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In this paper, we propose a method for building a two-qubit gate with the Jaynes-
Cummings model (JCM). In our scheme, we construct a qubit from a pair of optical paths
where a photon is running. Generating Knill, Laflamme and Milburn’s nonlinear sign-shift
gate by the JCM, we construct the conditional sign-flip gate, which works with small error
probability in principle. We also discuss two experimental setups for realizing our scheme.
In the first experimental setup, we make use of coherent lights to examine whether or not
our scheme works. In the second experimental setup, an optical loop circuit made out of the
polarizing beam splitter and the Pockels cell takes an important role in the cavity.

Subject Index: 061

§1. Introduction

Since Shor’s quantum algorithm for factoring large integers more efficiently than
classical algorithms and Grover’s efficient amplitude amplification process for quan-
tum states appeared,1),2) experimental realization of quantum computation has been
attracting many physicists’ attention. Quantum computation is a sequence of the
following operations. First, we prepare a superposition of quantum states as an input
with quantum bits (two-state quantum systems, namely qubits). Second, we apply
unitary transformations to these qubits by quantum logic gates. Finally, to obtain an
output, we observe the qubits with appropriate measurement basis vectors. Hence,
to implement a quantum computer, we have to build the qubits and the quantum
logic gates.

In general, we can construct an arbitrary one-qubit gate which applies a unitary
transformation to a single qubit at ease, no matter which physical system we choose
as the qubit. In contrast, implementation of a two-qubit gate is thought to be very
difficult because it has to generate nonlocal quantum correlation (entanglement)
between two local qubits. (Entanglement is regarded as a resource of quantum
information processing.) Moreover, it is shown that we can construct any unitary
transformation applied to an arbitrary number of qubits from the one-qubit gates
and a certain two-qubit gate, such as the controlled-NOT gate and the conditional
sign-flip gate.3) Because of these reasons, implementation of the two-qubit gate is
one of the most important points of quantum computation.

Here we propose how to construct the conditional sign-flip gate with the Jaynes-
Cummings model (JCM), which is a quantum mechanical model describing the in-
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370 H. Azuma

teraction between a single two-level atom and a single electromagnetic field mode.
We also give discussions about experimental setups for realizing our scheme.

Properties of the JCM have been studied theoretically from 1960s and they were
confirmed by the experiment in 1980s,4)–9) so that the JCM is familiar to and well-
studied by the researchers in the field of atomic and optical physics. Furthermore,
these days, the JCM is used for describing the evolution of entanglement between the
atom and the photons by researchers of quantum information science.10),11) [Azuma
investigates the thermal JCM and discusses the lower bound of entanglement be-
tween the two-level atom and thermal photons.12)] Recently, so-called sudden death
effect (disappearance of entanglement of two isolated Jaynes-Cummings atoms in
a finite time) has been studied eagerly.13)–15) This phenomenon is experimentally
demonstrated.16) Thus, we can expect that our proposal grows to be one of the var-
ious applications of the JCM. Moreover, we can expect that our proposal becomes
one of the important candidates for the method of implementing quantum logic, for
example, cold trapped ions interacting with laser beams,17),18) polarized photons in
the cavity quantum electrodynamics system,19) and so on.

As mentioned above, to construct a quantum computer, we have to prepare
qubits and quantum logic gates. In our method, we regard a pair of optical paths
where a photon is running as a qubit. [This construction of a qubit is called the
dual-rail qubit representation.20)] We can apply any one-qubit transformation to
this dual-rail qubit with beam splitters and phase shifters.

Knill, Laflamme and Milburn (KLM) show a unique method of applying the
conditional sign-flip gate to two dual-rail qubits using beam splitters and the nonlin-
ear sign-shift (NS) gate,21) which causes the following transformation to the number
states of photons:

α|0〉P + β|1〉P + γ|2〉P → α|0〉P + β|1〉P − γ|2〉P. (1.1)

(The index P stands for the photons.)
In this paper, we show the method of implementing the NS gate with the JCM.

In KLM’s proposal, the NS gate is constructed only with passive linear optics, and
it works as a nondeterministic gate conditioned on the detection of an auxiliary
photon. (It works with probability 1/4.) Someone may disagree with our proposal
because we are going to introduce a nonlinear device into KLM’s scheme. However,
in our method, the NS gate works with small error probability in principle. Thus,
the author thinks that our method is a practical solution for the simplification of the
whole system of the NS gate.

Gilchrist et al. try to build the NS gate by trapped atoms in an optical cavity.22)

Marchiolli et al. investigate the JCM with an external field and give qualitative
analyses about the entanglement between the atom and the cavity field.23),24) These
studies seem to relate to our scheme. Azuma proposes a method of constructing the
NS gate with one-dimensional Kerr-nonlinear photonic crystals.25) That work aims
to implement the NS gate with simple structures of matters. Reference 25) and our
scheme explained in this paper share an idea of building the NS gate with a practical
method.

In this paper, we concentrate our attention on constructing a single two-qubit

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/3/369/1854864 by guest on 20 August 2022



Quantum Computation with the Jaynes-Cummings Model 371

gate that is realized by nonlinear interaction and works with high fidelity. Re-
cently, tackling the subject in a different way, some researchers in the field of optical
quantum computation have been making new developments towards quantum gates,
which work with some fidelity (not high-performance) and are practical for large
scale computation. Stephens et al. discuss a large scale deterministic optical quan-
tum computer, which utilizes atom-cavity Q-switches and two-dimensional cluster
states.26)

In the latter half of this paper, we discuss two experimental setups for realizing
our schemes. In the second experimental setup, we try to construct a high-Q cavity
where the atom and the cavity-mode prepared as an input for the quantum logic in-
teract with each other efficiently. In this setup, we build an optical loop circuit made
out of the polarizing beam splitter and the Pockels cell. Because construction of the
high quality Q-switch is one of important topics for the optical quantum computa-
tion, many ideas for high-Q cavity are proposed. Birnbaum et al. experimentally
demonstrate photon blockade in an optical cavity with a single trapped atom.27) In
their experiment, the first photon in the cavity forbids the transmission of the second
photon, so that the atom in the cavity interacts with photons one-by-one.

This paper is organized as follows. In §2, we explain the dual-rail qubit represen-
tation and KLM’s scheme. [This section is a short review of Refs. 20) and 21).] In §3,
we explain how to build the NS gate by the JCM. In §4, we discuss an experimental
setup in which we make use of coherent lights to examine whether or not our scheme
works. In §5, we discuss another experimental setup in which an optical loop circuit
made out of a polarizing beam splitter and the Pockels cell takes an important role
in the cavity. In §6, we give brief discussions.

§2. Dual-rail qubits and KLM’s scheme

In this section, we explain the dual-rail qubit representation and KLM’s scheme.
[This section is a short review of Refs. 20) and 21). The facts described in this
section are utilized in Ref. 25), as well.] First, we build a qubit by the dual-rail
qubit representation. First of all, we prepare a pair of optical paths, x1 and x2. Each
optical path can take a superposition of the number states |n〉P for n = 0, 1, 2, ...,
where n is the number of photons on the path. Then, |0〉x1 ⊗ |1〉x2 is a state where
paths x1 and x2 have zero and one photons, respectively, and we regard it as a logical
ket vector |0̄〉x. We regard |1〉x1 ⊗ |0〉x2 as a logical ket vector |1̄〉x, similarly. And
we describe an arbitrary state of a qubit as |φ〉x = α|0̄〉x + β|1̄〉x.

Next, we construct the conditional sign-flip gate with the NS gates defined in
Eq. (1.1). An optical network drawn in Fig. 1 works as the conditional sign-flip gate,
whose operation is given by |j̄〉x ⊗ |k̄〉y → (−1)jk|j̄〉x ⊗ |k̄〉y for j, k ∈ {0, 1}. Let
us confirm the function of this network. In Fig. 1, symbols BS1 and BS2 represent
beam splitters (half-silvered mirrors), which transform the incident number states of
paths a1 and a2 as follows:

|n〉a1|m〉a2 =
1√
n!m!

(a†1)
n(a†2)

m|0〉a1|0〉a2
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372 H. Azuma

Fig. 1. Implementation of the conditional sign-flip gate with the NS gates defined in Eq. (1.1).

Qubits x and y consist of a pair of paths x1 and x2 and a pair of paths y1 and y2, respectively.

Symbols BS1 and BS2 represent beam splitters (half-silvered mirrors). Symbols NS1 and NS2

represent the NS gates. Photons travel from left to right in this network.

→ 1√
n!m!

[ 1√
2
(a†1 + a†2)

]n[ 1√
2
(a†1 − a†2)

]m|0〉a1|0〉a2

for n,m ∈ {0, 1, 2, ...}, (2.1)

where a†1 and a†2 are creation operators of photons on the paths a1 and a2, respec-
tively. We give attention to the fact that BS2 applies an inverse transformation of
BS1. Symbols NS1 and NS2 represent the NS gates.

Putting a superposition of |0̄〉x|0̄〉y, |0̄〉x|1̄〉y and |1̄〉x|0̄〉y into the left side of
the network shown in Fig. 1, the network leaves it untouched and returns it as an
output from the right side of the network. In contrast, if we put a state |1̄〉x|1̄〉y =
|1〉x1|0〉x2|1〉y1|0〉y2 into the network, the following transformation is applied to the
paths x1 and y1:

|1〉x1|1〉y1
BS1−→ 1√

2
(|2〉a1|0〉a2 − |0〉a1|2〉a2)

NS1,NS2−→ − 1√
2
(|2〉a1|0〉a2 − |0〉a1|2〉a2)

BS2−→ −|1〉x1|1〉y1. (2.2)

Thus, we obtain −|1̄〉x|1̄〉y = −|1〉x1|0〉x2|1〉y1|0〉y2 as an output for the input state
|1̄〉x|1̄〉y. Hence, the network shown in Fig. 1 realizes the conditional sign-flip gate.

§3. Construction of the NS gate with the JCM

The JCM is originally designed for describing a spontaneous emission of the
atom. Its Hamiltonian is given by H = �(C1 + C2), C1 = ω[(1/2)σz + a†a], C2 =
κ(σ+a+ σ−a†), where σ± = (1/2)(σx ± iσy) and [a, a†] = 1. The Pauli matrices (σi,
i = x, y, z) are operators of the atom, and a and a† are annihilation and creation
operators of the electromagnetic field, respectively. Here, we assume that κ is a real
constant and the field is resonant with the atom. (The photons’ frequency is equal
to the energy gap of the two-level atom.)
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Quantum Computation with the Jaynes-Cummings Model 373

Because [C1, C2] = 0 and C1 can be diagonalized at ease, we take the following
interaction picture. We write a state vector of the whole system in the Schrödinger
picture as |ψS(t)〉. A state vector in the interaction picture is defined by |ψI(t)〉 =
exp(iC1t)|ψS(t)〉. [We assume |ψI(0)〉 = |ψS(0)〉.] The time evolution of |ψI(t)〉 is
given by |ψI(t)〉 = U(t)|ψI(0)〉, where U(t) = exp(−iC2t).

We define the basis vectors for the states of the atom and the photons as follows.
The ground and excited states of the atom are given by two-component vectors,

|g〉A =
(

0
1

)
, |e〉A =

(
1
0

)
, (3.1)

where we assume that |g〉A and |e〉A are eigenvectors of σz with eigenvalues −1 and 1,
respectively. (The index A stands for the atom.) The number states of the photons
are described as |n〉P (n = 0, 1, 2, ...).

Describing the atom’s Pauli operators by 2×2 matrices, we can write down U(t)
as follows:

U(t) = exp
[
− it

(
0 κa
κa† 0

) ]
=

(
u00 u01

u10 u11

)
, (3.2)

where

u00 = cos(|κ|t
√
a†a+ 1),

u01 = −iκasin(|κ|t
√
a†a)

|κ|
√
a†a

,

u10 = −iκa† sin(|κ|t√a†a+ 1)
|κ|√a†a+ 1

,

u11 = cos(|κ|t
√
a†a). (3.3)

The time evolution of the three initial states, |ψI(0)〉 = |g〉A|0〉P, |g〉A|1〉P and
|g〉A|2〉P are given by

U(t)|g〉A|0〉P = U(t)
(

0
|0〉P

)
=

(
0

|0〉P
)
,

U(t)|g〉A|1〉P = U(t)
(

0
|1〉P

)

=
( −i(κ/|κ|) sin(|κ|t)|0〉P

cos(|κ|t)|1〉P
)
,

U(t)|g〉A|2〉P = U(t)
(

0
|2〉P

)

=
( −i(κ/|κ|) sin(

√
2|κ|t)|1〉P

cos(
√

2|κ|t)|2〉P

)
. (3.4)

We want to obtain the NS gate given by equation (1.1), which flips only the sign
of the coefficient of |2〉P. Thus, we let t = (2m + 1)π/(

√
2|κ|) for m = 0, 1, 2, ...,

and we obtain the following time evolution: |g〉A|0〉P → |g〉A|0〉P, |g〉A|1〉P →
c(m)|e〉A|0〉P+d(m)|g〉A|1〉P, |g〉A|2〉P → −|g〉A|2〉P, where c(m) = −i(κ/|κ|) sin[(2m
+ 1)π/

√
2] and d(m) = cos[(2m+ 1)π/

√
2].
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374 H. Azuma

Table I. The variation of the error probability

|c(m)|2 and the coefficient of |g〉A|1〉P of

the evolved state d(m).

m |c(m)|2 d(m)

0 0.633 −0.606

1 0.138 0.928

2 0.988 0.111

3 0.0247 −0.988

4 0.828 0.414

In Table I, we show values of |c(m)|2
and d(m) for m = 0, 1, 2, 3, 4. We pay
attention to the cases of m = 1 and
m = 3. When we let m = 1, |c(1)|2
takes a small value and d(1) is nearly
equal to unity. This implies that if we
let t = 3π/(

√
2|κ|), we obtain the oper-

ation of the NS gate shown in Eq. (1.1)
with the error probability upper bound
0.138. When we let m = 3, |c(3)|2

is nearly equal to zero and d(m) is nearly equal to −1. This implies that if
we let t = 7π/(

√
2|κ|), we obtain the transformation, α|0〉P + β|1〉P + γ|2〉P →

α|0〉P−β|1〉P−γ|2〉P with the error probability upper bound 0.0247. To flip the sign
of the coefficient of |1〉P after this transformation, we apply a phase shifter to the
photons. This device causes the operation, |n〉P → (−1)n|n〉P, so that we obtain the
transformation, α|0〉P−β|1〉P−γ|2〉P → α|0〉P +β|1〉P−γ|2〉P, and we finally obtain
the transformation of the NS gate shown in equation (1.1) with the error probability
upper bound 0.0247.

From the above method, we obtain the NS gate which works with the intrinsic
error probability 0.138 or 0.0247. Thus, building a quantum circuit with our NS
gate for performing practical and robust quantum computation, we have to utilize
the quantum error correcting codes. The quantum error correction and the fault-
tolerant quantum computing have been discussed eagerly and they are established
theoretically.28)–32)

For example, if we use the Calderbank-Shor-Steane code, which maps one qubit
into seven qubits and corrects an arbitrary one-qubit error in a block of qubits, we
can obtain the threshold of the error probability 1/7(� 0.143) around for each qubit.
Thus, we can overcome the intrinsic error probability of our NS gate in principle.

§4. An experimental setup for examining the function of the NS gate
using coherent lights

In our scheme explained in §3, we have to put the photons’ initial state, α|0〉P +
β|1〉P + γ|2〉P, into the cavity and let it develop into the cavity mode. Then, we
have to let the cavity mode interact with the two-level atom as the JCM, and finally
extract the evolved state of photons from the cavity. In general, it is difficult to
perform these sequential procedures practically in the laboratory.

In this section, we propose an experimental setup in which we make use of
coherent lights to examine whether or not our scheme works. An outline of the
experimental setup is shown in Figs. 2 and 3. (The experimental setup shown in
this section aims at examining whether or not the proposed scheme for the NS gate
really works. The purpose of this experiment is confirming the function of the NS
gate against a certain input state, which is given as a weak coherent state. Thus,
this experiment does not intend to demonstrate the performance of the proposed
NS gate completely. A complete experimental setup for the proposed NS gate is
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Quantum Computation with the Jaynes-Cummings Model 375

Fig. 2. An outline of the experimental setup which examines whether or not the NS gate realized

by our scheme works. A coherent light (a laser beam) is fed to the cavity from its left side and

reflected by mirrors of the cavity many times, so that it becomes a cavity field. The two-level

atom passes the cavity as a slow beam and it causes the Jaynes-Cummings interaction with

the cavity field. Then, the time-evolved state of the cavity field runs away from the cavity to

its right side. [Strictly speaking, the time-evolved state of the cavity field can fly away from

the cavity to its either side (the right side or the left side). However, to let the discussion be

simple, we assume that the time-evolved light goes outside of the cavity from its right side in

this figure.] If the time of flight of the atom through the cavity is given by T = 3π/(
√

2|κ|), we

need not put a phase shifter behind the cavity. On the other hand, if T = 7π/(
√

2|κ|), we have

to put it there. A selective electric field ionization detector distinguishes the atom’s ground

state |g〉A from its excited state |e〉A, so that we can examine whether the NS gate works or

fails. The output state of the NS gate is sent to the path a1 of the beam splitter BS1 in Fig. 3.

discussed in §5.)
The beam splitters (half-silvered mirrors) BS1 and BS2 in Fig. 3 transform the

incident number states of paths a1 and a2 as Eq. (2.1). A symbol PS-θ represents a
phase shifter which causes the operation, |n〉P → einθ|n〉P, where |n〉P is the number
state of the photons. Symbols D1 and D2 represent detectors which count the number
of incident photons, so that D1 and D2 identify differences in the number states of
the photons, |0〉P, |1〉P, |2〉P, ... .

The experimental setup shown in Fig. 2 works as follows. First, we feed a
strong laser beam (a coherent light) to the cavity from its left side. Although the
transmittance of the mirror of the cavity is quite low, a few photons pass the mirror
and they are reflected by the mirrors of both sides of the cavity many times. After
this process, the photons in the cavity develop into a coherent light of the cavity
mode, which is given by

|α〉 = exp(−|α|2/2)
∞∑

n=0

αn

√
n!
|n〉P

= exp(−|α|2/2)
∞∑

n=0

(αa†)n

n!
|0〉P
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376 H. Azuma

Fig. 3. The Mach-Zehnder interferometer that examines the output state of the NS gate outlined

in Fig. 2. Symbols BS1 and BS2 represent beam splitters (half-silvered mirrors). A symbol

PS-θ represents a phase shifter which causes the operation, |n〉P → einθ|n〉P, where |n〉P is the

number state of the photons. Symbols D1 and D2 represent detectors which count the number

of incident photons. The output state of the NS gate in Fig. 2 is injected to the beam splitter

BS1 through the path a1. At the same time, we inject another coherent light into the path a2

of the beam splitter BS1 to let it interfere with the output state of the NS gate in Fig. 2.

= exp(−|α|2/2)eαa† |0〉P, (4.1)

where α is an arbitrary complex number. (Here, we provide that 0! = 1. In the
notation of the coherent states of photons, we omit the index P.) We can assume
that this coherent light is weak, so that |α| < 1. We let the width of the cavity (the
length between the mirrors of the cavity) be equal to a half of the wavelength of the
coherent light. Thus, the cavity mode forms a standing wave.

Second, we put the two-level atom at an anti-node of the standing wave of the
cavity mode. For example, we can capture and locate an ionized atom in a certain
region by a technique of the Paul trap (a quadrupole ion trap).33) We can also
locate the atom in a certain area by injecting a slow atomic beam there. Then, the
coherent light |α〉 interacts with the atom as the JCM. If the time of flight of the
atom is equal to T = 3π/(

√
2|κ|) or T = 7π/(

√
2|κ|), and if we observe |g〉A with the

selective electric field detector in Fig. 2, an approximate NS gate is realized. The
coherent state |α〉 is transformed and the reduction of the state vector is occurred
as follows:

|α〉 = exp(−|α|2/2)
[
|0〉P + α|1〉P +

α2

√
2
|2〉P +O(|α|3)|ϕ(1)〉P

]

−→ |Ψ〉P � exp(−|α|2/2)
[
|0〉P + |d(m)|α|1〉P − α2

√
2
|2〉P

+O(|α|3)|ϕ(1)〉P
]
, (4.2)
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where |ϕ(1)〉P is a normalized superposition of {|3〉P, |4〉P, |5〉P, ...} and m = 1 or 3.
Because d(m) � ±1 as shown in Table I, Eq. (4.2) holds approximately.

Here, we define the following superposition of two coherent states:

|
√

3eiθ0α〉 + |
√

3e−iθ0α〉
= 2 exp

(
− 3

2
|α|2

)[
|0〉P + α|1〉P − α2

√
2
|2〉P +O(|α|3)|ϕ(2)〉P

]
, (4.3)

where sin θ0 =
√

2/3 and cos θ0 =
√

1/3, and |ϕ(2)〉P is a normalized superposition
of {|3〉P, |4〉P, |5〉P, ...}. Looking at Eqs. (4.2) and (4.3), we obtain

|Ψ〉P =
1
2
e|α|

2
(|
√

3eiθ0α〉 + |
√

3e−iθ0α〉) +O(|α|3)|ϕ(3)〉P, (4.4)

where |ϕ(3)〉P is a normalized superposition of {|3〉P, |4〉P, |5〉P, ...}. Thus, we can
regard the output state of the cavity shown in Fig. 2 as (1/2)e|α|2(|√3eiθ0α〉 +
|√3e−iθ0α〉) with the error probability O(|α|3).

Finally, we have to extract the time-evolved state of the cavity field from the
cavity. Although the transmittance of the mirror of the cavity is quite low, the
time-evolved photons can go outside the cavity gradually over a long period of time.
[Strictly speaking, the time-evolved state of the cavity field can fly away from the
cavity to its either side (the right side or the left side). However, to let the discussion
be simple, we assume that the time-evolved light goes outside of the cavity from its
right side in Fig. 2.]

Next, we examine the output state of the NS gate outlined in Fig. 2 with the
Mach-Zehnder interferometer shown in Fig. 3. The interferometer of Fig. 3 works
as follows. First, we inject the output state generated by the NS gate in Fig. 2 into
the path a1 of the beam splitter BS1. At the same time, we inject another coherent
light |α〉a2 into the path a2 of BS1 to let it interfere with the output state of the
NS gate in Fig. 2. Second, we apply the phase shifter PS-θ to the state of the path
a1. Third, we apply the beam splitter BS2 to the paths a1 and a2. Finally, we
count the number of photons on each path, a1 and a2, by the detectors D1 and D2,
respectively.

Here, we follow the transformations applied to states of incident photons in this
interferometer. Before discussing the function of the interferometer in Fig. 3 in detail,
we consider two coherent lights |α〉 and |β〉 injected into the paths a1 and a2 of the
beam splitter BS1, respectively. Remembering the operation of BS1 in Eq. (2.1) and
the definition of the coherent light in Eq. (4.1), we can describe the transformation
caused by the beam splitter BS1 as follows:

|α〉a1|β〉a2 = exp[−(|α|2 + |β|2)/2] exp(αa†1) exp(βa†2)|0〉a1|0〉a2

BS1−→ exp[−(|α|2 + |β|2)/2] exp
[ α√

2
(a†1 + a†2)

]
exp

[ β√
2
(a†1 − a†2)

]
|0〉a1|0〉a2

= exp[−(|α|2 + |β|2)/2] exp
[ 1√

2
(α+ β)a†1

]
|0〉a1

⊗ exp
[ 1√

2
(α− β)a†2

]
|0〉a2
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= | 1√
2
(α+ β)〉a1| 1√

2
(α− β)〉a2. (4.5)

Moreover, we think about how the phase shifter PS-θ works against the coherent
light,

|α〉 PS-θ−→ exp(−|α|2/2)
∞∑

n=0

(αeiθ)n

√
n!

|n〉P

= |eiθα〉. (4.6)

From the above formulas, we can describe the transformation applied to coherent
states in the interferometer as follows:

|α〉a1|β〉a2

BS1−→ | 1√
2
(α+ β)〉a1| 1√

2
(α− β)〉a2

PS-θ−→ | e
iθ

√
2
(α+ β)〉a1| 1√

2
(α− β)〉a2

BS2−→ |1
2
[(eiθ + 1)α+ (eiθ − 1)β]〉a1 ⊗ |1

2
[(eiθ − 1)α+ (eiθ + 1)β]〉a2. (4.7)

Hence, the Mach-Zehnder interferometer in Fig. 3 performs the transformation against
the output state of the cavity |Ψ〉P given by Eqs. (4.2)–(4.4) as follows:

|Ψ〉P|α〉a2 =
1
2
e|α|

2
(|
√

3eiθ0α〉a1 + |
√

3e−iθ0α〉a1)|α〉a2

+O(|α|3)|ϕ(3)〉a1|α〉a2

−→ 1
2
e|α|

2 |1
2
αF1(θ)〉a1|12αF2(θ)〉a2 +

1
2
e|α|

2 |1
2
αF3(θ)〉a1|12αF4(θ)〉a2

+O(|α|3)|ϕ′〉a1,a2, (4.8)

where

F1(θ) = (eiθ + 1)
√

3eiθ0 + (eiθ − 1),
F2(θ) = (eiθ − 1)

√
3eiθ0 + (eiθ + 1),

F3(θ) = (eiθ + 1)
√

3e−iθ0 + (eiθ − 1),
F4(θ) = (eiθ − 1)

√
3e−iθ0 + (eiθ + 1), (4.9)

and |ϕ′〉a1,a2 is a certain normalized state of the paths a1 and a2. In Eq. (4.8), the
term of O(|α|3) implies the error probability.

We plot |F1(θ)| and |F3(θ)| for θ ∈ [0, 2π] in Fig. 4, and |F2(θ)| and |F4(θ)| for
θ ∈ [0, 2π] in Fig. 5. Looking at Figs. 4 and 5, we pay attention to the following
facts. When θ = arccos(1/3), the difference between |F2(θ)| and |F4(θ)| reaches the
maximum value. Then, we obtain |F1(arccos(1/3))| = 2

√
11/3, |F2(arccos(1/3))| =

2/
√

3, |F3(arccos(1/3))| = 2, and |F4(arccos(1/3))| = 2
√

3.
The right-hand side of Eq. (4.8) shows a sign of weak entanglement between the

paths a1 and a2. (This weak entanglement is generated by the photon bunching.)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/3/369/1854864 by guest on 20 August 2022



Quantum Computation with the Jaynes-Cummings Model 379

Fig. 4. Graphs of |F1(θ)| and |F3(θ)| for θ ∈ [0, 2π]. A thick curve represents |F1(θ)| and a thin

curve represents |F3(θ)|. Looking at these graphs, we notice the following facts. When θ =

arccos(−1/3) � 1.911 and θ = 2π − arccos(−1/3) � 4.372, the difference between |F1(θ)| and

|F3(θ)| reaches the maximum value.

Fig. 5. Graphs of |F2(θ)| and |F4(θ)| for θ ∈ [0, 2π]. A thick curve represents |F2(θ)| and a thin

curve represents |F4(θ)|. Looking at these graphs, we notice the following facts. When θ =

arccos(1/3) � 1.231 and θ = 2π − arccos(1/3) � 5.052, the difference between |F2(θ)| and

|F4(θ)| reaches the maximum value.

Thus, if we repeat the experiment in Figs. 2 and 3 many times and store the statistical
data observed with the detectors D1 and D2, we can obtain some information about
the function of the cavity shown in Fig. 2.

Here, for example, we assume α = 1/2 and θ = arccos(1/3). We obtain
|(1/2)αF1(θ)|2 = 11/12 � 0.9167, |(1/2)αF2(θ)|2 = 1/12 � 0.083 33, |(1/2)αF3(θ)|2
= 1/4 = 0.25, and |(1/2)αF4(θ)|2 = 3/4 = 0.75. In this case, the error prob-
ability O(|α|3) is given by 0.125 around. If we perform photon counting against
|(1/2)αF4(θ)〉a2, we obtain the Poisson distribution whose mean is given by
|(1/2)αF4(θ)|2 = 0.75. If we perform photon counting against |(1/2)αF2(θ)〉a2, we
obtain the Poisson distribution whose mean is given by |(1/2)αF2(θ)|2 = 1/12 �
0.083 33. We plot these distribution functions in Fig. 6.

If we detect one photon by the detector D2, we become aware of reduction of the
state vector on the path a1 to |(1/2)αF3(θ)〉a1 with a comparatively high probability.
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Fig. 6. Graphs of the Poisson distribution functions, P (n, μ) = e−μμn/n! for n = 0, 1, 2, 3 with μ =

0.75 and μ � 0.083 33. (The variable μ represents a mean.) A solid line represents P (n, 0.75) and

a broken line represents P (n, 0.083 33). We note that P (1, 0.75) � 0.3543 and P (1, 0.083 33) �
0.076 67. We also note that P (2, 0.75) � 0.1329 and P (2, 0.083 33) � 0.003 194.

[We describe the Poisson distribution with a mean μ as

P (n, μ) = e−μμ
n

n!
for n = 0, 1, 2, ... . (4.10)

Because P (1, 0.75) � 0.3543, P (1, 0.083 33) � 0.076 67 and P (1, 0.75)
> P (1, 0.083 33), we can expect that the detection of one photon with D2 indi-
cates the distribution of |(1/2)αF4(θ)〉a2, where |(1/2)αF4(θ)|2 = 0.75. Hence, we
can expect that this reduction of the state vector occurs with comparatively high
probability. The similar things happen when we detect two photons by the detector
D2.]

In this case, the probability that the detector D2 observes one photon is given
by P (1, 0.75)(e|α|2/2)2 � 0.1460 around. This probability is comparable with the
error probability O(|α|3) ∼ 0.125, so that we need careful data analysis. However,
repeating the experiment many times and storing the statistical data which is a set of
events conditioned on the detection of |1〉a2 (or |2〉a2) by the detector D2, we obtain
the Poisson distribution that comes from the coherent state |(1/2)αF3(θ)〉a1 with the
error probability O(|α|3). [Because |(1/2)αF3(θ)|2 = 0.25 is smaller than unity, we
have to store huge amounts of data of experiments for detecting |(1/2)αF3(θ)〉a1.]

Hence, we can experimentally examine whether or not the NS gate realized in
Fig. 2 works with the interferometer shown in Fig. 3.

§5. An experimental setup for constructing the NS gate
using an optical loop circuit

In §4, we discuss the NS gate which only accepts the coherent state as an input.
However, to construct the genuine NS gate, we have to put an arbitrary superposition
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Fig. 7. The polarizing beam splitter (PBS). It has two paths a and b.

of {|0〉P, |1〉P, |2〉P} into the cavity, let it interact with the two-level atom, and extract
the time-evolved state of the photons from the cavity. In this section, we try to show
another experimental setup for carrying out these procedures. We make an optical
loop circuit out of a polarizing beam splitter and the Pockels cell in the cavity and
we let an arbitrary superposition of {|0〉P, |1〉P, |2〉P} develop into the cavity mode.
In this method, for building the optical loop, the polarization degree of freedom of
photons plays an important role. [Kwiat et al. construct an optical loop circuit from
the polarizing beam splitters and the Pockels cells actually in their experiment.34)]

First, we introduce the polarization degree of freedom to photons. We describe
photons’ state vectors as follows: {|n〉P|V 〉P, |n〉P|H〉P : n = 0, 1, 2, ...}, where |V 〉P
and |H〉P imply the photons’ vertical and horizontal polarization states, respectively.

Second, we prepare two kinds of devices which apply unitary transformations to
photons’ polarization states: a polarizing beam splitter and the Pockels cell. (We
let PBS and PC be the symbols of the polarizing beam splitter and the Pockels cell,
respectively.)

We draw the PBS in Fig. 7. The PBS splits an unpolarized light into beams of
differing polarization (two orthogonal linearly polarized states, that is, vertical and
horizontal polarization states). For example, we can utilize the Wollaston prism as
the PBS. Writing the PBS’s incoming and outgoing paths a and b as states,

|a〉 =
(

1
0

)
, |b〉 =

(
0
1

)
, (5.1)

we can describe a unitary transformation that the PBS applies to polarized photons
as

UPBS =
( |V 〉〈V | |H〉〈H|

|H〉〈H| |V 〉〈V |
)
. (5.2)

(From now on, to let the notation be simple, we omit the index P from |V 〉P and
|H〉P.) For instance, if we inject (cV |V 〉 + cH |H〉) into the PBS from the path a,
cV |V 〉 and cH |H〉 are separated and run away from the PBS through the paths a
and b, respectively.

We draw the PC in Fig. 8. The PC is a voltage-controlled wave plate. If we
apply the voltage to the PC (switching on), polarized photons’ states injected into
the PC are transformed as |V 〉 → |H〉 and |H〉 → |V 〉, and they run away from the
PC. If we do not apply the voltage to the PC (switching off), the PC leaves injected
polarized photons’ states untouched and returns them as outputs.
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Fig. 8. The Pockels cell (PC). It has only one path.

Fig. 9. An optical circuit built in the cavity. In this case, the PC is switched on. The initially

polarized photons |H〉 is put into PBS from its upper side, and the PBS reflects |H〉 to its left

side. The PC transforms the incoming |H〉 into the outgoing |V 〉. Then, the mirror on the left

side of the cavity reflects |V 〉.

Third, we construct an optical circuit in the cavity as shown in Figs. 9, 10 and
11. We inject the photons’ wave function initialized as |H〉 into the PBS and it is
reflected by the PBS as shown in Fig. 9. At this moment, we switch on the PC,
so that the photons’ state |H〉 is transformed into |V 〉. Then, |V 〉 flies against the
mirror of the cavity in the left side and it is reflected by the mirror. Next moment,
we switch off the PC as shown in Fig. 10. Because the photons’ state |V 〉 passes
across the PBS, it is reflected by the mirrors on both the sides of the cavity and
it runs along an optical closed loop. While the photons in the state of |V 〉 run
along this loop many times, they develop into the cavity mode. This cavity mode
causes the Jaynes-Cummings interaction with the two-level atom which is injected
into the cavity as a slow atomic beam. After a period for constructing the NS gate
[T = 3π/(

√
2|κ|) or 7π/(

√
2|κ|)], we switch on the PC as shown in Fig. 11. Because

the PC transforms the photons’ state |V 〉 reflected by the mirror on the left side of
the cavity into |H〉, the photons are reflected by the PBS and they run away from
the cavity.

In general, the pulsed photons injected into the NS gate are given as a wave
packet. Its shape depends on a certain dispersion relation. Thus, the wavelength
(the frequency) of the photons is given by a probability distribution. When the wave
packet is fed into the cavity, the photons, which make a dominant contribution to the
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Fig. 10. An optical circuit built in the cavity. In this case, the PC is switched off. Because the

mirrors on both the sides of the cavity reflect |V 〉, the optical circuit forms a closed loop. The

photons polarized as |V 〉 fly along the closed loop many times, and they become a cavity field.

In the area where the atom is located, the cavity field causes the Jaynes-Cummings interaction

with the atom.

Fig. 11. An optical circuit built in the cavity. In this case, the PC is switched on. After reflected

by the mirror on the left side of the cavity, |V 〉 flies against the PC and the PC transforms |V 〉
into |H〉. And then, the polarized photons’ state |H〉 is reflected by the PBS to its upper side,

so that the photons run away from the cavity.

probability distribution of wavelengths, gradually change into a single cavity mode
and they interact with the atom as the JCM. (Describing the wave packet as a sum
of the Fourier components, the photons with the mean wavelength, which make a
major contribution to the probability distribution, evolve into a single cavity mode.
Strictly speaking, the pulsed photons contain various components of wavelengths.
Thus, some components that are far from the mean value cause minor nonlinear
effects to the evolution of a cavity mode. However, such a rigorous treatment is
beyond the purpose of this paper, so that we neglect these effects for simplicity.)

The above is the outline for constructing the cavity mode with an optical circuit.
From the theoretical viewpoint, our optical circuit works in principle. However,
examining each optical device in the circuit, we notice some problems for us to
perform this experiment actually. Here, we try to go into details about each device.

To construct the closed loop, we have to turn on and off the Pockels cell a few
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times at short intervals. At the present time, the Pockels cell that has a 2.5× 10−10

s time response has been developed. In the experiment of the JCM with the cavity
quantum electrodynamics system carried out by Rempe et al.,9) 63p3/2 ↔ 61d5/2

transition of 85Rb (f = 21 456.0×106 Hz, λ = 1.397 24×10−2 m) is made use of for
the two-level atom, and their cavity gives the coupling constant |κ| � (1/70) × 106

s−1. If we construct the optical loop circuit in the cavity whose width is given by
L = λ/2 = 6.986 × 10−3 m, the time response required to the PC is estimated at
L/c = 2.330 × 10−11 s, where c = 2.998 × 108 ms−1 is a velocity of the light. Thus,
at present, we cannot prepare such an ultra-fast Pockels cell which is useful in our
experiment. If we construct the cavity whose coupling constant is similar to that in
Rempe et al.’s experiment, the period of the time evolution for the JCM is estimated
to be T = 3π/(

√
2|κ|) � 4.67× 10−4 s for m = 1 and T = 7π/(

√
2|κ|) � 1.09× 10−3

s for m = 3.
In Fig. 10, the photons pass across the PC and the PBS. At present, the rate

of the insertion loss of the PC is given by 0.04 around. In contrast, the rate of the
insertion loss of the PBS is lower than 0.01. Thus, in our optical loop, cavity loss
due to dissipative effect in the Pockels cell is very serious.

Finally, we have to point out a fact that to make a small optical circuit in the
cavity is difficult even with the latest technology. If we build the optical circuit in
the cavity, its size may be around a few centimeters. (The size of available optical
devices on the market is around a few centimeters.) The coupling constant |κ| is
proportional to

√
ω/L3, where L3 is the volume of the cavity. Hence, to make a

small cavity is favourable to us. In Rempe et al.’s experimental setup, photons’
wavelength is given by λ = 1.397 24× 10−2 m (f = 21 456.0× 106 Hz).9) Thus, the
length between mirrors in the cavity has to be equal to λ/2 = 6.986 × 10−3 m.

§6. Discussion

In this paper, we discuss how to build Knill, Laflamme and Milburn’s nonlin-
ear sign-shift gate with the Jaynes-Cummings model. We also discuss the experi-
mental setups for our scheme. The first one of our experimental setups seems to
be practical and easy to carry out in the laboratory because it utilizes coherent
lights. In contrast, the second one of our experimental setups seems to be difficult
to demonstrate actually because it requires optical devices that have very excellent
performance. However, because optical devices’ performance is improving rapidly,
the author thinks that our second experimental setup will be demonstrated in the
near future.

As we mentioned in §1, although the Jaynes-Cummings model was born about
forty years ago, it is studied from the new viewpoint by the researchers of the quan-
tum information science.10)–16),22)–24) The author thinks that we can find many new
applications from the Jaynes-Cummings model.
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14) M. Yönaç, T. Yu and J. H. Eberly, J. of Phys. B 39 (2006), S621.
15) T. Yu and J. H. Eberly, Phys. Rev. Lett. 97 (2006), 140403.
16) M. P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S. P. Walborn, P. H. S. Ribeiro and

L. Davidovich, Science 316 (2007), 579.
17) J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74 (1995), 4091.
18) C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano and D. J. Wineland, Phys. Rev.

Lett. 75 (1995), 4714.
19) Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi and H. J. Kimble, Phys. Rev. Lett.

75 (1995), 4710.
20) I. L. Chuang and Y. Yamamoto, Phys. Rev. A 52 (1995), 3489.
21) E. Knill, R. Laflamme and G. J. Milburn, Nature 409 (2001), 46.
22) A. Gilchrist, G. J. Milburn, W. J. Munro and K. Nemoto, quant-ph/0305167.
23) M. A. Marchiolli, R. J. Missori and J. A. Roversi, J. of Phys. A 36 (2003), 12275.
24) M. A. Marchiolli, J. Mod. Opt. 53 (2006), 2733.
25) H. Azuma, J. of Phys. D 41 (2008), 025102.
26) A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro,

J. L. O’Brien, K. Nemoto and L. C. L. Hollenberg, Phys. Rev. A 78 (2008), 032318.
27) K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup and H. J. Kimble,

Nature 436 (2005), 87.
28) P. W. Shor, Phys. Rev. A 52 (1995), R2493.
29) A. M. Steane, Phys. Rev. Lett. 77 (1996), 793.
30) A. R. Calderbank and P. W. Shor, Phys. Rev. A 54 (1996), 1098.
31) P. W. Shor, Proc. 37th Annual Symposium on Foundations of Computer Science (FOCS

’96), Burlington, Vermont, USA, 1996, p. 56; quant-ph/9605011.
32) D. P. DiVincenzo and P. W. Shor, Phys. Rev. Lett. 77 (1996), 3260.
33) M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano and D. J. Wineland, Phys.

Rev. A 45 (1992), 6493.
34) P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter and

A. Zeilinger, Phys. Rev. Lett. 83 (1999), 4725.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/3/369/1854864 by guest on 20 August 2022


