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Quantum-mechanical phase-space distributions, introduced by Wigner in 1932, provide an intuitive alterna-
tive to the usual wave-function approach to problems in scattering and reaction theory. The aim of the
present work is to collect and extend previous efforts in a unified way, emphasizing the parallels among
problems in ordinary quantum theory, nuclear physics, chemical physics, and quantum field theory. The
method is especially useful in providing easy reductions to classical physics and kinetic regimes under suit-
able conditions. Section II, dealing in detail with potential scattering of a spinless nonrelativistic particle,
provides the background for more complex problems. Following a brief description of the two-body prob-
lem, the authors address the N-body problem with special attention to hierarchy closures, Boltzmann-
Vlasov equations, and hydrodynamic aspects. The final section sketches past and possibly future applica-

tions to a wide variety of problems.
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|. INTRODUCTION

In recent years one can discern an increasing interest in
the use of quantum-mechanical phase-space distributions
for the formulation and solution of scattering and produc-
tion problems. These distributions, which are quantum
generalizations of Boltzmann’s N-particle distribution
fnpiRy, . ..,pNRpy,t), provide an intuitive picture of
complex collision processes.

As is well known (Tolman, 1938), the 6N dimensional
phase space of the position coordinates ¢; and momenta p;
provides a useful arena for the description of classical
mechanics. Quantum mechanics, which forbids states
having simultaneously definite p; and ¢;, requires the re-
placement of the phase-space distribution function by the
density “matrix” (von Neumann, 1955). An attractive
version of the density matrix discovered by Szilard and
Wigner (Wigner, 1932) allows the expression of quantum
dynamics in a form directly comparable with the classical
analog. The authors’ interest in this approach occurred
when they noticed that the field-theoretic formulation of
inclusive production process involved second-quantized

analogs of the Wigner distribution function (Carruthers
and Zachariasen, 1974, 1976). In this formulation the N-
particle covariant distribution functions are directly con-
nected with the inclusive differential cross sections. Be-
cause of the mathematical complexities of the relativistic
field-theory problem, no useful predictions have yet come
out of this formalism. In nuclear physics, Remler and
collaborators initiated and developed a program in which
nuclear reaction theory is formulated in the language of
the Wigner distribution function (Remler, 1975, 1981;
Remler and Sathe, 1975, 1978). Meanwhile, phase-space
methods (sometimes classical) were being developed by
quantum chemists in order to elucidate chemical reaction
problems (Brown and Heller, 1982; Eu, 1971, 1975; Hell-
er, 1976, 1977; Lee and Scully, 1980; Miles and Dahler,
1970). We hope that the present work will encourage

Copyright © 1983 The Nobel Foundation 245



246 Carruthers and Zachariasen: Quantum collision theory with phase-space distributions

communication among these disciplines and will lead to
the recognition of the phase-space method as one of
universal utility.

Over the years, several authors noted the possibility of
expressing potential scattering cross sections in terms of
Wigner functions. (Irving and Zwanzig, 1951; Ross and
Kirkwood, 1954; Mori, Oppenheim, and Ross, 1962;
Huguenin, 1973; Prugovecki, 1978a). However, the prin-
cipal interest in these years was the derivation of
quantum-kinetic or Boltzmann equations for uniform or
almost uniform extended systems. Some other works con-
cerned with the Boltzmann equation are Uehling and
Uhlenbeck (1933); Mori and Ross (1958); Snider (1960);
Snider and Sanctuary (1971); Prugovecki (1978b). The
generalization of this approach to nonrelativistic field
theory and the modern formulation of the many-body
problem is explained in the book by Kadanoff and Baym
(1962). The most important qualitative consequence of
the modern formulation is the natural manner in which
“self-consistent field” theories appear in the simplest ap-
proximation. According to the nature of the system and
the statistics of the particles, these approximations carry
the names of Vlasov, time-dependent Hartree-Fock
(TDHF), and random-phase approximation. Secondly,
the transport equation can be obtained by suitable trunca-
tion of the coupled equations of motion. These tech-
niques can be carried over to relativistic matter. One of
the earliest such works, using Green’s-function tech-
niques, is that of Bezzerides and DuBois (1972). The
reader is referred to the review of Hakim (1978) and the
thesis of de Boer (1979, 1980) for further information and
references on this subject.

The relation of transport equations to classical or quan-
tum dynamics, as expressed through the coupled hierar-
chy of distribution functions, continues to be a problem of
fundamental interest (Cohen, 1968). In this paper we
shall indicate how such equations can (under suitable con-
ditions) describe a portion of a collision process involving
many particles.

Another fundamental line of investigation concerns the
representation of quantum mechanics by phase-space dis-
tributions. Among the works on this topic, we mention
the following: Groenewald (1946); Moyal (1949); Baker
(1958); Barut (1957); Imre, Ozizmir, Rosenbaum, and
Zweifel (1967); Brittin (1971); Wigner (1971); Ali and
Prugovecki (1977a, 1977b); Grossman and Huguenin
(1978); Prugovecki (1978c¢); Balazs (1980); O’Connell and
Wigner (1981a, 1981b). A review of the formalism of the
Wigner function and its relation to the Weyl transforma-
tion (Weyl, 1927) has been given by de Groot and Suttorp
(1972). A related topic in this area of research is the
analysis of alternative definitions of distribution functions
designed to satisfy special criteria (Baker, 1958; Glauber,
1963; Cohen, 1966; Agarwal and Wolf, 1968; Lax, 1968).
For our purposes we do not need to worry about these
fine points. In the description of inclusive scattering pro-
cesses, the Wigner function arises naturally (especially in
second quantization). Cross sections are directly related
to it, and other issues are of secondary concern.
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Recently the increased activity in heavy-ion physics has
led to greater interest in phase-space distributions.
Currently popular models (intranuclear cascade model,
“hot spot” model, hydrodynamical models) which em-
phasize collective and transport behavior are especially
suitable for examination in this framework. It was, in
fact, our earlier interest in the Landau hydrodynamical
model (Landau, 1953) of particle production which led to
our search for an underlying kinetic formulation of that
theory. We hope that the present work will lay the foun-
dation for a proper description of nucleon-nucleus and
nucleus-nucleus collisions. We also remark that pion-
nucleus scattering fits conveniently into the field-theoretic
version of our formalism, with a proper (non-wave-
function) description of the pion field. References to
these developments are given in Sec. VI.

The aim of the present review is to formulate in phase-
space distribution language the nonrelativistic N-particle
scattering of particles interacting via two-body potentials.
Technical complications introduced by spin, statistics,
and other degrees of freedom (e.g., isospin) will usually be
suppressed. The work should be regarded as a personal
essay. It is partly review and partly original, and is most-
ly taken from our notebooks and lecture notes dating back
several years. Points of contact will be found with many
of the references, however. Our main hope is to explain
the lucid physical meaning of this approach to collision
theory and to carry the development far enough to inspire
realistic calculations. We always keep in sight the proper-
ties special to this formalism, namely, the description of
collective modes and the transport and hydrodynamic
behavior. Unfortunately, many of the applications will
require extensive numerical work. However, that is the
nature of the problems of principal interest,

1. NONRELATIVISTIC POTENTIAL SCATTERING

A. Definitions

We consider in some detail the scattering of a nonrela-
tivistic, spinless, particle from a static potential well V.
Since we are ultimately interested in the detailed space-
time evolution of complicated systems, we use wave pack-
ets throughout. The usual results can be obtained by tak-
ing suitable limits.

As is well known, one has to give up the concept of
particle trajectories in quantum theory. The density of
particles is expressed in terms of the wave function by

n(R,t)=|¥(R,t)|?*. 2.1)
Writing ¥ as
- d’p ip-R
PR, )= 272 Cip,t)e=*=, (2.2)
we see that the momentum distribution implied by ¢ is
nip,t)=|Cip,0)|2. (2.3)

One cannot specify simultaneously the position and
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momentum better than indicated by Heisenberg’s uncer-
tainty principle:

AxAp > % . (2.4)

(Planck’s constant # is set equal to unity except when
necessary to clarify physical interpretations.)

The demise of the orbit also casts a pall on the tradi-
tional formulation of statistical mechanics in terms of
distribution functions defined on phase space. The sim-
plest of these, the one-particle function f(p,R,t), immor-
talized by Boltzmann, is defined so that f(p,R,t)d*R d°p
is the probability of finding a particle of momentum p
and position R in the phase-space volume d>R d>p. The
coordinate and momentum densities are, correspondingly,

n(R,0= [ d*% fp,R,0), 2.5)
np,0= [ d°Rf(p,R,1), (2.6)

with the overall normalization taken as unity. Note that
the f suitable to a single classical particle in a pure state,

S, R, 1)=8(R ~R(1))d(p—p(t)) 2.7

where R (t) defines the classical orbit and p (t)=mR (1), is
in direct conflict with the uncertainty principle.

Wigner (1932) has proposed a construction which both
respects the rules of quantum mechanics and recaptures
most of the desired features of the Boltzmann function.
Notice that the density matrix (for a pure state)

Y*(x 1, 09(x,1) (2.8)

has six c-number variables besides ¢. Introducing relative
and center-of-mass coordinates by

I~

=(x2—x1),

(2.9)
R=(x,+x,)/2,

we obtain the Wigner function by making a Fourier
transform on the relative coordinate:

3

T e TRIYS (R — 3, OY(R + 31,1) .

(2.10)

f(p,R,t)= f

The variable p is not an operator, but is simply a judi-
ciously chosen ordinary vector. It is also useful to write f
in terms of the momentum basis

3 .
f(p,R,t)= (‘21733 ezg-ﬁc*(g_%g,t)C(g—k%g,t) .
(2.11)
From these definitions we see that
J @ fp.R.0=|$R,0|?, 2.12)
J@Rf@.RD=|Cp,0|?, (2.13)

in analogy to Egs. (2.5) and (2.6).

The function £ is real, but not necessarily positive de-
finite. The lack of assured positivity will not concern us
unduly since we are mainly concerned with computation
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of positive definite asymptotic quantities like (2.13),
which give the differential cross sections.

Since Eq. (2.10) is nothing but a particular representa-
tion of the density matrix, what we have is essentially the
density-matrix formulation of quantum mechanics. Our
approach is also closely connected with the Green’s-
function treatment of the many-body problem, as will be-
come clear in Sec. V.E describing the second-quantization
formulation of the problem. (In that section we shall con-
sider more general density matrices.) Although the
density-matrix description of quantum dynamics has little
to offer in simplicity for easy problems involving only a
few particles, it really comes into its own for complex,
many-particle dynamics. We shall argue that the Wigner
version, suitably generalized, is the most natural way to
formulate and solve such problems.

The simplest example is a free particle,

C(p,t)=C(p)exp(—ip’t/2m) ,

- - P _ (2.14)
L MR (p _ 1g)Clp+ 1) s
(27) = =

where vy, =p /m. For a wave packet made up of free par-
ticles, f, depends on R as R —yt. The example of the

Gaussian momentum packet (peaked at p, and R,) is
especially useful and interesting,

fop.R0= [

exp[ —(p —po)*/401]

Clp)= (oro)3 /4 exp(—ip-Ro), (2.15)
_ exp[—(p —po)*/20]
folpRoO == 33/
exp[ — (R —Rovpt)z/ZL]
(271)3/2 ’ 2.16)

where L is defined by L =1/40. We point out some in-
teresting features of Eq. (2.16):

(a) It does not spread with time for fixed p, even though
the underlying wave function does. However, contours of
constant f, described by a generalized ellipse, do spread in
the phase plane.

(b) The momentum and position distributions obey the
uncertainty relation Ap, AR, > % Hence an equation like
(2.7) is out of reach, except as a special limit involving
#—0.

(c) As L tends to infinity f, becomes spread uniformly
over space, while the momentum factor is sharp in
momentum.

The Gaussian packet (2.16) is an especially good proto-
type incident-free packet. Since we shall use these results
for large L, the normalizations appropriate to the contin-
uum counterparts are listed (as L — o0 ):

(LYP*C(p)—8p—po) ,
(L 72m)*"*4, (R)—exp[ipo(R —Ro)] (2.17)
(L 72w fo(p,R,0)—8(p —po) /(27)* .

The indicated continuum normalization is 1/(27)° parti-
cles per unit volume.
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Other examples of analytically calculable phase-space
distributions will be given in Sec. ILF.

Before taking up the question of computing f(p,R,?),
we explain how to express the result of a scattering exper-
iment in the present formalism. We imagine (Fig. 1) a
nearly uniform wave packet with momentum components
p ~py incident on a localized potential V. The extent of
the packet L!/2 needs to be much larger than the size of
the potential (called a) if we use Eq. (2.16) as our proto-
type packet. (Figure 1 has been drawn for R, equal to
zero; for L — oo, the memory of R disappears from the
problem.) After the incident packet scatters off V, the
outgoing signal is detected in the solid angle 4 (Fig. 2).
As time tends to infinity all particles pass by the detector.
We rewrite Eq. (2.1) in differential form, giving

stcatt
d’p
To calculate the incident flux and consequently the cross
section, we note that the probability current is

. N S
J(R,t)= 2mi(¢ Vy—Vi*y)

= [d°RFD.R |1\ - (2.18)

= [d’pu,f(p.R,1), (2.19)

the latter following an easy calculation. Therefore, the in-
cident integrated flux along the beam direction p, is

dN, inc
dA

Using Eq. (2.14) for f, and noting that in the limit of
sharp wave packets p ~py, 4 =0, we can derive

= [ dt jobofolp,R,0) . (2.20)

i%“iz J @ [ d*q8(g-66)C*(p—59)
X Clp+5q)/2m? . (2.21)
The differential cross section is then
do _ [ &R PR ) (2.22)

d’p -

In this form one can take the continuum limit. Note that

dN . /dA

fo

FIG. 1. A smooth free-particle Wigner distribution with mo-
menta peaked near py approaching a localized potential V.
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since our f includes the incident particles, the definition
(2.22) does not agree with the traditional one in the for-
ward direction py. This question will be clarified in Sec.
ILLE.

B. Equation of motion: relation
to the classical limit

The equation of motion for f follows directly from the
Schrodinger equation,

-V

l.alll(R,t) _
2m

2
ar +V(R)

P(R,1) . (2.23)

The result is more complicated formally, involving essen-
tially the commutator of H with the density matrix. But
this form is directly related to the Poisson bracket form
of classical mechanics, as shown below.

The kinetic term is most easily computed in momen-
tum basis, giving

f (d3q eiq-R

27 C*(]_)—%g,t)

XC(p+5g.0=—EVaf@RD . (2.24)

The full equation of motion is then

Df_|8 .
Dt TV

a1 fp,R,1)

3 -
zé f (2‘%)3 YR + 1) V(R — 0]

XP*(R— 31,0 R +51,1) . (2.25)
We have temporarily reinstated the correct factors of # in
order to facilitate our discussion of the classical limit.
Equation (2.25) can be usefully rewritten as

a2

FIG. 2. The outgoing particle’s density in phase space. This al-
lows the evaluation of the cross section do in the solid angle
dQ.
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D 1 d*rd®’ ip—p)
Lo R=— [ ET4P iw—pr
pf PRO=15 J (2mh)?

[V(R+52)—V(R—30)If (p',R 1
= [ &’ K(p'~p,R)f ("R,

(2.26)

where the function K,
1 d’r

P ei(g’*g)z/ﬁ[ V(1_3+%L)

K(p'—p,R)=

—V(R—37)]

(2.27)

occurs in many of our calculations. We shall also use the
Fourier transform

iK(p'—p,g) =V (@) 8(p'—p + 39

—8(p'—p—59] . (2.28)

The difference of potentials occurring in Eq. (2.27) is
important only for » <a, where a is the range of the po-
tential. Hence the significant momentum differences
p'—p occurring in K are of order |p'—p | <#/a. There-
fore, in the equation of motion (2.26), the | potential has
the effect of connecting f’s with p’ in the range
p'=~p*fi/a. The finite contributions for r = +2R +a os-
cillate if R >>a and do not contribute for short-range po-
tentials.

In the classical limit, (2.26) becomes local in momen-
tum space, too. In the limit #—0, expanding

VIR+1/2r)— V(R —1/2r)=1r'VV

and writing » =iV, /# leads to the classical one-particle
Liouville equation,

of
3¢ +uv-Vfip
Hence Eq. (2.26) may be regarded as a quantum Liouville
equation. Information on classical scattering theory in
the phase-space language can be found in Prigogine (1959)
as well as in Miles and Dahler (1970) and Eu (1971, 1973).

Equation (2.29) is equivalent to the constancy of the
phase-space density (df/dt =0), provided the particles
move on classical orbits specified by Newton’s laws:
dr/dt=p/m, dp/dt=—VV. The solution is then
Slp(0),r(0)].

If we keep all terms in the expansion of ¥V, we easily
derive

R,)—VV(R)V,f(p,R,1)=0. (2.29)

3
FYR V |f(p,R,1)
(i) !
= 3 oV VR VR (PR,
n odd
#V, ¥
:%Sin —5 V(R (p,R1) . (2.30)

Here and subsequently it is understood that Vy acts only
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on V. The form (2.30) is most easily derived by writing
VIRE1/2r)=exp(£1/2V)V
in Eq. (2.27), which leads to
#iv,-V
—2 R y(R)8(p'—p) .
(2.31)

In either the quantum case [Eq. (2.26)] or the classical
case [Eq. (2.29)] the motion is ballistic in the absence of a
scattering potential. More precisely, the equation

D d
th—‘ ar +

K(p’—p,R)=%sin

Y,°V | f=0 (2.32)

is solved by any function of R —p,t. The initial condition
for the scattering problem is of this form.

The differential operator occurring in Eqgs. (2.29) and
(2.30) has the form

#V,'V
%sin =2 Dyt D, + Dt (2.33)
If we expand f formally in a power series in #,
f=fo+hf\+#f o+, (2.34)
we find the sequence of equations
D
——D =0,
Di o |fo
D
- _Dy |f1=0,
Dt o |/
D
= —Dq |f2=Dsf0 ,
Dt o |[f2=Dafo
(2.35)
D
= Dy |f3=D,f1 ,
Dr o [f3=Daf)
L Dy |fs=Dafr+Duf
Dt o |[fa=D2f2+Dasfo
L. Do |fs=Dsfs+Dsf
Di o |fs= 3 D4/ -

These equations are solved in sequence by simply integrat-
ing along the classical orbits, keeping in mind the initial
distributions, whose 7 content will vary with the problem.
For example, having found f,, we calculate f, from the
equation

=+ f dt' (D, fo)p(t),r(t")] . (2.36)

In this manner the entire quantum distribution is con-
structed in terms of the underlying classical orbits.

When the boundary condition is independent of #, only
even powers of 7 occur in the formal series (2.34). One of
the first applications of the quantum phase-space distri-
bution (Wigner, 1932) was the calculation of quantum
corrections to the Boltzmann distribution. Although such
results seem to make sense for thermally averaged quanti-
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ties, the formal expansion does not exist (Heller, 1976) in
many important cases. The reason is that essential singu-
larities spoil the expansion of Egs. (2.34). A very simple
example is the free Gaussian distribution, Eq. (2.16), in
which the % dependence is of the form h3exp(—4 /#2).
Hence every V, brings in factors #~! and %2, canceling
factors of # in the expansion (2.34). We refer the reader
to the work of Heller (1976) for further information as
well as for the description of a method to explicitly ex-
tract the singularities responsible for the failure of the
naive approach outlined above. The essence of his
method is to remove the essential singularities through a
selective summation of the infinite series in #. The prob-
lem is sufficiently important to deserve further study.

The phase-space distribution method has been used to
illustrate various features of the (tricky) classical limit.
The reader is referred to the following authors for further
information and references: Heller (1977); Berry (1977);
Berry and Balazs (1979); Berry, Balazs, Tabor, and Voros
(1979). Particularly interesting is the semiclassical
(WKB-derived) phase-space distribution derived and stud-
ied by Berry (1977). We expect that further development
of these ideas for scattering theory will lead to important
practical applications.

It is instructive to note that we can easily prove an
“Ehrenfest theorem™ using the Wigner distribution

R
di{p) _ fd3pd3Rpaf(‘2’_’t) — vy,

= 2.37
dt = at ( )
A similar calculation for (R ) leads directly to
d{(R
d(R) _{p) (2.38)
dt m

For these simple moments, the classical procedure of
computing expectation values coincides with the usual
quantum-mechanical rules. For discussion of the general-
ity of this, one should consult the references.

C. Integral form of the scattering equations

As is usual in scattering theory, it is useful to formally
integrate the equation of motion to exhibit the incoming
boundary condition explicitly. In anticipation of our later
development, we pose the problem not only for f(p,R,?),
but for the corresponding space and time Fourier
transforms.

Consider the equations

%"*‘Q'V f(£7£7t):S([_7’B_rt) 5
. 0 .
v f(p,q,t)=iS(p,q,t), (2.39)

where
fp.gn= [d*Re 287 (p,R,1),
fp,g,0)= fd3R dte' R (p.R1),

with analogous expressions for the transforms of S.
The Green’s functions corresponding to Egs. (2.39)
obey ‘

(2.40)

%-*—Q'V G(p,R,t)=8(R)8(1),
. 0 .
i 4L G(p,q,t)=id(1) , (2.41)

(0—q-0)G(p,g,0)=i .
As usual, one has to define the pole suitable to the desired
boundary condition (here retarded). The result is
i
o+ie—qv’

Gret(P,q,t)Zﬁ(t)e —ig-vt s
Gralp R, = DBR ~u1),

Gret(p’qaw):

(2.42)

when 3(z) is the usual step function: unity for ¢ >0 and
zero for t <O0.
The integral forms of Eq. (2.36) are evidently

SR, 0= folp,R,1)

+ [ _drSip.R—u,(t —1),1,
Sf(p.g,t)= folp,q,?)

+ f:wdt'e“iz'yi’”*t’)S(p,q,t') ,

(2.43)

iS(p,q,)

fp.q,0)=folp,q,0)+ otie—qu

Here f, solves the homogeneous equation suitable to the
three descriptions: as ft— — o, f—fo. The retardation
factors, which have an obvious physical meaning, find
differing expression in the three forms of Eq. (2.39). Ap-
plying these results to the equation of motion (2.26) leads
to the scattering integral equation

f(B’B_)t)sz(I_’:B_,t)
t
+ [ ard’p’K(p'—p,R —v,(t —1")]

Xflp'sR—p,(t —t'),t'] . (2.44)

Physically, it is clear that the values of f at retarded
points build up the whole function. The kinematical-
kinetic content of Eq. (2.44) is exposed by iterating. To
illustrate, the second-order term is

t t'
f_wdt' f_wdt"fdp'fd3p"K[p'—p,R —v,(t —t)]K [p" —p',R —v,(t —t')—v, (t'—1")]

XFIp",R —v,(t —t")—v, (' —1"),t"] .
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Pictorially [Fig. 3(a)] the particle density begins at time t”, is deflected from p” to p’, propagating with velocity v, until
t’, when the potential changes the momentum to p. Then the density propagates between ¢’ and ¢ with velocity v,.

In nth order we have

f H (dtid3Pi)K(P2“P1’R1) e K(pn *pn—hRn)f(pnfRn’tn) ’

i=i
where the variables are given by

R;=R —up18t1, 8ti=t—1t',

The physical interpretation is again suggested by Fig. 3(b).

R2 =R1—UP28t2, 512:t'—t" 5

(2.46)

Rn:Rnal_Uantn’ 5tn+1‘—“tn-—-tn+l .

For many purposes the (g,0) language is convenient. The scattering integral equation is

S (p,q,0)=folp,q,0)+ (27)°

O+iE—q Y
where the incoming distribution function is

Solp,q,0)=278(c0 —q 1, )C*(p — %Q)C(P + %q) .

1 d3q’ , , , , ,
’ f L Vgfp—59"9—4" o) —fp+39°9—q,0)],

(2.47)

(2.48)

It is easy to show that the differential cross section is the residue of a pole in f(p,q,0) at =0 for ¢ =0. For p£p, we

have

f d’R (PR | e=f(p,g=0,t=00) = f dt%(;_),gzo,t):—i[cof(_,g_=0,a))]w=o .

(2.49)

It is instructive, though tedious, to solve Eq. (2.44) by iteration,

f=fo+fi+fat+- ",

where

fn+1(£;g,0)):

o+tice—gy, ¥ 2r)

Note that since f exhausts the normalization we have
[ futp,R,0d% d°R =0, n>1. (2.51)

f1 does not contribute to the cross section as anticipated
(it is linear in V). Working through the details, one finds
the flux factor (2.21) explicitly, giving in second order

vdo

d’p
Rather than derive this explicitly, we shall show how our
formalism leads to the general formula wherein the Born
cross section (2.52) is replaced by the identical formula
with V replaced by the transition matrix. Our calculation
is somewhat similar to that of Gottfried (1966), who uses
the density matrix.

=(27)~* | V(p—po) | *SE —Ey) . (2.52)

D. Exact formula for the scattering cross section

In order to derive the generalization (2.48), we begin by
expressing the Fourier transform of (2.11) in Dirac’s
bracket notation,

f(p:4,0)=Clp+3¢,0C* (p—3¢,1)
=(p+3g | ¥ {PWD) |p—3g) .

The wave function ¢ obeys the usual equation

(2.53)
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1 d3 ! ’ ’ ’ ’ ’
[ ELv@fulp — 549 —a"0)—Fulp + 344 —¢"0)] .

(2.50)

v=gt)—i [ dre™™ " yyy (2.54)

where ¥—>@ as t— — oo and the exponential oscillations
are to be tamed by the adiabatic hypothesis. We can ex-

(R,1)

up(t-t') (R/ 1)

t o
Vpl“'f )

(R t")

(Rn+i,th-1)

o (R, tn)
(R-21n-2) Pr-1 n
FIG. 3. Iterative contributions to the scattering integral equa-
tion. (a) The structure of the second-order iterate [Eq. (2.45)].
The retardation terms propagate the phase-space densities freely
between interactions with the potential. (b) The structure of the
nth-order iterate.
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pand ¥ and @ in terms of the stationary wave functions
exp(ik-x) and i} (x), respectively, using the same expan-
sion coefficient X(p):

3 . .
plx,n= [ ?:w—)‘z/z—)((g)e"—’!_“gpt,

(2.55)

3 Pl
S

where E,=p?/2m. For a sharp X(p)=(2m)*"?8(p —k),
we find the usual result

(2m)

v =e® 5 e i) (2.56)
k —41p
1
.
Py

FP.a.0=Cp+5q |V PO Wt) p—59)—{p+3q | W)Y |V Ip—2g) .

The usual transition matrix for scattering from momen-
tum state k to k' is

T =Sk |V 1Y) .

In our calculations it will be useful to use the related am-
plitude

T,(0={p |V | ()
d3k —iEt
= pro(k)e {p | V| v .

Here we have labeled X with a momentum p;, about
which we shall eventually make X, (k) peak. The equa-

(2.57)

(2.58)

tion of motion is

(2.59)

As it stands, Eq. (2.59) exhibits only one explicit ¥ on the right-hand side. But the desired structure, containing two
V'’s and two 9’s, results immediately on substituting the integral equation (2.50), converting the right-hand side of Eq.

(2.59) to:

P+3a |V vXelp—5¢)—<p+59 @) |V |p—+q)

+ilp+3q |V [90) [ dt'expliE, _alt — VL' |V |p— 1)

+i [ dt expl—iEp 4ol =) p 45 |V WP |V [p—2q) -

The first two terms are nonzero only in the forward direc-
tion po for ¢ =0 and will be dropped here. The time in-
tegrals in the third and fourth terms are evaluated using
Eq. (2.55). Further performing the time Fourier
transform gives

d*k dk’ ,
27 [ oy Xeo KW K8+ B — Ey)

X

—1 1
—+ .
Ek —Ep+q/2—l€ Ek'—Ep_q/2+lE ]
X{p+5a | VI W |V p—2q) .

Making the substitutions k =P +Q /2, k'=P —Q /2, we
can express Eq. (2.59) in the form

(2.61)

3p g3
f d_é),d,)gxt(g_%g))((ﬁ+%_Q_)S(w—i—l_"g/m)
T

1 1
X —— .
Ep—op—E,_gn+ic  Epiop—E, ¢n—ic J

x{p++q| VIvron) b _onlVie—74) .
(2.62)

We are interested in the limit of this expression for
g=w=0 and for the wave-packet coefficients X, , sharply

peaked around p,. This allows us to set Q =0, p =p, in
slowly varying functions. Hence for p+£p, we find
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(2.60)

[
—-i[a)f(g,Q,co)]w=0=277'8(Ep0—Ep) [{p |V 1/1;"0) |2

d*pd’Q .. i
- - = P
x [ E e P10

XX(P +5Q)8(P-Q/m) .

(2.63)

Recognizing the flux factor from Eq. (2.21) and using
(2.49) leads directly to

d
%=(2ﬂ-)"26(E —Eo) | {p |V 43,217,

(2.64)
where v =py/m is the incident velocity.

We now clarify the special features of the wave in-
terference behavior in the forward direction and in so do-
ing show how the optical theorem arises in the present
formalism. Our previous definition of the cross section
(2.22) was unorthodox in counting all final particles, in-
cluding the incident beam. This approach is too tied to
the classical approach and obscures the important
phenomenon of diffraction scattering.

To clarify this question, we note that corresponding to
the decomposition

¢:¢7+¢sc s

to which (2.54) tends as f— oo, we have for the Wigner
distribution

(2.65)
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f =fo+fint +fsc > (2.66)

where fo, fin, and fo are, respectively, the incident, in-
terference, and scattered components. In the equation of
motion f, drops out. In Eq. (2.60) the first two terms
dropped are exactly the interference terms which arise
from the overlap of the incident and scattered wave.
Therefore, the necessary correction to Eq. (2.22) is the
subtraction not only of the f, contribution (exactly as in
classical mechanics), but also of the interference term.
From Eq. (2.60) we see that this interference term is just
the imaginary part of the T matrix, as one should expect,
in the limit ¢ —0.

The continuum limit of Eq. (2.60) is easy to take. In
that limit the various states become energy-momentum

E. The eikonal approximation

eigenstates and the left-hand side vanishes as ¢—0. The
vanishing of the right-hand side then produces the optical
theorem as a constraint. From Eq. (2.56) we see that a

suitable normalization for continuum states is
(217)38(;_)’—2). Performing the trivial time integrations
gives

(27)°8(p —po){p | T |po) —<p | T | po)*]

+2mi8(E —Eo) | Ty, | *=0.  (2.67)
Integration over d°p gives the usual form,
ImT,, = —7 [ 92 o )3 S(E—Eo)| Tp, |2,  (2.68)

High-energy, small-angle potential scattering is well described by the eikonal approximation (Glauber, 1959). This re-
sult can be easily derived in the present formalism by one simple approximation, i.e., replacing the velocity in the drift

term v-V by the incoming velocity vo=py/m.
We write the equation of motion in the form (2.26)

z?, +00°Y |f (o RO= [ d—;ipﬂ “RVR 4L V(R—111F (R (2.69)
Noting the convolution structure in momentum, we can rewrite this in terms of
3 .
FoR = [ LL crrp R, 2.70)
(27r) -
as
aat o0V [FBRD=[V(R +2p)— V(R — ) 1f R, 1) . (2.71)
[Note that the exact equation corresponds to replacing vy by —iV, in Eq. (2.71).]
Equation (2.71) is solved by integration,
t
FORD=Fon, R exp [—i [ dt'{VIR + 3y —volt —t)]— VIR — 5y —volt —1")]] ] , (2.72)

where f is as usual the incoming density function, transformed as in Eq. (2.66). Therefore, the desired phase-space den-

sity is

f(p,R,t)= f d3 e~ ®7fo(p,R,t) exp [—i f_t_wdt’{V[R —|—%y—uo(t—t')]—V[R ——%y —volt —1]} ] .

(2.73)

Defining variables parallel and perpendicular to v, in the obvious way and writing z =R —vo(t —t’) allows us to

rewrite Eq. (2.73) as

F@RO= [ d e P oy, R,0) exp[ "
0 hanit - <]

Now all the time dependence has been placed in an espe-
cially simple, controllable function, namely, the free
motion described by f.

We now use the Gaussian fy of Eq. (2.16) to simplify
(2.74). We find, setting Ry =0,

. —(R —vgt)? /2L
ePoY,—oy22 €

(27 )3 (27L)*"?
where eventually we shall want to take the limits 0—0,
L — . To obtain the cross section, we need to integrate
Eq. (2.74) over R and study the behavior as to t—ow. To
accommodate the structure of the potential term, it is use-

F,R,t)= , (2.75)
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Viz

Ju pes
+2Rl+2

Vg 2

—-Vz—-z, 3

] . (2.74)

I
ful to change variables as follows:

1
yi=R+s3y,

1
y2=R—5y.

Further writing
Yy =zuyi=bi,
Y2, =23.y2,=b;

(the b; will be impact parameters), we obtain after a little
arithmetic
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[ @R fp.RO= [ d%,d%; expl —i (p —po)i-(b; —by)] exp
Xexp[ —a(b, —by)? /2] fdzldzzexp[—i(p —po)|(zy—2z2)] exp

Xexpl —o(z, —2,)2/2]®(z,,b )P *(2,,b,) /(27)}(2mL)3/?

where the function P is defined by

Pzb)=exp |- [’ dz¥izb) . 2.77)
0 — 00

The complex expression (2.79) simplifies greatly in the
limit — 0, since then the only contributions come from
Z1+2Zy— o0, t00. Actually, z; and z; tend to + « togeth-
er for finite o because of the factor exp[ —o(z; —2z,)2/2].
For finite-range potentials ®(z,b)=®(,b) as soon as z
exceeds the potential range. Hence the z,,z, dependence
of the potential functions ¢ disappears as t— 0. Going
over to coordinates z =z; —z,, Z =(z;+2,)/2, we can do
the two integrations explicitly,

—(Z ~vyt)2/2L

J a2 i J e ~lo/212, =P —P0)?
.

’,-::27T8(p“ —po)zz’ﬂUoS(E ——Eo) 5

reinterpreting the o—0 integral as an energy-conserving
delta function.
Letting 0—0, L — oo inside the b integrations, we find

3 — .__1 —.] _—
[ @&*Rfp,R w)= L G 2m0o8(E —Eg)

. 2
X\ff%f”@mw@>,

(2.78)

where A=p —p, is the momentum transfer.
The coefficient 1/(2wL) is nothing but the flux factor
(2.20) evaluated for the Gaussian as L — oo

dN

AN | ol —R2 1
Y =expl Rl/2L)/277L—>21TL. (2.79)

Finally, writing
dp
d’p =p>~=-dEdQ
p=p dE
and integrating over E gives

do _
g

2
2% f d*b e'iA'bexp

F) ©
e [~ vzbaz

(2.80)

This formula differs from the usual one by the absence of
a —1 accompanying the exponential. The —1 comes
from subtracting the incident wave to define a scattered
amplitude. Our formalism, which involves the full £, in-
cludes everything, and therefore the definition (2.22) does
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bi+b,

2
fa

Zl+22
2

-—Uot

2
/ZL

(2.76)

I
not coincide with the traditional definition of the cross
section in exactly the forward direction. That is, of
course, where the discrepancy lies, in that the —1 term
produces a 8(A) on performing the b integration. Equa-
tion (2.80) involves the full f, while squaring ®—1 leads
to an immediate identification with the terms in Eq.
(2.66).

F. The bound-state problem

In the preceding sections we have formulated the quan-
tum scattering problem in terms of the time-dependent
solutions to the Liouville equation

—;9f
Lr=i at’

where the quantum Liouville operator L is defined by
L{p,R)f (p,R,t)=—iv, Vg f(p,R,1)
+i [ dK(p'—p,R)f (p',R,0) .
(2.82)

(2.81)

. —iEyt .. . .
For energy eigenstates, 1, ~e¢ n f is time independent,
so that f,, constructed from such wave functions must
satisfy

Lfun=0. (2.83)

It might be imagined that Eq. (2.84) is a combined
eigenfunction-eigenvalue problem for E, and the associat-
ed phase-space distributions. It turns out that, in contrast
to the scattering problem (for which the boundary condi-
tions are different), the Liouville equation does not deter-
mine the Wigner function in this case.

A first indication of this comes from a closer inspec-
tion of the equation of motion (2.45) in the case when f
has no explicit time dependence. For bound states there
is, in addition, no incident wave packet. Shifting vari-
ables to 7=t'—¢ gives the bound-state equation

fap,R) = ffw dr [ d°p’K (p'—p,R +v,7)
Xfp',\R—y,7) . (2.84)

In Fourier transform language this becomes

d’q’

(2m)?

g‘ypfs(p,q):f Vgl f3lp +599 —q")

—fep—54'.9—q")]
(2.85)
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in agreement with Eq. (2.47) adapted to bound states. To
illuminate this equation further, we rederive Eq. (2.85)
from the bound-state Schrédinger equation in momentum
space:

VighX(g—q'), (2.86)

2
4 \xg= [ %€
E=om ]X(q) Gy

where the X’s are defined (and called C) in Eq. (2.2).
From Eq. (2.11), we find for f(p,q)

fo)=X*(p —

We now construct f(p,q) in two ways using Eq. (2.86):

(E —Ep_on)X*(p —5@X(p +59q)

=f J—V(q X *(p —

(E —Ep+q/2)X*(P -

TOX(p+39) . (2.87)

74+ XP+59),
. (2.88)
-;q))((p +7q)

=f (‘214)3 Vg *(p—+aX(p ++q —q") .

Identlfymg the integrands as f(p+ 2q ', —q') and
flp— q ',q —q') and subtracting gives Eq. (2.85), since

Ep +q2—~Ep_qpn=pq/m .

The cancellation of the energy eigenvalue in going from
Eq. (2.88) to Eq. (2.85) leads to the suspicion that the
latter may not, in general, determine the energies or eigen-
functions of the bound states. This is in contrast to Eq.
(2.86), which poses a standard eigenvalue-eigenfunction
problem.

In order to clarify this situation, we note that the basic
equation of motion (2.81) is a particular realization of the
density-matrix equation of motion

98 _H 2.89
5 [H,p]. (2.89)
As a consequence, the solution to the more general eigen-
value problem

Lfy=Afa

(A real but not necessarily positive) is easily surmised by
inspection of Eq. (2.91). Writing p,,, = | m ){n |, where
|n), | m) represent energy eigenstates, we see that

; 3pmn

ot
Recalling the relation between the density matrix and the
Wigner distribution {Eq. (2.10)], we see that the eigen-

functions of L corresponding to Eq. (2.91) are the off-
diagonal generalization of f:

d’r —ipr %

e (R
2m)? Vi
X Pm(R +51,1)

(2.90)

=(Ep —Ep)pma - (2.91)

Jmn(P,R, 1) = —';’r,t)

Lfun=(Em—Ep)fmn » (2.92)
Srun()=e "I (0),
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where the phase-space integral of f,,, vanishes. We now
see that the energy eigenvalues are to be constructed from
the eigenvalue spectrum of L.

Since the p,,, form a complete set of matrices by which
any operator can be represented, so do the f,, of Eq.
(2.92) form a complete set. In particular, a general f can
be represented as

FO,RD=TF Cprnfomnp,R 1) . (2.93)
mn
It is useful to state here the completeness and ortho-
gonality conditions obeyed by the f,,,. (For this purpose,
we remove the time dependence of the energy eigenstates.)
Straightforward calculations using the completeness and
orthogonality of the wave functions lead to

[ @ d°R frn (PRI (P, R) =88, /(27)*
(2.94)
X fon DR ) (', R")=8(R —R")8(p —p") /(2)?

In the particularly interesting case when the system is
subjected to an external potential V(R,t), the C,,,’s be-
come time dependent and induce transitions among the
various “stationary” solutions f,,, (cf. Sec. ILH).

The construction (2.92) provides the desired solution to
Eq. (2.90). However, an attempt to solve (2.90) does not
lead uniquely to Eq. (2.92). A symptom of this difficulty
is easily seen from the form of the density-matrix analog
to Eq. (2.90):

Clearly any solution to this equation can be multiplied by
an arbitrary function of the constants of the motion
without changing the eigenvalues.

The problem evidently is that the single equation (2.90)
is not completely equivalent to the Schrddinger equation.
The proper resolution of this situation has been clearly
laid out in a recent paper by Dahl (1981). In addition to
the commutator structure Lf<—>[H,p] we need the an-
ticommutator analog L, f«—>2 [H,p],, with the associated
eigenvalue problem

Lfz=Xf5.
Clearly we can reconstruct the usual Schrodinger eigen-
value problem from L and L. The (p,R) form for L is

easily obtained by suitably changing signs in Egs. (2.24)
and (2.25). Noting that f,,, also solves Eq. (2.96),

(2.96)

Lfn=5Em+En)frn » (2.97)
we find for the kinetic energy term
3 [Tpli—£- f,,,,. VR S - (2.98)

Combining this with the potential energy term, we find
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2

%(Em +En )fmn= ' fmn

1 o2
——V
8m R

+ [ d*%'R(p'—p,R)fmnlp',R) ,

(2.99)
where the kernel K is given by
= A ipp)-
E(p'—p,R)=7 eter=plr
P —p 2 (2m)3
X[V(R +5r)+V(R —5r)] .
(2.100)

Note that the time dependence of f,,, cancels out in Eq.
(2.99).

Equations (2.90) and (2.99) provide the required con-
straints to solve the eigenvalue-eigenfunction (matrix)
problem. Note that f,,, will have to vanish for r— o,
p— o if m and n are both bound states. In the continu-
um, of course, the eigenvalue is arbitrary and Eq. (2.91)
suffices to determine the solution to the scattering prob-
lem.

If we expand in r, we find

5 8

— 'y Ly
K=V (R)8(p’'—p) ViR, ap;

8p'—p)+ -+ .
(2.101)

Note that the leading term is just

2
Hclass(P’R)fmnz ﬁ"’V(R) fmn=%(Em+En )fmn »

(2.102)

the classical equation of motion, whose energy is the aver-
age of the two quantum energies.

In order to demonstrate this and other points, we exam-
ine the one-dimensional harmonic oscillator. In coordi-
nate space, the stationary Liouville equation is

L8 ripx)=i [ dp'K(p'—px)f(p'x), (2.103)
m dx

where for V = 3 maw?®x?, the kernel simplifies to

iK(p’—p,x)zmwzx—é?;S(p’-—p) . (2.104)
f therefore must satisfy

af af

W———(mw)za—z— . (2.105)

For our discussion of the oscillator, it is useful to express
x and p in units of the zero-point motion values x, and
Po- X4 is (2mw)™', while x0p0=—21— defines py. These
values correspond to the minimum uncertainty character
of the ground-state wave function
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(—x2/4x2) . (2.106)

(X)=—""—"F—7€x
Yo (277)1/4x(1)/2 P

From this wave function, we easily compute the Wigner
function

f(p,x) exp(—x2/2x3—p2/2p%), (2.107)

- 27T.Xop0

which is (not surprisingly) a joint Gaussian in p,x. Not-
ing that (mw)* :p(z)/x (2), we write Eq. (2.96) in the form

of __ (2.108)
Ix /xg) d(p/po)

Clearly the ground-state result (2.108) satisfies this condi-
tion, but so does any Gaussian exp[ —4 (x> +p'?)], where
the prime denotes the natural dimensionless variables
x/x, p/po.

Writing the energy in these units,

H(p,x)=7alp?+x?), (2.109)
we can easily confirm from Eq. (2.107) that
Eo= [ dpdx H(p,x)f (p.x)=70 , (2.110)

but the differential equation (2.108) does not determine
f(p,x), and so the ground-state energy is correspondingly
undetermined.

Next we see that the more general equation (2.83) does
give the energy eigenvalues, even though the f,,, are not
uniquely determined.

Using Eq. (2.104) for the oscillator kernel, we can write
the Liouville operator in the form

QD
apl p axl

L=iw (2.111)

As in the classical case, the Liouville operator acts as a
rotation in the phase plane. Naturally, H (or the action,
classically) commutes with L. Introducing action angle
variables in the phase plane as in Fig. 4,

x =Jcosgp ,
? 2.112)

p=Jsing ,

where J? is proportional to H, we find

p/p,

X/%xq

H=const

FIG. 4. The harmonic oscillator phase plane. The condition
H=const defines a circle in the phase plane, when p and x are
normalized to their zero-point values.
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L —in-2-. 2.113)

o

Hence the single-valued eigenfunctions and eigenvalues
are

fn——"'e_imp ’

Ap=no, n=0,+1,+2,....

(2.114)

These f, may, of course, be multiplied by an arbitrary
function of the action J, without changing A,,.

To determine the f,,, we may supplement the foregoing
with Eq. (2.99). For the oscillator the expansion (2.101)
terminates after the second term, giving

2 b 2
P Mmoo ___.1_ __a +m2m2V},

2m + 2 8m | 3x2 S

=5 (B +Ep)fum - (2.115)

Dahl (1981) points out that the equation is identical to the
two-dimensional oscillator Schrédinger problem. The
solutions are in terms of the generalized Laguerre polyno-
mials L)',
Fogn= Nomgnyexpl — 380872 1m0l 1701 ()
xexp[i(n; —npo(t —7)], (2.116)

where n is the greater of n;,n; and the other variables are
defined by

4 ! !
Sz;HCIassz(P 2+x?),

B I AN WYSEN A (2.117)

1) mox @ x

172
nJ!
3

1 (n;!) 5.

N.‘=“———‘—'——_‘ ki ,
Yoo 2 ¢

with 8;; an arbitrary phase. x’,p’ are the dimensionless
variables defined following Eq. (2.100). For the usual
choice of phases "% =(—1)". The result (2.116) general-
izes earlier results found by Groenewald (1946), Uhlhorn
(1956), Heller (1976), and Takabayashi (1954). (Dahl has
2 in place of 1/7 in N; we have changed to conform to
our convention that #i=1.)

The ease of obtaining explicit f,, for the one-
dimensional oscillator allows us to illustrate several fur-
ther points. First of all, from our previous analysis we
know that the functions of f,o computed from the correct
wave functions must be proportional to the eigenfunctions
fn~e~"? of the Liouville operator. For example, expli-
cit calculation gives

Fro=(x"=ip"\foolp'sx) e ™%, 2.118)

in agreement with Eq. (2.117).

As mentioned earlier, the Wigner distribution for
bound states typically becomes negative in some regions
of phase space. Let us examine the definition (2.10) for
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bound states to understand better where negativity will
occur. First of all, the variable R has to be in the poten-
tial well for ¥ to be large; r cannot exceed the range a in
the integration. The more highly excited the state, the
more nodes in the wave function and the greater the prob-
ability of negative values. For r ~a, we can expect signi-
ficant negative contributions so long as p <1/q, ie,
wavelengths of the order of or larger than the potential
range. For sufficiently large p, the exponential oscillation
restricts r to small values so that the overlap becomes pos-
itive. Hence, for R in the potential, we can expect nega-
tive values of f whenever p < 1/a.

A nice example of these qualitative remarks is given by
the first excited state of the oscillator, ¥; < x¢g(x). An
elementary calculation yields

fulpx)= 2—“1““(x'2+1?'2——1)exp( —3x2—2p?).

TPoX0o
(2.119)

The circle x"?+p?=1 divides phase space into domains
of positivity and negativity. As claimed, we need x in the
well (x' < 1} and sufficiently small p to reach the negative,
nonclassical domain for f,;. For general n, Eq. (2.116)
specializes to the simple form

fnn=(—1)nLn(P'2+x’2)fOO ’

where L, is the ordinary Laguerre polynomial and fy is
defined in Eq. (2.107). The domains of negativity are
clearly annuli (Fig. 5) in the x’p’ phase plane, since the L,

(2.120)

P/Pg

xX/%o

(a)

{c)

FIG. 5. Domains of positivity of the Wigner distribution for
the first three excited states of the one-dimensional harmonic
oscillator. For the first excited state, £, is negative within the
unit circle. For the second state, the inner circle is positive, fol-
lowed by an annulus where f5, is negative, and finally a positive
region. For large enough action f,, is always positive. The an-
nulus structure reflects the simple properties of the Laguerre
polynomial of Eq. (2.120).
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have n real zeros. The signs are such that f,, is positive
for large values of the argument.

Finally, we note two especially useful Wigner distribu-
tions involving the harmonic oscillator. The first corre-
sponds to the density matrix for thermal equilibrium,

p=exp(—LBH)/Trexp(—BH) . (2.121)

The phase-space distribution for this has been computed
by Davies and Davies (1975) to be

o) = Ltank (L Bw)
T

X exp[ — ~(p 2 +xtanh (+fw)] . (2.122)

The second example concerns the coherent state |a)
(Glauber, 1963); Carruthers and Nieto, 1965, 1968)

p=la)al,

la(t)y=e—1/21al? $ ﬁ‘;% In), (2.123)
n=0 N

(x |a)=1,(x)

=(27T—xl2)1/7exp[—(x —(x >2/ZX(2)+I(P )x] s
0

where a(t)=ae ~'*". The phase-space distribution is

exp{ —[x —x()?/2x}
—[p—p(O1/2p3] .

Hence f is distributed in a Gaussian manner about the
classical motion, in faithful correspondence to the intui-
tive interpretation of the coherent state.

In each of these cases, which involve summation over
the excited oscillator states, f is positive throughout phase
spate. The negative-valued regions, which are uninter-
pretable classically, correspond to bound-state problems.
The motion of the center of mass, however, is described
by an essentially smooth positive phase-space distribution.

Phase-space plots of f(p,x) for the first four energy
levels of the one-dimensional square-well potential may be
found in the work of Baker, McCarthy, and Porter (1960).
In the case of a linear potential, one gets an Airy func-
tion, as discussed by Heller (1977) and Dahl (1981).

From these examples and the general discussion, it is
clear that bound-state wave functions typically (except for
the ground state) give regions of negativity. This is in
contrast to the scattering problem, where sufficiently
smooth packets give rise to positive joint distributions like
the Gaussian packet, Eq. (2.16). In any case, the cross
section arises from the positive quantity (2.13). Similarly,
the cross section for the production of a many-body
bound state is given by an expression like Eq. (2.13), with
the internal variables (and negative phase-space regions)
integrated out.

Pt =m——
27TxOpo

(2.124)

G. Hydrodynamic aspects

It was found very early (Madelung, 1926) that
Schrédinger’s equation could be recast as a hydrodynamic
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pair of equations (continuity and an Euler equation for ir-
rotational flow). Writing Y=aexp(iB), (a,B real), we
note that the probability current is

j=a’VB/m , (2.125)
so that we can identify the velocity as
u=Vga/m . (2.126)
This suggests that 8/m plays the role of a velocity poten-
tial ¢.
The same current, obeying the usual conservation law,
on
on -i=0 .
3 +V-j (2.127)

(n =a?), is obtained as the imaginary part of the
Schrodinger equation in the (,3) variables. The real part
can be identified with the (irrotational) Euler equation.
We now explore the hydrodynamical connection in the
context of the Wigner distribution, beginning with the
equation of motion (2.26).
Integration over d°p gives immediately

o1 Ve (nu)=0, (2.128)
ot
where local average velocity u(R,t) is defined by
d’pu,f(p,R),1)
u(R,t)= J &Pyt (2.129)

Jdrsr.R.0

(v,=p/m). The potential term disappears, since f d3p
produces a 8(r) under the d°r integral.

The analog of Newton’s law follows on taking the first
moment

nu;= [ d*pv, f(p,R,1) (2.130)
in the equation of motion,
9 9O 3
at(nu,)—i~ ax, f d pupivpjf(p,R,t)
= [ d*pd’p’K(p'—p,R), f(p',R,1)
— L, (2.131)
m

the latter form following on using the explicit form for K.
We compare this with the usual momentum equation of
continuum hydrodynamics,

d 0
at (pu,)+ an T,'k =0 , (2132)

Ty =pu;up +Sup , (2.133)

where p is the mass density and p the pressure. We now
see that the stress tensor for the Schrédinger equation is

T =p{v;vp ) +8;p° (2.134)

Vpi=nVV, (2.135)
d3pv, f(p,R,1)

(oo ) = J v, (2.136)

f d’p fip,R,1)
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Equation (2.136) involves the correlation (v;vg), in
contrast to the uncorrelated velocities w;u; in Eq. (2.133).
By reexpressing (2.136) in terms of uncorrelated velocities,
we make contact with the usual Euler equation.

Making use of the identity
(v,-vk)E((vi——ui)(vk—uk)>+u,-uk , (2.137)

we rewrite (2.131) as

ot
where the kinetic pressure tensor is given by
[ @ (0, —u) o —ui)f (,R,0)
[ d% fo.R0

Expanding derivatives on the left-hand side and using
current conservation reduces Eq. (2.138) to Euler’s equa-
tion

aJ d d
(pu; )+ Ay (pujug)=—nVV— axy Dij » (2.138)

(2.139)

Pik =p

\f14 J
m - ax] pl] s

——p (2.140)

aui v
p ot +u-vVu;

when —pV;V/m is the external force density. Similar
considerations have been discussed by Kan and Griffin
(1977).

H. Effect of an external potential

Our discussion so far has dealt with pure scattering or
bound-state problems. In the presence of a time-
dependent external potential, we can excite bound states

(either to other bound states or to the continuum) or can
|

t
feRO=fs+ [ _dt' [ @ [ d°R'Grelp’—p,R' 1)K ex(p'~p, R\ (p,R1') .

If the initial particle is free, we can still use Eq. (2.54)
with K +K, replacing K. In this case, the final state will
contain both bound-state and continuum components.
Since the wave function can be written as an expansion in
energy eigenfunctions as

v=Sagps+ [ dk CWI, (2.146)
B

only energy-degenerate cross terms survive in the time-

averaged Wigner function. In particular, the contribution

of the final bound state B (assuming no accidental degen-

eracy) is |ag | >fgg, as expected.

The explicit calculation of the retarded Green’s func-
tion obeying Eq. (2.144) is usually quite complicated. We
content ourselves with expressing G in terms of the
“eigenmatrices” f,,, of the Liouville operator [of Eq.

(2.93)]. Introducing the Fourier transform G (p,R,®)
obeying
(L —0)G (p,R,w)=0(p)d(R) , (2.147)
and expanding G = ¥, G frnn 8ives
(2.148)

2 Cmn()‘mn _m)fmn (P,R ) =5(p)5(R) "
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induce ‘“capture” of the free particle into a bound state.
In principle, these processes are symmetrical, but the usu-
al experimental arrangement leads to a somewhat dif-
ferent treatment.

Corresponding to the choice of potential energy,
V(R)+ Ve (R,t), (2.141)

we write the basic equation of motion as

2oV [f RO~ [ P K —p, R ('R0

ot

= [ &' K (0'—p,ROf (P ,RE) . (2.142)

For an initial bound state, Eq. (2.44) no longer holds,
since fp does not obey the homogeneous equation, but in-
stead

L 1o R~ [ &K (p'—p,RIf5(p', RV =0 .

(2.143)

Of course, the time dependence actually goes away, as dis-
cussed in Sec. ILF. In addition, Eq. (2.143) does not
determine fp.

In order to solve Eq. (2.142), we clearly need the in-
teracting Green’s function

. D ; 3. ’ '
i+:GRO—i [ dp'’K(p'—p,RIG (p',R,0)

=8(p)8(R(r) (2.144)

subject to suitable boundary conditions. For example, the
Wigner function for an initial bound state satisfies

(2.145)

I
The orthogonality relation (2.93) is now used to evaluate
Cnn» 8iving

Srn(0,0)fpun(p,R)
Appn — 0 i€

GR(E_)A:Q))= 2 (2-149)

mn

when the i€ is added to enforce the right boundary condi-
tion in the continuum.

Many commonly occurring problems, e.g., excitation
through interaction with an external system, are con-
veniently modeled by the introduction of an external po-
tential energy V. (x,t). The total Hamiltonian is then
Hpy=T+V +V,, and it is natural to express the evolu-
tion of the phase-space distribution in terms of the f,,,
referred to the Hamiltonian T +V of the system being
perturbed. We therefore write the expansion

F) =3 Copn(Of mn), 2.150)

where the C,,, depend on time by virtue of V. The f,,,
form a complete set, though the orthonormality relations
are not very simple.

The expansion coefficients are exactly those of the den-
sity matrix. For a pure state, we have
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p= 1) {¥|
= 2 ama:pmn = 2 Cmnpmn ’
™" " 2.151)
|¢>= Eam |m> ’

where p,,,=|m){n | is the same as occurred in Eq.
(2.56).

Beginning with this result, one can do time-dependent
perturbation theory in the standard manner by writing

Conn =Com +ACin +A*Ch -+« (2.152)

(where V,, is of order A). We then obtain the set of cou-

pled iterative equations

iC9 g ,

iCH =3 (Vi O — Ve C) (2.153)
k

iCo = 3 (Vi Chtl — Vim CR)
k

By normalization the diagonal C’s must obey the con-
straint

> Cum=1. (2.154)
m

These results can be applied to nondegenerate ground-
state excitation in the standard way. For A=0,
C2 =8,,0800- If t<0, Vo =0 and CY)(z<0)=0. The
C\2) remain constant in time.

I. Gauge invariance

In the presence of external electromagnetic potentials, it
is necessary to modify the definition (2.10) in order to ob-
tain a gauge-invariant phase-space distribution function.
Under a gauge transformation the potentials transform
like

1 ax

A'=A+VX, ¢'=p——-7—.

2.155
¢ ot ( )

The form of the Schrédinger equation is unchanged when
the wave function transforms as

P =ye’X (2.156)

From this it is clear that the integrand of Eq. (2.10) re-
quires modification by a path-dependent phase factor

d 3r e._ig-L

(2a)3

fP(p9R7t)= f
XYP*(R —57,O0Y(R + 3r,1)

X exp { fP A~dl] , (2.157)
wherle the line integral runs along a path P beginning at
R —5rand ending at R + 5 1.

In a simply connected region, the loop integral of A
will vanish and the particular path P makes no difference.
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For multiply connected domains, such as are encountered
in the Aharonov-Bohm experiment, the phase factor be-
comes crucial.

The distribution (2.157) has an equation of motion
whose classical limit is the one-particle Liouville equation
(2.28) when the force term — VV is replaced by the usual
Lorentz force (de Groot and Suttorp, 1972; Bialynicki-
Birula, 1977).

J. Spin variables

We note briefly the extensions required to deSC{ibe the
spin variable in the most important case of spin 5. Let-
ting a,b denote the z component of the spin, we define a

2% 2 matrix Wigner function f with elements
d’r

e TEIg(R — Lt
anp 270)

fuapRO= [

XPa(R +510) . (2.158)

The ordinary density is then
F(p,R,)=Trf

3 .
= f (;’ T TRRNR = R OUR + )
pe

(2.159)

The reality of f for the spinless case is now replaced by
Hermiticity f* =f, i.e,,

Sao="Iba -

Such an f can be represented by two independent func-
tions f, and f, and a real unit vector # as follows:

f=fo+aif, .

The polarization density can be computed from the expec-
tation value of the spin operator as follows:

o(p,R,t)=Tr(gf)

(2.160)

(2.161)

3 .
= [ S e 2YNR — 1, 0)at(R +31,0) .
T

(2.162)

We can express the ordinary and spin densities in terms of
fo and [ as follows:

f(_E_aK)t)=2f0(p’R)t) s
Q(B,K,t)=2ﬁfl(£,£,t) .

(2.163)
(2.164)

l. THE NONRELATIVISTIC TWO-BODY PROBLEM

A. Definitions

The two-body problem exhibits in simplified form some
of the kinematical features of the N-body system. Of
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course, one recovers the one-body problem in the absence
of external potentials when the two-body potential de-
pends on the distance between the particles. Until the fi-
nal parts of this section, we treat the problem of two spin-
less, distinguishable particles of the same mass, with
Hamiltonian

P1 2

H__"‘—+_+U(X1 — X))+ Vi(x1,8)+V,y(x,,1) .
2m  2m

(3.1)

The external potentials ¥; act on the ith particle. We
have in mind two classes of problems:

(1) scattering of particles 1 and 2,
(2) breakup of a bound state by external potentials.

The V; are imagined to have a finite extent in space. An
example of case (2) is the photodisintegration of the deu-
teron, where particle 1 is a proton, particle 2 a deuteron,
while V| represents an external electric potential and ¥V,
vanishes.

In order to generalize Eq. (2.10), we again take the
Fourier transform on the relative coordinates xj —xq,

x5 —X, in the density matrix W*(x,,x,)¥(x},x5). Mak-
ing the definitions
X1 E121_ Ty -Ell =£l+%.’:1 ’
(3.2)
X2=R;— ?Lz x5 =Ry+3r5,
we define the two-particle distribution to be
fZ(EI’K19£27BZ,t)
drid3ry _ip o —ip.-
=[— 1 6 Lo BTG (R, — 27, Ry —312.0)
(277)
XW(R,+371,Ry+512,0) . (3.3)

Expanding in momentum basis, we have the alternative
form

f2pi,R1,p2,R 2,0

d Q1d q> ‘R +ig,'R 1
_f : etﬂl 1+ 2c*(31_%21’£2—7g2,t)
(27)
XC(31+%Q1,£_2+%22J) . (3.4)

B. Equation of motion

2, 2 22
Xy X2

Ry Rz

FIG. 6. Kinematical space variables suitable for the two-
particle distribution [see Eq. (3.3)]. The x;,x; label the split
points of the wave function. R;, R, turn out to be the effective
locations of particles 1 and 2, while R=%(R,+R2) and
r=R;—R; have the usual significance of total and relative
coordinates.

Although f, itself need not be positive definite, the joint
momentum and coordinate distributions are, as expected,

J @p1dpsf2(piR 1, Papat) = | W(R,Ry0) | 2,

J &°R\@°Ryf2(p1R1,p2RD = | Clpy,p3,1) | 2

As suggested by the notation, (p;,R;) have the signifi-
cance of the position and momentum variables in the
kinematical phase space.

Our analysis will require additional position variables
defined by Fig. 6:

(3.5)

I—z:%(ﬂl'f‘ﬂz); r=R;—R,,

p=ri—r), R=5(ri+r;), (3.6)
! ’ ’ 1

X|—Xo=r—75p, X1—X2=L+35p

As suggested by the notation, (R,r) are the cm and rela-
tive coordinates. In addition, we shall require total and
relative momenta,

p=pi+p2 p=3{p1—p2),
3.7)

_pl P

2u 2M
The two-particle Boltzmann drift term can then be ex-
pressed as

ZmE—r;

(u=~m, M =2m).

21'VR1+£2'VR2=V‘VR +v'V,, (3.8)

v=(p;—py)/m, V=P/M.

A similar decomposition can be made for particles of un-
equal mass.

The equation of motion for f, is derived in direct analogy to the one-particle case. We find

a , , ,
a+21‘V1+22'V2 [2p1,RprRy ) = fd3P1d3P2K2(1_71 —p2 R IR fH(p 1R 1pIRE)
+ fdsle —p1,R 1,02 (p1R1paR 1)
+ fdssz —p2,Ry0f/2(p1R1p2RD) 3.9
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where v, is p;/m,

V, is 3/0R;, etc. The kernels K, are defined exactly as in the one-body problem except that the po-

tentials V| , can be time dependent. The kernel K,comes from the interparticle potential

iK>(pi —p1.p3 —p2-RuR)= [ II (zﬂ)s

B By (Ry + 211, Ry + 5 12)—0 (R — 31,R;

1

-Lz)] .

K, simplifies greatly by virtue of v depending only on the relative coordinate. After a suitable change of variables, we

find
—_— : d’Rd’p (. Bty i(n " 1 n
iK>(p} —p1,p5 —P2R 1R = [ (2m)8 exp[i(p] —p1) (R+5p)+i(p2 —p2) (R —5p)][v(r +5p)—v(r — 5p)]
. . d’p -
=8(p} +p5~p1—p2) [ ) expli (p' —p)pllv (r + 5p)—v(r —5p)]

=08(p} +p2 —p1—p2)iK (p"—p,¥),

which is independent of R. The kernel conserves overall
momentum (an expression of translation invariance),
while the action of the potential is determined by the rela-
tive variables. In the presence of external potentials, the
overall space-time translation invariance is lost, and ener-
gy and momentum can be exchanged with the two-body
system.

We now demonstrate in detail the separation of the
center-of-mass and relative motion starting from Eq.
(3.9). The assumed wave function is

X +x
W=y Xy 2

t Q(-I]_lz;t) . (3.11)

X is a wave packet representing the center-of-mass motion
of the form of Eq. (2.2) with C as in Eq. (2.14), and with
P the total cm momentum peaked around P,. An elemen-
tary calculations leads to the phase-space distribution

Fap1R1,P2R 1)

P1—p
2

R, +R 2
=fo pP1+p2 ot »R1—Ry,t

’

(3.12)

where f is the free-packet function of Eq. (2.14) and f,
given by

i& TReD*(r — 50,02+ 70,0

f(gy_’:at)= (2 )3

(3.13)

is time independent for the case of an energy eigenstate.
Note that f; is a function of R — Vt, as expected. There-
fore, 3/0t + V-V gives zero when acting on f,, so that
the left-hand side of Eq. (3.9) becomes

SfolP,R,1) +v V. 1fip,r,t) . (3.14)

To see that f, also factors out of the right-hand side, we
use Eq. (3.10) to simplify. Noting that the Jacobian is un-
ity on going from (p,p,)—(P,p), we find
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(3.10)

3 33,7
I%LS(P' P)K\(p'—p,r)fo(P,R,O)f (p',1,1)
v

=fo(P,R, t)f K\(p'—p,r)f (p',r,1)

(3.15)

Hence the relative motion is described by the one-body
equation of motion with K, and calculated from the po-
tential v (r). Note that the factorization occurs indepen-
dently of the shape of the cm wave packet.

C. Technical interlude: free N-particle
retarded Green’s functions

In order to cast the equation of motion in integral form
suitable for scattering problems, we need the generaliza-
tion of the retarded Green’s function to two and more

particles.
Consider the defining equation for N particles,
DG
D‘ ; ([_7131 . 'ENBNt)=8(£1)8(£2) < - - 8(Ry)O(1) ,
(3.16)
D 3 &
=3 +,~§12i v;. (3.17)
Writing G as a Fourier transform,
N d’g;
G(piR, - pyRyt)=
YAV Pl f H (27)°
Xeigj.ﬂjG(Elgl " pngND)
(3.18)

gives the equation

{z———z q;° |G(p1g1 - - - pngyt)=i8(r) . (3.19)
j=1

Finally, transforming in time gives
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j Finally, we give G <. t
G(pig1 - - prgn©) = — l2 — (3.20) y g (P1g1 " - " PNgND) 4
T &j i s do ;

G(p1g, - prvant)= | ——e'’'G(p1q; " - PnaN®)
where the ie has been added to enforce a retarded boun- ' v f 27 1 NaN
dary condition. i dwe'®

In R, variables, we find easily 2ar o+ic—3q;0;

Gr(pRy " - pyRy?)

=1‘}(t)exp(—lzgj'y_]t) . (3.23)
=R | —p1)8(Ry—pst) - - - SRy —unt) . 7

(3.21)
an intuitive result whose correctness can be verified D. Equations of motion in the (p,q) basis
directly. . . . .
In passing, we note another intuitive but important re- It is often convenient to rewrite the formallsn'x by car-
sult, rying out Fourier transforms on the space and time vari-
ables. The conventions associated with such transforms
—D"F(K.'—Qit)=0 . (3.22)  areas in Eq. (2.40).
Dt In momentum: space, the kernels become

iKy(p"—p,g,)=V(g,0[8(p —p'—59)—8(p —p'+ 591 , (3.24)

. , , ' ;1 ' ,
iKy(py —p1:P2 —P2:91,92)=v(q1,q92)[ 8(p —p} —TQ1 ¥8(pr—ps —75492) —8(p—p} +%41 )8(py —p3 + %‘h)] .
In the usual case where v depends on the relative coordinate, we find

q1—42

2

vig1,q2)=(27)8(q; +g; v

From now on, we write our equations for this case only.
The equation of motion can be written as

f2(p191P292?)

ii— V=gV
at q1°01—42'0)
d3q'1 , 1, , 1, . L, ' o, ’
= fﬁv(ql WP —591,91—91,P2+ 591,92~ 41,0~ f2(p1+ 791,91 — 91,2 — 791,92 +41,0)]
+f (2 )3V(‘I1,t)[f21?1—2‘11,¢11 q'l,pzqzt)—fz(px+%qi,q1—q'1,p2qzt)]

5,0 f2(P141,P2 — 54292 — 31 — f2(P 191,02+ 342,92 —q5D)] - (3.25)

+

It is also of occasional interest to know the equation for the reduced distribution function for (say) particle 1, in which
one does not care what particle 2 is doing. The definition is

e Ri0= [ dp2dRof>(piR1p2R) - (3.26)

Note that the f d>R, integration simply amounts to going to the limit ¢,—0. The equation of motion for ! is

3 d’q}
[at_vl ‘g1 f(”qult)—-f 2 )3U(¢11 fdpz[fz(m—z%,(h —q4.p2:91) —f2p1+741,91—41,P2,971,1)]
+f (2 )3 V(QI’t)[f( p1—341,01~41,0— Vo + 5 141,91 45,01 . (3.27)

T
A simiilar equation exists for particle 2. In deriving this ticle potential. The problem of computing f, is not evad-
equation, we have shifted variables in the p, integration  ed, however, by writing this equation.
to remove the apparent ¢ dependence in the third argu-
ment. This leads to cancellation of the external potential
term acting on particle 2. £’ changes by virtue of the in- In order to give the equation of motion in integral
fluence of the external potential and through the interpar- form, we need to specify the boundary condition. The in-

E. Boundary conditions
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coming density function for two free particles has to Sin=fo(R—¥O)folr—v,1). (3.32)

satisfy the homogeneous equation Since the cm motion factors out [Egs. (3.14) and (3.15)],

D the relative motion for the scattering problem is described
f inEEf in=0". (3.28) by Eq. (2.44) with relative coordinates and K computed

from the potential v. In the case of Gaussian packets as
This equation is satisfied by any function of R;—Vt, in Eq. (2.16), Egs. (3.29) and (3.30) are identical. Setting

d
§+21'V1+22'V2

R, —V,t. However, for two noninteracting incoming par- Ry=0 and taking the same width parameter L for parti-
ticles, we have more specifically as t— — o0, cles 1 and 2, we obtain by explicit calculation
Fr—=frin=Solp1R11)fo(paR)1) (P1—P10)*+ (P2 —pro)’= %(f—l_’o)2+2(£_—£0)2 ,
=f0(£1_21t f()(gz "‘ta) . (3-29) where P0=p10+p20 andp0=%(plo—p20).

Recall that each f, contains a reference position and a Similarly for the space-time part,

length parameter. In (p,qg,0) language, the incoming dis- (Ry—p11P+(Ry—0st*=2(R — V) + %(L—Qt)z .
tribution is
Hence we can write

Frin=27f0(p1,91)f0(p2,92)8(00—gq V1 —g2vy),  (3.30)
Solp1R10)fo(paRot)

where, in terms of wave-packet coefficients
folp,q)=C*(p—39)Clp+754) . =fo

In the absence of external potentials, one generally ex-
tracts the cm motion and concentrates on the equivalent
one-body problem. In this case, the change of variables where the length parameters occurring on the right-hand
(x1,x2)—(R,r) converts the homogeneous equation to side are L—»% in the first factor and L—2L in the

second factor. It is a matter of convenience which ap-
fin=0. (3.31) proach to use, though the form (3.29) is more general and
will generally be adhered to.

The integral form of the equation of motion following
from Eqgs. (3.18) and (3.26) is

R +R
Pitpr—F—

a
Y +V VR+U, V,

Writing f, in the special factorized form [Eq. (3.12)]
then gives
|

t
f2(£1_8.2721£2t):f2in(P1R27P1 20+ f dt’dep’l fd3p'2K2(p —p1:py — P RFELRE) (P IRF PR
+f dr' [ d*piKi(pt —pi, R (pIR T p,RE)
+ f dr' [ dpiK\(p5 —p2, R 1) f2(p R, psRET) . (3.34)

f
The retarded variables are defined as in the one-particle external potentials, the problem is much more complex.

case [Eq. (2.44)] Although this is the prototype of the important practical
problem of scattering in a medium, we shall not pursue it

ret __ ’
Ry =R,—v, t 1), here.

(3.35)
R =Ry —v, (1 —t") .
IV. THE N-BODY PROBLEM: HIERARCHIES

The K2 term can be stmphfled by using Eq (3.10). AND THE BOLTZMANN-VLASOV EQUATION
If the two-particle system exhibits bound states, then

Eq. (3.34) can induce “capture” if the external potentials
can supply the requisite energy and momentum. Such
problems are handled as in Sec. ILH. As tacitly under-

A. Definitions and equation of motion

stood in the one-body problem, there is no translation in- We extend the previous development to an N-body sys-
variance, and V,, must be referred to a particular coordi-  tem with Hamiltonian

nate system.

. Note that Eqk. (3.34) contains as special cases two c.lis- H— E L + S v —x)+ 3 Vilxit) . @.1)
tinct one-body problems. As already seen, this equation i=1 i<j i

reduces to the one-body problem for relative motion when

the external potentials are zero. We can also arrange the For simplicity we assume that the particles are formally
incident packets so that particle 1 scatters off V; but distinguishable but have identical properties. From the
misses particle 2 completely. In the general case, when N-particle wave function ¢(x; - - - xy,t) we form the dis-

the two particles scatter off each other in the presence of tribution function
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Sn(P1R,paR; - - - pyRy1) x;=R;—+r;, x{ =Ri+~r,

N d? dar o PIi 1
= Mg ™ Ry=7Ri+Rp), ry=Ri—R;, 43)
l . Pij =T —¥j, Rij:%(ri’i‘rj) ,
XY*(R{—57r1,...,Ry— 57yt
'/ 1— 3" N—7TNE) P=3p, R=SR/N.
i i
1 1
XY Ry +571,. .. ,Rysra,t) . (4.2)  fy can also be expressed in terms of the momentum basis

expansion coefficients as in Eq. (3.4). An equation of
As in the two-body problem, it is useful to define an array ~ motion for fy is derived from the Schrédinger equation

of coordinates, mainly dealing with pairs of particles: as before (v; is p; /m and V; is 9/3R;):
I

a ’ ’ ’ 14 ’
FYa 20V [fnpiR) - - pyRyt)= fnd ; K(p1—p1* " py—pnRy - Ry)fN(PIRpAR; - - - pyRNt)

N
+ 3 [ d%;Kipj —pjR;,0fnipy - pjRy -+ 1) . (4.4)
j=1

In the absence of external potentials, one can factor out the cm motion in analogy to Eq. (3.11). In the following we
drop the external potential terms and concentrate on the two-body potential terms. The kernel K,

K{p —Pn E f H

actually changes only two momenta at a time, since v is a pair potential. Explicitly

2 r;s o' Pl =P > ) —xj)—v(x;—x)], 4.5)

i<f

2 f d q'd q] Je iqi~R,+iqj~Rj

iK{p; —pi,R v(g;,gjle

i <j
X[8(pi—p1)- -+ 8pi —pi+54) " 8(p] —pj+34;) " - Spx —pn)
—8(p} —p1) - 8(p{ —pi—5ai) - - 8pj —pj—+q;) - Spk—pN)] - 4.6)
Since v depends on coordinate differences, we have further

qi —qj
2

v(g;,q;)=(2m)%6(g; +g; v 4.7

Again the resultant equation of motion can be written in several forms. In p,q,» variables we have (neglecting external
potentials)

[w— E_q.-v,- ]fN(Plfh  PNGN@)

1 ’ ’ 1, '
——v(g N fnlprgy - *Di— 399 — i - - P+ 59,44 o)

—zf

<Y Qn )3

’ ’ ] ’ ’
1 U ZUTRERY TR L R P~ 5495 +aq o)l 4.8)

using Eq. (4.7) to eliminate g; .

B. Coupled hierarchy equations for reduced distribution functions

As in statistical mechanics, one can usefully define reduced distribution functions by integrating out various degrees
of freedom. These reduced distributions then obey a coupled hierarchy of equations:
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N
R t)= f I1d°p;d°R;fvpiR - - - pyRN1) ,
i=2

N
f¥ (1R pyR, )= f II4°pid’°R;fn(01Ry - - - pyRAY) , (4.9)
i=3
(n) Y 3
SN DRy .. PRy )= f I1 d°pjd’R;fn(piRy - pyRyD) .
i=n+1

Note that in p,q,» language the space integrations amount to setting g =0,

N
P@ar. . pagnd= [ TI @°pifn(p1d1 " PuuPn+10° " - pn0,0) . (4.10
j=n+1

Applying this rule to the equation of motion to get fx V), we find

a’3q ,
(@—g1v)fN (Pr1g10)=3 fdpz Sv(gf)
i<j ¥ m)?
XL P 10P205 - oDi~ 58 G~ P+ 54558+ @)— 1. (41D

Note that g; is always zero, since j > > + 1. Now consider separately the / =1 and i > 1 terms on the right-hand side.
For i =1 we find

dqy , : .o
2 f a3’ (q1)fd3pz"'d3PN[fN(P1—%‘I1,91'—¢11P20,---ij+%¢I1,Q1,~