Contents

Preface .. page xv
Acknowledgements .. xxii
Nomenclature and notation .. xxiii

Part I Fundamental concepts .. 1

1 Introduction and overview .. 1
 1.1 Global perspectives .. 1
 1.1.1 History of quantum computation and quantum information .. 2
 1.1.2 Future directions .. 12
 1.2 Quantum bits .. 13
 1.2.1 Multiple qubits .. 16
 1.3 Quantum computation .. 17
 1.3.1 Single qubit gates .. 17
 1.3.2 Multiple qubit gates .. 20
 1.3.3 Measurements in bases other than the computational basis .. 22
 1.3.4 Quantum circuits .. 22
 1.3.5 Qubit copying circuit? .. 24
 1.3.6 Example: Bell states .. 25
 1.3.7 Example: quantum teleportation .. 26
 1.4 Quantum algorithms .. 28
 1.4.1 Classical computations on a quantum computer .. 29
 1.4.2 Quantum parallelism .. 30
 1.4.3 Deutsch's algorithm .. 32
 1.4.4 The Deutsch–Jozsa algorithm .. 34
 1.4.5 Quantum algorithms summarized .. 36
 1.5 Experimental quantum information processing .. 42
 1.5.1 The Stern–Gerlach experiment .. 43
 1.5.2 Prospects for practical quantum information processing .. 46
 1.6 Quantum information .. 50
 1.6.1 Quantum information theory: example problems .. 52
 1.6.2 Quantum information in a wider context .. 58

2 Introduction to quantum mechanics .. 60
 2.1 Linear algebra .. 61
 2.1.1 Bases and linear independence .. 62
 2.1.2 Linear operators and matrices .. 63
2.1.3 The Pauli matrices 65
2.1.4 Inner products 65
2.1.5 Eigenvectors and eigenvalues 68
2.1.6 Adoints and Hermitian operators 69
2.1.7 Tensor products 71
2.1.8 Operator functions 75
2.1.9 The commutator and anti-commutator 76
2.1.10 The polar and singular value decompositions 78
2.2 The postulates of quantum mechanics 80
2.2.1 State space 80
2.2.2 Evolution 81
2.2.3 Quantum measurement 84
2.2.4 Distinguishing quantum states 86
2.2.5 Projective measurements 87
2.2.6 POVM measurements 90
2.2.7 Phase 93
2.2.8 Composite systems 93
2.2.9 Quantum mechanics: a global view 96
2.3 Application: superdense coding 97
2.4 The density operator 98
2.4.1 Ensembles of quantum states 99
2.4.2 General properties of the density operator 101
2.4.3 The reduced density operator 105
2.5 The Schmidt decomposition and purifications 109
2.6 EPR and the Bell inequality 111

3 Introduction to computer science 120
 3.1 Models for computation 122
 3.1.1 Turing machines 122
 3.1.2 Circuits 129
 3.2 The analysis of computational problems 135
 3.2.1 How to quantify computational resources 136
 3.2.2 Computational complexity 138
 3.2.3 Decision problems and the complexity classes P and NP 141
 3.2.4 A plethora of complexity classes 150
 3.2.5 Energy and computation 153
 3.3 Perspectives on computer science 161

Part II Quantum computation 171

4 Quantum circuits 171
 4.1 Quantum algorithms 172
 4.2 Single qubit operations 174
 4.3 Controlled operations 177
 4.4 Measurement 185
 4.5 Universal quantum gates 188
7.3.2 The Hamiltonian 284
7.3.3 Quantum computation 286
7.3.4 Drawbacks 286
7.4 Optical photon quantum computer 287
 7.4.1 Physical apparatus 287
 7.4.2 Quantum computation 290
 7.4.3 Drawbacks 296
7.5 Optical cavity quantum electrodynamics 297
 7.5.1 Physical apparatus 298
 7.5.2 The Hamiltonian 300
 7.5.3 Single-photon single-atom absorption and refraction 303
 7.5.4 Quantum computation 306
7.6 Ion traps 309
 7.6.1 Physical apparatus 309
 7.6.2 The Hamiltonian 317
 7.6.3 Quantum computation 319
 7.6.4 Experiment 321
7.7 Nuclear magnetic resonance 324
 7.7.1 Physical apparatus 325
 7.7.2 The Hamiltonian 326
 7.7.3 Quantum computation 331
 7.7.4 Experiment 336
7.8 Other implementation schemes 343

Part III Quantum information 353

8 Quantum noise and quantum operations 353
 8.1 Classical noise and Markov processes 354
 8.2 Quantum operations 356
 8.2.1 Overview 356
 8.2.2 Environments and quantum operations 357
 8.2.3 Operator-sum representation 360
 8.2.4 Axiomatic approach to quantum operations 366
 8.3 Examples of quantum noise and quantum operations 373
 8.3.1 Trace and partial trace 374
 8.3.2 Geometric picture of single qubit quantum operations 374
 8.3.3 Bit flip and phase flip channels 376
 8.3.4 Depolarizing channel 378
 8.3.5 Amplitude damping 380
 8.3.6 Phase damping 383
 8.4 Applications of quantum operations 386
 8.4.1 Master equations 386
 8.4.2 Quantum process tomography 389
 8.5 Limitations of the quantum operations formalism 394
9 Distance measures for quantum information
 9.1 Distance measures for classical information 399
 9.2 How close are two quantum states?
 9.2.1 Trace distance 403
 9.2.2 Fidelity 409
 9.2.3 Relationships between distance measures 415
 9.3 How well does a quantum channel preserve information? 416

10 Quantum error-correction
 10.1 Introduction 425
 10.1.1 The three qubit bit flip code 427
 10.1.2 Three qubit phase flip code 430
 10.2 The Shor code 432
 10.3 Theory of quantum error-correction 435
 10.3.1 Discretization of the errors 438
 10.3.2 Independent error models 441
 10.3.3 Degenerate codes 444
 10.3.4 The quantum Hamming bound 444
 10.4 Constructing quantum codes 445
 10.4.1 Classical linear codes 445
 10.4.2 Calderbank–Shor–Steane codes 450
 10.5 Stabilizer codes 453
 10.5.1 The stabilizer formalism 454
 10.5.2 Unitary gates and the stabilizer formalism 459
 10.5.3 Measurement in the stabilizer formalism 463
 10.5.4 The Gottesman–Knill theorem 464
 10.5.5 Stabilizer code constructions 464
 10.5.6 Examples 467
 10.5.7 Standard form for a stabilizer code 470
 10.5.8 Quantum circuits for encoding, decoding, and correction 472
 10.6 Fault-tolerant quantum computation 474
 10.6.1 Fault-tolerance: the big picture 475
 10.6.2 Fault-tolerant quantum logic 482
 10.6.3 Fault-tolerant measurement 489
 10.6.4 Elements of resilient quantum computation 493

11 Entropy and information
 11.1 Shannon entropy 500
 11.2 Basic properties of entropy
 11.2.1 The binary entropy 502
 11.2.2 The relative entropy 504
 11.2.3 Conditional entropy and mutual information 505
 11.2.4 The data processing inequality 509
 11.3 Von Neumann entropy
 11.3.1 Quantum relative entropy 511
 11.3.2 Basic properties of entropy 513
 11.3.3 Measurements and entropy 514
11.3.4 Subadditivity 515
11.3.5 Concavity of the entropy 516
11.3.6 The entropy of a mixture of quantum states 518

11.4 Strong subadditivity 519
11.4.1 Proof of strong subadditivity 519
11.4.2 Strong subadditivity: elementary applications 522

12 Quantum information theory 528
12.1 Distinguishing quantum states and the accessible information 529
12.1.1 The Holevo bound 531
12.1.2 Example applications of the Holevo bound 534
12.2 Data compression 536
12.2.1 Shannon’s noiseless channel coding theorem 537
12.2.2 Schumacher’s quantum noiseless channel coding theorem 542
12.3 Classical information over noisy quantum channels 546
12.3.1 Communication over noisy classical channels 548
12.3.2 Communication over noisy quantum channels 554
12.4 Quantum information over noisy quantum channels 561
12.4.1 Entropy exchange and the quantum Fano inequality 561
12.4.2 The quantum data processing inequality 564
12.4.3 Quantum Singleton bound 568
12.4.4 Quantum error-correction, refrigeration and Maxwell’s demon 569
12.5 Entanglement as a physical resource 571
12.5.1 Transforming bi-partite pure state entanglement 573
12.5.2 Entanglement distillation and dilution 578
12.5.3 Entanglement distillation and quantum error-correction 580
12.6 Quantum cryptography 582
12.6.1 Private key cryptography 582
12.6.2 Privacy amplification and information reconciliation 584
12.6.3 Quantum key distribution 586
12.6.4 Privacy and coherent information 592
12.6.5 The security of quantum key distribution 593

Appendices 608

Appendix 1: Notes on basic probability theory 608

Appendix 2: Group theory 610
A2.1 Basic definitions 610
A2.1.1 Generators 611
A2.1.2 Cyclic groups 611
A2.1.3 Cosets 612
A2.2 Representations 612
A2.2.1 Equivalence and reducibility 612
A2.2.2 Orthogonality 613
A2.2.3 The regular representation 614
Contents

A2.3 Fourier transforms 615

Appendix 3: The Solovay–Kitaev theorem 617

Appendix 4: Number theory 625
A4.1 Fundamentals 625
A4.2 Modular arithmetic and Euclid's algorithm 626
A4.3 Reduction of factoring to order-finding 633
A4.4 Continued fractions 635

Appendix 5: Public key cryptography and the RSA cryptosystem 640

Appendix 6: Proof of Lieb's theorem 645

Bibliography 649

Index 665