p,-+qj ,q,-qj ,pz,qjt) -/z(p, +-i-qi ,q,-qj ,pz,qj ,t)] 

A similar equation exists for particle 2. In deriving this 

equation, we have shifted variables in the p 2 integration 

to reltlove the apparent qj dependence in the third argu­

ment. This leads to cancellation of the external potential 

term acting on particle 2. f 1 l changes by virtue of the in­

fluence of the external potential and through the interpar-
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(3.27) 

ticle potential. The problem of computing / 2 is not evad­

ed, however, by writing this equation. 

E. Boundary conditions 

In order to give the equation of motion in integral 

form, we need to specify the boundary condition. The in-
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coming density function for two free particles has to 

satisfy the homogeneous equation 

[ :t +Q,·V,+Qz·Vz kin= ~t/in=O. (3.28) 

This equation is satisfied by any function of R 1 - V 1 t, 

R 2 - V2 t. However; for two noninteracting incoming par­

ticles, we have more specifically as t-+ - oo , 

fz-+ fzin =fo<p_dii t)fo(p_zB.zt) 

=fo<B.,-Q,t)fo<B.z-Qzt). (3.29) 

Recall that each f 0 contains a reference position and a 
length parameter. In (p,q,(J)) language, the incoming dis­

tribution is 

fzin =27r/o(p_, ,q_, lfo(f!_z,fj_z )f,((J) -q_, "lli -fj_z "Qz) , 

where, in terms of wave-packet coefficients 

fo(p_,q_)=:C*(f!_-TfJ..)C(p_+TfJ..). 

(3.30) 

In the absence of external potentials, one generally ex­

tracts the em motion and concentrates on the equivalent 

one-body problem. In this case, the change of variables 

(x 1,x2 )-+(R,r) converts the homogeneous equation to 

[ :t +V·VR+v,·V, kin=O. (3.31) 

Writing fin in the special factorized form [Eq. (3.12)] 

then gives 

(3.32) 

Since the em motion factors out [Eqs. (3.14) and (3.15)], 

the relative motion for the scattering problem is described 

by Eq. (2.44) with relative coordinates and K computed 

from the potential v. In the case of Gaussian packets as 
in Eq. (2.16), Eqs. (3.29) and (3.30) are identical. Setting 

R 0 =0 and taking the same width parameter L for parti­

cles 1 and 2, we obtain by explicit calculation 

(p_,-p_!Ol2 +(p_z -f!._zol2=+ce-Eo>2+2(p_-p_ol2 , 

I 
wherePo=P10+Pw andpo=z(PIO-P2o). 

Similarly for the space-time part, 

<B., -Q,t)2+(B.z -Qzt)2=2(B. -Etl2+ T(1:-Qt)2 • 

Hence we can write 

(3.33) 

where the length parameters occurring on the right-hand 

side are L -+ T in the first factor and L -+ 2L in the 

second factor. It is a matter of convenience which ap­

proach to use, though the form (3.29) is more general and 

will generally be adhered to. 

The integral form of the equation of motion following 
from Eqs. (3.18) and (3.26) is 

/z(p_,B.z,f!._IB.zt)=/2in(f!._,B.2,E_!B.zt)+ J~.., dt' J d 3p) J d 3piK2(E.'1 -f!_l>f!_i -E_2,B.~et,B.r-tlf2(E_IB.f7!.2B.'i 1 t) 

+ J' dt' J d3 'K (p' -p Rret t')j (p' Rret p Rrett') -a> Pl I _I _,,_, ' 2 _,_, ,_2-2 

+ J~"" dt' J d 3pi_K,(p_i. -p_z,B.~et,t')/z(f!._IB.~et,p_i.B.~ett'). (3.34) 

The retarded variables are defined as in the one-particle 

case [Eq. (2.44)] 

R~e 1 =R,-vp 1 (t-t'), 

Ri1 =R 2 -vp2(t-t'). 

The K2 term can be simplified by using Eq. (3.10). 

(3.35) 

If the two-particle system exhibits bound states, then 

Eq. (3.34) can induce "capture" if the external potentials 

can supply the requisite energy and momentum. Such 

problems are handled as in Sec. II.H. As tacitly under­

stood in the one-body problem, there is no translation in­

variance, and Vex must be referred to a particular coordi­

nate system. 

Note that Eq. (3.34) contains as special cases two dis­

tinct one-body problems. As already seen, this equation 

reduces to the one-body problem for relative motion when 

the external potentials are zero. We can also arrange the 

incident packets so that particle 1 scatters off V 1 but 

misses particle 2 completely. In the general case, when 

the two particles scatter off each other in the presence of 
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external potentials, the problem is much more complex. 

Although this is the prototype of the important practical 

problem of scattering in a medium, we shall not pursue it 
here. 

IV. THE N-BODY PROBLEM: HIERARCHIES 

AND THE BOLTZMANN-VLASOV EQUATION 

A. Definitions and equation of motion 

We extend the previous development to anN-body sys­
tem with Hamiltonian 

For simplicity we assume that the particles are formally 

distinguishable but have identical properties. From the 

N-particle wave function I/J(x 1 • · · xN,t) we form the dis­

tribution function 
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R I , I 
X;= ;--zr;, X; =R;+-zr;, 

I 

Rii=-z(R;+R1), rij=R;-Ri, 

- I 
Pii =r; -r1, Rij = -z(r; +r1 ) , 

(4.3) 

P= ~p;, R = ~R;/N. 
; i 

As in the two-body problem, it is useful to define an array 

of coordinates, mainly dealing with pairs of particles: 

f N can also be expressed in terms of the momentum basis 

expansion coefficients as in Eq. (3.4). An equation of 

motion for f N is derived from the Schrodinger equation 

as before (v; is P; lm and V; is a;aR; ): 

[ :t + ~v;·V; ]tN(p,R, · · · PNRNt)= J I;Id 3p[K(p',-p, · · · PN-PN,Rl · · · RN)fN(p'1R 1p'zR 2 • • • PNRNt) 

N 

+ ~ f d 3pj K, (pj -pi,RJ,t)fN(Pl · · · pj Ri · · · t) . (4.4) 
j=l 

In the absence of external potentials, one can factor out the em motion in analogy to Eq. (3.11). 

drop the external potential terms and concentrate on the two-body potential terms. The kernel K, 

, 1 J II [ d 3
rj i(p~ -p.)·r·] ~ , , K{p· -p· R·J =- --e 1 1 1 [v(x· -X· )-v(x·-X·)] 

I I' I • , ( 2 )3 , , I J I J > 
l J 1T' 1 <) 

actually changes only two momenta at a time, since v is a pair potential. Explicitly 

f d 3q;d 3qj iq.·R·+iq.·R· 
iK{p[-p;,R;)=~ (21T')3 v(q;,q1 )e 1 1 1 ' 

i<i 

Since v depends on coordinate differences, we have further 

In the following we 

(4.5) 

(4.6) 

(4.7) 

Again the resultant equation of motion can be written in several forms. In p,q,w variables we have (neglecting external 

potentials) 

(4.8) 

using Eq. (4.7) to eliminate qj. 

B. Coupled hierarchy equations for reduced distribution functions 

As in statistical mechanics, one can usefully define reduced distribution functions by integrating out various degrees 

of freedom. These reduced distributions then obey a coupled hierarchy of equations: 
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N 

J';J><ptRtt>= I II d 3pjd 3RjfN<PtR! ... PNRNt)' 
i=2 

N 

JJ1><ptR!p2R2t>= I II d 3pjd 3RjfN<PtR! ... PNRNt)' 
i=3 

N 

Jiv">(p!Rl ... p,R,t)= I II d 3pjd3RjfN<PtR! ... PNRNt). 
i=n+l 

Note that inp,q,w language the space integrations amount to setting q =0, 

N 

JJJ'><ptqt ... p,q,w)= I II d 3pJfN<Ptqt · · · p,q,.pn+tO · · · PNO,w). 
j=n+l 

Applying this rule to the equation of motion to get J}J >, we find 

d3q~ 

(w-q_t"!Lt )jjJ>(plqtw>= 1: I d 3p2 · · · d 3pN-( ')3 v(qj) 
l<i 2~ 

(4.9) 

(4.10) 

Note that q1 is always zero, since j > i ~ + 1. Now consider separately the i = 1 and i > 1 terms on the right-hand side. 

For i = 1 we find 

d3 , 

1: I ~v(qj) I d 3p2 · · · d 3pN[JN<Pt-Tq't.qt-q!p20, ... ,pi+Tq't.q! , ... ,pNOw) 
J> I (2~) 

recalling the definition of /(2). This equation has N -1 equal contributions to the sum. 

All terms having i ~ 2 cancel, as shown by the following expression: 

d3 , 

~ I (2 q)23 I v(qi ld 3P2 • • • d 3PN[fN<Ptqt>P2- Tqi, -qi,. · · •Pi +Tqi,qi,. · · ,pNOw) 
J>2 ~ 

(4.12) 

(4.13) 

Now the apparent ±qi /2 dependence of the p 2 and p1 arguments can be removed by shifting integration variables and 

canceling. We are left with 

d3 , 

(w-qt"!Lt >JiJ><ptqtw)=(N -1) I ~v(q't) I d 3p2[JJI><Pt- Tq't ,qt -q't ,p2 + Tq'tq't.w) 
- (2~) 

(4.14) 

For N =2 this reduces to the equation formed before [Eq. (3.27)] in the two-body problem. Note that, if desired, we 

may remove the q] variable accompanying the p 2 integration. 

For N =2 we encounter a new feature which extends to all higher-order distribution functions. Proceeding as before, 
we find 

(w-qt"Vt -q2 ·v2 >JJ1><ptqtp2q2w) 

d3 , 

=~.I (2 q)13 v(q't) I d 3P3 · · · d 3pN[JN(Ptqtp2q2P30,. · · ,p;-+q; ,q;-qi ,. · · ,pi+Tqi ,qi+q/ ,. · · ,pNOw) 
I<J ~ 

-fN(Ptqtp2q2P30,. · · ,p;+Tqf ,q;-qj ,. · · ,pi-Tqf ,qi+q/ ,. · · ,pNOw)] · 

(4.15) 
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First note that if i ~ 3, we can again shift integration variables so that the apparent /<4> terms cancel, etc. The i = 1,2 

contributions remain to be studied. 

Fori= 1, j =2, we find 

d3 ' 
f q I ( , )[/(2)( I , , I , , ) /(2)( I , , I , , )] 

(21T)3 v ql N P1-2q1 ,ql-qt ,p2+2q1 ,q2 +q1 ,w - N P1 +-zql ,ql -ql ,p2 --zql ,q2+q1 ,w . (4.16) 

which has N -2 identical terms. For i = 2, j ~ 3, the result is the same except that particle 1 stands by while particles 2 

and 3 scatter. 

Combining these results gives the second equation of the hierarchy, 

(w-QI'1LI-q2·v2>fJJ>(p"q"p2q2w) 

d3 ' 
(N 1) f q I ( , )[/(2)( I , , I , , ) /(2)( 1 , , 1 , , )] 

= - (21T)3 v ql N P1-2q1 ,ql -ql •P2 +-zql ,q2+q1w - N P1 +-zql ,ql -ql ,p2-2q1 ,q2 +q1 ,w 

d3 ' 
(N 2) f d 3 • f ql ( • )[/(3)( I , , 1 1 , , ) + - P (21T)3 v ql N P1 --zql ,ql-ql>pzqz,p +-zql ,qlw 

(4.18) 

For N =2 the surviving terms are just as found before in Sec. II. 

The physical significance of this result is quite clear: JJJ> changes by (a) collisions between the selected particles 1 and 

2 or by (b) collisions between 1 and n ~ 3 or by (c) collisions between 2 and n > 3 (Fig. 7). 

The nth-order equation is given by 

[w- ~ qj'Vj ]Jj.;>(plql · · · Pnqnw) 
]=I 

+ ,l: (permutations on all pairs) 

d3q• 
+<N -n) J d3p' J __ 13 v(ql) 

(21T) 

+ ,l: (permutations of 1 with 2,3, ... n) . 

A simple figure (Fig. 8) illustrates the physical content 

of the hierarchy. We select n particles and ask how 

J<n>(p 1R 1 · · · PnRnt) changes with time. This change is 

due to two-body collisions of particles among the first n, 
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(4.19) 

or collisions between one of then and one of theN -n. 
Collisions among the N - n "other" particles do not 
directly affect J<n>. 

The development of this and the preceding section is 
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H H H 
2 3 2 3 3 2 

FIG. 7. Three kinds of contributions to the equation of motion 

for f 2 [see Eq. (4.18)]. In (a) the two chosen particles scatter, 

while in (b) and (c) one of the chosen particles scatters off a par­

ticle in the medium while the other chosen particle is unaffect­

ed. 

completely general insofar as it is only a restatement of 

the N-body equations of motion in phase-space language. 

However, as soon as we postulate boundary conditions or 

make an approximation to the hierarchy (typically factor­

ization, leading to truncation), careful attention has to be 

given to physical requirements. For example, in a col­

lision of composite systems, the particles in a bound state 

are always correlated initially, and one cannot factorize a 

distribution function in the variables of the bound state. 

In the scattering of composites having N 1 ,N 2 particles 

(Ni assumed large), there can be a region of space-time in 

which the dynamics can be described by kinetic equations 

of the traditional type. As a preliminary to the discussion 

of scattering of composites, we review in our formalism 

some traditional simplifications possible for large (not 

necessarily uniform) systems. 

Assuming that particles 1 and 2 are uncorrelated, i.e., 

f( 2 )(p 1R 1,p2R 2t)=J0 >(p 1R 1tl/( 1>(p2R 2t) , 

we obtain a nonlinear equation for/(!)' 

This is the usual mean-field theory expressed in phase­

space language, where the effective potential energy of a 

particle is 

Verr(q! ,t)= V(ql ,t) 

+(N -l)v (ql) J d 3pzf0 >(pz,ql ,t) . 

(4.23) 

Equation (4.22) is the time-dependent Hartree-Vlasov 

equation in which the distribution /( 1 > may be imagined 

to be found self-consistently. When linearized, it gives a 

random-phase approximation which exhibits under suit­

able circumstances collective modes such as plasmons and 
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H 
n N-n n N-n 

FIG. 8. Contributions to the n-particle reduced distribution 

function. These comprise a simple generalization of Fig. 7. 

C. Truncation schemes 

and the Boltzmann-VIasov equation 

Although there is no way to legitimately avoid the N­

body problem, many physical quantities depend on highly 

averaged objects like the one- and the two-body distribu­

tion functions. In many cases, physically motivated (but 

mathematically dubious) approximations, such as trunca­

tion, neglect of correlations, etc., lead to good results with 

highly intuitive content. In traditional subjects these ap­

proximations are associated with the names of Hartree, 

Vlasov, and Boltzmann. The validity of these approxima­

tion schemes in complicated scattering and reaction pro­

cesses remains to be studied. As a preliminary, we show 

how the Vlasov and Boltzmann equations can be extract­

ed from our formalism. 

The equation of motion for the one-particle distribution 

functions including a time-dependent external potential is 

(4.20) 

(4.21) 

(4.22) 

zero sound in uniform systems. 

For a system of electrons (neutralized by a constant 

positive background) the resultant equation is the Vlasov 

equation. We review the case of small oscillations about a 

spatially uniform Maxwellian distribution normalized to 

one particle per unit volume: 

fo(p,R,t) 
exp( -p 2 /2mkT) 

(21TmkT) 312 

(4.24) 

(4.25) 

If we assume f' to be of order V(qltl, linearization gives 
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j'(p,q,(J)) =X (p,q,(J)) 

X [v<q,(J))+(N -Ov(q) f d 3p'j'(p',q,(J))], 

(4.26) 

fo(P -+q>-fo<P ++q> 
X(p,q,(J)) = ----.----­

(J)+IE-_q'.!lp 

The solution is 

/'(p,q,(J))= V(q,(J))Xfp,q;(J)> . (4.27) 
1-(N -l)v(q) d pX(p,q,(J)) 

If collective modes exist for frequency (J)(q), then f' can 

be finite for arbitrarily small V(q,(J) ). The eigenvalue 

equation is 

f (p- ..!..q>-I (p + ..!..q> 
l=(N -l)v(q)P f d 3p 0 2 0 2 , 

(J) - _q 'll.p 

(4.28) 

where P stands for the principle value. In the Coulomb 

gas, we can find the plasmon root for q-->-0 by expanding 

the integrand, 

l=(N -l}v(q) J d 3p [ -_q·Vp/0 (p) 

X [ ! + q ·~~m + . . . ) ] ' 

(4.29) 

2 4TrNe 2 

(J)pl = ---v;;;- . 

A more detailed discussion is given by Brout and Car­

ruthers (1968). Here we have converted N to a density 

N IV to conform to our normalization. 

All these results are well known. To proceed, we want 

to place the above in a more ambitious context, that of 

improving the above ·approximation to obtain the 

Boltzmann collision terms. Suppose we integrate formal­

ly the equation for t<2l to include collisions between 1 and 

2, but ignore correlations in fm. This approximation 

leads to the usual Boltzmann equation with the cross sec­

tion evaluated in lowest Born approximation, but with a 

particular factorization approximation for t< 3>. 
For our approximate/< 2 >, we make the ansatz 

(4.30) 

f 1 is then the solution to Eq. (4.20) with f2 ->-f2 • Formally this is the two-body scattering problem in the absence of the 

rest of the system, without, however, the em momentum constraint, i.e., p 1 +p2 is not some fixed constant. To see in 

what sense this is an approximate solution, we apply D /Dt to this expression using the equation of motion [Eq. (4.20)] 
for fn, 

. a -(2) q I , P{2) I , , I , [ ] 
dJ I 

'at-q,·v,-q2'V2 f = J (21T')3v(q,)[/ (p,-Tql,ql-qt,P2+Tql,qlt) 

(4.31) 

Comparing with the exact equation of motion for t<2l, we see that the approximation t<2l = J<2l corresponds to the fol­
lowing factorization: 

(4.32) 

etc., i.e., factorization of the one-particle distribution for the unscattered particle, and secondly N -1 ~N -2, requiring 

N >> 1 for validity. 
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Clearly, a similar procedure can be adopted in any order: factor then+ 1-particle distribution suitably and solve for 

f(n) each n in turn. "Suitable" factorization is a subject for further study, and the question of convergence is completely 

open. 

For the moment, our ambition is only to show how both the Boltzmann and the Vlasov contributions to the one­

particle transport equation follow systematically from our ansatz for f 2 l. Iterating once by substituting /(2) into the 

right-hand side of Eq. (4.20), we find 

[ a ] I.!f.!L_ I I i-a -qv ! 0 )<p,q,t)- 3 Veff(q',t)[f0 )<p-2q',q-q',t)-f0 )<P+2q',q-q',t)] 
t (21T) 

X[/(2)(p --fq'--fq",q -q'-q",p'+-fq' 

+ -fq",q' +q",t')- f(2)(p--fq' + -fq",q -q'-q",p' 

+ -fq'- -fq",q' +q",t')] 

t [ [ p+.}_q' p'-.}_q'] ] 
+I_

00
dt'exp -i (q-q') m2 +q' m2 (t-t') 

x[f2)(p +-fq'--fq",q -q'-q",p'--fq' 

+ -fq",q' +q",t')- f(2)(p + -fq' + -fq",q -q'-q",p' 

I I } -2q'-2q",q'+q",t')] , (4.33) 

where Verr (a functional of / 0 )) is defined in Eq. (4.23). 

The expression involving Verr is easily identified with the "force" term - VV(/i,t)·V pf0 )(P,R,t) appearing in the 

usual Boltzmann equation. To see this, expand 1< 1 l(p 1 ± -fq 1 ) about p 1, getting 

dJ I . 

I ~[ -q'V err(q',t)]·Vp/(l)<e,q -q',t)= -i I d 3R e -I!·K[VVerr<R,t)·Vp/0 l(p,R,t)] , (4.34) 
(21T) 

where in this case V err is given by the second term of Eq. (4.23). Thus in pRt variables the left-hand side has the familiar 

form 

i [ :t +v·VR- VVerr·VP k(l)(J!.,R,t) . (4.35) 

In order to manipulate the right-hand side of Eq. (4.33) to recognizable form, we work in w space, where the time ex­

ponentials appear as energy denominators. We obtain 

(N-l)I d 3q' J!DL.Id 3p'v(q')v(q")(l+l) 
(21T)3 (21T)3 I 2 ' 

1 
J1= I I 

(p-2q') (p+2q') 
w-(q -q')· -q'·----

m m 

X[/( 2)(p --fq'--fq",q -q'-q",p' +-fq'+ -fq",q' +q",w) 

- f2l(p- -fq' + -fq",q -q'-q",p' + -fq'- -fq",q' +q",w)] , (4.36) 
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1 
1z= • 

(p+2q') 
w-(q -q')·---=-­

m 

(p'-+q') 
q'·--....;;_­

m 

X[/< 2l(p ++q' -+q",q -q' -q",p' -+q' + +q",q'+q",w) 

-/<2l(p + +q' ++q",q -q' -q",p' -+q•-+q",q' +q",w)] . 
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At this state, it is not necessary to factorize /(2). However, it will be very helpful to first study the spatially homogene­
ous case in which 

t< Jl(p,q,ru)=(21dl>(q)/0 l(p,ru) , 

f< 2l(plqlpzqzw) =(21dl>(ql )l)(q2 )/<2l(PIP2ru) · 
(4.37) 

The integrand contains the common factor l>(q' +q")l)(q). 
term here) 

Canceling and simplifying leads to (dropping the Vlasov 

ru/0 l(p,ru)=(N -1) J d 3
q'3 I v(q') 1 2 J d 3p'(lj +12), 

(21T) 

1 
1j =----___;:..___--,2--[f(2)(p,p',ru)-/<2l(p -q',p +q',w)], 

w+q'· (p -p') !L:_+i£ 
m m 

1i = ----- 1 :::.._-~--[f(Z)(p +q',p -q',w)-t<2l(p,p',ru)] . 
(p -p') !L!._ 

w+q'· . + +i£ 
m m 

We now combine terms by setting q'--+ -q' in 12. Noting the identity 

- - q'·(p -p') !i:_ 
AE =Ep + Ep·-EP -q'-Ep· +q'- ..&---"--___.--'--

m m 

we find 

(4.38) 

(4.39) 

ru/0 l(p,ru)=(N -1) J ~I v(q') 12 J d 3p' . - . [J<2l(p,p',ru)-f 2l(p -q',p' +q',w)]. d3 I [ 1 1 ] 
(21T)3 A.E +w+l£ AE -W-l£ 

(4.40) 

The energy difference in [Eq. (4.39)] has a clear pictorial significance in scattering theory. For a givenp;p',q', this I::.E 

defines a collision time Tcon-li/ I::.E. If Tcoll is much less than the characteristic time in which f changes, then for signi­

ficant portions of the integrand w << AE and the energy denominators produce an energy-conserving delta function 

-21Til>(AE) of just the right character to yield the cross section necessary for the Boltzmann equation. 

To make this argument more precise, we transform back from w to t, getting 

Cl/(p,t) = -(N -1) J _!f!L_ I v(q') 12 J dlp• J' dt'ei<I!.El<t-t'l+e-l<b.E)(t.-t'l 
at (21T)3 -"' 

x[J<2l(p,p',t')-J<2l(p -q',p'+q',t')]. (4.41) 

Since AE -1/7", iff varies slowly on a time scale compared with -r, regions of the integrand with t -t' >>T contribute. 

So we evaluate f 2l at t' ~ t and do the time integrals directly. In this limit only t' ~ t matters: the system has lost its 

memory and becomes stochastic. The effective time integral is now J _"'.., eii!.E-rd-r, giving 

ilf~~,t) (N -1) J d 3p' J (~~)~ I v(q') I221Tl>(/::.E)[fm(p -q',t)f0 l(p' +q',t)-J 0 l(p,t)/0 l(p',t)] . (4.42) 

which is the usual form of the homogeneous Boltzmann 

equation, on identifying 

(4.43) 
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as the transition rate for p +p'--+(p -q')+(p'-q'). For 

bosons or fermions, obvious corrections need to be made 

to the occupation probabilities. 

Intuitively, one expects that for a dilute gas the scatter­

ings occur on-shell, and that in the above one can substi-
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tute v---+t, where t describes the scattering to all orders in 

v. This supposition is encouraged by the fact that jl2 > 

obeys the full two-body scattering equation. For dense 

systems, one can expect significant energy shifts, off-shell, 

and lifetime effects. This aspect of the problem has been 

analyzed by Snider ( 1960) and others. 

The classical collision time for a potential of finite 

range a is given by VTcJ""='a, where v is the relative veloci­

ty: 

- 1 :::;::::KIP-P 1 11m. 
Tel 

(4.44) 

K = 1 I a is the maximum momentum supplied by the 

potential. In contrast the quantum collision time deter­

mined by Eq. (4.39) is not given by K although since 

I q 1 I <K there is a bound 

1 K lp -p 1 I K 2 
-< +-. (4.45) 
Teall- m m 

For that set of collisions having I p - p 1 I > K the upper 

bound of Eq. (4.45) coincides with Tci· 

The relaxation time T provides a key to the question of 

energy conservation. From Eq. (4.42) we can define are­

laxation time, describing the scattering out of momentum 

states p,p 1
: 

1 1 a1 N 
-=---=-va 
T 1 at v 

(4.46) 

for large N, with V the volume and u the usual cross sec­

tion. Equation (4.46) is equivalent to the traditional 

Our ansatz for 12 corresponding to Eq. (4.30) is 

f2(pjR tPiR2t)= It (pjRttllt (pi_R2t) 

mean-free-path formula, I =(pu)-1 with p=N IV the 

number density. From Eq. (4.46) we see that 

I :E I""" T~n ' (4.47) 

confirming the argument given after Eq. (4.40). Compar­

ing Eq. (4.44) with Eq. (4.46) gives 

For a dilute gas, a II is very small. 

Several dimensional parameters play a role when we 

consider systems of finite size: for example, in a nucleus 

we have the interparticle distance and the surface thick­

ness as well as the potential size as length parameters. 

Baym and Kadanoff ( 1962) have discussed the form of 

the Boltzmann equation in the case of a slowly varying 

external potential. Under suitable circumstances, the net 

result is to consider Eq. (4.42) locally valid, i.e., each 

l(p,t) is replaced by l(p,R,t) with a common R. For ap­

plications to scattering problems as contemplated here, 

the inhomogeneities are much greater, so that genuine re­

tardation effects must be retained. We now repeat in 

coordinate space a sequence of approximations similar to 

that leading to the spatial uniform Boltzmann equation 

(4.42). We leave in abeyance the question of the relative 

validity of the factorization approximation in the two 

cases. 

The coordinate-space version of Eq. (4.14) is 

-i J~,., dt 1 J 
d3p"d3p" "( "- )• I "( " I )• I-

1 2 I P1 P1 '1 I P2 -pi '21 ( "Rret "Rret 1) 

(21T) 
3 e e 2 P t t P2 2 t 

[ (R ret I 1 R ret I , ) (R ret I , R ret I , )] 
X v t +-zrt- 2 --zr2 -v t --zrt- 2 +-zr2 , (4.50) 

with Rr=R;-p[ (t -t 1 )lm. 

Substituting this in Eq. (4.49), relabeling, and dropping the Vlasov term for simplicity, we obtain a generalization of 

Eq. (4.38), 

alt(p,R,tl 
at +v·VIt(p,R,t) 

d3q d3q 
=-(N-OJ 1 2d3Rid3 I 

(21T)3 p 

Jt i(q 1+q2 )(R-R') [ • [p-p 1 +T(q1-q2)](t-t 1
) 

X dt 1e v(q 1 )v(q2 )exp -lq2-----------_,., m 

[
- [ ~ P+Tq!(t-tl) I I P 1 +Tq2(t-t 1 ),t' 

X l2 P+ 2 (qt+q2),R- ,p,R --------
m m 
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[ 
[p-p'-~(ql-q2)]] 

xexp -iq2 ~ (t -t') 

This result is only the spatial analog of Eq. (4.36), but 

is more amenable to approximations based on space-time 

intuition. For example, we can study the conditions 

under which Boltzmann's equation applies locally. 

First note that when the distribution functions are uni­

form in the space coordinates, the retardation factors in 

the arguments of f 2 drop out, leaving a time integral 

which reproduces the energy denominators of Eq. (4.38). 

The reader can confirm by a straightforward calculation 

that Eq. (4.51) reduces to Eq. (4.38) in this limit. Note, in 

particular, that the R independence of 12 yields 

~(q 1 +q2), a necessary ingredient in producing the col­

lision cross-section factor. As before, when f varies slow­

ly on the scale of a collision time, one gets the on-shell 

energy-conserving delta function. 

Again, for slowly changing j(t), the t' integration is re­

stricted to a range at =t -t' :;::,alv where a is the poten­

tial range [cf. Eq. (4.44)]. In that case, the retardation 

terms are negligible, i.e., R ±a ,.,R, provided f changes 

slowly over the distance a. Now consideration of the ex­

ponential (q 1 +q2 HR -R') shows that R' cannot differ 

by more than a from R, allowing us to write R'~R in / 2 • 

Finally, we obtain again l>(q1 +q2) from the R integra­

tion, which gives us the local version of Eq. (4.42) upon 

factorization. 

At the surface of a nucleus, the retardation distance is 

of the same order as the surface thickness, and the local 

approximation will be wrong. Within the nucleus, the sit­

uation is better, insofar as aiR ,.,o. 7al A 113 (a in fermis). 

For a~ 1.4/, A =216, we have aiR ::::,0.12, but for 

A =27, aiR :;:::,0.33, not negligible. Further, when 

bound-state effects are included (with oscillating phase­

space densities), it is not clear whether the whole ap­

proach makes sense. Further research will be required to 

clarify this situation for realistic problems. 

D. Hydrodynamic equations 

As in the case of the one-particle potential problem, hy­

drodynamic equations follow immediately on taking suit-
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(4.51) 

able moments of the equations of motion. It is significant 

to note that these formal structures are quite independent 

of boundary conditions or assumptions regarding local 

thermodynamic equilibrium. The deduction of hydro­

dynamic and transport equations has an extensive history, 

which is reviewed by Mori, Oppenheim, and Ross ( 1962) 

and de Groot and Suttorp (1972). 

From the particle density 

p(R)= ~~(B. -B.;)' 

we construct the averaged density 

n (B.,t)= II J d 3p;d 3R; 
i 

(4.52) 

X ~l>(B.-B.a>fN(PtRt · · · PNRNt) · 
a 

(4.53) 

This definition, which treats all particles symmetrically, 

differs by a normalization factor N from Eq. (4.9). 

Imitating the calculations of Sec. II.G leads directly to 

the continuity equation [Eq. (128)], with 

n (£,t)H(B.,t>= II J d 3p;d 3R; 
i 

(4.54) 

Multiplying the equation of motion with the average 

velocity 

~ P; ~(R-R·) 
; m ' 

(4.55) 

and integrating over phase space gives the momentum 

equation analogous to Eq. (2.131): 
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(4.56) 

Manipulation of the drift term leads to the analog of Eq. (2.136), 

i aa. f rr d 3pkd 3Rk 1: v~v!t><R -Ra)f(plR I ... PNRNt)=i aRa [n (R,t)( u'uk) 1 . 
~ a I 

(4.57) 

On the right-hand side the potential terms act as forces-one due to the external fields V and the other due to all the 

particles other than the chosen one at point ,R. 

Explicitly we have for the right-hand side of Eq. (4.56): 

i f 3 3 [ av av<Ra-Rp)] .n(R,t) 
-- _l: fi d Pkd Rkl>(R -Ra) aR (Ral+ _l: aR j(p1R1 · · · PNRNt)==. -z--[VVex+VVind. 

m a a ~a p m 

The equation of motion for the momentum density is 

then very similar to that for the one-particle result [Eq. 

(2.131)]: 

a a ) n 
at(nu;)+ aR. (n(U,Ui )=--;;<VVex+VVintl. 

I 

(4.59) 

As before [Eq. (2.137)], one can manipulate Eq. (4.59) 

into the form of Euler's equation. 

The existence of these formal structures in no way as­

sumes local equilibrium or classical approximations. Na­

turally, the calculation of the quantities appearing in the 

equation requires a knowledge of the distribution func­

tions, i.e., a solution of the N-body problem. 

E. Formulation in second quantization 

The correct description of the many-body system re­

quires that close attention be paid to the particle statistics 

and the spin and internal symmetry (e.g., isospin) vari­

ables of the problem. The preceding development has ig­

nored these cumbersome technical details in order to ex­

press more clearly the structural aspects of the theory. 

Although the structure of the N-body wave function has 

been much studied with regard to these questions, it is 

often expeditious to use the compact notation made possi­

ble by the formalism of "second quantization." The 

equivalence of this approach to the usual N-body 

Schrodinger equation is explained in textbooks by Huang 

(1963), Schweber (1961), and Fetter and Walecka (1971). 

The dynamical coordinates in the Heisenberg picture 

[(.,P(;I,t) and its adjoint .,p+(;I,t)] obey the commutation or 

anticommutation rules, 

[ tfa(,!.,t,.,P$"(,!.',t )J± =l>apl>(,!. -,!.') ' 

[.,P(;I,t},.,P(;I',t}]±=O, 
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(4.60) 

(4.58) 

for boson or fermion fields. Here a and {3 denote labels 

for any discrete internal variables such as spin and 

isospin. 

The generalized (matrix) Wigner function is then de­

fined in terms of the density operator p by 

f ap(f!_,,R,t) 

-J d 3t -i.P':! + I I 
= (21de - Tr[p¢a<R-T.r.,t).,Pp(E.+T.t,t}]. 

(4.61) 

For a pure state involving the wave function I .,P), we 

have p= I 'II) ('II I . In particular, for a one-particle state 

this is completely equivalent to the definition (2.92} (ex­

cept the order of indices, which is a matter of conven­

tion). 

The total number density is now 

,l: J d 3pfaa(f!_,,R,t)=Trp¢+(E_,t}.,P(,R,t) 
a 

(4.62) 

If we expand .,P in the momentum basis as in Eq. (2.2), 

with C(f!_,t )_,.aaV!_,t} being destruction operators obeying 

[aa(f!_,t),a$ (f!_',t)]± =l>apl>(f!_ -f!_') , 

[aa(f!_,t),ap(f!_',t)J±=O, 

we find the alternative form 

(4.63) 

f d 3q -iq·B, [ + ( I ) ( I ] lap= --3 e - Trpaa P+Tq,tapp-Tq,t). 
(21T) 

(4.64} 

The pair operator a/+qap is useful in describing density 

fluctuations and plays a prominent role in the many-body 

problem. 

Integrating over phase space gives (dr==.d 3p d 3R} 
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I dr ~~ aa(p_,B_,t)=TrpNop= (N) , 
a 

whereN0 p is 

N 0 p= ~I d 3pa"/;(p_,t)aa(p_,t). 
a 

(4.65) 

(4.66) 

For number eigenstates ( N) =N; hence the natural nor­

malization here differs from that used before. 

In defining higher-order distribution functions, the 

question of operator ordering immediately arises. The 

best choice seems to be a suitably normal ordered form; 

for the two-particle distribution this is 

where, as usual, the average bracket ( 0) = TrpO. This definition is suitable for both boson and fermion fields. 

We note the reality condition obeyed by Eq. (4.67): 

J:p,rtJ(piR iP2R2t)=fi).,llr(PiR 1P2R2t) · 

Integration over the two-particle phase space gives 

I drldr2f~1-J.y8= (N afJ(t)N y8(t)) -Byp(N all(t)) . 

Tracing out the internal variables gives 

I ariar2~f~1.j..rr= (N2)- (N) , 
a,y 

reducing to N(N -1) for number eigenstates. 

(4.68) 

(4.69) 

(4.70) 

The suitability of the definition (4.67) becomes clear when we examine the Hamiltonian and the equation of motion. 

In second quantization the analog of Eq. (4.1) extended to include internal degrees of freedom (but with a common exter­

nal potential) is 

H =I d 3x t{J"/;(x) [ ~; 2 ]t/Ja(x)+ I d 3x t{J"/;(xlVap(~,t)t{Jp(xl+-i- I d 3x d 3 x't{J"/;(x)t{J"j(x')va{J,yll(~ -~')t/Jil(x')t{Jp(x). 
(4.71) 

Hermiticity requires V:p= V fJa and vP<z,llr=VafJ,rtJ· Here 
we have dropped the time label and adopted the summa­

tion convention. 

An elementary calculation now gives the theorem 

(H)= I dr [ f~ Bap+ Vap(R ,t) k~~(p,R,t) 

This result extends the usual theorems for the ground­

state energy (Fetter and Walecka, 1971). The latter ex­

pressions involve boundary values of Green's functions re­

ferred to the ground state. These boundary values actual­

ly serve to represent the physical densities given by the 

Wigner distributions. Expressions of the N-body dynam­

ics via the Green's-function method has, of course, the 

advantage of providing the Feynman graph analysis of 

the problem. In many cases, one will want to supplement 

the Wigner method by using these well-developed tech­

niques. The equation of motion involving all the indices 

is a straightforward extension of Eq. (4.20), whose deriva­

tion we leave to the reader. 

F. Effect of spin and statistics 

Except in Sec. IV .E, we have treated the particles as 

spinless and distinguishable but otherwise identical. 
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Often this is referred to as "Maxwell" statistics. In this 

case, the labels are attached to definite particles, and, for 

example, the one-particle distribution 

N 

j(piRit)= I n drkfN(PiRi ... PNRNt) (4.73) 
k=2 

is specific to particle 1. Since the Hamiltonian is symme­

trical in theN particles, we expect that the j(pi,Ri,t) all 

have the same functional form except when external 

boundary conditions and potentials may intervene to 

make the distributions distinct. 

For questions not concerning which partiCle is in­

volved, we may define a generic distribution function 

which tells whether any of theN particles is at (p,R) in 

phase space. Introducing the one-particle density in phase 

space by 

N 

p= ~ B(B_-B.;)B(p-pi) 
t=i - -

we define the one-particle distribution 

N 

j(p,R,t)= I nark ~B(r-ri)/N. 
k=i i 

(4.74) 

(4.75) 

In the absence of spin effects, f N is symmetrical under 

the interchange (piRi )++(pk,Rk) for bosons or fermions, 

and so each particle contributes equally. Then Eq. (4.75) 
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differs only by a normalization factor N from Eq. (4.73), 

as in the Maxwell case. 

Of course, the true wave function typically contains 

spin variables (and perhaps others) in addition to the 

space coordinates. Then f must be labeled suitably to 

handle the spin coordinates. Ordinarily, the wave func­

tion will be decomposed into irreducible representations 

of the permutation group in the form of products of spin 

and space functions of possibly rather complicated mixed 

symmetries. In some cases, the spin complications may 

be significant, each problem being treated on its own mer­

its. 

The simplest example is a two-particle fermion system 

composed of one-particle states, 

(4.76) 

where the labels i and j indicate the one-particle-state 

quantum numbers. We take i=j=j, since otherwise tf; van­

ishes. For simplicity, let u; be energy eigenstates carrying 

spin +. The two-particle distribution function is 

fii(piRipzRz)=fu(PIRI )fiJ(pzRz) 

+ /;;(pzRz )filPIR 1) 

-f11 (p 1R 1 )/11 (pzRz) 

-/;i(pzRz)/i;(piRI). 

Integration according to the rule (4.75) gives 

j(p,R) = f 11 (p,R )+ J11 (p,R) . 

(4.77) 

(4.78) 

We can, of course, decompose the wave functions accord­

ing to spin 0 and spin 1, i.e., symmetric or antisymmetric 

space states, 

'l'o= ~ [q:>a(XI )q:>b(xz)+q:>b(xl lq:>a(Xz)]XS=O, 

(4.79) 

I 1 S=l 
'I'M= V2 [(f'aa(xl)(/ib(Xz)-q:>b(xl)q:>a(Xz)]XM • 

In analogy to the one-particle case (2.125), 

Wigner function in the coupled spin basis 

SS' I + f M. M.' - \II S' M.' \II SM. • 

we write a 

(4.80) 

Tracing on the spin components gives Bss· and indepen­

dent Wigner functions for each spin. Of course, the po­

tential may couple the fs in such a way as to require the 

full matrix set (4.80). The basis (4.80) [more general than 

the example wave function of (4.79)] is generally the most 

useful in practical problems. 

Next consider the one-particle distribution for a Slater 

determinant of one-particle functions (Moya1, 1949; de 

Groot and Suttorp, 1972): 

1 
'II= 112 l: ( -OPPu1(llul2l · · · up(N), (4.81) 

(N!) P 

where the subscripts label the occupied single-particle 

states (all distinct by the antisymmetrization). Integration 
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according to Eq. (4.75) immediately leads to 

j(p,R,t)= l:J11(p,R,t), 
I 

(4.82) 

where/;; is the one-particle Wigner function for state i. 

Equation (4.82) corresponds to representing theN-particle 

density matrix as the sum of one-particle density ma­

trices. 

The one- and two-particle distributions for Maxwell, 

Bose, and Fermi product wave functions are given in 

Chap. VII of de Groot and Suttorp (1972). 

A semiclassical evaluation of the Wigner function for a 

one-dimensional Fermi gas in a potential well has been 

given by Balazs and Zipfel (1973). Shell-model calcula­

tions involving a "smeared" Wigner function have been 

presented by Baker, McCarthy, and Porter (1960). Com­

parison with the Thomas-Fermi model has been made in 

both these works. 

V. POSSIBLE APPLICATIONS IN INTERACTIONS 

OF COMPOSITE SYSTEMS 

A. Composite particle scattering 

in the Liouville formalism 

The enormous variety of possible final-state channels, 

and the complexity of the time evolution leading to those 

final states, require a cumbersome formal apparatus re­

viewed by Goldberger and Watson (1964) and Newton 

(1966) for the usual Hamiltonian formalism. The addi­

tional complications caused by particle identity and statis­

tics will be generally ignored in our outline. A cartoon of 

the physical situation is given in Fig. 9. We envision the 

collision of two bound systems having N 1, N 2 particles. 

Figure (9b), suitable for short-range forces, indicates in­

teraction in the overlapping region. Following an exten­

sive interaction in the collision volume [Fig. 9(c)], the sys­

tem separates into final states comprising all imaginable 

bound-state configurations [Fig. 9(d)]. In describing these 

final states, it is traditional to speak of "channels" and 

"channel Hamiltonians" in which interactions between 

constituents in distinct bound states are ignored. A given 

channel involves a partition of the total number of 

final bound particles N =N;% N a + · · · +N a , with the 
I 2 k 

individual final particles labeled by a1• Each of these par­

titions corresponds to an asymptotic wave function <l>a, 
with the total wave function given by 

(5.1) 

There is some model dependence tacit, in that an excited 

state with lifetimes greater than the transit time to the 

detector will count as a "bound state." 

We should also note the expression of translation in­

variance, which allows one to factor out the overall em 

motion in direct extension of the two-body problem, as in 

Eq. (3.11)ff. Introducing total and relative coordinates by 
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Xtz=Xt-Xz • 

(5.2) 

and factoring out the em motion as 

'II =X(X,t )~(XIj•t) (5.3) 

leads to the expression for the Wigner function: 

fN(PtRI · · · PNRNt)=foU!.,Ji,t)fN(Pii•Rii•t), (5.4) 

where the variables are 

N 

P=~P 1 , 
i=l 

N 

R = ~ R 1/N, r= ~r;IN, 
1=1 

C?--8 
Nz 

co 

• 
'o 1 c/ 

..----
.... • ~ 

/ \ 

(S.5l 

(a) 

(b) 

(c) 

(d) 

FIG. 9. Simplified version of the stages of a nucleus-nucleus 
collision. In (a) the incident density is 1~: 1~1· In (b) the nuclei 

overlap, initiating a kinetic phase (c), prior to the separation (d). 
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and we have used the identity 

N I N 

~n·e;=r:f+T ~ l:ii'bi · (5.6) 

i=l tJ=l 

In the continuum limit / 0 reduces to 6(U1 -P101 ) [cf. 

Eq. (2.17)] and the internal motion is described by the 

correct number of variables. Often we shall leave the 

overall momentum conservation tacitly understood. 

Next consider the asymptotic Wigner function corre­

sponding to the wave function (5.1). Each constituent ~a; 

is composed of a wave packet peaked at velocity Va1 and 

an internal wave function. For large times the (finite) 

wave packets are nonoverlapping, so that the off-diagonal 

parts of the Wigner function vanish, giving 

a 

where sa= I Ca 1 2 is a function of the fa and 

fa= ITfa1 • 

a; 

(5.7) 

(5.8) 

Each fa; has as a factor its em packet peaked at P~ 1 and 

a stationary bound-state distribution describing the inter­

nal motion. Here the P a1 are the overall momenta of 

bound state a 1: 

Pa1= ~ P1 

iCa; 

(5.9) 

a. 
characterizing the free final packet f 0 '(Ra1 - Va/l when 

Ra1 = ~ R 1 • 

iCa1 

(5.10) 

In order to obtain the exclusive differential cross section 

for channel a due to an individual component of Eq. 

(5.7), we fix fa 1 • • • fak and integrate over the em posi-

tions Ra1 and internal coordinates r a1 of the final frag­

ments, at t-oo: 

dNscatt 

= ITsa(Pa1 lfiTd 3Ra1 IT J dr~/aY-oo). 
i I i 

(5.11) 

By normalization the internal factors integrate to unity, 

and the overall motion due to the packets is peaked 

around P~.. [For the Gaussian example, each factor gives 

6(P a -P~· )1(21d in the continuum limit.] 
I I 

The foregoing analysis is, of course, only intended to 

expose the kinematical content of the phase-space ap­

proach. No panacea is recommended for the calculation 

of the dynamical information contained in Sa- which is 

essentially the square of the S matrix for production of 

channel a. In principle, the Sa are found by propagating 

the initial density 12 12 for a long enough time and 
I 2 

picking off the coefficients of an expansion in the chan-
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nels/a1 • 

In the formal analysis of the channel dynamics, it is 

useful to define various Liouville operators. For a given 

subsystem a;, we have 

Lafa. = -i _l: v;·Vda. 
• • • 

iCa; 

(5.12) 

where Ka1 is computed from the potentials vij acting 

among the particles in the fragment a 1• The correspond­

ing interacting evolution operator is 

'D . a L 
l a.=z-a + a.' • t • 

where fa; obeys 

Da/a;=O. 

(5.13) 

(5.14) 

[The time dependence of Eq. (5.14) is contained in the em 

motion of the fragment a 1.] 

Corresponding to the channel a we write in analogy 

(5.15) 

and note the identity 

Da Ilfa1 =II <Da/a1 ) • (5.16) 

a; a; 

The detailed analysis of the complicated dynamics of 

rearrangements, etc., is left to another occasion. We note, 

however, the papers of Remler (1981) and Hoffman, 

Kouri, and Top (1979) dealing with similar problems us­

ing the density-matrix formalism. 

B. Models of nucleus-nucleus collisions 

Contemporary interest in this subject centers on heavy­

ion collisions, which often are conducted in a regime suf­

ficiently relativistic to require extensions of the formalism 

thus far developed. In addition, creation of secondary 

quanta (usually pions) lies outside the usual Schrodinger 

formalism but is conveniently treated using the relativistic 

second-quantized version of the phase-space distribution, 

discussed briefly in Sec. VI. 

The description of these collisions is generally couched 

in classical geometry, suitably modified by statistics. The 

main approaches are: 

(1) intranuclear cascade models, 

(2) classical equation of motion, 

(3) hydrodynamical models, 

(4) statistical phase-space models, and 

(5) hot spot models. 
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Clearly, each of these topics bears reexamination in the 

light of the phase-space dynamical framework developed 

in this paper. Further discussion of the standard models, 

along with extensive references, may be found in the re­
view of Gyulassy (1980). 

A related topic much in need of clarification is the de­

tailed mechanism of bound-state formation in the separa­

tion phase of the collision. For mass-shell particles in 

collision, the intervention of one or more other particles is 

required to satisfy energy-momentum conservation. 

Present models, particularly for deuteron production, 

have been assessed by Kapusta (1980). Hopefully the 

ad hoc character of these models can be reduced by an 

application of the present formalism, which combines 

quantum evolution with kin.etic behavior in a convenient 
way. 

In order to place these topics in proper perspective, it is 

useful to analyze the length and time scales relevant in a 

typical nuclear collision. (Throughout we have in mind 

short-range forces only.) The lengths are: 

(a) nuclear radius R; 
(b) nuclear surface thickness B; 
(c) potential radius a; 

(d) nucleon mean-free path I; 
(e) Fermi wavelength Ap=li/Pp. 

Corresponding to these lengths, we find characteristic 

times by dividing by a typical velocity V, 

(a') "Tcoll'=R IV; 

(b') "Tpen=BIV; 

(c') "Trel =II V; 
(d') 1"int=a1V; 

(e') "Tp'=liiVpPp. 

Here coli refers to the entire collision time of a nucleon 

interacting with the nucleus, "T pen is the penetration time 

going from vacuum to the nuclear interior, "Trel is the re­

laxation time during which the distribution function 

changes appreciably. Note that at low energies, I (and "Tre1) 

will be greatly enhanced over the interparticle distance be­

cause of Pauli blocking. Finally "Tint measures the time of 

a typical collision. In Sec. IV .C we already noted how 

"Tint <<"Trel was required in order to have nearly on-shell 

collisions necessary for a standard Boltzmann collision 

term. Further, we found that retardation terms could be 

dropped whenever / 1 changes slowly over a distance a, 
leading to a "local" Boltzmann equation. Finally, if the 

relaxation rate 1 /"Trel of the medium is fast compared with 

the collision frequency liT coli> we have local equilibrium 
and hence hydrodynamics supplemented by an equation 

of state. The statistical model can be regarded as an ex­

treme limit of the hydrodynamical model, in which 

equilibrium extends over the entire interacting system pri­

or to dissociation. 

The Fermi wavelength refers to particles at the top of 

the Fermi sea and is relevant to the possibility of classical 

description of the motion. The Fermi "frequency" 
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1/rF=2EF/Il measures the rate of transfer of informa­

tion inside the nucleus (quanta! as opposed to the hydro­

dynamical time R IV sound with Vsound computed from the 

equation of state: v2 =aP ;ap). rF is typically of the or­

der of w-23 sec. 

For fairly fast nucleons of several hundred MeV, we 

have a mean free path 1 - 1/ pa- 2 fm, and for A - 102 

R:::::10fm, 1:::::2fm, a:::::1fm, 

giving the inequalities 

Tint< 'T"rel < r coli · 

If the "less thans" were replaced by "much-less-thans," 

we would have confidence in most of the foregoing ap­

proaches, at least for portions of the overall reaction. At 

low energies, I increases to the point that relaxation can­

not occur within the interaction region, ruling out local 

thermodynamic equilibrium. 

As shown in Sec. IV.D, the continuity equation and 

Euler's equation hold formally in N-particle systems in­

dependently of the assumption of local thermal equilibri­

um. However, these equations are not dynamically com­

plete unless supplemented by further moment equations, 

or the traditional assumption of an equation of state (and 

hence equilibrium). It may be important to understand 

which hydrodynamic results depend crucially on equili­

brium and which are implied by the structural character 

of the two basic hydrodynamic equations (2.128) and 

(4.59). 

The hydrodynamic model of heavy-ion collisions has 

been studied by many authors. A review of this approach 

has been given by Nix (1979). Many further references 

are given in this work. Nix and Strottman (1981) have 

reassessed these results on the basis of newer data. 

The traditional intranuclear cascade model (Metropolis 

et al., 1958) is essentially a billiard-ball model refined by 

the use of experimental cross sections and implemented 

by Monte Carlo techniques. There are obscurities con­

nected with Fermi motion and the self-consistent binding 

potential. Quantum effects of the colliding wave packets 

and reflection as particles enter the potential well are usu­

ally neglected. An extensive treatment of the multiple 

scattering theory and Monte Carlo cascade theory has 

been developed in the Wigner formalism by Remler (1975) 

and Remler and Sathe (1978). 

As mentioned before, the initial and final states involve 

bound systems, and non-negligible correlations exist, in 

contrast to fluidlike situations, where one- and two­

particle distribution functions often suffice. However, in 

the region of overlap shown in Figs. 9(b) and 9(c), it is 

quite plausible to use the Vlasov (TDHF)-Boltzmann ap­

proach of Sec. IV. Various models suggest themselves in 

order of increasing complexity. 

(1) Quantum-mechanical evolution of the initial Wigner 

distribution 

!Rr/Rr2 ' 
using the best available wave functions for the nuclei. 
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The overlapping, interacting system can then be evolved 

in time up to the point of separation according to 

(2a) classical evolution (implemented by the Boltzmann 

equation, treated by Monte Carlo methods), or 

(2b) quantum Boltzmann evolution (as developed here, 

the only differences are the use of the quantum cross sec­

tion unless retardation effects are taken into account), or 

(2c) allowing the one-particle motions in the nucleus 

(taken from the TDHF equations) to collide by action of 

the Boltzmann equation. 

At separation time, one then has a product of one­

particle distributions 

N 

fN(tsep)= 11/;(p;,R;,tsepl · 
i=l 

(5.17) 

(3) Coalescence into final bound states. As mentioned 

earlier, this part of the reaction needs further clarifica­

tion. 

(4) Quantum evolution of final-state wave packets for 

t > fsep· 

A few remarks qn this rough sketch are in order. The 

motions of a sharply defined interaction region and 

separation time need to be carefully considered. For cen­

tral collisions of equal-size objects, these concepts are 

reasonable, whereas for peripheral collisions a more so­

phisticated approach may be required. The separati?n 
time probably has to be defined in terms of the mean In­

terparticle separation in a possibly reaction-dependent 

way. For example, if some particles are instantly blown 

off, they may have traveled some distance before the rest 

of the system dissociates. 

Classical evolution of part of (or even the entire) reac­

tion has been used with success in chemical physics (see 

references in the following subsection) and in nuclear 

physics (Bodmer and Panos, 1977; Wilets, Henley, Kraft, 

and MacKellar, 1977; Callaway, Wilets, and Yariv, 1979). 

We note that a classical description will be spoiled by 

Fermi-Pauli effects if the collision energy is too low. 

Since E1 :::::50 MeV, we might expect to ~pp~ 1 classi_cal 

methods in the range 100-300 MeV particle , cuttmg 

off at the higher end where particle production sets in. 

The intermediate evolution described in (2c) above is 

clearly very ambitious and may exceed present computa­

tional strength. Even within TDHF the evolution is ex­

tremely complicated. Kohler and Flocard (1979) have 

studied the one-dimensional TDHF dynamics of colliding 

slabs and calculated the phase-space flow of the Wigner 

function. This example is already rather complicated. 

Another instructive one-dimensional example is given by 

Richert, Brink, and Weidenmiiller (1979), who compute 

the modification of the Wigner distribution caused by the 

addition of an ad hoc collision term. 

Particle transport in nuclei from the density-matrix and 

phase-space point of view has also been studied by Remler 

and Sathe (1978) and Thies (1979). Other kinetic ap­

proaches have been studied and reviewed by 

Weidenmiiller (1980). 

Finally we mention the "hot spot" models recently 
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studied by Weiner and collaborators (Weiner, 1978; Stelte 

and Weiner, 1981). Local deposition of energy can be ex­

pected to occur, for example, in glancing collisions of nu­

clei. At present, the energy propagation from the excited 

hot spot is treated as a diffusive heat conduction process. 

In the usual way of thinking, this requires local thermo­

dynamic equilibrium. Even so, the general ideas and 

qualitative phenomenology should survive more refined 

approximations. 

C. Atomic and molecular collisions 

Studies of chemical reaction theory. and pure quantum 

theory have led to analyses of semiclassical, or just classi­

cal, approaches to scattering and bound-state problems. 

The classical Liouville appoach to potential scattering is 

discussed by Prigogine ( 1959); the formal structure of this 

approach is analyzed in detail by Miles and Dahler (1970) 

in close analogy to the quantum treatment of the scatter­

ing problem. For a discussion of the three-body problem, 

we refer the reader to Eu (1971). 

There exist many more investigations focusing on the 

semiclassical limit, for example, the review of Miller 

(1974) emphasizing transformation theory and the WKB 

method, and the path-integral methods of Laing and 

Freed (1975) and others, whereby em coordinates of R (t) 

of molecules become semiclassical orbits, with internal 

motion remaining purely quantum mechanical. These 

lines of research have merged with the Wigner phase­

space-distribution approach in the hands of Heller (1976, 

1977) and others. In the case of bound states, the investi­

gations of Berry and collaborators are especially to be not­
ed (Berry, 1977; Berry and Balazs, 1979). 

D. Solid-state physics 

The tradition of kinetic equations and collective 

motions is very deeply rooted in condensed matter phys­

ics. We have already described in Sec. IV.C the Vlasov 

equation for a Coulomb gas treated in this context. We 

also mention the books of Kadanoff and Baym ( 1962) and 

Klimontovich (1967). 

There has been little emphasis on the Wigner function 

per se in the many-body problem, largely due to the large 

number of equivalent and equally effective alternate for­

malisms. An especially nice application of this formalism 

has been made, however, by Kubo (1964) and Jannusis, 

Streklas, and Vlachos (1981), to the description of elec­

trons moving in a magnetic field. 

E. Second-quantization approach 

to inclusive reactions 

In Sec. IV.E we considered theN-body problem for a 

system of identical particles in the framework of second 

quantization. Here we approach the scattering problem 

via the route of reduction formulas and in-out fields 

(Goldberger and Watson, 1964). For the Hamiltonian 
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(4.71), dropping indices, we find the equation of motion 

for the Heisenberg interpolating field tf; to be 

[i :t- ;; ]tf;=j' (5.18) 

where the current j is 

j(x)= I d 3x'tf;+(x')v(x -x')tf;(x')tf;(x) . 

In the sense of weak convergence, we have the limits 

tf;-+t/Jin• t-+- oo ' 

tP-+tPout> t-++ 00 • 

The particle coordinates are defined by 

I d 3p ip•<f. 
t/J(J£,t)= (21T)312 e- a(e,tl' 

(5.19) 

(5.20) 

(5.21) 

where 0 00t in(p,t)=aout in(p)exp(-ip 2t/2m), with the a's 

obeying Eq. (4.63). The a:ut and ain coordinates destroy 

suitable out and in field quanta. 

In order to integrate formally the equation of motion 

(5.18), we need the retarded Green's function 

Fourier transforming Gas 

G ( )-I d(J)d 3p -imt+ip_·<>.a ( ) 
R Jf_,t - (21T)4 e R e_,(J) ' 

we find in momentum space 

GR(e_,(J))=((J)-p 2 /2m +iE)- 1 

d 3p 2 
iG (x t)= I ----elp_·l!-iP /2mt{t(t) 

R -' (21T)3 ' 

iG (x t )=e +itV2/ 2m&(x) 
R -' -

eirn<>.2/2t 

= [21Tt lmi]312 . 

In terms of the in field, therefore, we have 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

ip 1<x-x')-ip212m(t-t') 
xe 

(5.27) 

The out field similarly involves the advanced Green's 

function. Using (in the sense of weak convergence) 

) I d 3x -ip·<>.+ip2!2mt.1,( ) I 
a~~t(P = (21T)3/2 e - 'I' Jf,t t-+±oo ' 

(5.28) 

we easily derive 
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Oout(!!_)=ain(£_)-ij([!_,UJ=p 2/2m )/(21T)312 , 

j(!!_,UJ)= J d3x dteiwt-i!!_"!fj(;!.,t). 

Now consider the reaction 

(5.29) 

(5.30) 

(5.31) 

where X denotes a sum over all other possibilities and N 

denotes one of the t/J quanta. The outgoing number distri­

bution 

dNout . + . 
-3- = (AB Ill I Oout(Pn )aout(Pn) I AB m) 
d Pn 

(5.32) 

is, apart from the flux factor, the inclusive differential 

cross section for production of particle n. 

To exhibit the connection with the Wigner distribution 

in its simplest form, we assume that I AB in) contains no 

n quanta. Then Eq. (5.32) is 

J d 4x d 4x'e --ip.·(x-x') (AB in I j+(x)j(x') I AB in) , 

(5.33) 

using four-vector notation. Changing variables to 

R = l/2(X +X'), r=x'-x, we find 

J d4R J d4r eip.·r 

X (AB in IJ+(R- +r)j(R + +r) I AB in) 

(5.34) 

Since I AB in) is a normalized state, we cannot and do 

not want to use translation invariance to remove the R 
dependence. 

Comparison with Eq. (2.18) for the one-particle wave­

function case reveals a very similar structure. The cross 

section naturally involves currents, while the simplest 

theoretical object involves the fields. 

Defining the second-quantized Wigner function as 

F(p,R l= J d 4reip·r 

X (AB in I t/J+(R- +r )t/J(R + +r ll AB in), 

(5.35) 

of Eq. (4.61) for an obvious generalization 

p= I ABin) (AB in I, we find 

function involving currents is 

that the corresponding 

F(p,R l= J d 4r eip-r 

X (AB in IJ+(R -+r)j(R +Tr) I AB in). 

(5.36) 

We define F(p,q) by 

F(p,q)= J d 4R e-iq·Rf?(p,R) 

= J d4x d4x'ei(p-q/2)·x'e -i(p+ql2)·xn +(x) 

X (AB in I t/J+(x)t/J(x') I AB in)D(x') . 

(5.37) 
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where D(x)t/J(x)=j(x). Integrating by parts, we can fac­

tor out free inverse propagators, giving 

~ 1 I 1 
F(p,q)=G- (p+-:zq)F(p,q)G- 1(p--:zq), (5.38) 

where F(p,q) is defined from Eq. (5.35) in analogy to the 

first line of Eq. (5.37). 

The physical cross section (5.34) is determined by 

dN ~ 
- 3 -=F(pn,q=O). (5.39) 
d Pn 

To find F, we write the equation of motion for F(p,R) us­

ing Eq. (5.18). Clearly this leads again to a hierarchy 

structure to be solved in some approximate way. For ex­

ample, factorization of the fourfold operator leads direct­

ly to TDHF for fermions. Having found F(p,q), one am­

putates external legs and takes the limit q--+0 as in Eq. 

(5.39). 

Our formalism is now set up in a form suitable for ex­

tension to the relativistic regime. Note that formally 

there is no problem in setting up the reduction formulas 

for outgoing composites. 

Finally we note that, in the continuum limit, Eq. (5.34) 

is nothing but a generalized absorptive part. Hence the 

coupled hierarchy equations for the generalized Wigner 

functions constitute an approach to evaluating the absorp­

tive parts of the theory. 

F. Relativistic formulation 

of the phase-space approach to scattering 

and production processes 

After this long essay we finally reach the starting point 

of the whole investigation-the formulation of a suitable 

unified transport theory approach to the description of in­

clusive multiparticle production processes in the ultrarela­

tivistic domain. This technique was designed to avoid the 

naive oversimplification of perturbative approaches such 

as the multiperipheral model, which typically discard the 

extensive final-state interactions which play a dominant 

role in collective effects. In many ways this program was 

too ambitious in attempting to bypass the complex struc­

tural questions already posed by the nonrelativistic 

many-body problem. In addition, the special problems 

posed by QCD and quark confinement seemed to require 

too extensive an investment of effort in the absence of a 

clear understanding of the analogous nonrelativistic prob­

lems. 

In order to express the basic ideas of this approach, we 

consider the production of spinless neutral particles (Car­

ruthers and Zachariasen, 1976). Given an incoming nor­

malized Heisenberg state 'l'im we define a covariant one­

particle distribution function F(p ,R ) by 

F(p,R )= J d 4r eirr( 'I' in llf'(R- Tr )ip(R + Tr) I 'I' in) , 

(5.40) 

where ip(X) is the usual Klein-Gordon field obeying the 

equation of motion 
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(5.41) 

and where j(x) is the current source depending on the de­

tailed theory under consideration. D=ap<Y' is the 

Dalembertian, with a metric ( + - - - ). 

Since we wish to retain information about the space­

time localization, we use normalized states \{lin so that the 

R dependence does not cancel out of the matrix elements. 

In analogy to Eq. (5.32), we have 

dN -('I' I + ( ) ( I ) d3p - in aout P aout p) '~'in (5.42) 

for the outgoing number distribution of the quanta of the 

field (/)· Using standard reduction formula techniques 

leads to the formula 

2 dN __ l_Jd4 Jd4 lp-(x2-xl) 
w 3 - 3 xl Xze 

d p (21T) 

(5.43) 

The right-hand side can be written as 

(5.44) 

When '~'in describes two colliding incident particles, 

2w dN I d 3p is the usual one-particle inclusive differential 

cross section apart from the incident flux factor. 

As in the previous section, it is useful to define an auxi­

liary function in terms of the current, 

F(p,R ):= J d 4r eiP"'('I'in jj(R- fr)j(R + fr> I 'l'in) . 

(5.45) 

Defining Fourier tranforms as in Eq. (5.37) leads to 

F(p,q )= [(p + fq )2-!L2][(p- fq )2-!L2]F(p,q) . 

(5.46) 

In this notation we can write Eq. (5.44) as 

dN 1 -
2w-3-=--3F(p,q) lq=O · 

d p (21T) 
(5.47) 

An equation-of-motion approach paralleling the usual 

Boltzmann approach can be easily found for the function 

F (p,R) by subtracting the two equations of motion 

and (5.48) 

(0~+!L 2 )(qJ(X 1 )qJ(x2)) = (qJ(X 1 )j(x2)) . 

Defining R =(x 1 +x2)/2 and r=x 2 -xi> we note the 

identity 

2 2 a a 
Dz-01=2 aR ·a,. (5.49) 

The basic equation is then 
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2ip- a~ F(p,R )= f d4r eirr 

X [ (j(R -fr)qJ(R +fr)) 

-(qJ(R-fr)j(R+frl)]. (5.50) 

The operator p·a/aR =p0(a/at+p/p0 ·V) is the covariant 

analog of the usual D /Dt of ordinary hydrodynamics. 

The right-hand side is highly model dependent. 

Ordinarily the interaction Lagrangian is such that the 

right-hand side of Eq. (5.50) cannot be expressed in terms 

of the one-particle distribution itself, but instead will re­

quire the introduction of higher-order distribution func­

tions which will, in turn, generate still more complicated 

objects on the right-hand side of their equation of motion. 

The simplest case--analogous to the simple harmonic 

oscillator driven by a C-number source--involves a 

Lorentz scalar source V(x) coupled linearly to the meson 

field, i.e., 

(5.51) 

For this simple case, the current is j(x )= V(x) and the 

formal solution to the equation of motion, 

qJ(x)=lf'in(x)- J d 4x'6.(x -x')V(x') (5.52) 

where Ll(x) is the free retarded Green's function, is an ex­

plicit solution. 

Particle production from the incoming vacuum is now 

easily computed in terms ofF as 

F(p,ql=V<p+fqJV*(p-fq>' 

giving the usual number distribution: 

dN- I V(p) 12 
d 3p - 2w(21T)3 • 

(5.53) 

(5.54) 

In order of complexity, the next most difficult problem 

is the pair model, with 

I 2 
Lint= 2 V(x )qJ (x) . (5.55) 

This problem is basically just a relativistic Schrodinger 

problem. In momentum-space the equation of motion is 

f d 4n' 
2p-qF(p,q)= ~ V(q') 

(21T) 

X[F(p+fq',q-q') 

-F(p-fq',q-q')]. (5.56) 

Consider the solution of this equation in an iterative 

scheme, beginning with an incoming vacuum, having an 

unperturbed distribution 

(5.57) 

appropriate to uniform space-time; 6_ means that only 

the p 0 < 0 root of the 6 function is to be taken. 

To second order, we find 
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Inspection of these contributions (and higher-order terms) 

shows that Eq. (5.58) is the sum of the discontinuities of a 

scattering amplitude for mesons of initial and final mo­

menta p±Tq off the potential V (Fig. 10). F(p,q) corre­

sponds to including discontinuities of internal lines only 

and amputating external legs. The lowest-order contribu­

tion to Pis 

I d 4n' 
F(p,q)=21T ~V(p')V(q-p') 

(27T) 

xs_[(p+p'-+ql2-J.L21, (5.59) 

giving the number distribution of produced particles as 

Generalization to higher-order inclusive cross sections 

and possible collective modes can be found in the cited 

reference (Carruthers and Zachariasen, 1976). However, 

few insights into the collision problem were yielded by 

this investigation. 

For the purposes of the present article, the main point 

of the present section is to show that relativistic kinemat­

ics sees no barrier to the definition of appropriate phase­

space distributions, cross sections, and equations of 

motion. In describing particles with spin, however, tedi-

FIG. 10. Discontinuity (represented by the vertical dashed line) 

of the scattering amplitude for meson p - Tq to meson p + Tq 

in the presence of the potential V (schematically indicated by 
the straight lines) in second-order perturbation theory. 
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(5.58) 

ous technical complications arise. For Dirac particles of 

spin T, a fully general treatment requires a 4 X 4 matrix 

phase-space density, for example (Hakim, 1978). At 

present the study of extended relativistic systems in QCD 

and their equations of state is a fully developed subject 

(Hakim, 1978, Shuryak, 1980). Still, the application to 

relativistic scattering is terra incognita. The formalism of 

this section is, however, especially suited for the produc­

tion of nonconserved quanta, such as pions in nucleus­

nucleus collisions. For example, in the popular model of 

!:J.N 1T coupling with the Lagrangian 

(5.61) 

the current is j=g(6.N +H.C.), giving a structure to the 

right-hand side of Eq. (5.50) of the form 

(5.62) 

which gives, for positive energy states, a covariant version 

of the l:l-hole model. Naturally, the development of this 

formal structure into a full-blooded cross section requires 

extensive work. Nevertheless, the present theory provides 

all the ingredients for a satisfactory description of this 

and similar processes. 
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