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Abstract

We present an original model of paraconsistent Turing machines

(PTMs), a generalization of the classical Turing machines model of compu-
tation using a paraconsistent logic. Next, we briefly describe the standard
models of quantum computation: quantum Turing machines and quantum

circuits, and revise quantum algorithms to solve the so-called Deutsch’s

problem and Deutsch-Jozsa problem. Then, we show the potentialities of
the PTMs model of computation simulating the presented quantum al-
gorithms via paraconsistent algorithms. This way, we show that PTMs
can resolve some problems in exponentially less time than any classical
deterministic Turing machine. Finally, We show that it is not possible
to simulate all characteristics (in particular entangled states) of quantum
computation by the particular model of PTMs here presented, therefore
we open the possibility of constructing a new model of PTMs by which it
is feasible to simulate such states.

1 Introduction and Motivations

The “paraconsistent computability theory” is an emerging field of research. Such
field of research was already mentioned in [24, p. 196], as well as the dialethic
machines, that supposedly are Turing machines that act under dialethic logic
(a kind of paraconsistent logic) when they find a contradiction, but no clear
definition of such machines was given by the authors1. A precise definition of a
model of paraconsistent Turing machines (PTMs) was first presented in [1] (and
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1The authors express that “it is not difficult to describe how a machine might encounter
a contradiction: for some statement A, both A and ¬A appear in its output or among its
inputs” (cf. [24, p. 196]); but, what is the meaning of ‘appear A and ¬A’ in the input or in
the output of the machine? What is the sense of ‘appear ¬A’ in the input or in the output of
the machine? Is ‘appear ¬A’ equivalent to ‘not appear A’ ? Later they claim that “[when a
contradiction appears]. By contrast [with a classical machine], a machine programmed with
a dialethic logic can proceed with its computation satisfactorily”; but, how do they proceed?
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later published in [3]), and is better fundamented in logical terms in [2], where
additionally are showed surprising potentialities of such model of computation
by simulating some quantum computing essential characteristics by PTMs.

In [24] the idea of paraconsistent computational models is thought to be
related to models of hypercomputation, that is, to computational models that
can compute non-Turing computable problems.2 The PTM model presented
here is not a hypercomputational model, like demonstrated in [1]. This does
not mean, however, that PTMs and classical Turing machines compute a given
task with the same efficiency. In this paper we indicate some similarities between
PTMs and quantum Turing machines (QTMs) and advance some potentialities
about questions of efficiency of PTMs.

In this paper we first present in Section 2 a definition of a model of PTMs.
We then sketch an introduction to quantum computation (Section 3), where
are presented brief descriptions of the standard models of quantum computing:
quantum Turing machines (QTMs) in Section 3.1 and quantum circuits (QCs)
in Section 3.2. A QC that solves the so-called Deutsch’s problem and a QC that
solves the so-called Deutsch-Josza problem are presented in Section 3.3. Al-
though such QCs are simple quantum algorithms, they have the characteristic
of solving the respective problems more efficiently than any classical or stochas-
tic method. Indeed, in [14] it is showed that the QC to solve the Deutsch-Jozsa
problem resolves such problem in exponentially less time than any classical de-
terministic computation.

To show the potentialities of the PTMs we show how to construct a PTM to
simulate, with the same efficiency, the QC that solves the Deutsch’s problem;
and we generalize this result to the Deutsch-Jozsa problem (Section 4). This
way, we show that PTMs can resolve some problems in exponentially less time
than any classical deterministic Turing machine. Finally (still in Section 4),
we show that PTMs may be thought of as QTMs without amplitude probabil-
ities, therefore the PTMs model is actually a simplified model of QTMs. We
show that one characteristic of the QTMs model, the possibility of being in an
entangled state3, cannot be simulated by the particular model of PTMs here
presented. The relevance of entangled states in the construction of efficient
quantum algorithms is still an open question, but is commonly thought that
such states are important for efficient quantum computation.4 For that reason
it is convenient that PTMs can simulate entangled states, therefore we open
the possibility of constructing a new model of PTMs by which it is feasible to
simulate such states.

2For an introduction to hypercomputation see [10].
3This concept will be described in Section 3.
4In [4] the authors show in a novel way that quantum computation without entanglement

is more efficient than any classical computation, but there might be problems that can be
resolved efficiently by quantum computation with entaglement and that cannot be efficiently
solved by quantum computation without entanglement. Deciding if quantum computation is
better with entaglement than without entaglement is an open and stimulating problem.
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2 Paraconsistent Turing Machines

In the original definition of what has become known as Turing machines (see
[26]) Turing already stressed the difference between automatic machines (or
a-machines) and choice machines (or c-machines). The a-machines are those
where all machine actions are completely determined by the machine configu-
ration.5 The c-machines are those where the machine actions are only partially
determined by the machine configuration; when the machine reaches an am-
biguous configuration6 the machine cannot continue until some ‘external ope-
rator’ chooses an instruction to be executed. The a-machines are nowadays
called deterministic Turing machines (DTMs) and the c-machines are called
non-deterministic Turing machines (NDTMs).

In [18], Piergiorgio Odifreddi requires a condition of ‘consistency’ for the
set of instructions for a (deterministic) Turing machine, in the sense that the
machine should not have pairs of contradictory instructions, that is, pairs of ins-
tructions with the same ‘premises’ qisj (the two first symbols of the instruction)
and different ‘conclusions’ (the remaining symbols of the instruction). Odifreddi
also defines NDTMs and probabilistic Turing machines (PrTMs), eliminating
the consistency condition for the set of instructions. He defines NDTMs as
machines that, when reaching an ambiguous situation,7 randomly choose an in-
struction to be executed, and defines PrTMs as machines that, when reaching
an ambiguous situation, choose the instruction to be executed according to a
probability distribution. Therefore, in PrTMs, conflicting instructions do not
have necessarily the same possibility of being executed.

As shown in [2, Chap. 1], it is possible to define a procedure such that, given
a Turing machine M and an input n (denoted by M(n)), it is constructed a
first-order theory ∆′

LPC(M(n)) which axiomatizes the computation of M(n).
The subscript LPC (by ‘Lógica de Predicados Clássica’. Portuguese) indicates
that the underlyng logic of such theories is the classical first-order logic. The su-
perscript ′ indicates that ∆′

LPC(M(n)) theories are extentions of ∆LPC(M(n))
theories, which are theories obtained by an axiomatization procedure, defined
by George Boolos and Richard Jeffrey in [5, Chap. 10] to demonstrate the un-
decidability of classical first-order logic. In [2, Chap. 1, Def. 1.13] the new
notion of ‘representation of a computation in a theory’ is also defined, based
on the classical definitions of representation of functions and relations in a the-
ory introduced by Alfred Tarski, Andrzej Mostowski e Raphael M. Robinson in
[25]. With this definition, it is showed that for any DTM M, and any input n,
the computation of M(n) is represented in the respective ∆′

LPC(M(n)) theory.
This way, it is showed that ∆′

LPC(M(n)) theories are adequate to axiomatize
computations of DTMs.

To construct a specific ∆LPC(M(n)) theory it is defined the first-order lan-

5For Turing, a machine configuration is the pair composed by the current machine state
and the reading symbol.

6For Turing, an ambiguous configuration is a machine configuration where multiple ins-
tructions can be possibly executed.

7Odifreddi’s ambiguous situation corresponds to Turing’s ambiguous configuration.
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guage L = {Q1, Q2, . . . , Qn, S0, S1, . . . , Sm−1, <,
′ , 0} (where n is the cardinal of

the set of states of the machine M and m is the cardinal of the input-output
alphabet of M). In L the symbols Qi, Sj and < are binary predicate symbols,
the symbol ′ is an unary function symbol and 0 is a constant symbol. The
intentional interpretations of such symbols are:

• Qi(t, x) indicates that the machine M, in the time t and the position x,
is in the state qi;

• Sj(t, x) indicates that the machine M, in the time t and the position x,
contains the symbol sj ;

• < is interpreted as being the ‘less than’ relation in the integer numbers;

• ′ is interpreted as being the ‘successor’ function in the integer numbers;

• 0 is interpreted as the 0 number.

The theories ∆LPC(M(n)) are then constructed including axioms to establish
the properties of the symbols < and ′ in the integer numbers, including an
axiom for any instruction of M, and including an axiom to establish the initial
situation of M(n) (i.e., the initial state, the position in the tape and the input
n). The ∆′

LPC(M(n)) theories extend the ∆LPC(M(n)) theories adding axioms
to establish the unicity of the machine state, of the machine position and of the
symbol in each position of the tape at any instant of time; and adding an axiom
to establish the assumption that when the machine is off (before starting the
computation and after finishing the computation, if the machine stops) it is not
in any state, it is not in any position and it does not have any symbol in any
position of the tape. To see how such axioms are constructed, see [2].

When the above mentioned axiomatization procedure is used to axiomatize
NDTMs, some contradictory ∆′

LPC(M(n)) theories are obtained. The contra-
dictions in ∆′

LPC(M(n)) theories appear because the axiomatizing procedure
does not take into account that, when a NDTM reaches an ambiguous configura-
tion, the machine would choose and execute only one instruction, thus avoiding
conflict. Conflicting instructions are not compatible with the unicity axioms
included in ∆′

LPC(M(n)) theories; such axioms use negation and produce con-
tradictions for some NDTMs M and inputs n. This reflects that the condition
of ‘consistency’ imposed by Odifreddi in the definition of deterministic Turing
machines is captured by the ∆′

LPC(M(n)) theories.
Because the underlying logic of ∆′

LPC(M(n)) theories is the classical first-
order logic, contradictory ∆′

LPC(M(n)) theories are then trivial theories. In
order to solve the trivialization problem of such theories for NDTMs, there are
basically two alternative ways: the classical way and the paraconsistent way.
The classical way consists of modifying the axiomatization procedure by taking
into account the choice of a single instruction when arriving at an ambiguous
configuration. The paraconsistent way consists of changing the underlying logic
of ∆′

LPC(M(n)) theories to a paraconsistent logic (leaving the axioms intact),
avoiding trivialization and allowing one to define a new Turing machine model
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interpreting the consequences of such paraconsistent theories. In this paper the
paraconsistent way is taken.

In [2], the paraconsistent logic selected to avoid the trivialization of the
∆′

LPC(M(n)) theories, and to allow the definition of a new notion of Turing
machines, was the paraconsistent first-order logic LFI1∗. Such logic is an ex-
tension to first-order of the propositional logic LFI1, which is part of a great
family of propositional paraconsistent logics called ‘logics of formal inconsis-
tency’ (LFIs) (cf. [6]). The LFIs are characterized as paraconsistent logics that
internalize the metatheoretical notions of consistency and inconsistency at the
object language level. In the LFIs the concepts of contradiction and inconsis-
tency are not necessarily identified, but in LFI1 contradiction and inconsistency
are indeed identified by means of the equivalence •A↔ (A∧¬A), where • is the
inconsistent operator. LFIs are also characterized for preserving the positive
fragment of the propositional classical logic. The logic LFI1∗ is presented in
detail in [7].

By means of changing the underlying logic of ∆′
LPC(M(n)) theories for the

logic LFI1∗ we obtain ∆′
LFI1∗(M(n)) paraconsistent theories. In such theories,

when an ambiguous configuration for an instant of time t is deduced, using the
corresponding axioms of conflicting instructions, it is possible to deduce, for
the instant of time t + 1, the existence of multiple symbols on some cells of
the tape, or multiple current states, or even multiple machine positions. The
deduction of any of such multiplicities, together with the axioms for unicity
(above mentioned), lead to contradictions. Such contradictions, however, are
not deductively explosive (see [6]).

A paraconsistent Turing machine (PTM), is then defined as:

Definition 1 (Paraconsistent Turing machine). A paraconsistent Turing ma-
chine is a Turing machine such that:

• Contradictory instructions are allowed (remember that contradictory ins-
tructions are different instructions with the same two inicial symbols qisj);

• In the face of an ambiguous situation (situation in which the machine
can execute several instructions) the machine executes simultaneously all
possible instructions, giving place to multiplicity of states, multiplicity of
positions and multiplicity of symbols in some cells of the tape;

• Instructions are executed in specific cells of the tape (cells where one of the
states and one of the reading symbols corresponds to the first two symbols
of the instruction), and in the execution the instruction leads the current
symbols in the cells so that it is not modified for the same cells in the
following instant of time;8

• At the stop of the computation (if the computation stops), each cell of the
tape can contain multiple symbols, any choice of these symbols represents
a result of the computation.

8This is because in ∆′
LF I1∗

(M(n)) theories, in the axioms corresponding to instructions,
such behavior is specified.
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By the above definition, a PTM can produce multiple results for some inputs.
Considering the notion of multifunction (i.e. a function where some elements
of the domain can have multiple images. Formally, a multifunction f∗: A→ B

is a function f : A → P(B) − {∅}, where P(B) denotes the power set of B), it
is possible to see the PTMs as computing multifunctions. Moreover, the set of
instructions of PTMs can be defined by multifunctions I∗: Q×Σ → (Σ∪M)×Q.

In order to illustrate the process of computation in the PTMs, we show an
example:

Example 1 (Computation in a PTM). For the PTM M with instructions9

i1 = q1s1s0q2, i2 = q1s1s1q2 and i3 = q1s1Rq1, and for the input n = s1s1,
the computation of M(n) is schematically represented by the following figure
(the instructions in parentheses specify the instructions executed at the previous
instant of time):

t = 0

. . . {s0} {s1} {s1} {s0} {s0} . . .

−1 0 1 2 3

?

{q1}

t = 1 (i1, i2, i3)

. . . {s0} {s0, s1} {s1} {s0} {s0} . . .

−1 0 1 2 3

?

{q2}
?

{q1}

t = 2 (i1, i2, i3)

. . . {s0} {s0, s1} {s0, s1} {s0} {s0} . . .

−1 0 1 2 3

?

{q2}
?

{q1}

Figure 1: Computation in a PTM

In order to allow the control of inconsistencies and get better benefits from
the PTMs model, we supply the possibility of adding consistency/inconsistency
conditions in the instructions. In ∆′

LFI1∗(M(n)) theories, inconsistency of
Qi(t, x) predicates are produced because of the deduction of multiple Qi(t, x)
predicates for the same instant of time t and possibly for different positions x;
inconsistency of Sj(t, x) predicates are produced because of the deduction of
multiple Sj(t, x) predicates for the same instant of time t and for the same posi-
tion x. Therefore, consistency/inconsistency conditions on Qi(t, x) and Sj(t, x)
predicates correspond respectively to unicity/multiplicity conditions on states
and on input-output symbols. Then, to control when an instruction can be
executed, unicity/multiplicity conditions on the first two symbols of the ins-
tructions will be allowed. The ◦ symbol will be used to indicate the unicity
(consistency) condition, while • symbol will be used to indicate the multiplicity
(inconsistency) condition. These symbols must be written after the first symbol
of the instruction, if the condition is on the state, or must be written after the

9Instructions will be specified by quadruples, like in [11], [18] and [15], among others.
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second symbol of the instruction, if the condition is on the reading symbol. For
example, the instruction ik = q◦1s

•
1s0q1 will indicate that such instruction will be

executed in situations when the machine is in the state q1, being this the only
present state, and where one of the reading symbols is s1, there being more
symbols in such position. Unicity/multiplicity conditions will be essential in
the simulation of the quantum algorithms to solve Deutsch’s and Deutsch-Jozsa
problems via PTMs (see Section 4).

In the above definition of the model of PTMs we choose the logic LFI1∗

because it is a paraconsistent logic already extended to first-order level, and
because it preserves the positive fragment of the propositional classical logic,
which facilitates the definition of the PTMs model. Moreover, for LFI1∗ was
already defined a notion of model (or structure) which was demonstrated to be
correct and complete with respect to the axiomatization of such logic (cf. [7]).
Such notion of model allows us to redefine the classical notions of representation
of functions and relations in a theory, and therefore the new notion of the
representation of a computation in a theory, adapting these notions to theories
with LFI1∗ as its underlying logic. This way it is possible to demostrate that
computations by the PTMs defined are actually represented in ∆′

LFI1∗(M(n))
theories, so the model of PTMs defined really corresponds to the axiomatized
in ∆′

LFI1∗(M(n)) theories (cf. [2]). However, in the definition of the PTMs
model could be used in principle any paraconsistent logic which are extensible
to first-order level, possibly producing as result a different model of PTMs, as
it will be described at the end of Section 4.

3 Quantum Computation

Quantum computation is a theory of computation based on the conceptual prin-
ciples of quantum mechanics (superposition of states, entangled states and inter-
ference are perhaps the main ones). Such principles are apparently impossible
to be simulated by any classical computer without falling in an exponential
slowdown. Some problems for which no classical algorithm with polynomial
complexity is known can be resolved by a quantum algorithm of polynomial
complexity. Now, mainly due to potencialities of quantum computation con-
cerning efficiency, this area has become one area of intensive research.

The birth of quantum computation is usually associated to a talk that
Richard Feynman gave at MIT in 1981 (see [16]). In such talk, Feynman pointed
out the difficulties of simulating efficiently some features of quantum mechan-
ics using classical computers, so he conjectured that machines built in such
a way that made use of quantum effects would be able to efficiently simulate
quantum systems. However, Feynman in such talk did not define a model for
which would be the quantum computers. David Detsch was who formalized the
Feynman’s idea, defining the model of quantum Turing machines (QTMs) in
1985 (see [12]) and the model of quantum circuits (QCs) in 1989 (see [13]). In
1993, Andrew Yao demonstrated the equivalence between QTMs and QCs with
respect to algorithm complexity. More precisely, Yao demonstrated that any
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function computable in polynomial time by a QTM may be computed by a QC
of polynomial size (see [28]). This result legitimizes the use of QCs instead of
QTMs in the construction of quantum algorithms, which facilitates such task.
In 1994, Peter Shor constructed a quantum algorithm (using the model of QCs)
for factoring numbers in polynomial time (see [22] and [23]), a problem for which
no classical algorithm with polynomial complexity is known and a problem of
crucial importance in cryptography. Since Shor’s factoring quantum algorithm
the research in quantum computing grew drastically.

In this paper we do not have the intention of offering a wide presentation
of quantum computation theory; only brief descriptions of the standard models
of quantum computation are presented. The intention of such descriptions is to
show some essential features of these models of computation, to later show how
some of these features can be simulated by means of PTMs. To study quantum
computing we recommend [8] and [17].

There are several formulations of quantum mechanics, in the one in some
places called von Neumann-Dirac formulation of quantum mechanics, the quan-
tum theory is presented by postulates. Before describing the QTMs and QCs
models of computation, it is convenient to present a brief description of the
quantum postulates. There are basically four postulates to answer the following
questions: how to describe a quantum physical system state? How to describe a
quantum physical system evolution? How to describe the state of a compound
physical system? And how to describe measurements of quantum physical sys-
tem properties?

Postulate 1. To any quantum physical system is associated a Hilbert space,10

such Hilbert space is called the state space of the system. Then the state of the
system is specified by a unitary vector on the state space; such vector is called
the state vector of the system.

In the finite case, any Hilbert space has a basis, thus any vector can be ex-
pressed as a linear combination of the basis vectors. Because quantum system
states are represented by unitary vectors, and unitary vectors can be expressed
as linear combinations, any quantum system state is expressed by a linear com-
bination of states, usually called a superposition of states or a superposition
state. Such superposition states can be interpreted as the coexistence of the
basis vectors with non-zero coefficients. The property of a quantum system be-
ing able to be in a superposition state represents a radical difference between
quantum and classical physics. By the Dirac notation, state vectors are denoted
by | · 〉 and the dual state vectors (i.e. the transpose conjugate of state vectors)
are denoted by 〈 · |.
Postulate 2. Any evolution of an isolated quantum system can be determinis-
tically described by the Schrödinger equation.

The solution of the Schrödinger equation for discrete intervals of time is
a unitary transformation on the respective Hilbert space (cf. [8, p. 82-83]).

10Some basic concepts of linear algebra and Hilbert spaces theory are required to understand
quantum computing; for an introduction to such concepts see [8].
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Unitary transformations have the characteristic of being reversible (i.e. for any
unitary transformation U there is an inverse unitary transformation U−1 such
that, for any vector |ψ 〉, if U |ψ 〉 = |ψ′ 〉 then U−1|ψ′ 〉 = |ψ 〉), then any
discrete quantum evolution is reversible. Because in QTMs and QCs models
of computation the temporal evolution is discrete, any computation evolution
is described by a unitary transformation, and any quantum computation is
reversible.

Postulate 3. If we have n quantum systems whose respective state spaces are
H1, . . . , Hn, and the respective state vectors are |ψ1 〉, . . . , |ψn 〉, then the state
space H of the compound system is the tensor product of the n state spaces
(denoted by H = H1⊗. . .⊗Hn), and the state vector |ψ 〉 of the compound system
is the tensor product of the n state vectors (denoted by |ψ 〉 = |ψ1 〉⊗. . .⊗|ψn 〉).

Not all state vectors in H can be expressed as a tensor product of state
vectors ofH1, . . . , Hn; such state vectors are called entangled states. An example
of an entangled state is given in Section 6.

Postulate 4. The measurables properties of a quantum system, called observ-
ables, are described by Hermitian or self-adjoint operators. When a measure-
ment with respect to an observable A is made, an autovalor λi of A is obtained
with a given probability Pr(λi), and the system collapses to the autostate asso-
ciated to the autovalor obtained.

This last postulate is the cause of indeterminism and probability in quantum
mechanics. In the general case, when a measurement is accomplished the result
cannot be deterministically determined, only a probability can be given by the
theory.

3.1 Quantum Turing Machines

The model of QTMs is a generalization of the classical model of Turing machines.
The generalization is made by replacing the elements (current state, position
and symbols on the tape) of the classical Turing machine for observables in a
quantum system. This way, following the above mentioned quantum postulates,
to a QTM is a associated a space state, the state of the QTM is given by a vector
state of the space state, and the evolution of the QTM is described by a unitary
operator. Some conditions are imposed to unitary operators in order to assure
that the machine operates finitely, i.e. (cf. [12], [19] and [20]):

• only a finite part of the system must be in motion during each step;

• the motion must only depend on the quantum state of a finite subsystem;
and

• the rules that specify the motion must be given finitely in the mathemat-
ical sense.
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Thus defining a QTM consists basically of defining a unitary operator with such
conditions. To determine when the computation stops is defined a protocol (see
[19]). When the computation stops a measurement is made to obtain the result
of the computation. Such measurement is subject to Postulate 4.

Equivalently the evolution of a QTM M can be defined by a local transition
function δ of the form (cf. [19] and [20]):

δ: Q× Σ ×Q× Σ × {−1, 0, 1} → C̃, (1)

where Q denotes the set of states of M, Σ denotes the set of input-output
language of M, the set {−1, 0, 1} represents the movements of the head of M
(to the left, no movement and to the right respectively) and C̃ represents the
set of computable complex numbers. Therefore, δ(q, σ, q′, τ, d) = c has the
following interpretation: if M is in the state q and reading the symbol σ then,
with an amplitude probability c, the machine M writes the symbol τ , makes
the movement d and brings itself to state q′.

Defining a configuration of a QTM as a triple C = (q, T, ξ), where q repre-
sents the current state of the machine, T represents the current content of the
tape (T (m) represents the symbol in the position m of the tape) and ξ repre-
sents the current position of the machine, in a similar way as for NDTMs, it
is possible to represent the computation of a QTM by means of a tree. The
nodes of the tree would represent configurations and the edges of the tree would
represent the amplitude probabilities of the transition from one configuration
to another (the root node would represent the initial configuration of the ma-
chine). Differently for the case of NDTMs, where only a path of the tree is
explored in a specific computation, in one computation of a PTM all paths of
the tree are explored simultaneously. Thus a QTM can be simultaneously in
an exponential number of configurations depending on the number of compu-
tation steps (this is the notion of quantum parallelism in the context of QTMs.
The notion of quantum parallelism is an essential notion in quantum comput-
ing). But, because of Postulate 4, when a measurement is made only one of the
configurations is obtained. Then, QTMs have to take advantage of the simulta-
neous configurations before the measurement is performed. The simultaneous
configurations correspond to a superposition state of the machine. Moreover,
simultaneous configurations could be entangled (in the sense of entangled states
above mentioned).

3.2 Quantum Circuits

The model of QCs is a generalization of the classical (boolean) circuits model.
In such generalization, classical logic gates are replaced by quantum gates, which
are described by unitary operators (in accordance with Postulate 2). To describe
the inputs and outputs of the quantum gates a new unit of information called
qubit (by ‘quantum bit’) was defined. The qubit is the quantum analog of the
classical bit. Differently from a bit, which can take the values 0 or 1, a qubit
can take the values | 0 〉, | 1 〉 or any linear combination of such values (being
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{| 0 〉, | 1 〉} a basis for a two-dimensional Hilbert space). Technically, a qubit is
a unitary vector in a two-dimensional Hilbert space. The definition of a qubit
is in accordance with Postulate 1.

A single qubit is not enough to accomplish reasonable computations, so it
is necessary to describe registers of n qubits (n-qubits); this is made using the
tensorial product of the n qubits in accordance with Postulate 3.

A quantum circuit is then an acyclic connection of a finite number of quan-
tum gates. Some times measurements are made at intermediate lavels of the
circuit, and the results are used as inputs to another gate, but such measure-
ments can be replaced by controlled quantum gates, leaving the measurement
to the end of the circuit and obtaining the same result (cf. [8, p. 186] and [17,
p. 89]). Like in the QTMs model, measurements in QCs are also subject to
Postulate 4.

Assuming again the set {| 0 〉, | 1 〉} as a basis for a two-dimensional Hilbert
space, an interesting quantum gate (that operates over a qubit) is the so-called
Hadamard-gate (H). The matrix representation of such gate is:

H =
1√
2

[

1 1
1 −1

]

. (2)

Because unitary operators are linear operators, their transformations can be
described by expressing only their transformations on the basis elements. Then,
the transformations of the Hadamard-gate are:

H :| 0 〉 7→ 1√
2

(| 0 〉 + | 1 〉)

| 1 〉 7→ 1√
2

(| 0 〉 − | 1 〉) . (3)

Usually the Hadamard-gate is used to produce perfect (because the amplitude
probability is the same for all basis states) superposed states applaying this gate
to a basis state. Such quantum gate will be used in the solution of Deutsch’s
and Deutsch-Josza Problems.

As already mentioned, the quantum parallelism is an essential characteris-
tic of quantum computation. In the context of QCs, the quantum parallelism
consists basically of calculating simultaneously a function on all the elements of
a superposition state, taking advantage of the linearity of the quantum gates.
More precisely, for any classical function f : {0, 1}n → {0, 1}m a quantum gate
Uf (that operates over a (n+m)-qubit) can be constructed, such that Uf ac-
complishes the transformation Uf : |x, y 〉 → |x, y⊕ f(x) 〉 (see Figure 2), where
| ·, ∗ 〉 represent the tensorial product | · 〉 ⊗ | ∗ 〉.11 Then, if the input |x 〉 is a
superposition state, by the linearity of Uf , with a single application of Uf we
obtain as output a superposition of the inputs and the respective results of f(x).

11For an explanation of why Uf can be constructed for any classical function f see [21,
Chap. 6].
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| y 〉

|x 〉
Uf

| y ⊕ f(x) 〉

|x 〉

Figure 2: Logic gate for a function f , where | x 〉 and | y 〉 are registers of n and m qubits,
respectively.

Expressed in mathematical terms, for the superposition state:12

|x 〉 =
1√
2n

2n−1
∑

i=0

| i 〉, (4)

the application of Uf gives as a result:

Uf (|x, y 〉) = Uf

(

1√
2n

2n−1
∑

i=0

| i, y 〉
)

=
1√
2n

2n−1
∑

i=0

Uf (| i, y 〉)

=
1√
2n

2n−1
∑

i=0

| i, y ⊕ f(i) 〉. (5)

Note that n qubits allow to work simultaneously over 2n states, therefore we
obtain an exponential grow on parallelism with a linear grow on the number of
qubits. Lamentably, in accordande with Postulate 4, when a measurement is
made only one of the states is obtained. Then, QCs have to take advantage of
the superposition of states before the measurement is performed.

3.3 Deutsch’s and Deutsch-Josza Problems

David Deutsch in his foundational paper [12], to illustrate the concept of quan-
tum parallelism, shows an elementary problem, solvable by a quantum computer
taking advantage of the parallel processing. Such problem is nowadays called the
Deutsch’s problem and consists of determining, for a function f : {0, 1} → {0, 1},
if f is constant or balanced13 with a single evaluation of f . Classically it is clear

12Such superposition state can be obtained by applaying the Hadamard-gate individually
on n qubits | 0 〉, according to the equation:

H| 0 〉 ⊗ H| 0 〉 ⊗ . . . ⊗ H| 0 〉 =
1√
2n

2
n−1
X

i=0

| i 〉.

13A function f of the form f : A → {0, 1} is said to be constant if f(x) = f(y) for all
x, y ∈ A, and is said to be balanced if the number of x ∈ A such that f(x) = 0 is equal to the
number of x ∈ A such that f(x) = 1. Clearly, for A = {0, 1} there are two constant functions
f and two balanced functions f , and no more.
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that we need to evaluate the function f at least twice (in the entry 0 and in the
entry 1), and later compare the results, to determine if f is constant or balanced.
Quantically, exploiting the quantum parallelism, we can simultaneously evalu-
ate f(0) and f(1) by means of a single application of Uf (a quantum operator
that evaluates the function f), and taking advantage of the superposed results
obtained by Uf it is possible to determine if f is constant or balanced. The
original solution of Deutsch to such problem was probabilistic (cf. [12]). The
first deterministic solution to Deutsch’s problem is due to Cleve, Ekert, Macchi-
avello and Mosca in [9]. The quantum circuit presented below (Figure 3), that
solves Deutsch’s problem deterministically, is a little modification of the Cleve,
Ekert, Macchiavello and Mosca solution (cf. [8, p. 33]).

|ψ0 〉 |ψ1 〉 |ψ2 〉 |ψ3 〉

| 1 〉 H

Uf

| 0 〉 H H

Figure 3: Quantum circuit that solves Deutsch’s problem

The states |ψi 〉 that appear in the bottom of the circuit are intended to
describe the computational steps; Thus, the circuit input is:

|ψ0 〉 = | 01 〉. (6)

After applying the first two Hadamard gates we obtain:

|ψ1 〉 = H | 0 〉 ⊗H | 1 〉

=

[

1√
2
(| 0 〉 + | 1 〉)

]

⊗
[

1√
2
(| 0 〉 − | 1 〉)

]

=
1

2
[| 0 〉(| 0 〉 − | 1 〉) + | 1 〉(| 0 〉 − | 1 〉)] . (7)

Applying the Uf gate to |ψ1 〉 state we obtain:

|ψ2 〉 = Uf

(

1

2
[| 0 〉(| 0 〉 − | 1 〉) + | 1 〉(| 0 〉 − | 1 〉)]

)

=
1

2
[| 0 〉(| 0 ⊕ f(0) 〉 − | 1 ⊕ f(0) 〉) + | 1 〉(| 0 ⊕ f(1) 〉 − | 1 ⊕ f(1) 〉)]

=
1

2

[

(−1)f(0)| 0 〉(| 0 〉 − | 1 〉) + (−1)f(1)| 1 〉(| 0 〉 − | 1 〉)
]

. (8)

That is:

|ψ2 〉 =







±
[

1√
2
(| 0 〉 + | 1 〉)

]

⊗
[

1√
2
(| 0 〉 − | 1 〉)

]

if f(0) = f(1),

±
[

1√
2
(| 0 〉 − | 1 〉)

]

⊗
[

1√
2
(| 0 〉 − | 1 〉)

]

if f(0) 6= f(1).
(9)
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Applying the final Hadamard gate we obtain:

|ψ3 〉 =







±| 0 〉
[

1√
2
(| 0 〉 − | 1 〉)

]

if f(0) = f(1),

±| 1 〉
[

1√
2
(| 0 〉 − | 1 〉)

]

if f(0) 6= f(1).
(10)

When a measurement of the first qubit of |ψ3 〉 is made, we obtain 0 (with
probability 1) if f(0) = f(1), i.e., if f is constant, and we obtain 1 (with
probability 1) if f(0) 6= f(1), i.e., if f is balanced. Notice that the algorithm is
deterministic and performs a single application of Uf .

The steps of the above quantum algorithm (made on the QCs model) may
be described as:

1. generate a superposition state using the Hadamard-gate;

2. evaluate simultaneously f(0) and f(1) by Uf , receiving as input the su-
perposition state before generated; and

3. taking advantage of the simultaneous values of f(0) and f(1) obtained,
and of the way in which they interfere, using a Hadamard-gate transforms
the state of the first qubit to | 0 〉 if f is constant or to | 1 〉 if f is balanced.

This simple yet expressive algorithmic problem has been generalized for func-
tions of the form f : {0, 1}n → {0, 1}, with the restriction that f is promise to be
constant or balanced. Such generalized problem is nowadays called the Deutsch-
Jozsa problem, and was first presented in [14]. A QC to solve the Deutsch-Jozsa
problem is a natural generalization of the QC to solve Deutsch’s problem (see
Figure 4, where ⊗n represents the n times application of the tensorial product).
Basically, Hadamard-gates are added to generate the superposition of the n

qubit, and also to take advantage of the superposed results. In this case, when
a measurement of the first n qubits is made at the end of the computation, if
all values obtained are 0 then f is certainly constant, or else (if any obtained
value is 1) f is certainly balanced. The calculations are not presented here (for
more details see [8]).

|ψ0 〉 |ψ1 〉 |ψ2 〉 |ψ3 〉

| 1 〉 H

Uf

| 0 〉⊗n
n

H⊗n
n
H⊗n

Figure 4: Quantum circuit to solve the Deutsch-Jozsa problem.

The above quantum circuit resolves deterministically the Deutsch-Jozsa
problem performing a single application of Uf , while for the classical case it
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is necessary (in the worst case) 2n−1 + 1 applications of f to assure that f is
constant or balanced (f must be calculated with different entrances until finding
two different values or until calculating the half plus one of the values). Because
the complexity of an algorithm is measured by the complexity of the worst case,
the deterministic classical solution to determine if f is constant or balanced
has an exponential complexity, while the quantum algorithm to solve the same
problem has a polynomial complexity.

4 Simulating Quantum Computing via Paracon-

sistent Turing Machines

The idea of joining computational paradigms based on so distinct theories as
quantum mechanics and paraconsistent logics may sound strange at first, since
the corresponding approaches seem to be addressing completely different issues.
And indeed they have different scopes: quantum mechanics treats the laws of
physical microsystems, while paraconsistent logics deals with the possibilities of
reasoning and taking good profit of the contradictions. We will find, however,
good motivations to apply paraconsistent computation into reasoning about
quantum computation.

David Deutsch claims that intuitive explanations of some essential proper-
ties of quantum computation, like quantum parellelism, “places an intolerable
strain on all interpretations of quantum theory other than Everett’s” and affirms
that “Of course the explanations could always be ‘translated’ into the conven-
tional interpretation, but not without entirely losing their explanatory power”
(cf. [12, pags. 1 and 16]). With ‘Everett’s interpretation’ David Deutsch refers
to many-worlds interpretation of quantum mechanics. Actually, there are nu-
merous versions of many-worlds interpretations of quantum mechanics, which
basically consist of variations, reinterpretations or improvements of Everett’s
relative state interpretation (cf. [27]). In many-worlds interpretations, a su-
perposition state is interpreted as the coexistence of the superposed states,
differently than in Copenhagen interpretation (which became the standard view
among many physicists), where a superposition state is interpreted as an au-
thentically indeterminate state (a property of the system is determined only
when a measurement is made. It does not make sense to say that the system is
in a particular but unknown state). Many-worlds interpretations eliminate the
collapse of the wave function14, a feature of the Copenhagen and other ‘collaps-
ing’ interpretations, affirming that when a measurement is made the world is
ramified in multiple equally real worlds (one world for any basis state of the su-
perposition). Many-worlds interpretation is criticized because it is not possible
to access the multiple worlds it predicates, then it is not possible to experi-
mentally test such interpretation. However, Deutsch affirms that it “would be
possible to make a crucial experimental test of the Everett (‘many-universes’)

14The collapse of the wave functions refers to the system collapse when a measurement is
accomplished; such collapse is mentioned in 4.
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interpretation of quantum theory by using a quantum computer” (cf. [12, p.
16]).

Below, adopting the interpretation of quantum computations suggested by
David Deutsch, where superposed states (of a QTM or a QC) are thought as
coexisting states, we show how in some cases the quantum parallellism can be
simulated by what could be called paraconsistent parallelism. The basic idea
is to simulate coexisting quantum states by the multiplicity of states, positions
and symbols on cells allowed on the PTMs computations. With this idea, we
define PTMs to simulate, preserving efficiency, the quantum algorithms that
solve Deutsch’s and Deutsch-Jozsa problems (Section 5).

Remembering the definition of the QTMs model (Section 3.1) and inter-
preting superposed configurations as coexisting configurations, multiple states,
positions and symbols on cells configurations of PTMs can be seen as completely
mixtured15 coexisting configurations. This way, PTMs can be seen as simplified
QTMs, that is, QTMs without amplitude probabilities and where not all coex-
isting configurations can be represented (which is presented in Section 6). In
this sense, the PTMs model is weaker than QTMs model, but stronger than the
classical Turing machines model. However, a possible way to construct another
PTMs model that can simulate all coexisting QTMs configurations is proposed.

5 PTMs to solve Deutsch’s and Deutsch-Jozsa

problems

To simulate the quantum algorithm that solves Deutsch’s problem (Section 3.3)
we define the PTM M with the instructions:

i1 = q1 1 0 q2, i2 = q1 1 1 q2, i3 = q2 0 f(0) q3, i4 = q2 1 f(1) q3,

i5 = q3 0◦ 0 q4, i6 = q3 1◦ 0 q4, i7 = q3 1• 1 q4,

where f(0) and f(1) represent the values of the respective function f (to be
determined constant or balanced).

The computation begins (instant t = 0) with M in the state q1 and in the
position 0 of the tape, having as entry the sequence m = 1. In such situation
M executes simultaneously the instructions i1 and i2, simulating the genera-
tion of the superposed state (step 1 of the quantum algorithm) by writing the
symbols 0 and 1 in the position 0 of the tape, and changing to state q2. On the
instant t = 1, M executes simultaneously the instructions i3 and i4, evaluating
simultaneausly f(0) and f(1), as made by Uf gate in the quantum algorithm,
and changing to state q3. On the instant t = 2, if f is constant then M will be
reading a single symbol (any, 0 or 1); in another case (if f is balanced), M will
be reading both symbols (0 and 1). In both cases, M will be in state q3. Then,
M will execute the instruction i5 or the instruction i6 if f is constant, producing
0 as output, or M will execute the instruction i7 if f is constant, producing 1

15In Section 6, the expression ‘complete mixtured’ will be clear.

16



as output. Simulating the operation of the final Hadamard-gate of the quantum
algorithm. Then, M determines if f is constant or balanced evaluating f in a
single step. Figure 5 represents the computation for the particular case where
f is the constant function f(0) = f(1) = 1.

t = 0

. . . {0} {0} {1} {0} {0} . . .

−2 −1 0 1 2

?

{q1}

t = 1 (I1, I2)

. . . {0} {0} {0, 1} {0} {0} . . .

−2 −1 0 1 2

?

{q2}

t = 2 (I3, I4)

. . . {0} {0} {1} {0} {0} . . .

−2 −1 0 1 2

?

{q3}

t = 3 (I6)

. . . {0} {0} {0} {0} {0} . . .

−2 −1 0 1 2

?

{q4}

Figure 5: Computation of Deutsch’s problem by a PTM for f(0) = f(1) = 1

The generalization of M to solve the Deutsch-Jozsa problem is obtained
changing the entry sequence m = 1 for the entry sequence of n symbols 1;
and changing the instructions i1 and i2, used to simulate the generation of the
superposition state, by the instructions:

i1 = q1 1 0 q2, i2 = q1 1 1 q2, i3 = q1 1 R q1,

i4 = q1 0 L q3, i5 = q3 1 L q3, i6 = q3 0◦ R q4.

in order to simulate the n first Hadamard-gates of the QC that solves the
Deutsch-Jozsa algorithm.16 It is also necessary to change the instructions i3
and i4 of M for the instructions to calculate the function f : {0, 1}n → {0, 1}.
Such instructions will be the instructions i7 to in. The instructions i5, i6 to i7,
to determine if the simultaneous evaluations of f produce a single or multiple
values, continue almost the same ones, but with different names (in+1, in+2 and
in+3 respectively) and changing the state q3 to a state not used in any other
instruction.

In order to be convinced, the reader could construct a PTM with the above
indications for the particular function f : {0, 1}2 → {0, 1}, such that f(x, y) =
x⊕ y, where ⊕ represents the binary addition.

16It is important to take into account that such simulation is made in n steps, coinciding
with the number of quantum gates used in the QC, therefore, preserving efficiency.
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6 Restrictions of PTMs in the simulation of

quantum algorithms

As showed in the previous section, in some cases the quantum parellelism can be
simulated by PTMs, which allow PTMs to solve deterministically and in polino-
mial time some problems that cannot be deterministically solved in polinomial
time by any classical algorithm (the Deutsch-Jozsa problem is an example).
However, the particular model of PTMs here presented does not allow an ad-
equate simulation of the superposition state quantum concept. In particular,
PTMs cannot simulate entangled states as it will be explained below. Entan-
gled states, as already mentioned, are commonly thought as being important for
efficient quantum computation, therefore constructing another model of PTMs
that can simulate entangled states is an interesting work. We finalize this paper
opening a possibility of constructing a new model of PTMs with such features.

To simplify the explanation of why PTMs cannot simulate entangled states,
we will restrict it to a QTM with only two states (q1 and q2) and only two
input-output symbols (s0 and s1), and we will describe the situations of a QTM
and a PTM in only one position of the tape. Under those restrictions, the state
of a QTM could be described by a 2-qubit (a register of two qubits), the first
qubit representing the state of the machine (quantum state | 0 〉 representing
the machine state q1 and quantum state | 1 〉 representing the machine state
q2) and the second qubit representing the reading symbol (quantum state | 0 〉
representing the symbol s0 and quantum state | 1 〉 representing the symbol s1).
Then, an arbitrary state of a QTM can be expressed by the equation:

|ψ 〉 = α0| 00 〉 + α1| 01 〉+ α2| 10 〉+ α3| 11 〉, (11)

where α0, . . . , α3 are complex numbers and | ·∗ 〉 represents the tensorial product
| · 〉 ⊗ | ∗ 〉. Forgetting the amplitude probabilities, a configuration of a QTM
where αi 6= for all 0 ≤ i ≤ 3 could be interpreted as the coexistence of all
possible configurations of the QTM; such configuration can be simulated by the
PTM configuration where the states are q1 and q2 and the reading symbols
are s0 and s1. A configuration of a QTM where α0 6= 0, α1 6= 0 and α2 =
α3 = 0 could be interpreted as the coexistence of two configurations of the
QTM, the configuration where the QTM is in state q1 reading the symbol s0
and the configuration where the QTM is in state q1 reading the symbol s1;
such configuration can be simulated by the PTM configuration where the state
is q1 and the reading symbols are s0 and s1. In the same way other QTM
configurations can be simulated by PTM configurations, but, for the entangled
QTM configuration |ψ 〉 = 1√

2
(| 00 〉+ | 11 〉) what is the PTM configuration that

simulates such state? This entangled QTM configuration could be interpreted
as the coexistence of two configurations of the QTM, the configuration where
the QTM is in state q1 reading the symbol s0 and the configuration where
the QTM is in state q2 reading the symbol s1. When a PTM is in states q1
and q2 reading the symbols s0 and s1, all combinations of these states and
symbols are considered for the execution of instructions (this is the reason for
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the expression ‘completely mixtured’ above), then it is not possible to simulate
a QTM configuration like the one described by the entangled state |ψ 〉.

The complete mixture of the different elements of a PTM configuration
is because in the logic LFI1∗, used in the definition of the model, are valid
the rules of simplification (i.e., ⊢LFI1∗ A ∧ B implies ⊢LFI1∗ A and ⊢LFI1∗ B)
and adjunction (i.e., ⊢LFI1∗ A and ⊢LFI1∗ B implies ⊢LFI1∗ A ∧ B). Then,
if ∆′

LFI1∗(M(n)) ⊢ Q1(t, x) ∧ S0(t, x) for particular values of t and x, and
∆′

LFI1∗(M(n)) ⊢ Q2(t, x) ∧ S1(t, x) for the same values of t and x, it is pos-
sible to deduce also ∆′

LFI1∗(M(n)) ⊢ Q1(t, x) ∧ S1(t, x) and ∆′
LFI1∗(M(n)) ⊢

Q2(t, x) ∧ S0(t, x).
It is possible to construct a new model of PTM following the same method-

ology described in Section 2 but using a non-adjuntive first-order paraconsistent
logic rather than LFI1∗; this way the results of the execution of different ins-
tructions will not be mixtured, and entangled QTM configurations could be
simulated. In this sense, we also show that computational models are logic-
relative.
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