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Quantum computation and quantum-state
engineering driven by dissipation
Frank Verstraete1*, Michael M.Wolf2 and J. Ignacio Cirac3*
The strongest adversary in quantum information science is
decoherence, which arises owing to the coupling of a system
with its environment1. The induced dissipation tends to destroy
and wash out the interesting quantum effects that give rise
to the power of quantum computation2, cryptography2 and
simulation3. Whereas such a statement is true for many
forms of dissipation, we show here that dissipation can also
have exactly the opposite effect: it can be a fully fledged
resource for universal quantum computation without any
coherent dynamics needed to complement it. The coupling to
the environment drives the system to a steady state where
the outcome of the computation is encoded. In a similar
vein, we show that dissipation can be used to engineer a
large variety of strongly correlated states in steady state,
including all stabilizer codes, matrix product states4, and their
generalization to higher dimensions5.

The situation we have in mind is shown in Fig. 1. A quantum
system composed of N particles (such as qubits) is organized in
space according to a particular geometry (in the figure, a one-
dimensional lattice). Neighbouring systems are coupled to some
local environments, which are dissipative in nature and tend to
drive the system to a steady state. Our idea is to engineer those
couplings, so that the environments drive the system to a desired
final state. The coupling to the environmentwill be static, so that the
desired state is obtained after some time without having to actively
control the system. Note that the role of the environments is to
dissipate (or, more precisely, evacuate) the entropy of the system,
and by choosing the couplings appropriately we can use this effect
to drive our system.

We will show first how to design the interactions with
the environment to implement universal quantum computation.
This new method, which we refer to as dissipative quantum
computation (DQC), defies some of the standard criteria for
quantum computation because it requires neither state preparation,
nor unitary dynamics6. However, it is nevertheless as powerful as
standard quantum computation. Thenwewill show that dissipation
can be engineered7 to prepare ground states of frustration-free
Hamiltonians. Those include matrix product states4,8,9 (MPSs) and
projected entangled pair states5,9 (PEPSs), such as graph states10
and Kitaev11 and Levin–Wen12 topological codes. Both DQC and
dissipative state engineering (DSE) are robust in the sense that,
given the dissipative nature of the process, the system is driven
towards its steady state independent of the initial state and hence
of eventual perturbations along the way.

Here, we will concentrate first on DQC, showing how given
any quantum circuit one can construct a locally acting master
equation for which the steady state is unique, encodes the outcome
of the circuit and is reached in polynomial time (with respect to
the one corresponding to the circuit). Then we will show how
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to construct dissipative processes that drive the system to the
ground state of any frustration-free Hamiltonian. In the Methods
section, we will prove that MPS (ref. 9) and certain kinds of
PEPS (ref. 9) can be efficiently prepared using this method, and
in Supplementary Information we will give details of the proofs.
In this letter we will not consider specific physical set-ups where
our ideas can be implemented. Nevertheless, the Methods section
will provide a universal way of engineering the master equations
required for DQC and DSE, which can be easily adapted to current
experiments13 based on, for example, atoms in optical lattices14
or trapped ions15. Thus, we expect that our predictions may be
experimentally tested in the near future.

Let us start with DQC by considering N qubits in a line and a
quantum circuit specified by a sequence of nearest-neighbour qubit
operations {Ut }

T
t=1. We define |ψt 〉 :=UtUt−1 ...U1|0〉1⊗ ...|0〉N, so

that |ψT 〉 is the final state after the computation. Our goal is to find
amaster equation ρ̇=L(ρ)with a Liouvillian in Lindblad form16

L(ρ)=
∑
k

LkρL
†
k−

1
2
{
L†
kLk,ρ

}
+

(1)

where the Lk acts locally and has a steady state, ρ0: (1) that is unique;
(2) that can be reached in a time poly(T ); (3) such that ψT can be
extracted from it in a time poly(T ). As in Feynman’s construction
of a quantum simulator3, we consider another auxiliary register
with states {|t 〉}Tt=0, which will represent the time. We choose
the Lindblad operators

Li= |0〉i〈1|⊗|0〉t 〈0|

Lt =Ut⊗|t+1〉〈t |+U †
t ⊗|t 〉〈t+1|

where i= 1,...,N and t = 0,...,T . It is clear that the L terms act
locally except for the interaction with the extra register, which can
be made local as well. Furthermore,

ρ0=
1

T+1

∑
t

|ψt 〉〈ψt |⊗|t 〉〈t |

is a steady state, that is, L(ρ0)=0.Given such a state, the result of the
actual quantum computation can be read out with probability 1/T
by measuring the time register. In Supplementary Information, we
show that ρ0 is the unique steady state and that the Liouvillian has
a spectral gap1=π2/(2T+3)2. This means indeed that the steady
state will be reached in polynomial time in T . Note that this gap is
independent ofN as well as of the actual quantum computation that
is carried out (that is, independent of the Ut ). It is also shown that
the same gap is retained if the clock register is encoded in the unary
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Figure 1 | Schematic representation of the set-up. We consider a collection of N quantum particles, locally coupled to a set of environments. The
couplings are engineered in such a way that the system reaches the desired state in the long-time limit.

way proposed by Kitaev and co-workers17, making the Lindblad
operators strictly local. A sketch of the proof is as follows. First, we
do a similarity transformation on L that replaces all gatesUi with the
identity gates, showing that its spectrum is independent of the actual
quantum computation. Second, another similarity transformation
is done thatmakes L Hermitian and block-diagonal. Each block can
then be diagonalized exactly leading to the claimed gap.

In some sense, the present formalism can be seen as a robust
way of doing adiabatic quantum computation18 (errors do not
accumulate and the path does not have to be engineered carefully)
and implementing quantum randomwalks19, and itmight therefore
be easier to tackle interesting open questions, such as the quantum
probabilistically-checkable-proofs theorem, in this setting20. In
addition, it seems that the dissipativeway of preparing ground states
is more natural than to use adiabatic time evolution, as nature itself
prepares them by cooling.

Let us now turn to DSE and consider again a quantum system
with N particles on a lattice in any dimension. We are interested in
ground statesΨ , of Hamiltonians

H =
∑
λ

Hλ

that are frustration-free, meaning that Ψ minimizes the energy of
eachHλ individually, and local in the sense thatHλ acts non-trivially
only on a small set λ ⊂ {1, ... ,N } of sites (for example, nearest
neighbours). We can assume the terms Hλ to be projectors and
we will denote the orthogonal projectors by Pλ = 1−Hλ. States Ψ
of the considered form are, for example, all PEPS (including MPS
and stabilizer states21).

We will consider discrete time evolution generated by a trace-
preserving completely positive map instead of a master equation.
These two approaches are basically equivalent22 as every local
completely positivemap T can be associated with a local Liouvillian
through L(ρ)=N [T (ρ)−ρ], which leads to the same fixed points
and spectrum.We choose completely positivemaps of the form

T (ρ)=
∑
λ

pλ

[
PλρPλ+

1
m

m∑
i=1

Uλ,iHλρHλU
†
λ,i

]
(2)

where the pλ terms are probabilities and Uλ,1,...,Uλ,m is a set of
unitaries acting non-trivially only within region λ. They effectively
rotate part of the high-energy space (with support of Hλ) to the
zero-energy space, so that tr[T (ρ)Ψ ] ≥ tr[ρΨ ] increases. As for
Liouvillians (1), we could similarly take Lλ,i = UiHλ, or the ones
associated with the completely positive map.

We show now that for every frustration-free Hamiltonian,
the completely positive map in equation (2) converges to the
ground-state space if we choose the unitaries Uλ,i to be completely
depolarizing, that is, T (ρ) ∝

∑
λ PλρPλ + 1λ ⊗ trλ[Hλρ]/tr[1λ].

For ease of notation, we will explain the proof for the case of a

one-dimensional ring with nearest-neighbour interactions labelled
by the first site λ= 1,...,N . Assume ρ is such that its expectation
value with respect to the projector Ψ onto the ground-state space
ofH is non-increasing under applications of T , that is, in particular
tr[ρΨ ]= tr[T N (ρ)Ψ ]. Expressing this in the Heisenberg picture in
which T ∗(Ψ)=Ψ+

∑
λHλtrλ(Ψ)/(d2N ), we get

tr[ρΨ ] ≥ tr[ρΨ ]+
1

(d2N )N
tr

[
ρ

N∑
µ=1

N∏
λ=1

(
Hλ+µtrλ+µ

)
(Ψ)

]

≥ tr[ρΨ ]+
νN

(d2N )N
tr[ρH ]

where the first inequality comes from discarding (positive) terms in
the sum and the second one is due to bounding all partial traces
of Hλ from below by the respective smallest eigenvalue ν. Note
that the latter is strictly positive unless H has a product state as
the ground state (in which case the statement becomes trivial).
Hence, we must have tr[ρH ] = 0; that is, ρ is a ground state of H .
It is easily seen that the same argument applies for more general
interactions on arbitrary lattices.

Once we have shown that the steady state after the application
of the completely positive map lies within the desired subspace
(the ground-state space of the frustration-free Hamiltonian), the
next question to be addressed is how efficient the process is. This
depends on the spectral gap, δ, of the completely positive map (or,
equivalently, of the corresponding Liouvillian), as the time to reach
the steady state, τ = O(1/δ). Thus, the above procedure will be
efficient as long as the gap vanishes only polynomially with the
number of systems, N . Similarly to what occurs with many-body
Hamiltonians, the determination of such a gap is, in general, very
complicated. For a wide range of interesting models, however, it
can be proved that this gap scales favourably. This is the case for
all MPS as well as for a rich subfamily of PEPS that includes all
stabilizer states (such as Kitaev’s toric code11 and the Levin–Wen
states12). In the Methods section, we characterize such a subfamily
of states, and in Supplementary Information we give the technical
proofs of our statements. Here, we will qualitatively explain how
our method works efficiently for some families of states. For that
we note that the action of the completely positive map (2) can
be interpreted as randomly choosing a region λ (according to pλ,
which we may set equal to 1/N ), then measuring Pλ and applying
a correction according to the unitaries if the outcome was negative.
We denote by Rn the set of regions λ where ϕ satisfies the condition
Hλ|ϕ〉 = 0. If we measure now in one of those regions, we will
obviously obtain a positive result, and thus Rn will remain the
same. If we measure in another region, we may have a positive or
negative result, something that may change the set Rn. By imposing
certain conditions on the operators Hλ and Uλ,i, we can make sure
that in each step Rn cannot be reduced and that the probability of

634 NATURE PHYSICS | VOL 5 | SEPTEMBER 2009 | www.nature.com/naturephysics

© 2009 Macmillan Publishers Limited.  All rights reserved. 

http://www.nature.com/doifinder/10.1038/nphys1342
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS1342 LETTERS
being enlarged is non-vanishing. This automatically ensures that
the τ scales only polynomially with the number of systems. In
one dimension, however, one can get rid of all those restrictions
and show that any MPS can be prepared in a time that also scales
favourably with N . The fact that all MPS states can be prepared
with our method, together with the results reported in refs 23, 24,
automatically implies the existence of phase transitions driven by
dissipation in the following sense. By changing the parameters of
the operators Hλ appearing in the completely positive map (2), we
change the steady state of that map. It is possible to choose models
for which that state changes abruptly at some particular value of
that parameter in such a way that the correlation length diverges
and an order parameter appears (an example can be found in the
Supplementary Information).

We have investigated the computational power of purely
dissipative processes, and proved that it is equivalent to that of
the quantum circuit model of quantum computation. We have
also shown that dissipative dynamics can be used to create ground
states (such as MPS or PEPS) of frustration-free Hamiltonians of
strongly correlated quantum spin systems. We believe that these
newmethods can be experimentally tested using atoms or ions with
current set-ups (see theMethods section).

Let us stress that we have been concerned here with a proof-
of-principle demonstration that dissipation provides us with an
alternative way of carrying out quantum computations or state
engineering. We believe, however, that much more efficient and
practical schemes can be developed and adapted to specific
implementations. We also think that these results open up
some interesting questions that deserve further investigation: for
example, how the use of fault-tolerant computations can make
our scheme more robust, or how one can design translationally
invariant completely positive maps that prepare MPS more
efficiently, or the importance and generality of the set of commuting
Hamiltonians (see the Methods section), which is intimately
connected to the fixed points of the renormalization group
transformations on PEPS (as it happens with MPS; ref. 25).
Furthermore, themodel of DQCmight well lead to the construction
of new quantum algorithms, as, for example, quantum random
walks can more easily be formulated within this context. Finally,
other ideas related to this work can be easily addressed using the
methods introduced; for example, thermal states of commuting
Hamiltonians can be engineered using DSE because the Metropolis
way of sampling over classical spin configurations can be adopted
to the case of commuting operators. Similar techniques could be
applied to free fermionic and bosonic systems, and, more generally,
it should be possible to devise DSE schemes converging to the
ground or thermal states of frustrated Hamiltonians by combining
unitary and dissipative dynamics.

Note added. Concurrently with the submission of this paper,
refs 26 and 27 appeared in which a similar quantum-reservoir
engineering was used to prepare many-body states and non-
equilibrium quantum phases.

Methods
Engineering dissipation. Here we show how to engineer the local dissipation that
gives rise to the master equations (1) and completely positive maps (2). They are
composed of local terms, involving few particles (typically two), so that we just have
to show how to implement those. To simplify the exposition, we will treat those
particles as a single one and assume that one has full control over its dynamics (for
example, one can apply arbitrary gates).

Let us start with the completely positive maps. It is clear that by applying a
quantum gate to the particle and a ‘fresh’ ancilla and then tracing the ancilla one
can generate any physical action (that is, completely positive map) on the system.
Furthermore, by repeating the same process with short time intervals one can
subject the system to an arbitrary time-independent master equation. This last
process may not be efficient. An alternative way works as follows. Let us assume
that the ancilla is a qubit interacting with a reservoir such that it fulfils a master

equation with Liouville operator La =
√

Γσ−, where σ− = |0〉〈1|. Now, we couple
the ancilla to the system with a Hamiltonian H =�(σ−L†

+σ
†
−L). In the limit

Γ ��, one can adiabatically eliminate the level |1〉 of the ancilla28 by applying
second-order perturbation theory to the Liouvillian (albeit for non-Hermitian
operators). In this way we obtain an effective master equation for ρ describing
the system alone, with Liouville operator �/

√
ΓL. By using several ancillas

with Hamiltonians H =�(σ−Li+σ
†
−L

†
i ) and following the same procedure we

obtain the desired master equation. Although we have not specified here a physical
system, one could use atoms. In that case, the ancilla could be an atom itself with
|0〉 and |1〉 an electronic ground and excited level, respectively, so that spontaneous
emission gives rise to the dissipation. The coupling to the system (other atoms)
could be achieved using standard ideas used in the implementation of quantum
computation using those systems13.

Efficient state preparation. We have shown that it is possible to engineer
dissipative processes that prepare ground states of frustration-free Hamiltonians in
steady state. In the proof, the time for this preparation scales as NN , which may be
an issue for experiments with large number of particles. Here we give much more
efficientmethods for certain classes of frustration-freeHamiltonians.

We consider first frustration-free Hamiltonians for which [Hλ,Hµ] = 0 and
show that, under certain conditions, the corresponding ground states can be
prepared in a time that scales only polynomially with the number of particles. The
corresponding set of ground states contains important families, such as stabilizer
states (for example, cluster states and topological codes), or certain kinds of PEPS,
namely, those that have (commuting) parent Hamiltonians with the injectivity
condition (as defined in refs 8, 29). Note that there was no known way of efficient
preparation for the latter.

Loosely speaking, we will consider two classes of Hamiltonians.
(1) Hamiltonians for which all excitations can be locally annihilated. In this case the
time of convergence scales as τ =O(logN ). (2) Interactions where excitations have
to bemoved along the lattice before they can annihilate and τ =O(N logN ).

To see how the first case can occur notice that, when iterating T , the
correction on λ does not change the outcome of previous measurements on
neighbouring regions because

∀λ 6= λ′: [Uλ,i,Hλ′ ] = 0 (3)

In fact, this can always be achieved by regrouping the regions into larger ones
having an interior I (λ)⊂ λ on which only Hλ acts non-trivially and letting the
Uλ,i solely act on I (λ). Denote by q the largest probability for obtaining twice a
negative measurement outcome on the same region λ. The energy tr[HT M (ρ)]
afterM applications of T decreases then as N (1− (1−q)/N )M such that it takes
O((N logN )/(1−q)) steps to converge to a ground state. The relaxation time of the
corresponding Liouvillian is thus τ =O(logN 1/1−q). Clearly, this is a reasonable
bound only if q<1, a condition possibly incompatible with equation (3).

Note that for all stabilizer states we can achieve q= 0, because there exists
always a local unitary (acting on a single qubit) so that HλUλHλ = 0. A class of
stabilizer states where this is compatible with equation (3) are the so-called graph
states10. In this case, λ labels (with some abuse of notation) a vertex of a graph and
Hλ = (1−σ (λ)

x

∏
(λ,µ)∈E σ

(µ)
z )/2, where σ (λ) is a Pauli operator acting on site λ and

E is the set of edges of the graph. Obviously, Uλ = σ
(λ)
z does the job. In this special

case, we can get even faster convergence when using the Liouvillian

L(ρ)=
(∑

λ

UλHλρHλU
†
λ

)
−

1
2

{
H ,ρ

}
+

The corresponding relaxation time can be determined exactly by realizing
that the spectrum of L equals that of −(H ⊗1+1⊗H )/2 so that τ = 1 (see
Supplementary Information).

For the second type of commuting Hamiltonians, equation (3) and q< 1 are
incompatible. However, we can still prove fast convergence by relaxing equation (3)
such that within each region λ the Uλ acts on a site closest to a predetermined
site (say the origin) on the lattice and thus commutes with all terms Hλ that are
further away (see Supplementary Information for details). In this way excitations
are moved over the lattice before they can annihilate. As this requires extra time
proportional to the system’s size, we get τ =O(N logN ).

We turn now to another family of ground states of frustration-free
Hamiltonians, namely MPS (ref. 9). For the sake of clearness, we will consider
here translationally invariant Hamiltonians, although the analysis can be
straightforwardly extended to systems without that symmetry. We will specify a
completely positive map to prepare states of the form

|Ψ 〉=
d∑
i=1

tr(Ai1 ...AiN )|i1 ...iN〉

where the A terms are D×Dmatrices. We assume the injectivity property29, which
implies that Ψ is the unique ground state of a nearest-neighbour frustration-free
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‘parent’ Hamiltonian that has a gap. Denoting by ρ the reduced density operator
corresponding to particles k and k+ 1, Hk and Pk = 1−Hk will denote the
projectors onto its kernel and range, respectively. Note that tr(Pk)=D2. We
take N = 2n for simplicity, but this is clearly not necessary. We construct the
channel T in several steps. We first define a channel acting on two neighbouring
particles k,k+1, as follows

Rr,c (X) := PkXPk+
Pk

D2
tr(HkX)

Here, k = 2r−1(2c−1), where r = 1,...,n and c = 1,...,2n−r . The action of these
maps has a tree structure, where the index r indicates the row in the tree, whereas c
does it for the column. Now we define recursively,

Sr,c :=
(1−εr )

2
(Sr−1,2c+Sr−1,2c+1)+εr Rr,c

Here, r = 2,...,n, c = 1,...,2n−r , S1,c :=R1,c and εr+1 = 1/M r , whereM =CN 2

and C� 1 (see Supplementary Information). Note that Sr,1 acts on the first 2r
particles, Sr,2 on the next 2r and so on.We finally define

T := (1−εn+1)Sn,1+εn+1Rn,2 (4)

In the Supplementary Information, we show that this map achieves the fixed point
(up to an exponentially small error in C) in a time O(N log2(N )). The intuition
behind the completely positive map (4) is that the channels S1,c , which are the ones
that most often applied, project the state of every second nearest neighbour onto
the right subspace. Then S2,c do the same with half of the pairs that have not been
projected. Then S3,c does the same on half of the rest, and so on.
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