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1 Introduction

Quantum complexity, a concept which determines time or quantum gate cost to achieve

given problems in computer science, has addressed several attentions in the high energy

theory community. Based on holographic duality, a theoretical correspondence between

bulk gravity and boundary field theories, the boundary complexity is claimed to be equal

to gravity action in some circumstances, and the growth of complexity in the boundary

could be evaluated by computations of gravity action [1–3]. (See also, some related works

in this area [4–12].)

One motivation to think boundary complexity is a possible equivalent object with the

gravity action is based on the following geometric observation from Nielsen [13, 14]. Given

an K-qubit system, one could consider evolution operators as points living in a group

manifold SU(2K). One can further assign a metric to this manifold, whereupon under a

certain manipulation the complexity of the corresponding operator could be understood as

the geodesic length that connects the operator and the identity. This idea provides a novel

geometric way to study complexity theory, and has led to deep conjectures relating the

concepts of quantum complexity, holographic duality, and the nature of quantum gravity.

The geometric version of quantum complexity naturally connects quantum physics of

k-local Hamiltonians with the notion of the disordered average and statistical motion of

particle moving in a group manifold. In this sense, one can conjecture a relation between
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statistical entropy and quantum complexity. Following the second law of thermodynamics,

a similar second law holding for complexity growth has also been conjectured [15]. More

precisely, the conjecture states that one can decompose the entire statistical entropy of

classical particle in a group manifold into kinetic and positional parts, where the former

corresponds to Kolmogorov complexity, and the latter the computational complexity of the

corresponding quantum system.

The Kolmogorov complexity is roughly speaking the minimal cost to specify bit strings,

while the computational complexity is the cost of time or the scale of depth for quantum

circuits. As two different complexity measures, it is natural to ask if there exists some

possible connections between them. The entropic conjectures about complexity provide us

a different angle on this problem, where in the dual classical system, the physics could be

understood more intuitively by addressing the property of statistical entropies.

Working in the canonical ensemble, the kinetic-positional decomposition of the sta-

tistical entropy is naively the decomposition of the whole Hamiltonian into kinetic and

potential energy. In this case, from basic properties of mechanics, or more fundamentally,

the equation of motion, one could naturally expect there to potentially be a relation be-

tween statistical average of potential and kinetic energy. In ordinary classical and statistical

mechanics, the direct answer is celebrated virial theorem.

In this paper, we will study this problem by analyzing a modified version of the virial

theorem on the group manifold SU(2K). By working directly in the curved geometry, one

can arrive at a modified version of the usual virial theorem, where the average of potential

and kinetic energies are related by the affine connection terms of the curved space. Thus,

connecting with the arguments identifying complexity with entropy, we show a natural

relation between two notions of complexities in quantum information theory.

This paper is organized as follows. In section 2, we discuss the extension of the virial

theorem to curved space. In section 3, we discuss the relationship between entropies, and

alternatively, complexities as a consequence of this modified virial theorem. In section 4,

we conclude and discuss some possible future directions related to this research.

2 Virial theorem

2.1 Traditional virial theorem

The (classical) virial theorem is a connection between the potential and kinetic energy of a

statistical system. Here we will review the derivation in classical mechanics as a warmup.

For a particle system with location ri and mass mi we have momenta

pi = mi
∂ri
∂t

(2.1)

and thus can define the function

G =
∑
i

pi · ri (2.2)
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Further, we have that

∂G

∂t
=
∑
i

∂pi
∂t
· ri +

∑
i

pi ·
∂ri
∂t

=
∑
i

∂

∂t

(
mi
∂ri
∂t

)
· ri +

∑
i

mi
∂ri
∂t
· ∂ri
∂t

=
∑
i

mi

(
∂2ri
∂t2

)
· ri + 2EK (2.3)

Here we define

EK =
∑
i

1

2
mi
∂ri
∂t
· ∂ri
∂t

(2.4)

to be the kinetic energy. Now the force is given by Newton’s law

mi

(
∂2ri
∂t2

)
= Fi (2.5)

So we have

∂G

∂t
=
∑
i

Fi · ri + 2EK (2.6)

If the system is a stably bound system, we have the derivative of G vanishes after time

average,1 thus giving us 〈∑
i

Fi · ri

〉
= −2 〈EK〉 (2.8)

This naturally relates force to potential energy. We know that typically the potential is a

function depending only on distance of particles, namely, that the Lagrangian is

L = EK − V =

(∑
i

1

2
mi
∂ri
∂t
· ∂ri
∂t

)
− V (2.9)

where the potential V should only depend on positions. So the force is given by

Fi = −∂V
∂ri

(2.10)

resulting in the virial theorem: 〈∑
i

∂V

∂ri
· ri

〉
= 2 〈EK〉 (2.11)

1For a stable, bounded system, after the time average we have〈
∂G

∂t

〉
∼ lim
t→∞

G(t) −G(0)

t
≤ lim
t→∞

∣∣∣∣max(G) − min(G)

t

∣∣∣∣ = 0 . (2.7)
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While this version of virial theorem works for time average of particle trajectories, one

can derive a similar result from statistical ensembles, such as, for instance, the canonical

ensemble.

Now let us consider a system with N particles moving in d-dimensional flat space. The

dimension of the phase space in this case is 2dN . We can write the indices collectively as

a, b, etc. = 1, 2, · · · , dN . Now consider the quantity〈
xa
∂H

∂xb

〉
= C

∫
dxdpe−βHxa

∂H

∂xb
(2.12)

where here C is the normalization constant of the expectation value. One finds that

C

∫
dxdp

(
e−βHxa

∂H

∂xb

)
= −C

β

∫
dxdp

(
xa
∂e−βH

∂xb

)
=
C

β

∫
dxdp

(
∂xa
∂xb

e−βH
)

=
C

β
δab

∫
dxdp

(
e−βH

)
=

1

β
δab

(2.13)

specifically, we know that, taking a = b, we have that〈
xa
∂H

∂xa

〉
=

1

β
(2.14)

Note that the above expression has no sum. The same logic applies if one replaces x by p,

obtaining 〈
pa
∂H

∂pa

〉
=

1

β
(2.15)

As a conclusion we get 〈
xa
∂H

∂xa

〉
=

〈
pa
∂H

∂pa

〉
(2.16)

This is the statistical version of the virial theorem, which is more constraining than the

mechanical one (because the statistical version fixes the ensemble). We can see this by

applying the Hamilton equation

∑
a

〈
xa
∂H

∂xa

〉
=
∑
a

〈
xa
∂V

∂xa

〉
∑
a

〈
pa
∂H

∂pa

〉
=
∑
a

〈paẋa〉 = 〈2EK〉 (2.17)

So we could see that, in the case of flat space, these two versions lead to the same result.

The consistency between the time average and the ensemble average is a consequence

of ergodicity.
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2.2 Virial theorem in the curved space

2.2.1 Setup

Now we will discuss the virial theorem in the curved space. Existing literature has extended

the virial to the curved spacetime in the language of relativity with the application of

astrophysics, for instance, in the context of studying dark matter (see [18–22]). However,

currently we are interested in only the non-relativistic case, where the goal is to study

trajectories of particles moving in a general curved space instead of spacetime, as this is

the problem relevant for studying the Nielsen complexity geometry.

We start by considering the Lagrangian in the curved space. Let the space M be

a Euclidean manifold. The coordinate of particle i is denoted by xµi , where µ are the

indices for vectors on the manifold. The metric on M is given by gµν . We know that the

Lagrangian for many free particles labeled by i is given by its kinetic energy

EK =
1

2

∑
i

migµν(xi)ẋ
µ
i ẋ

ν
i (2.18)

The whole Hamiltonian is

H =
∑
i

1

2
migµν(xi)ẋ

µ
i ẋ

ν
i + V (xi)

=
∑
i

1

2mi
gµν(xi)p

µ
i p

ν
i + V (xi) (2.19)

where the momenta are defined by

pµi = miẋ
µ
i (2.20)

Now we can also define curved phase space. The positional part of the phase space is given

by the manifold coordinates, while the element volume is given by the invariant volume

dVx,i =
√
g(xi)

∏
µ

dxµi (2.21)

For given x, p is located in the tangent space of x. Therefore, for any x, p lives in flat

space. If we set dim(M) = d, then the space for momentum to be integrated over is Rd.
So we define the phase space to be (

M× Rd
)N

(2.22)

with volume element

dΩ =
∏
i

dΩx,idΩp,i =
∏
i

√
g(xi)

∏
µ,µ′

dxµi dp
µ′

i (2.23)

For a canonical ensemble we have the inverse temperature β, giving a phase factor of

P (x, p) = exp(−βH) = exp

(
−β

(∑
i

(
1

2mi
gµν(xi)p

µ
i p

ν
i

)
+ V (xi)

))
(2.24)

In particular, one can decompose it as

P (x, p) = exp(−βH) = exp(−βV ) exp(−βEK) (2.25)
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2.2.2 Statistical version

Now we start to derive a virial theorem for a canonical ensemble. We begin by considering

how to interpret the expression〈
xµi
∂H

∂xνj

〉
= C

∫
exp(−βH)xµi

∂H

∂xνj
dΩ (2.26)

One could write it as 〈
xµi
∂H

∂xνj

〉
= −C

β

∫
xµi
∂e−βH

∂xνj
dΩ

=
1

β
δµν δij +

C

β

∫
xµi e
−βH ∂dΩ

∂xνj
(2.27)

Using the formula

∂µg = ggαβ∂µgαβ (2.28)

we get

∂dΩ

∂xνj
=
dΩ

2
gαβ(xj)∂νgαβ(xj) (2.29)

So we get 〈
xµi
∂H

∂xνj

〉
=

1

β
δµν δij +

1

2β

〈
xµi g

αβ(xj)∂νgαβ(xj)
〉

(2.30)

One can alternatively write it in terms of connections〈
xµi
∂H

∂xνj

〉
=

1

β
δµν δij +

1

β
〈xµi Γααν(xj)〉 (2.31)

Note that the momentum part is the same, but with no geometric contribution〈
pµi
∂H

∂pνj

〉
=

1

β
δµν δij (2.32)

Combining terms, we obtain a new version of the virial theorem〈
xµi
∂H

∂xνj

〉
=

〈
pµi
∂H

∂pνj

〉
+

1

β
〈xµi Γααν(xj)〉 (2.33)

One can also take a summation over these quantities; however, such a sum will produce

a new term if we expand the total energy in terms of the kinetic and potential energies,

giving ∑
i

〈
xµi
∂H

∂xµi

〉
=
∑
i

〈
xµi

∂V

∂xµi

〉
+
∑
i

〈
xµi
∂EK
∂xµi

〉
=
∑
i

〈
xµi

∂V

∂xµi

〉
+

1

2

∑
i

〈
mi∂µgαβ(xi)x

µ
i ẋ

α
i ẋ

β
i

〉
=
∑
i

〈
xµi

∂V

∂xµi

〉
+
∑
i

〈
miΓαβµ(xi)x

µ
i ẋ

α
i ẋ

β
i

〉
(2.34)
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So the modified virial theorem is∑
i

〈
xµi

∂V

∂xµi

〉
+
∑
i

〈
miΓαβµ(xi)x

µ
i ẋ

α
i ẋ

β
i

〉
= 2 〈EK〉+

1

β

∑
i

〈
xµi Γααµ(xi)

〉
(2.35)

2.2.3 Mechanical version

One can alternatively study the mechanical version of the virial theorem by taking a time

average. One can define the quantity

G =
∑
i

gµν(xi)p
µ
i x

ν
i (2.36)

So similar with the previous derivation, we take the derivative over t to get

dG

dt
=
∑
i

∂λgµν(xi)miẋ
λ
i ẋ

µ
i x

ν
i +

∑
i

gµν(xi)miẍ
µ
i x

ν
i +

∑
i

gµν(xi)miẋ
µ
i ẋ

ν
i

=
∑
i

∂λgµν(xi)miẋ
λ
i ẋ

µ
i x

ν
i +

∑
i

gµν(xi)miẍ
µ
i x

ν
i + 2EK (2.37)

So take the average will give a modified version of the virial theorem,〈∑
i

(∂λgβν(xi)− Γνβλ(xi))miẋ
β
i ẋ

λ
i x

ν
i + 2EK

〉
=

〈∑
i

∂V

∂xνi
xνi

〉
(2.38)

where we use the equation of motion

mi(gµβẍ
β
i + ẋβi ẋ

λ
i ∂λgµβ(xi)) =

mi

2
ẋαi ẋ

β
i ∂µgαβ(xi)−

∂V

∂xµi
(2.39)

Using differential geometry identity

Γνβλ =
1

2
(∂λgβν + ∂βgλν − ∂νgβλ)

∂λgβν − Γνβλ = ∂λgβν −
1

2
(∂λgβν + ∂βgλν − ∂νgβλ) =

1

2
(∂λgβν − ∂βgλν + ∂νgβλ) = Γβνλ

(2.40)

We get 〈∑
i

Γβνλ(xi)miẋ
β
i ẋ

λ
i x

ν
i

〉
+ 2 〈EK〉 =

〈∑
i

∂V

∂xνi
xνi

〉
(2.41)

Note here that the mechanical and statistical virial theorems are, in fact, different. The

reason is that now in a curved space, the argument of ergodicity is broken. The different

points in space are not equally likely to be accessed at late time; the true probability

depends sensatively on the shape of the manifold and on the initial positions and momenta

of the particles. For our usage, we will use the claim to identify the quantum complexity and

statistical entropy, so we could use the statistical virial theorem to derive a relation between

two parts of entropy, while some further issues about ergodicity will be commented later.

– 7 –
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3 A relation between complexities

3.1 Quantum/classical correspondense

After we establish a version of virial theorem in the curved space, we will establish a

relation between entropies, and namely, complexities due to the following quantum/classical

correspondence established in [15].

Consider a k-local Hamiltonian with K qubits. The Hamitlonian is defined in the sense

of disordered average. The form of it is

Ĥ =
∑
I

JIσI (3.1)

where I runs over all 4K−1 Paulis, and JI is the coupling constant distributed in Gaussian

distribution.

P (J) ∼ exp

(
−1

2
Ba
∑
I

J2
I

)
(3.2)

where Ba defines the variance. Now we are asking what is the computational complexity

for an operator exp(iĤt). The generic paradigm for complexity evolving with time is given

as the following. The computational complexity will firstly increase with time roughly

linearly, then it will stay a constant. After a very long time, recurrence will happen and

the complexity will decay and grow back.

[15] notices a similar behavior should appear for entropies in classical systems. By

counting degree of freedom, the dual classical system should have 2K variables. Thus it is

necessary to study particle trajectories over the Nielsen’s metric construction of quantum

computing [13, 14] on the group manifold SU(2K).2 In this metric definition, the metric

as a bilinear for Hamiltonian representation of vector fields Ĥ1 and Ĥ2 near point Û is

〈
Ĥ1, Ĥ2

〉
=

Tr
(
Ĥ1P(Ĥ2)

)
+ qTr

(
Ĥ1Q(Ĥ2)

)
2K

(3.3)

where P andQ are super operators that takes the Hamitonian to the one and two body term

components and three or more body components respectively. In this geometry, the com-

plexity is proportional to the geodesic length, or one can also understand it as the action.

For the practical usage, we will consider the Pauli basis. Define

G = P + qQ (3.4)

we could define the metric, at a generic point X, by

gµν =
Tr(µGX(ν))

2K
(3.5)

2It is argued in [15] that although the dimension of SU(2K) is 4K − 1, because the Hamiltonian has only

2K eigenvalues, the particle is actually moving on a 2K dimensional torus.
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where µ and ν are K-qubit Paulis. Here GX is defined by

GX = E†X ◦ G ◦ EX (3.6)

with

EX =

+∞∑
j=0

(−iadX)j

(j + 1)!
(3.7)

and

adX(Y ) ≡ [X,Y ] (3.8)

With this formula, one could study geometric data at arbitrary points, although do an

infinite sum is highly non-trivial.3 As a simple application, do fewer expansion in this sum-

mation formula, one can obtain some derivatives of the metric to obtain connections, etc.

Imagining a single particle on this group manifold running from the origin, one can

study the classical physics of it by given the Hamiltonian Ĥ. One can also notice that

the initial velocity components in this classical setup are given by the couplings JI , while

the whole initial velocity is given by K. Thus, by the claim that complexity is equal

to the geodesic length, we claim that initially, the complexity grows as Kt. In fact, [15]

conjectures that, the computational complexity at the quantum side should be proportional

to the positional entropy in such a dual classical system, where the distribution (disorder

of JI) naturally defines a classical ensemble. The reason for only positional entropy instead

of the whole entropy is that the computational complexity is only related to the position

from the origin, not the velocity.

Because now we make use of the positional entropy, what is the interpretation for the

kinetic entropy? [15] argues that it should be understood as the Kolmogorov complexity

for the Hamiltonian. In fact, this is based on the duality between the velocities and the

coupling constants that we have discussed above. Imagine that the coupling JIs are bits

0 or 1, so the possibilities of couplings, or namely, the possibilities of bits, should be

related to the bit string realization of the Hamiltonian. Thus it is reasonable that the

cost to specify the bit string, namely, the Kolmogorov complexity, is connected to the

kinetic entropy which is related to the velocities. This argument works for the concept of

Kolmogorov complexity for single instance of Hamiltonian, which is not related to the status

of the ensemble, and makes it hard to work with. However, here we could generalize the

argument to the ensemble averaged version of the Kolmogorov complexity. Considering the

probability distribution of the coupling P (J), and the entropy −
∑
P (J) logP (J), under

mild assumptions, it is claimed that it is equal to the averaged version of the Kolmogorov

complexity
∑
P (J)Cκ(J), where Cκ(J) is the Kolmogorov complexity for single instant.

In the following subsection, we will describe a relationship between Kolmogorov com-

plexity and computational complexity motivated by the virial theorem we describe above.

3This geometric is non-trivial for even single qubit due to non-commutativity of Paulis although in this

case there is no q parameter coming into the metric.

– 9 –
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The Kolmogorov complexity is a static object independent of time, but computational com-

plexity could be defined in every instant. However, we will consider the equilibrium case,

which correspond to a late time value of computational complexity in which the system is

in a thermal bath with inverse temperature β.

3.2 An entropic/complexity relation

We can decompose the entire entropy in the following way, where we consider a canonical

ensemble with inverse temperature β:

S = −
∫
dΩβH exp(−βH) = SK + SP

SK = −
∫
dΩβEK exp(−βH) = −β 〈EK〉

SP = −
∫
dΩβV exp(−βH) = −β 〈V 〉 (3.9)

To make this relation work with tractible computations, we make the assumption that all

coordinates xµ are sufficiently close to the origin xµ = 0.4 In this case, we could write x

as ∆x. Then, defining V (xµi = 0) = 0, then we could have5

1

2

〈
∆xµ∆xν

∂V

∂xµ∂xν

〉
+

〈
∆xµ

∂V

∂xµ

〉
= 〈V (∆x)〉 (3.10)

Where we keep it to the second order. In this limit, we obtain

〈V 〉 − 1

2

〈
∆xµ∆xν

∂V

∂xµ∂xν

〉
+
〈

Γαβµ(∆x)∆xµ∆ẋα∆ẋβ
〉

= 2 〈EK〉+

〈
1

β
∆xµΓααµ(∆x)

〉
(3.11)

So we have

2SK
β
− SP

β
=

1

β

〈
∆xµΓααµ(∆x)

〉
−
〈

Γαβµ(∆x)∆xµ∆ẋα∆ẋβ
〉

+
1

2
〈∆xµ∆xν∂µνV 〉

=
1

β
Γααµ 〈∆xµ〉 − Γαβµ

〈
∆xµ∆ẋα∆ẋβ

〉
(3.12)

+
1

2
〈∆xµ∆xν∂µνV 〉+

1

β
∂νΓααµ 〈∆xµ∆xν〉 − ∂νΓαβµ

〈
∆xµ∆xν∆ẋα∆ẋβ

〉
where the last formula is expanded around x = 0,6 and we expand the result at the order

O(∆x). This relationship could be simplified further in the Nielsen’s geometry [14], which

4This assumption is motivated by the fact that geodesics on the Nielsen complexity geometry are only

fully understood in the case where the geodesic distances between points are quite short, to avoid trou-

blesome conjugate point ambiguities in the calculation. It could be, however, that these relations would

generalize to larger geodesic lengths if further techniques to understand longer geodesics in the Nielsen

complexity geometry are developed.
5In this application, there is no index i specifying particles because there is only one single particle, or

namely all degree of freedoms are understood as different coordinates on the group manifold, and the mass

is set to one.
6Here we write, for instance, Γαατ ≡ Γαατ (0) means quantities evaluated at the origin for short.

– 10 –
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could show that the linear order has zero contribution. We have

Γµστ =
i

2K+1
Tr (µ ([σ,G(τ)] + [τ,G(σ)])) (3.13)

where the indices σ, τ etc denote the possibilities of Paulis. One can also derive the con-

nection with one upper index

Γρστ =
i

2K+1
Tr (F(ρ) ([σ,G(τ)] + [τ,G(σ)])) (3.14)

where F = G−1. By cyclic property of trace, we get

Γααµ = 0

Γαβµ = −Γβαµ (3.15)

So we obtain a vanishing leading order result. Thus, we have to look at next leading order

2SK
β
− SP

β
=

1

2
〈∆xµ∆xν∂µνV 〉+

1

β
∂νΓααµ 〈∆xµ∆xν〉 − ∂νΓαβµ

〈
∆xµ∆xν∆ẋα∆ẋβ

〉
(3.16)

Now let us simplify it further after the following assumptions. We assume

〈∆xµ∆xν〉 = δµν∆L2

〈∆ẋµ∆ẋν〉 = δµνv2〈
∆xµ∆xν∆ẋα∆ẋβ

〉
= 〈∆xµ∆xν〉

〈
∆ẋα∆ẋβ

〉
(3.17)

These statistical assumptions are based on both fluctuations of velocities and coordinates

are Gaussian, and there is no correlation between position and momentum.7 Based on this,

the formula could be simplified as

2SK
β
− SP
β

=
1

2

(∑
µ

∂µµV

)
∆L2+

1

β

(∑
µ

∂µΓααµ

)
∆L2−

(∑
µα

∂µΓααµ

)
∆L2v2 (3.18)

Thus, based on the conjectures in [15], the ensemble average of computational (Kol-

mogorov) complexity of a disordered k-local quantum system, should be proportional to

positional (kinetic) part of statistical entropy of a dual statistical gas living in the group

manifold. From the entropy relation derived above, we arrive at a direct relation between

computational and Kolmogorov complexity. The relation is pedagogically

Kolmogorov complexity = Computational complexity + Corrections (3.19)

where the corrections can be computed directly from Nielsen’s geometry and the potential.

7The similar Gaussianity assumption follows from the distribution of the coupling is also made in [15].

It will be interesting to extend our research for non-Gaussian case in the future, and it might be also related

to the complexity for Gaussian states [6, 10].
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3.3 Analysis

We will consider the large K limit, and some small qubits examples to make some claims on

this relationship. Before the precise investigations, we could give some generic comments.

• For extremely small ∆L, there is nearly no correction between two entropies, where

we could claim that they are nearly proportional, at least at the leading order of ∆L.

However, one can expect that when the number of qubits are large, it is very easy to

achieve a large number in the r.h.s. , measuring the difference of two entropies (com-

plexities), because the number of degree of freedom increases exponentially. This is

consistent with related arguments in [15] about exponential dominance of the com-

putational complexity. Moreover, assuming a large dominance for computational

complexity than Kolmogorov complexity, we obtain a bound

β

2

(∑
µ

∂µµV

)
∆L2 +

(∑
µ

∂µΓααµ

)
∆L2 −

(∑
µα

∂µΓααµ

)
∆L2βv2 & 1 (3.20)

• Secondly, if we treat the distance variation ∆L to be small enough, the difference

between mechanical and statistical version of the virial theorem is tiny. The disap-

pearing of the different term is a recovery of ergodicity in the statistical ensemble we

consider. In this sense, the ensemble average is equal to the long term average at the

leading order.

• This formula only works for equilibrium, where we have a thermal bath with tem-

perature β, or some ergodic states with an effective temperature β if we treat ∆L

to be small enough. Thus, this formula cannot show the time dependence of the

computational complexity, although it should work for some ergodic states where the

instant ensemble average is equal to the long term average in the small ∆L limit.

• This formula is consistent when sending β → ∞, where trajectories move slowly so

both side will be suppressed.

3.3.1 Sufficiently large K

The most interesting case might be the large K limit, where we could make some generic

analysis based on the geometry of the group manifold. Firstly, consider two double sum-

mation terms

−

(∑
µα

∂µΓααµ

)
∆L2v2 ,

1

β

(∑
µ

∂µΓααµ

)
∆L2 (3.21)

Because there are 4K − 1 Paulis in total, so we expect that it will scale as O(16K). We

could make a more detailed estimation here. We note that

∂µΓααµ =
1

2
∂µµgαα (3.22)

– 12 –
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where the derivative of the metric could be given in the Pauli basis formula from the metric.

Expanding the expression we have

1

2
∂µµgαα = − 2

2K
Tr

(
adµadµα

6
G(α)

)
− 1

2K
Tr

(
adµα

4
G ◦ adµ(α)

)
(3.23)

One could define the inner product

〈A,B〉 =
1

2K
Tr (AG(B)) (3.24)

then the formula has been re-expressed as

∂µµgαα = −2

3
〈[µ, [µ, α]] , α〉 − 1

2
〈[µ, α] , [µ, α]〉 (3.25)

The second term will count for weights of [µ, α] for non-commuting pairs. This term will

scale as 16K . Similar thing happens for the first term. Thus in general we estimate

−

(∑
µα

∂µΓααµ

)
∆L2v2 ∼ 16K∆L2v2 ×O(1) (3.26)

Then we move to another double sum geometric term

1

β

(∑
µ

∂µΓααµ

)
∆L2 (3.27)

By definition

∂µΓααµ =
1

2
gαν∂µµgαν +

1

2
(∂µg

αν)(∂µgαν) (3.28)

The first term is nothing but dividing an O(1) constant, 1 or 1/q in each valid term of the

summation. The second term gives

(∂µgαν)(∂µg
αν) =

1

4

(qα − qν)2

qαqν

(
Tr ([α, ν]µ)

2K

)2

(3.29)

Where qα means 1 for one, and two body Paulis, and q for three body and more. Thus

we have ∑
µ

(∂µgαν)(∂µg
αν) ∼ 16K × (q − 1)2

q
×O(1) (3.30)

So we conclude that

1

β

(∑
µ

∂µΓααµ

)
∆L2 ∼ 16K × ∆L2

β
×O(1) (3.31)

for generic q. Finally, we comment on the potential term. We find that both geometric

terms are double sum, while the potential term is single sum. Thus it is at most proportional

to 4K ,

1

2

(∑
µ

∂µµV

)
∆L2 ≤ 4K ×max

µ
(∂µµV )×∆L2 (3.32)
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Thus in the large K limit, we could drop out the potential term, thus the relationship

should look like

2SK
β
− SP

β
∼ 16K × ∆L2

β
×O(1) + 16K ×∆L2v2 ×O(1) (3.33)

Now we make further estimations over the parameter β and v for large K. We have [15]

β ∼ Kk−1

v2 ∼ J2 ∼ k!

3kKk−1 (3.34)

for k-local system, and the later is given by the velocity-coupling duality [15]. So the

relationship is simplified further by

2SK − SP ∼ 16K∆L2 ×O(1) (3.35)

Finally, we make a comment that the leading dependence might also be find-tuned by

solving specific q for given K. In these cases, the dependence over K for those correction

terms is weaker, or moreover, these ∆L2 dependence could even be cancelled. It will be

interesting to study how it could happen in general, and the relationship between fine-

tuning and physics problems, like ergodicity.

3.3.2 Fewer qubit examples

We will list K = 1, 2, 3 qubits here as examples.

• For K = 1 we have ∑
µα

∂µΓααµ =
∑
µ

∂µΓααµ = −2 (3.36)

Thus the relationship looks like

2SK − SP =
β

2

(∑
µ

∂µµV

)
∆L2 + 2(v2β − 1)∆L2 (3.37)

• For K = 2 we have ∑
µα

∂µΓααµ =
∑
µ

∂µΓααµ = −40 (3.38)

Thus the relationship looks like

2SK − SP =
β

2

(∑
µ

∂µµV

)
∆L2 + 40(v2β − 1)∆L2 (3.39)
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• For K = 3 we have ∑
µα

∂µΓααµ = −384− 288q∑
µα

∂µΓααµ = −672 (3.40)

Notice that in the second term, the q dependence has been cancelled. Thus the

relationship looks like

2SK − SP =
β

2

(∑
µ

∂µµV

)
∆L2 + ((384 + 288q)v2β − 672)∆L2 (3.41)

4 Conclusion and discussion

In this paper, we study a possible consequence of conjectures in [15] for identifying com-

plexities in the k-local disordered Hamiltonian and classical systems of particulate particles

living in the group manifold of unimodular matrices. After a discussion of the virial the-

orem in a general curved space, we arrive at a nontrivial relation between Kolmogorov

complexity and computational complexity by identifying complexities with entropies.

Finally, we will discuss possibilities for future research.

• It is reasonable to try connecting this work to existing works about holographic

complexity and rigorous definition of complexities in quantum field theory, for in-

stance, discuss the classical correspondence for unitaries that could prepare Gaussian

states [6, 10], and what is the implications for virial theorems there.

• One could also generalize this work to higher orders, namely, the larger deviation

O(∆L3) to ask what is the geometric corrections, and address some physically inter-

esting questions, like ergodicity.

• One can try simulating Nielsen geometry by solving numerical differential equations,

in the classical and future quantum computers.

• It would be interesting to study such an argument from the complexity theoretic

and quantum resource theoretic points of view (where, the Kolmogorov complexity-

computational complexity decomposition, or moreover, the complexity-uncomplexity

decomposition, claimed in [15], may have a meaningful interpretation as quantum

resource).

• It would also be interesting to work out some specific chaotic examples for k-local

disordered Hamiltonians (like the SYK model [23–28]8) to verify validity of the state-

ment in practice, as perhaps a nontrivial check to the conjectures of [15].
8There are some related discussions in previous work by Roberts and Yoshida [29], which precisely

relates the quantum 2-Rényi entropy and the quantum complexity by frame potential, which is a quantum

information theory quantity measuring the average of out-of-time-ordered correlators. See also some related

discussions in [30, 31] for applications in random matrix theory and SYK-like models.
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