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Photonics is a promising platform for demonstrating a quantum computational advantage (QCA)
by outperforming the most powerful classical supercomputers on a well-defined computational task.
Despite this promise, existing proposals and demonstrations face challenges. Experimentally, current
implementations of Gaussian boson sampling (GBS) lack programmability or have prohibitive loss
rates. Theoretically, there is a comparative lack of rigorous evidence for the classical hardness of
GBS. In this work, we make progress in improving both the theoretical evidence and experimental
prospects. We provide evidence for the hardness of GBS, comparable to the strongest theoretical
proposals for QCA. We also propose a new QCA architecture we call high-dimensional GBS, which is
programmable and can be implemented with low loss using few optical components. We show that
particular algorithms for simulating GBS are outperformed by high-dimensional GBS experiments
at modest system sizes. This work thus opens the path to demonstrating QCA with programmable
photonic processors.

INTRODUCTION

We are arriving at an exciting era for quantum com-
puting in which quantum experiments are pushing the
limits of what is efficiently computable by the most pow-
erful classical supercomputers. The first major goal for
this era is the demonstration of a scalable quantum ad-
vantage or quantum computational advantage (QCA) (also
termed “quantum computational supremacy”) over clas-
sical computers. QCA is important as a probe of the
foundations of computer science, where it can be seen as
an experimental violation of the extended Church-Turing
thesis, and it also serves as an important benchmarking
tool for comparing near-term experiments on different
platforms in a fair and consistent manner. The recent
groundbreaking demonstrations of QCA [1, 2] constitute
the first significant experimental evidence against the
extended Church-Turing thesis.

Notwithstanding, multiple potential loopholes have
been pointed out [3–5]. Indeed, QCA will not be marked
by a single isolated experiment but rather will be es-
tablished by gradually improving and scaling up “high
complexity” experiments run over the course of many
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years, which improving classical algorithms will try to
simulate. Our confidence that we have arrived in this
new era will grow as multiple experiments, performed
in different physical architectures, independently reach
this conclusion in a comparable fashion. In this way, the
goal may be seen as being analogous to Bell inequality
violations, which were originally conducted in landmark
experiments starting in the 1970s performed on a variety
of different platforms but only much later were loopholes
closed.

In the same vein, theoretical results about QCA justify
the classical hardness of simulating an experiment in the
realm of asymptotically large system sizes. In order to
interpret conclusions from experiments performed at a
fixed system size, we should also consider the concrete
cost of simulating these finite-size experiments using
known algorithms. The two lines of inquiry are com-
plementary to each other and support each other in a
claim that any experiment is likely impossible to feasibly
simulate with current hardware.

Among different approaches to demonstrating QCA [1,
2, 6, 7], photonics provides a promising path as it enables
room-temperature operation, fast gate speeds and re-
markable potential for scalability [8, 9]. Arguably, the
most feasible approach to demonstrating QCA with pho-
tonics is to perform the Gaussian boson sampling (GBS)
protocol [10, 11]. Indeed, this protocol is at the heart
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of the recent QCA demonstration performed by a team
from USTC [2], which employed a GBS device with 100
modes and an average of around 45 photons. However,
GBS has several important limitations. On the experi-
mental side, current implementations of GBS either lack
programmability [2] or have high loss rates, which could
render the system classically simulable [12, 13]. Also,
from a theoretical standpoint, there is a comparative
lack of complexity-theoretic evidence for the hardness of
GBS [5] and an understanding of the classical runtime of
concrete algorithms to simulate GBS instances.

In this work, we aim to address these challenges. We
close important theoretical loopholes in the hardness ar-
gument for GBS and provide evidence for the hardness
of classically simulating GBS even in the presence of
loss. We moreover propose a new, programmable archi-
tecture for GBS that promises better robustness to loss
in a near-term experiment and an asymptotic quantum
speedup over classical algorithms. In addition, our pro-
posed architecture is designed so that it is outside of
known regimes where current algorithms can simulate
finite-size GBS instances in feasible time, as we show
through numerical benchmarking.

We first address the open theoretical questions about
GBS, namely, hardness in the regime with little overall
noise in the form of optical loss. More specifically, to
provide complexity-theoretic evidence for the hardness
of approximately simulating GBS, we prove average-case
hardness of computing output probabilities in the noise-
free case, formulate the so-called ‘hiding property’ [7] for
GBS in terms of a random-matrix theory conjecture and
provide analytical and numerical evidence for this con-
jecture. These results bring GBS to the level of evidence
shared by other QCA proposals such as random circuit
sampling (RCS) and conventional boson sampling (see e.g.,
Refs. [6, 7, 14]) up to a mild conjecture in random matrix
theory. We then show that average-case hardness of com-
puting output probabilities still holds in a regime of high
loss rates, building on recent results [15], and discuss
the implications of this result on the noise-regimes in
which one may still expect GBS to be hard to simulate on
a classical computer. These results bolster the evidence
for QCA in the USTC experiment and also any future
GBS experiments.

Given these theoretical results, we then address the
programmability versus low-loss tradeoff in current ar-
chitectures. To this end, we introduce a new architecture,
high-dimensional GBS, using a time-domain approach.
This architecture can be implemented programmably
with low overall loss while at the same time being hard
to simulate for the known classical simulation algorithms.
The hardness of this architecture is borne out by the hard-
ness of computing output probabilities for the lossy, high-
dimensional GBS setup. These results provide evidence
of classical hardness for asymptotic system sizes. In the
realm of finite system sizes, we take care to avoid regimes
where the experiment can be tractably simulated [12, 16],
such as when the linear-optical network has limited con-

nectivity (such as one-dimensional network topology)
or when the system is too lossy. Our proposed high-
dimensional GBS architecture voids these algorithms by
taking advantage of the enhanced connectivity available
in higher dimensions than one. In this realm, efficient al-
gorithms can be successful in a variety of regimes [12, 16]
such as when the linear-optical network has limited con-
nectivity (such as one-dimensional network topology) or
when the system is too lossy.

To this end, we perform benchmarking simulations
to estimate the cost of high-dimensional GBS against
state-of-the-art algorithms for simulating GBS and for
simulating high-dimensional quantum many-body sys-
tems [17, 18]. These simulations give evidence that clas-
sically intractable instances of high-dimensional GBS can
be built in the lab with a small number of optical com-
ponents. These advantages make high-dimensional GBS
an ideal near-term architecture for demonstrating QCA
with a programmable photonic device.

Thus, by addressing the above-mentioned shortcom-
ings of GBS from the theoretical and experimental per-
spectives and understanding the limits of its classical
simulability through both asymptotic analysis and finite-
size benchmarking, this work paves the way toward
more ‘loophole-free’ demonstrations of QCA with a pro-
grammable photonic quantum device.

Hardness of approximate GBS

We begin by reviewing and strengthening the hard-
ness argument for the task of simulating GBS as intro-
duced in Refs. [10, 11]. We first introduce the model
of Gaussian boson sampling and then examine the evi-
dence for the hardness of approximate boson sampling.
Two properties are required for establishing complexity-
theoretic hardness of sampling using the standard QCA
arguments, namely hiding and average-case hardness of
approximating probabilities. Here, we strengthen the re-
sults of Refs. [10, 11] by providing strong evidence for
these properties in GBS. Specifically, we reduce the hid-
ing property to a highly plausible conjecture in random
matrix theory, for which we provide analytical and nu-
merical evidence. Additionally, we provide evidence for
approximate average-case hardness by proving approx-
imate worst-case hardness and near-exact average-case
hardness of computing the output probabilities. Thereby,
up to a random-matrix-theory conjecture, we bring the
hardness argument for GBS to the same standard as that
of boson sampling. We then extend the latter results to
the case of computing output probabilities of noisy GBS,
which can be well-motivated when the noise model de-
scribing the experimental data is trusted. These results
show that the evidence of a quantum “signal” remains
in the output distribution even in the presence of noise.
Finally, we discuss the implications of these results on the
complexity of simulating GBS in the presence of noise.
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Recap: Gaussian boson sampling

GBS is the computational task of sampling the pho-
ton number statistics of a Gaussian state. Obtaining a
sample from a typical GBS experiment involves the fol-
lowing steps. First, a general Gaussian state is prepared
at the input, often taken to be M single-mode squeezed
vacuum states. These states are then interfered on an
M-mode linear/optical interferometer containing beam-
splitters and phase shifters. Finally, the Gaussian state
at the output of the interferometer is impinged on M
photon-number-resolving (PNR) detectors. The resulting
pattern of photon number outcomes from the detectors
is the required sample. Because single-mode squeezed
states can be generated and interfered deterministically
at room temperatures with high rates, GBS is experimen-
tally feasible on large scales already today, as evidenced
by the recent experiment from USTC [2].

In more detail, a typical GBS experiment involves in-
terfering M single-mode squeezed vacuum states with
squeezing parameters {ri}M

i=1 at an interferometer speci-
fied by an M×M linear-optical unitary matrix U. Note
that some of the modes can be optionally prepared in the
vacuum state, and these can be specified by setting their
squeezing parameter to zero.

The probability of detecting n1 photons in the first
mode, n2 in the second, and so on, denoted by n =
(n1, . . . , nM), is

Pr(n) =
|Haf(An,n)|2

∏M
j=1 nj! cosh rj

.

Here, A = AT = U
(
⊕M

i=1 tanh(ri)
)

UT is the so-called
adjacency matrix of the (pure, zero-displacement) Gaus-
sian state [10], and An,n is the symmetric matrix of size
N = ∑M

i=1 ni (i.e. the total photon number) obtained by
repeating the ith column and row of A a total of ni times.
In particular, if ni = 0 then the corresponding row and
column is deleted. Finally, the Hafnian Haf(·) of a sym-
metric N × N matrix B is given by

Haf(B) = ∑
µ∈PMP(N)

∏
(i,j)∈µ

Bi,j,

where PMP(N) is the set of perfect matching permu-
tations of N elements for even N, i.e., permutations
µ : [N] → [N] satisfying µ(2k − 1) < µ(2k), µ(2k −
1) < µ(2k + 1). Equivalently, this is the set of all
N!/(2N/2(N/2)!) = (N − 1)!! ways of partitioning the
set {1, 2, . . . , N} into N/2 subsets of size 2. The Hafnian
of a 0× 0 matrix is defined to be 1 and that of an odd-
size matrix is defined to be 0, which is a manifestation
of the fact that squeezed states are supported on even
photon number states only. By allowing for arbitrary
linear-optical unitaries and arbitrary squeezing parame-
ters on each squeezer, an arbitrary symmetric matrix A
can be encoded (up to scaling pre-factors) into a Gaussian
state. For generic instances, the best-known algorithms

to calculate Hafnians have a runtime scaling as N32N/2

where N is the size of the matrix [19].

Recap: Approximate sampling hardness of boson sampling

Before we state our technical results, we review the
main steps of the hardness argument for conventional
boson sampling as given by Aaronson and Arkhipov [7].
These steps provide context for the hardness results of
GBS that we present below.

In a standard boson sampling experiment, instead of
interfering single-mode squeezed states at an interferom-
eter as done in Gaussian boson sampling, an N-photon
M-mode Fock state is prepared and evolved under a
linear-optical unitary and then measured in the photon-
number basis. The boson sampling task is to, given a
linear-optical unitary as an input, output samples from
the output distribution of a corresponding boson sam-
pling experiment.

Aaronson and Arkhipov showed that it is not possible
for a classical computer to efficiently do this task un-
less certain complexity-theoretic conjectures are false. In
particular, they reduced the task of approximating the
probabilities of outputs to the task of efficient sampling,
making use of an approximate counting algorithm due to
Stockmeyer [20]. This probability estimation can in turn
be related to approximating the permanent of a certain
sub-matrix of the linear-optical unitary, which is provably
hard for a class known as #P [21]. While the Stockmeyer
reduction is not efficient, the existence of a classical ef-
ficient sampling algorithm would imply that #P-hard
problems could be solved using fewer computational
resources than expected, amounting to an argument by
contradiction.

The main difficulty in the hardness argument for boson
sampling arises when extending it to the setting of approx-
imate sampling. Here, the task is to sample from from any
distribution that is within constant-size total-variation
distance from a given ideal boson sampling distribution.
This additional constraint takes into account that actual
devices are bound to achieve only some finite and typi-
cally additive precision. In this setting, one may therefore
argue for a separation of computational power between
quantum and classical devices.

Given this constraint, the hardness argument for the
task of approximate sampling must take into account
that the constant error budget on the distribution can be
distributed arbitrarily across all outcome probabilities. In
particular, this means that any specific outcome proba-
bility of the actually sampled distribution might have a
large (constant-size) error when compared to the ideal
distribution, which would imply that the sampler can-
not be used to estimate the true outcome probabilities.
To get around this issue, the argument is extended to
random problem instances: via a property of the dis-
tribution over problem instances called hiding, one can
then translate typical outcomes of fixed instances to fixed
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outcomes of random instances. This enforces that with
high probability, the overall constant error budget for
the entire distribution is manifest in small errors on the
individual probabilities that are proportional to the in-
verse size of the sample space, that is, ∝ 1/(M

N). Techni-
cally, in standard boson sampling, showing the hiding
property boils down to showing that the distribution of
any small enough sub-matrix of a Haar-random unitary
is approximately (in total-variation distance) an entry-
wise complex normal distribution. This implies that all
collision-free outcomes are (approximately) equally dis-
tributed. In particular, Aaronson and Arkhipov show
that when M ∈ ω(N5), we can “hide” a random Gaus-
sian matrix in a small enough sub-matrix of the large
Haar-random unitary by an appropriate procedure [7]
because all of these sub-matrices are indistinguishable
from random Gaussian matrices.

For the approximate sampling task to remain compu-
tationally intractable, it remains to show that estimating
the outcome probabilities up to inverse-exponentially
small error is #P-hard for any large-enough fraction of the
problem instances—a property called approximate average-
case hardness. More precisely, given a random problem
instance, approximating the probability of a given out-
come must be #P-hard with high probability. As evidence
toward this property, it has been shown that exactly com-
puting those output probabilities is in fact #P-hard on
average (and this was a motivation for boson sampling
in the first place), and it is known that estimating them
to the required robustness level is worst-case hard. How-
ever, the hardness of computing those probabilities to
a sufficiently large robustness level on average is still
unknown.

We now state our results concerning the hardness of
general GBS, followed by our proposal for an architecture
to perform high-dimensional GBS.

RESULTS

Hiding for arbitrarily many squeezers in GBS

As mentioned above, the property of hiding in boson
sampling can be translated into a property of the distri-
bution of sub-matrices of random linear-optical unitaries
chosen from some distribution. We will now show that a
similar property about the distributions of sub-matrices
occurring in the evaluation of outcome probabilities also
holds in GBS, provided a plausible random-matrix theory
conjecture holds. We focus on the paradigmatic setting
in which the linear-optical unitary is drawn from the
Haar measure, and we fix the input state to be such that
the first K out of M modes are prepared in single-mode
squeezed states with identical squeezing parameter r,
and the remaining M − K modes are prepared in the
vacuum state. Furthermore, we restrict to collision-free
outcomes n for which ni ∈ {0, 1}, giving rise to a total

photon number N = ∑M
j=1 nj. The probability of obtain-

ing such an outcome n can be written as

Pr(n) =
tanhN(r)
coshK(r)

∣∣∣∣Haf
[(

UIKUT
)

n,n

]∣∣∣∣2 .

Here IK = 1K ⊕ 0M−K denotes the matrix where 1K
is a K-dimensional identity matrix, 0M−K is an M − K-
dimensional all-zero matrix, and as before, the notation
An stands for the sub-matrix of A corresponding to the
entries of n (see below Eq. (1)). The task of estimating out-
put probabilities of GBS hence corresponds to estimating
|Haf((UIKUT)n,n)|

2.
To show the GBS hiding property, we need to char-

acterize the distribution of matrices (UIKUT)n,n—of
which the Hafnian is computed—as induced by the Haar-
random choice of U and depending on the scaling rela-
tions between K, N, M. To ensure that for every choice of
K we can restrict to collision-free outcomes, we choose
the squeezing parameter r such that the average photon
number E[N] = K · sinh2 r ∈ o(

√
M) [7]. This condition

ensures that the collision-free outcomes dominate the
probability weight.

Here, we formulate the hiding property in GBS in
terms of random matrix theory and provide strong nu-
merical and analytical evidence that it holds regardless
of the fraction of squeezed input modes so long as the
collision-free condition is satisfied. Observe that the ma-
trix (UIKUT)n,n = Un,1K UT

n,1K
can be expressed in terms

of the sub-matrix Un,1K of U obtained by choosing rows
according to n and the first K columns. To show the
hiding property, we need to relate this distribution over
matrices to the distribution of the symmetric product
XXT of a complex Gaussian N × K matrix X with mean
0 and variance 1/M, denoted as X ∼ GN,K(0, 1/M). We
provide analytical and numerical evidence for the conjec-
ture that these distributions are indistinguishable for any
number of squeezers K satisfying N ≤ K ≤ M.

Conjecture 1 (Hiding in GBS (informal)). For any K such
that N ≤ K ≤ M and N ∈ o(

√
M), the distribution of

the symmetric product Un,1K UT
n,1k

of sub-matrices of a Haar-
random U ∈ U(M) closely approximates the distribution
of the symmetric product XXT of a Gaussian matrix X ∼
GN,K(0, 1/M) in total-variation distance.

We provide a formal statement of the conjecture in the
Supplementary Material. There, we also discuss regimes
in which the conjecture is known to be partially true
[7, 22] and provide numerical evidence for it. Proving
this conjecture is an open research problem in random
matrix theory.

Conjecture 1 characterizes the distribution of the sym-
metric product of N × K sub-matrices of Haar-random
unitaries. In turn, the Hafnian of such symmetric prod-
ucts determines the output distribution of GBS. While in
standard boson sampling, the hiding property amounts
to hiding a small N × N Gaussian matrix in a large
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M×M Haar-random unitary matrix, in GBS it amounts
to hiding a small N × N symmetric Gaussian matrix
XXT in a large symmetric unitary matrix UIKUT for any
K ≥ N. This means that any particular sub-matrix can-
not be distinguished from any other such sub-matrix of
the same size, enforcing the constant error budget to be
roughly equally distributed across all outcomes.

In particular, the conjecture implies that the hiding
property can be achieved with any number K of input
squeezers as long as the average total photon number
is sufficiently small. In turn, the average total photon
number is determined by the total amount of squeez-
ing across all input squeezers. Intuitively, this is due to
the fact that the output of a Haar-random unitary does
not depend on any fixed input state. In fact, the aver-
age output state is a product of identical thermal states
whose average photon number is determined by the to-
tal input squeezing. Importantly, however, the number
K is still crucial for the estimation task as it determines
the rank of the matrix (UIKUT)n,n. Since the complexity
of computing the Hafnian of a matrix depends on the
rank of that matrix [19], K should be chosen such that
it is at least N. Note that the USTC experiment [2] used
K = M/2 many squeezers, so our results are directly
applicable there, strengthening the arguments for their
QCA demonstration.

More generally, we consider three regimes of interest,
and provide evidence for Conjecture 1 in the Supplemen-
tary Material. First, the highly sparse regime in which
the total number of modes scales as M = ω(K5) and the
number of photons is equal to the number of squeezers,
N = K, features provable hiding results due to Ref. [7].
Realistic experiments and proposals today operate in the
regime K = cM, meaning that a constant fraction c of
the input modes is squeezed. In this regime, the result
of Ref. [22] provides analytical evidence for hiding in the
asymptotic limit as long as the input squeezing is such
that N ∈ o(

√
M/ log M). Lastly, we also consider the in-

termediate regime of how M scales with K between these
two extremes, and give numerical evidence for hiding in
this general case.

Let us note that we do not expect Conjecture 1 to hold
for large N ∈ ω(

√
M). Indeed, in this case it is known

that hiding fails for standard boson sampling [23, 24].

Average-case hardness of computing GBS probabilities

As outlined earlier, the question of hardness of approx-
imate sampling boils down to whether it is #P-hard to
approximate most output probabilities. We now show
the average-case hardness of this task when the allowed
additive approximation error is exponentially small, us-
ing techniques from Ref. [15].

We have established that the output probabilities of
GBS are given in terms of

∣∣Haf((UIKUT)n,n)
∣∣2. By

virtue of the previous discussion and more precisely,

Conjecture 1, the distribution over the N × N matrices
(UIKUT)n,n for Haar random U is well approximated by
complex, symmetric Gaussian matrices XXT . Hence, to
show the average-case hardness of computing output
probabilities of GBS, it suffices to consider the following
problem:

(δ, ε)-SQUARED-HAFNIANS-OF-GAUSSIANS

Input A matrix XXT with X ∼ GN,K(0, 1/M).
Output |Haf(XXT)|2 to additive error ε, with probabil-

ity ≥ δ over the distribution GN,K(0, 1/M).

To complete the argument that an efficient classical
approximate sampling algorithm for GBS cannot exist,
it remains to prove the #P-hardness of (δ, ε)-SQUARED-
HAFNIANS-OF-GAUSSIANS as formalized by the follow-
ing approximate average-case hardness conjecture.

Conjecture 2. The (δ, ε)-SQUARED-HAFNIANS-
OF-GAUSSIANS problem is #P-hard for any
ε = O

(
N! tanhN(r)/(coshK(r)MN)

)
and any con-

stant δ > 3/4.

A proof of Conjectures 1 and 2 would imply that ap-
proximate sampling from a random, general GBS in-
stance, is hard on average. Let us see how. Assume that
there exists a classically efficient sampler O that samples
from a associated distribution whose output probability
for outcome i is given by qi. From the promise that this
distribution is ε-close in total variation distance to the
target distribution, we have ∑i |pi − qi| ≤ 2ε, where pi is
the corresponding output probability of the target distri-
bution. Choose a photon number N so that Conjecture
1 is satisfied. Among the space of all outcomes with N
total photons, for a randomly chosen outcome i, we have:

Pr
i

[
|pi − qi| ≤

2εk
(M+N−1

N )

]
≥ 1− 1

k
. (1)

Assuming Conjectures 1 and 2, with probability at
least 3/4, pi is #P-hard to compute to additive error
ε′ = O

(
N!

MN

)
. Therefore, with probability at least

3/4(1− 1/k), it is also #P-hard to compute qi to within
error ε′ + 2εk

(M+N−1
N )

= O (exp[−N log N −Ω(N)]) assum-

ing M = Θ(N2). On the flip side, the Stockmeyer
algorithm [20] allows us to compute the output prob-
ability of an arbitrary outcome qi to within inverse-
multiplicative polynomial precision. Further, by the
Markov inequality, most outcomes qi cannot be much
larger than 1/(M+N−1

N ):

Pr
i

[
qi >

l
(M+N−1

N )

]
≤ Pr(N)

l
≤ 1

l
, (2)

where the quantity Pr(N) is the probability of seeing
N total photons. This means that with probability at
least 1 − 1/l, qi can be computed to additive error
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O (l exp[−N log N −Ω(N)]) using a BPPNPO
machine

running the Stockmeyer algorithm. Therefore, setting
l = 4k, a PH algorithm can solve with high probability a
problem that is average-case #P-hard. This collapses the
polynomial hierarchy.

Note that since we have phrased Conjecture 2 in terms
of additive error instead of multiplicative error, we do not
explicitly need an anticoncentration condition of the form

PrX

[
p0 ≥ (M+N−1

N )
−1] ≥ γ for some constant γ > 0, as

is often conjectured for permanents [7]. Nevertheless, it
is possible that Conjecture 2 already implies a weak form
of anticoncentration. Informally, an anticoncentration
condition states that on a large fraction of the instances
the output probabilities are large enough so that a trivial
algorithm for computing the probabilities that outputs “0”
is not sufficient to solve the (δ, ε)-SQUARED-HAFNIANS-
OF-GAUSSIANS problem. This is because in order for
Conjecture 2 to be true, it is necessary for the trivial
algorithm to fail with high probability.

As in all other known proposals for demonstrating
QCA, this approximate average-case hardness conjec-
ture remains open. Nonetheless, just like in other
proposals, it turns out that one can give evidence for
Conjecture 2. Namely, we can prove a weaker ver-
sion of the conjecture with a smaller robustness level
ε = O (exp[−6N log N −Ω(N)]) as opposed to ε =
O (exp[−N log N −Ω(N)]) in Conjecture 2.

Theorem 3. The (δ, ε)-SQUARED-HAFNIANS-OF-
GAUSSIANS problem is #P-hard under PH reductions for
any ε ≤ O (exp[−6N log N −Ω(N)]) and any constant
δ > 3/4.

We provide a detailed proof of Lemma 3 in the Supple-
mentary Material. The technique we employ in the proof
is a worst-to-average-case reduction (see, e.g. [7]). That is,
by assuming access to an oracle for the (δ, ε)-SQUARED-
HAFNIANS-OF-GAUSSIANS problem, we show that one
in fact approximate Haf(XXT) for any matrix X ∈ CN×K.
This latter task is #P-hard in the worst-case as we show
in the Supplementary Material. At a high level, the
worst-to-average-case reduction relies on the fact that
|Haf(XXT)|2 is a low degree (of degree 2N) polynomial
over the entries of the matrix X. This allows us to use
the oracle to perform polynomial interpolation. There-
fore, by combining this observation with the techniques
of Refs. [7, 15, 25], we obtain a worst-to-average case
reduction for exactly computing the output probabilities.

Together, our results on the hiding property and the
approximate average-case conjecture in GBS, strengthen
the evidence for the hardness of approximately simulat-
ing GBS in terms of the total-variation distance to the
ideal output distribution. Given our results, GBS is now
on par with the other leading QCA proposals in terms
of complexity-theoretic evidence for approximate sam-
pling hardness [6, 7, 14, 15, 25, 26], up to a plausible
conjecture in random matrix theory—for which we pro-
vided theoretical and numerical evidence. To achieve

a demonstration covered by those complexity-theoretic
results, however, the loss rate at every element of the
linear-optical circuit, must scale inversely with the total
number of such elements—a daunting challenge from an
experimental perspective.

Hardness of computation of output probabilities for noisy
GBS

We now go one step further and assess how the
complexity-theoretic argument for sampling hardness
is affected by more realistic noise levels, in particular, in
terms of photon loss. In terms of scaling, any constant
loss rate of the individual optical elements can lead to
the output distribution rapidly approaching a classical
distribution. We now show that, nonetheless and sur-
prisingly, an evidence of a quantum signal remains even
in the presence of significant loss. We then discuss to
what extent and in which regimes such a quantum signal
might lead to the hardness of simulating a lossy GBS
experiment.

One of our main results is the average-case hardness of
computing the noisy output probability of a random GBS
instance, which we obtain by using similar arguments
to recent work of Bouland et al. [15], but now extended
to the GBS setting. Our results are valid for any noise
model that is local, stochastic, and is error-detectable us-
ing linear optics. More specifically, we consider a setting
where the noise acts locally after every gate, and is of the
form

Ni[ρ] = (1− ηi)ρ + ηiEi[ρ], (3)

where stochasticity requires Ei to itself be a valid channel
(i.e. a completely positive trace preserving map) with no
identity component.

Consider the following problem.

(ε, η)-NOISYGBS-PROBABILITY

Input A noisy GBS instance, consisting of the linear-
optical unitary U on M modes chosen from
the Haar measureH, the squeezing parameters
at the input, a description of the noise chan-
nels with parameters ηi, and a description of
a collision-free outcome n with N = poly(M)
total photons. Let η = maxi ηi.

Output With probability δ over instances, an estimate
of the quantity Pr(n) to additive error ε, where
Pr(n) is the probability of obtaining outcome
n.
With probability 1− δ, an arbitrary output.

In the above definition, we take δ = 1 to mean the
worst-case problem. We prove the following statement of
average-case hardness of computing noisy probabilities.

Theorem 4. There exists a noise threshold η∗ and a suf-
ficiently large polynomial such that the problem (ε, η)-
NOISYGBS-PROBABILITY is #P-hard under PH reductions
for any constant δ > 3/4, η ≤ η∗, and ε ≤ 2−poly.
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There are two parts to the proof. The first part is a proof
of worst-case hardness of the problem (when δ = 1),
and the second a worst-to-average-case equivalence. For
worst-case hardness, it turns out that due to a result of
Fujii [27], it suffices for the noise channel to be a convex
combination of the lossless and lossy channels, and to
be able to error-detect it. These conditions are both met
for optical loss, since it is a convex combination of the
channels corresponding to no photon loss, single-photon
loss, and so on [28]. Moreover, optical loss can also be de-
tected and corrected using only linear-optical operations
and photo-detection with high thresholds [9]. In Fujii’s
argument, one postselects on the error-free outcome of
an error-detection code and obtains noiseless universal
gates for the class of postselected quantum computation,
postBQP. This argument can apply to the optical case as
well, since linear optics with postselection is universal
for quantum computing [29].

For the worst-to-average-case equivalence, all we need
is for the polynomial structure in the problem to be pre-
served. This can be satisfied for any local noise model.
Preserving the polynomial structure of the output proba-
bility enables us to continue to use the same proof tech-
niques as earlier.

Before moving on, we again remind the reader that
we considered the hardness of computing output prob-
abilities. While these are not tasks that are feasible for
any realistic quantum device, our results nevertheless
indicate that there is a computationally intractable (but
exponentially small) “quantum signal” present in the
system.

The complexity of noisy and approximate GBS

We now discuss the implications of the hardness result
for computing noisy GBS probabilities on the complex-
ity of sampling from the output distribution of noisy
GBS. An immediate implication of this result is that it
is classically hard to exactly sample from the noisy distri-
bution of a worst-case GBS experiment. This is because
the quantum signal is still present in the distribution, so
the argument based on Stockmeyer’s algorithm is valid.
Thus, in the idealized situation in which loss is the only
source of noise of an experimental system and the exact
loss rate is known, simulating a worst-case GBS experi-
ment is classically intractable. Note that loss rates can be
inferred from standard optical tomography procedures
such as that of Ref. [30]. Given that this result links the
hardness of simulating the noisy experiment to an ex-
ponentially small quantum signal in the form of output
probabilities, it is crucial that the noise model accurately
captures the working of the device.

We remark that an alternative proof establishing the
classical hardness of exact sampling could possibly be
made using a postselection argument similar to the one
outline in Section 4.2 of Ref. [7]. As noted in Ref. [7]
however, this approach has not been shown to provide

a viable path towards the goal of showing hardness of
approximate sampling. By establishing the average case
hardness of approximating output probabilities, Theo-
rem 4, takes a substantive step towards establishing the
hardness of approximate sampling, even in the presence
of noise.

We now discuss the more realistic situation in which
loss is the predominant, but not the sole, source of noise
in a photonic experimental system. What can we say
about the hardness of approximate sampling in such a
situation? To begin with, let us draw on some intuition
from RCS schemes acting on n qubits. Here, the additive
error incurred in estimating output probabilities using
the Stockmeyer algorithm is O(2−n) with high probabil-
ity (since this is the size of a typical output probability in
an RCS experiment). In the presence of uncorrected noise,
an error of O(2−n) in the noisy output probability can
be too large for hardness. For example, there is evidence
that with gate-wise depolarizing noise, the probabilities
will deviate from uniform by merely O(2−m), where m
(typically ω(n)) is the total number of gates [6]. This
means that approximate-sampling hardness cannot be
shown using these techniques, since it is not hard to ap-
proximate the noisy probabilities any more. Indeed, in
this regime, the noisy distribution is exponentially close
in total-variation distance to the uniform distribution,
rendering the approximate sampling task for the noisy
distribution classically simulable.

In the case of noisy GBS, the dominant noise model,
namely loss, leads to the vacuum state for a sufficiently
deep network, which is again a distribution that is easy
to classically sample from (similar to the uniform distri-
bution in qubit RCS schemes). However, if we post-select
on a certain minimal number of photons surviving, the
distribution need not be easy to simulate. This post-
selection is efficient when the depth of the circuit scales
poly-logarithmically in the number of modes. In this
case, the quantum signal will be large enough so that
even with an inverse exponential error, deviations from
the easy distribution can be detected.

This excludes the simulation algorithm that samples
from an easy-to-simulate distribution such as the one uni-
form on every photon number sector with every sector
sampled according to the ideal photon number distribu-
tion. Ruling out trivial algorithms is a necessary condi-
tion for approximate average-case hardness to hold. In
summary, our results indicate that there might be ‘room
in the middle’ in terms of gate depth and noise rates,
where hardness of sampling might hold. In fact, this intu-
ition lies at the heart of the high-dimensional architecture
(presented below). This architecture is designed in such
a way that only as few gate applications as necessary for
hardness are executed, so that the leeway for noise to
ruin the hardness of sampling is minimized. We stress,
however, that at the moment, existing proof techniques
do not suffice to make a claim of this nature. In fact, in
certain regimes of noisy GBS, approximate sampling is
known to be classically efficient [13].
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High-dimensional GBS and evidence for hardness

The discussion thus far in this work and in the litera-
ture far has focused on the hardness of GBS with unitary
transformations drawn randomly from the Haar measure.
This requires implementing arbitrary unitary transfor-
mations, an onerous requirement experimentally. In fact,
Ref. [2] did not meet this requirement of being able to
implement arbitrary unitary transformations as a result
of the interferometer being a fixed non-programmable
device. Furthermore, there is reason to believe that in
the absence of error-correction methods for linear op-
tics, scaling arbitrary programmable interferometers to
large numbers of modes is infeasible. This is because im-
plementing an arbitrary unitary transformation requires
decomposing it into beam-splitters and phase shifters
and, assuming they are all applied locally, this leads to
a deep optical circuit, whose depth linearly scales with
its size. Since photon loss scales exponentially with the
circuit depth, these models necessarily become efficiently
simulatable classically for sufficiently large numbers of
modes [12, 13, 31].

On the other hand, naively reducing the depth with-
out giving up gate locality is not an option for QCA
either. This is because shallow one-dimensional (1D) cir-
cuits comprising local interactions with logarithmically
scaling depths can be efficiently simulated classically
as these do not generate enough long-range entangle-
ment [12, 13, 32].

These results motivate a demonstration of QCA on ran-
dom optical circuits with shallow depth but with gates
that are long-range in 1D, for example on circuits with
local interaction in higher than one dimensions. In such
a setting, a potentially reduced amount of complexity
due to the reduced depth would be compensated by the
large long-range entanglement generation thanks to the
inclusion of long-range interactions. Therefore, such an
architecture would suffer less noise build up but still re-
main intractable for classical computers. Indeed, models
with shallow-depth but with long-range (in 1D) interac-
tions provide a natural approach to demonstrating QCA
in qubit systems [33].

We address the challenge of the low-loss versus depth
tradeoff by introducing high-dimension GBS, where pro-
grammable non-local gates are exploited to generate en-
tanglement between distant modes. We show how high-
dimensional GBS can be implemented scalably using op-
tical delay lines. Before presenting the new architecture,
let us recall the relevant notation on GBS and discuss its
physical implementation.

A programmable architecture for high-dimensional GBS

Now we are ready to introduce high-dimensional GBS:
a sampling task that retains the programmability of
the photonic device, can reduce decoherence to a level
that prevents classical simulability, and in which large

A.                                 B.                 C.

FIG. 1: Different representations of a D = 2-dimensional
optical delay GBS instance with lattice size a = 3. (A)
Circuit representation. The vertical lines with dots at the end
represent beam-splitters. (B) Bi-dimensional lattice
representation. The vertices of the lattice represent the modes
while edges represent beam-splitters. (C) Optical circuit
representation. The modes are defined by time-bins traveling
in a wave-guide. The horizontal gray slabs in the bottom of the
delays represent the beam-splitters. The number of cycles C in
a high-dimensional GBS instance correspond to applying
multiple times the gates contained in the green-dotted box in
Fig. (A). This action physically maps to employing
concatenating C copies of the delays encircled in the green box
in (C). Note that for simplicity we have not shown the
photon-number detectors used to probe the quantum state at
the end of the circuit.

amounts of multi-partite entanglement can be generated.
The last two requirements are to some extent at odds
with each other: specifically, achieving long ranged in-
teractions in fixed linear one-dimensional geometries
requires finding intermediary quantum systems to me-
diate interactions between far separated regions, which
can lead to information leaking into the environment and
require more challenging experimental conditions than
all-optical experiments. A way around this challenge is
to consider two- or higher-dimensional geometries where
quantum systems can interact with each in more than
one direction. While the Google QCA experiment [1]
involved interactions in 2D, our proposal can leverage
photonics to implement distant non-local interactions,
which can be equivalently considered as interactions in
two or even higher than two dimensions.

More specifically, we show how the idea of using lo-
cal interactions in high-dimensional spaces to generate
large amounts of multi-partite entanglement can be nat-
urally imported into photonic quantum computing by
using optical delay lines and fast, programmable op-
tical switches. Before formally stating the problem of
high-dimensional GBS we provide intuition for how to
construct high dimensional lattices using minimal optical
resources. For the sake of concreteness and ease of visu-
alization, we consider the generation of a lattice of size
a = 3 in D = 2 dimensions where the vertices represent
modes and the edges represent two-body gates. A quan-
tum circuit to achieve this connectivity and a representa-
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tion of the obtained lattice are shown in Figs. 1(A) and
(B), respectively. Note that when the bosonic modes are
represented as wires in a usual quantum circuit diagram
the gates needed to prepare the state are highly non-local.
This is because circuit diagrams provide a representation
where the modes are arranged linearly (in this case in
the vertical direction of the page). To show how optical
delays provide a natural way to program short and long
ranged interactions, consider first our temporal modes
(pulses) prepared in squeezed-vacuum states arranged
one after the other traveling along a single spatial mode,
as schematically shown in Fig. 1(C).

We first consider how to achieve nearest-neighbor in-
teractions using a delay line whose length equals the
separation between the pulses. As mode i is in the de-
lay line about to exit it, it will interfere with mode i + 1
that is about to enter the delay line. The beam-splitter
mediating the interaction between these two-modes can
be programmed allowing us to effect two-mode gates
between nearest neighbors. Such programmable and fast
(i.e., with less than 50 ns spacing) beam-splitters have
been demonstrated using electro-optic modulation and
have been used in the application of photonic quantum
walks in the time domain [34, 35].

Now consider the second delay line, whose length is
a = 3 times the separation between the pulses. In this
case, as mode i is getting ready to exit the delay line, it
will interfere with i + a in the beam-splitter gate keep-
ing the delay line. This configuration allows interactions
with range a = 3 between the modes in the quantum
circuit diagram in Fig. 1. Note that this construction
generalizes in a natural way to D dimensions. In partic-
ular, nearest-neighbor interactions in a D-dimensional
space with a lattice points per dimension (corresponding
to gates with range aD−1 in a circuit diagram) can be
implemented using a circuit with D optical delay lines
implementing delays by amounts {1, a, a2, . . . , aD−1}. If
the light is made to pass through D such multiple such
delay lines, with C passes, then the effective transfor-
mation is composed of C cycles of local interactions in a
D-dimensional lattice or equivalently, C cycles of up to
aD−1-range gates in a circuit diagram.

Having provided a quantum optical implementation
of high-dimensional GBS we are now ready to formalize
it by specifying four quantities: the squeezing parameter
r, the lattice dimension D, the lattice size a, and the num-
ber of cycles C. An (r, a, D, C)-high dimensional GBS
instance is constructed as follows:

1. Prepare M := aD single-mode squeezed vacua
|r〉⊗M.

2. For τ = 1, apply a beam-splitter V to mode i and
i + τ, where i ∈ [0, M− τ).

3. Repeat Step 2 for τ = ad for d = 0, . . . , D− 1.

4. Repeat Step 2 and step 3 a total of C times.

Having a physical architecture to implement high-
dimensional GBS, we can now write down a loss budget
to account for the bulk of the decoherence affecting our
system. Assume that the photon-number detectors used
to probe our quantum state are limited by a rate of ν
detections per second, for example as a result of the de-
tectors dead times. From this time scale we deduce a
length scale ` = v/ν, where v is the speed of light in the
delay lines. We associate with the length scale an energy
transmission constant ηunit-length, which is simply the
total energy transmission resulting from a propagation
over a total length of `.

Let us first study the case C = 1. In this case, every
mode will traverse D beam-splitters (to access the D
different delay lines) and will propagate a total distance

of `×∑D−1
i=0 ai = `× aD − 1

a− 1
≈ `aD−1 if a � 1. We can

approximate the total transmission to scale roughly as

η = ηD
BSηaD−1

unit-length = ηD
BSηM1−1/D

unit-length,

where ηBS is the beam-splitter transmissivity for pro-
grammable beam-splitters based on electro-optic mod-
ulation. Note that in this case the loss scales sub-
exponentially with the total number of modes. To allow
two or more circulations, one can consider C ≥ 2 copies
of the original D delay lines, giving now an updated loss
budget in which the modes traverse a length proportional
to CaD−1 = CM1−1/D and will pass through CD beam-
splitters, still leading to sub-exponential loss accumula-
tion. An alternative to these C copies of the delay lines is
to consider a re-circulation loop similar to that proposed
in Ref. [36], which reroutes the output of the last delay
line into the input of the first one. The delay line used
to implement the recirculation loop holds any modes
that are not interfering inside the delay lines. If the recir-
culator has a loss per unit length ηunit-recirc, the net loss
scales as ηL

unit-recirc where L = aD − ∑D−1
i=1 aD = Θ(M).

Thus, depending on the exact setting, for a fixed C, the
losses scale either exponentially (using recirculators) or
sub-exponentially (considering multiple copies of the D
loops) with the number of modes.

We note that with current fiber-optic and photon num-
ber resolving technology, ηunit-length can be as high as
0.998; ηBS values of 0.9 are expected or are observed in
state of the art experiments such as Ref. [34]. With these,
the transmission of an interferometer with parameters
(a = 15, D = 2, C = 2) can be above 0.70, and above
0.74 for (a = 6, D = 3, C = 1). These values promise an
order or magnitude or more enhancements in loss values
as compared to those expected in fully programmable
GBS devices [37]. As noted in Ref. [38], interferometers
implemented using loops will typically have unbalanced
losses. The numbers quoted above assume the lossiest
interferometer implementable in a loop based system,
which is precisely the one in which each and every mode
is fully transmitted into each loop.

From the formal description of high-dimensional GBS,
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FIG. 2: Absolute values of the entries of the unitary matrices
associated with two high-dimensional GBS instances
drawn from U . On the left we show an (a = 6, D = 3, C = 1)
instance and on the right we show an (a = 15, D = 2, C = 2)
instance. Note that we explicitly color the zero entries of the
unitary white; thus the color scale is discontinuous at this end.

the covariance matrix of the generated Gaussian state
can be calculated in the usual manner. In particular, we
only need to specify the unitary matrix describing steps
(2)-(4) above. This unitary matrix is given by

U =
C⊗

c=1

D−1⊗
d=0

M−ad⊗
i=0

Bi,i+ad(V)

where Bi,j(V) is an M×M unitary matrix that acts like
the locally Haar-random beam-splitter V in the subspace
of modes i and j and like the identity elsewhere. We
denote by U the ensemble of linear-optical unitaries ap-
plied this way. In Fig. 2, we show heat-maps of the
unitary matrices associated with two typical instances
from the distribution U over high-dimensional GBS in-
stances. Note that the structure of circuits considered
allows for light from the first mode to be observed in any
of the later modes, which leads to a large light cone that
is somewhat different from the efficiently simulable cir-
cuits considered in recent Ref. [16]. From the description
of the unitary matrices and the squeezing parameters,
we have that the complex-valued adjacency matrix (as
defined above) of the Gaussian state is dense, full-rank
and given by A = tanh(r)UUT .

While implementing a time-domain reconfigurable
loop architecture as described above is not a straight-
forward task, several groups have performed experi-
ments with tens of modes interfering in time-domain
multiplexed configurations. These include time-bin [39]
and temporal-to-spatial encoded [40] boson sampling
experiments [39] and controllable photonic random walk
over multiple time-bins [35, 41]. Moreover, recent ex-
periments have shown that is possible to operate with
very high phase-stability [42], high quantum-efficiency
photon-number detection [43] and very low loss recon-
figurable interferometric elements [44].

Finally, for the purpose of calculating outcome prob-
abilities, squeezed states can be considered in the Fock
basis as qudits that are entangled by the beam-splitter
operations. This process, as with any other quantum
circuit, can be represented as networks of tensors [45, 46].

In more detail, here the qudits are initially single-index
tensors (vectors) that are contracted with four-index ten-
sors representing the beam-splitters to build an open
tensor network (TN), which can then be contracted to
obtain the tensor of the final state. The TN representing
the state can be used to calculate probability amplitudes
of measurements when the output indices of the TN
are contracted with vectors representing measurement
outcomes. Similar TN-based techniques have been suc-
cessful at delineating the QCA frontier in the context
of random circuit sampling, and together with Hafnian
based methods these will serve a similar purpose for
high dimensional GBS.

Hardness for computing noisy probabilities in
high-dimensional GBS

Here, we now argue for the hardness of computing
output probabilities for the noisy, high-dimensional GBS
setup. In particular, we show that hardness is present
even in shallow depth noisy high-dimensional GBS ar-
chitectures. This is in contrast to the results discussed
earlier, where no restriction is made on the depth.

To do this, we simply observe that the previous ar-
gument for worst-case hardness, which depends on the
noise being local and error-detectable, continues to hold
for the limited-depth setup [47]. For average-case hard-
ness of computing noisy probabilities, we again use a
worst-to-average-case reduction. However, the polyno-
mial interpolation in this case is different, since a random
instance is not Haar distributed any more but rather ac-
cording to U , the distribution over random instances
of high-dimensional GBS. To explain further, consider
the usual interpolation X(t) = (1 − t)X + tY, where
X(0) = X is drawn from U and X(1) = Y is the matrix
corresponding to a worst-case high-dimensional GBS in-
stance. In this case, there is no guarantee that the interpo-
lated matrices X(t) also correspond to high-dimensional
GBS instances of small depth. We get around this issue
by choosing a gate-wise interpolation that is similar to
that seen in RCS [14, 26].

We first define the problem of computing output prob-
abilities of a restricted-depth high-dimensional GBS ar-
chitecture.
(ε, η)-HIGHDIMENSIONAL-NOISYGBS-PROBABILITY

Input A noisy GBS instance drawn from U that can
be implemented in D dimensions with a con-
stant number of cycles C = O(1) with noise
parameter η, and a description of a collision-
free outcome n with N = poly(M) photons.

Output With probability δ over instances, an estimate
of Pr(n) to additive error ε.
With probability 1− δ, an arbitrary output.

Similar to the previous results, we can again obtain
an average-case hardness result that we state here and
prove in the Supplementary Material.
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Theorem 5. There exists a noise threshold η∗ and a suf-
ficiently large polynomial such that the problem (ε, η)-
HIGHDIMENSIONAL-NOISYGBS-PROBABILITY is #P-
hard under PH reductions for any constant δ > 3/4, η ≤ η∗,
and ε ≤ 2−poly.

QCA frontier for high-dimensional GBS

The evidence presented above for the hardness of high-
dimensional GBS comes from complexity-theoretic argu-
ments, which are asymptotic in nature, i.e., they only
specify how the hardness of a certain computation scales
as the problem size is increased. For a finite sized device,
we now address a complementary but more immediate
question: how much actual computational power would
a classical adversary need in order to generate samples
similar to those from finite-sized noisy GBS devices?

This question can be addressed with different assump-
tions about the classical adversary. The experiment can
be benchmarked either against simulations that try to
match a reasonable model of the experiment (constrained
adversary) or against simulations that merely try to spoof
a given test (unconstrained adversary). The latter ap-
proach would be more rigorous as it requires making
fewer assumptions; but coming up with good spoofing
methods is a problem beyond the scope of this work and
should be seen as an ongoing community effort [5]. Simi-
lar to the approach of the Google and USTC supremacy
experiments [48, 49], we focus on the former approach—
with a classical adversary producing samples according
to a noisy model distribution—because these samples are
likely to perform at least as well as the actual device in
suitable verification tests [50]. In other words, we assume
a specific model of the imperfect GBS device, and we de-
mand that the classical adversary generate samples that
have a probability distribution that is sufficiently close
in total variation distance to the probability distribution
of this model. We note however that the chosen model
might not have been verified against the actual experi-
ment as this sample-efficient noise-model verification of
QCA experiments is a challenging problem, especially
for boson sampling and GBS.

We perform this benchmarking by simulating high-
dimensional GBS with state-of-the-art algorithms on the
current best supercomputers. In particular, we consider
the fastest algorithms based on computing probability
amplitudes via Hafnians and via tensor-network contrac-
tions. The former, Hafnian-based, algorithms have been
optimized for simulating GBS and are not restricted to
high-dimensional GBS [17]. The latter, tensor network
algorithms are well-suited for high-dimensional qudit
circuits with shallow depth [18]. We note that Ref. [32]
also provides a path to simulating lossy GBS if the losses
scale exponentially with the system size, but these re-
sults are not applicable for high-dimensional GBS, where
the losses can scale subexponentially. By benchmark-
ing against these algorithms we demonstrate that high-

dimensional GBS experiments feasible with current opti-
cal technology are well beyond the reach of the biggest
supercomputers.

DISCUSSION

In this work, we have proposed a new experimental
architecture for Gaussian boson sampling and provided
asymptotic evidence for the hardness of Gaussian bo-
son sampling in this specific context, bridging the gap
between theory and experiment. We have also bench-
marked today’s best-known algorithms at simulating
such an experiment, obtaining complementary evidence
that a reasonably-sized setup would outperform classi-
cal supercomputers at this task. Still, some theoretical
questions are outstanding.

1. We have been able to show that two plausible con-
jectures in random matrix theory allow us to ob-
tain the hiding property for a noiseless GBS set
up, without restrictions on the number of active
modes. Can we obtain a similar hiding property
for the high-dimensional GBS set-up introduced
in this work? Is this also possible in the presence
of noise? Answering these questions is crucial for
extending the hardness of computing output prob-
abilities to the hardness of approximate sampling
from experimentally realizable distributions.

2. Informally, the anti-concentration conjecture for
boson sampling (or GBS) states that the output
probability of a random instance is unlikely to be
very small. If this conjecture was true, then now-
standard arguments can show that the output prob-
ability corresponding to an approximate sampler
is, with high probability, a good multiplicative esti-
mate to the ideal output probability. Proving this
conjecture true, in either the case of boson sampling
or GBS, would give increased evidence to support
the goal of proving QCA via photonics. A proof
of such a conjecture is challenged due to the fact
that tools of unitary designs [51] are presumably
unavailable in the bosonic setting [7].

3. Notwithstanding, it would be insight-
ful to compute the second moments
EX∼G(0,1/M)|Haf(XXT)|4 for the distribution
we have found to characterize GBS problem
instances. These moments thus characterize the
so-called collision probability of seeing the same
outcome twice in an experiment, which in turn can
be related not only to anti-concentration but also
the verifiability of approximate GBS from samples,
thus shedding some light on the structure of the
GBS output distribution.

4. An important task in demonstrating QCA is to
verify that the performed experiment indeed con-
tains a non-trivial quantum signal that cannot be
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efficiently spoofed. The Google QCA demonstra-
tion relied on linear cross-entropy benchmarking
fidelity, and the USTC experiment used a heavy-
output generation (HOG) ratio test as an alterna-
tive path to verifiable hardness. Whether the HOG-
ratio test can be spoofed efficiently by a classical
adversary such as the algorithms considered in
Refs. [4, 5] is an open problem.

5. The recent result in Ref. [16] presents a classical
algorithm for the simulation of high-dimensional
boson sampling experiments in certain regimes. As
described, this algorithm is not applicable to the ar-
chitecture we propose in this work. Extending the
algorithm to be relevant to the present architecture
is an open problem.

6. With current optical technology, loss is the domi-
nant source of noise in any GBS experiment. Con-
sequently we were motivated to obtain hardness
results for computing the output probabilities of a
GBS experiment in the presence of significant pho-
ton loss. It is natural to investigate if similar hard-
ness results can be obtained in the presence of other
possible sources of experimental noise such as such
as mode mismatch, multiple Schmidt modes, inter-
ferometer phase drift and detector dark counts.

7. It is a challenge to the community, after all, to re-
late boson sampling closer to practically important
computational tasks and to identify new applica-
tions.

In summary, this work brings the demonstration of
QCA on a programmable photonics device closer to re-
ality. It addresses previously outstanding theoretical
challenges in the field by providing stronger evidence
for the hardness of GBS. Crucially, we have presented a
novel architecture for high-dimensional GBS using opti-
cal delay lines that promises low levels of noise without
compromising on its programmability. We benchmarked
this architecture against the best available classical sim-
ulation algorithms and found that already experiments
involving a moderate number of modes are far beyond
reach for those algorithms.

We close by briefly commenting on the experimental
prospects of realizing high-dimensional GBS. Since high-
dimensional GBS can be implemented in the time domain
according to the scheme presented in Fig. 1, only a single
squeezer and a single detector are required. If multi-
ple detectors are available, these can be de-multiplexed
using optical switches in order to increase the effective
repetition rate of the experiment and reduce the length of
the delay lines. Especially promising is the case of D = 3,
a = 6, C = 1, which can be implemented with only three
optical delay lines and three each of re-programmable
beam-splitters and phase shifters. Assuming reasonable
values of squeezer out-coupling losses, free-space to fiber
coupling loss and detector efficiency [42–44, 52], we esti-
mate that such a setup can be built using current optical

technology with around 40% transmission, higher than
that enabled by the ultra-low non-programmable loss
interferometer in the USTC experiment. Such a setup
would enable the largest demonstration of QCA yet with
a mean detected photon number of 80 in a programmable
device with 216 total modes. We hope that this work
stimulates such developments.

MATERIAL AND METHODS

Computational task: Sampling from lossy GBS with finite
Fock cut-off

Before looking into concrete strategies for the simula-
tion of GBS we detail the computational task performed
by the GBS device and discuss some differences between
the task and our simulation. The experimental device
samples from a lossy GBS distribution with a finite Fock-
basis cut-off, which results from detector limitations. In
order to identify a range of parameters where this task is
hard to simulate classically, we benchmark it against clas-
sical simulations. The simulations that we compare are
somewhat different from the exact task performed by the
experiment but in such a way that is advantageous to the
classical simulations, thus providing stronger evidence
for the large computational cost of high-dimensional GBS.
We now discuss these differences.

The first point of difference is the Fock cut-off, i.e.,
the number of Fock or photon-number levels consid-
ered in each mode. Both Hafnian and tensor-network
simulations are performed in Fock basis and their perfor-
mance is thus sensitive to the Fock cut-off. This cut-off
must be chosen carefully because the squeezed state in-
puts in GBS have non-zero support on high Fock num-
bers (which could be infinite in the ideal case) [17]. For
Hafnian-based simulations, the Fock cut-off c will lead
to a constant prefactor 2c (2c/2) in the runtime for calcu-
lating mixed-state (pure state) probabilities that would
appear in sampling methods. Similarly, for tensor net-
work simulations, this cut-off sets the qudit dimension in
the calculation, which is also the base of the exponential
function describing the time and space cost of contract-
ing the tensor network. Note that squeezed states of light
require that we use local Hilbert spaces with at least di-
mension 3, since truncating a squeezed state to the first
two levels of the Fock ladder will project it into the vac-
uum, since 〈1|r〉 = 0. Furthermore, using a Fock cut-off
of 3 in the beam-splitter gates leads to highly inaccurate
simulations as the beam-splitter transformations on a lim-
ited Fock subspace no longer preserve photon numbers.
In other words, choosing higher Fock cut-offs will lead
to more accurate but more expensive simulations. Hence,
we use a cut-off of 4 to give a conservative estimate on
the computational cost, even though this cut-off would
lead to inaccurate classical simulations.

A second point of difference is that our simulations
deal with the case of simulating pure states with pho-



13

0 50 100 150 200 250 300
Total photon number (N)

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Pr

ob
ab

ili
ty

 p(
N

)
Lossless
Lossy

FIG. 3: Distribution of the total photon number for M = 216
single mode squeezed states with squeezing parameter
r = 0.8. We assume a total transmission of η = 0.5
(corresponding to roughly 3 dB of loss) for the lossy
distribution. Note that the lossless distribution has no support
on odd numbers of photons, which explains why visually it
looks as if it has more area under the curve.

ton numbers equal to the lossy distribution. This is a
reasonable simplification, since as shown in Ref. [53],
simulating pure or mixed state GBS has the same com-
plexity as calculating a number of pure-state probability
amplitudes proportional to the number of modes in the
system.

Before describing the effect of loss on the two simula-
tion methods, we discuss the effect of loss on the number
of detected photons. In Fig. 3, we plot the lossless and
lossy (transmission η = 0.5 ≈ 3 dB loss) distribution
for M = 216 modes and squeezing parameter r = 0.8.
These parameters have been chosen to correspond with
an (r = 0.8, a = 6, D = 3, C = 1) high-dimensional GBS
instance with experimentally reasonable loss budgets.
The squeezing parameter r = 0.8 is chosen to be within
reach of current sources of single-Schmidt mode degen-
erate squeezed light [54]. Note that the lossy distribution
has smaller mean and variance than the lossless one [55],
indicating that it becomes easier to simulate a lossy dis-
tribution as the transmission η is decreased. For example,
the outcome with the highest probability in the lossless
distribution

n∗ = 2
⌊(

M
2 − 1

)
sinh2 r

⌋
= 168 (4)

has a probability of 7.28× 10−8 under the lossy distri-
bution. The leftwards shift of this distribution will in
general be present whenever loss acts on a pure state.
For M identical squeezers (with squeezing parameter r)
undergoing loss by energy transmission η, the mean and
variance contract at least proportionally to η

E(n) = ηM sinh2 r, Var(n) = ηM sinh2 r(1+ η[1+ 2 sinh2 r]),

confirming our intuition, and moreover showing that the
prevailing sources of decoherence in photonic sampling

problems behave differently from the ones in random cir-
cuit sampling implemented in superconducting circuits,
where noise makes the output probability distribution
become uniform [6].

We now focus on the case of Hafnian-based algorithms.
The cost of calculating the relevant probabilities depends
only on the number of photons detected. Calculating
a photon-number probability Pr(n̄) of a mixed state is
roughly quadratically more expensive than calculating a
pure state probability of an event with the same number
of photons [56]. However, the cost of sampling pure and
mixed states is similar. This is because lossy GBS states
are classical mixtures over a displacement parameter of
pure Gaussian states. Therefore, it is possible to sample
from a lossy state by sampling from the convex hull
parametrized by the displacement parameter and then
sampling from the pure state. Thus, sampling lossy GBS
states has similar computational cost as sampling pure
states with the same number of photons.

Likewise, for the tensor-networks based algorithms,
the cost for mixed state calculations would scale at least
quadratically worse as compared to pure state calcula-
tions. This is because twice as many tensors are involved
in a mixed state calculation, analogous to the quadratic
overhead of keeping track of the density matrix as com-
pared to a pure state. Note that for noisy random circuit
sampling of qubits, one can trade fidelity for sampling
speed [57]. As opposed to GBS, this improvement is
possible because in RCS, the amplitudes of the different
Feynman-like paths that appear when slicing through
two-body gates in the circuit are comparable. Moreover,
this improvement is useful as long as the Schmidt-rank
of the two-body gates used to generate entanglement is
small, which is not the case for the beam-splitter. Fur-
thermore, the state vectors associated with two different
paths are approximately orthogonal.

A final point of difference between our simulations
and the actual experiment is that while our run-time esti-
mates are for the calculation of the GBS probabilities, an
actual experiment samples from this distribution. Despite
this difference, our simulations allow a fair benchmark-
ing of the quantum device because current state-of-the-
art algorithms possess similar complexities of sampling
and calculating probabilities. We moreover give the clas-
sical adversary an extra advantage in that we allow it
to assume that only pure-state output probabilities need
to be calculated for sampling as opposed to the quadrat-
ically slower mixed-state output probabilities, since as
explained above, mixed Gaussian states are convex mix-
tures of pure ones. For the case of Aaronson-Arkhipov
Boson Sampling, this argument was shown to be correct
by using Markov-Chain Monte Carlo (MCMC) methods
to generate samples from the ability of calculating pure-
state output probabilities [58].

In summary, we provide maximal advantage to a classi-
cal adversary by choosing a low Fock cut-off, by perform-
ing pure state simulations with low photon numbers and
by estimating time for computation rather than sampling
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(which is at most polynomially slower using currently
known methods). This advantage ensures that despite
improvements in the classical algorithms, the space of
parameters that are hard to simulate classically remain
so.

Hafnian-based algorithms

Consider now the probability amplitudes of n-photon
events by evaluating the Hafnian. Similar benchmark-
ings have been performed in the past for the calculation
of permanents [59] (relevant to boson sampling) and
Torontonians [49] (relevant to GBS with threshold detec-
tors). For either of these two tasks, the time complexity of
calculating a probability corresponding to an n-photon
event scales like O(poly(n)2n), which is quadratically
worse than for GBS, which scales as O(poly(n)2n/2). For
the case of boson sampling, this difference stems from
the fact that any probability amplitude with n photons
maps exactly to a GBS instance with 2n photons. For
the case of threshold detection it stems from the fact that
one cannot assign probability amplitudes to a measure-
ment that is not rank-one, like the POVM representing
a “click” which is a coarse-graining of all the projectors
with nonzero photons. In any case, for either of these
tasks, benchmarks up to n = 50 have been carried out
requiring on the order of two hours for boson sampling
using Tianhe-2 [59] and on the order of 20 hours for GBS
with threshold detectors in Sunway TaihuLight [49].

If the matrix has no special property, like being
low-rank, non-negative, banded, or sparse, the best
known algorithms to calculate the Hafnian will scale like
O(n32n/2) for a matrix of size n× n. The adjacency matri-
ces generated in high-dimensional GBS do not have any
of these properties. In Fig. 4, we show the results of our
benchmarking by implementing the Hafnian algorithm
from Ref. [19] using a task-based approach implemented
in Ref. [61]. Even for shared-memory CPU architectures,
our new task-based implementation achieves a speed up
of about 5× with respect to the current OpenMP imple-
mentation described in Ref. [62].

Based on these benchmarks, we estimate that Fugaku,
among the current most powerful supercomputers in the
world, would require around 14 hours to compute the
Hafnian of a 100× 100 matrix. Thus, if the total-photon-
number distribution of a given GBS setup has significant
support past 100 photons, there will be a proportionally
significant number of probability amplitudes that will
require at least 14 hours in Fugaku to be computed.

We can get an estimate of the average time it would
take to generate a sample by averaging the time it take
to generate a sample with n photons over the probabil-
ity distribution of n photons. Using the same averaging
procedure, but applied to clicks instead of photons and
assuming an overhead of 100 between computing prob-
abilities and generating samples, the authors of Ref. [2]
estimate that Fugaku would require around 1.9× 1016
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FIG. 4: The time cost of calculating a Hafnian of size n in
double precision. The stars indicate actual sizes computed in
the Niagara supercomputer [60]. The blue line is a fit to
tNiagara(n) = cNiagaran32n/2 with the only fitting parameter
cNiagara = 5.42× 10−15 s. The standard deviation of fitting
parameter cNiagara is 1.2× 10−16 s, which would give error
bands thinner than the width of the line. We find an equivalent
expected time in Fugaku, among the most powerful
supercomputers, by considering the ratio of their Rmax scores
(maximal LINPACK performance achieved) giving their
performance in number of floating point operations per second.
The conversion factor between the left scale for Niagara and
the right scale for Fugaku is the ratio of Rmax values of
Fugaku and Niagara, or equivalently cNiagara/cFugaku = 122.8.
Note that since the computation of Hafnians can be broken
into the independent calculation of an exponential number of
summands (known as an embarrassingly parallel computation)
this scaling is expected to be quite accurate.

seconds to generate roughly the number of samples that
their experiment produces in 200 seconds at MHz clock
speeds.

For the lossy instance considered in Fig. 3,
we find that on average Fugaku would require
Famplitudes/samples ∑nmax

n=0 plossy(n)cFugakun32n/2 ≈ 4× 107

seconds to generate one sample. In this estimate we do
not extend the sum to all possible photon numbers but
only up to those that have a chance of more than 10−7 to
occur, which happens at nmax = 166 and moreover as-
sume a reasonable overhead of Famplitudes/samples = 100
for the calculation of probability amplitudes vs. samples.
As noted earlier, the complexity of generating a sample
for a mixed or pure Gaussian state is proportional to
that of calculating a probability amplitude [53] and the
number of modes (in our case 216), thus, using a factor
of 100 is likely an underestimate.

In order to match the number of samples generated in
seconds in a quantum device operating at 10 KHz would
require 6.8× 1015 seconds. Thus, the computational cost
of an (r = 0.8, a = 6, D = 3)-high-dimensional GBS in-
stance, with 3 dB of loss is on par with the expected clas-
sical complexity of the USTC experiment with the added
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advantage of being programmable and much closer to
the collision free-regime: the expected classical complex-
ity of an experiment like the one just described is simi-
lar to the expected time complexity of the USTC experi-
ment [2]. However, besides the obvious disadvantage of
programmability, their experiment is much farther away
from the collision-free regime in which computational
complexity theoretic results guarantee the intractability
of GBS.

For example, if the USTC experiment had been per-
formed with PNR detectors we would find that their
photon number distribution has mean and standard dis-
tribution 83.3± 20.1 over 100 modes (where we assume
the squeezing parameters quoted in Ref. [2] and a net
transmission of η = 0.3). Note that even within the
first standard deviation one is already beyond the to-
tal number of modes. This should be contrasted with
a distribution like the one in Fig. 3, for which we find
85.2± 13.9 over 216 modes.

Tensor networks methods

Another promising method to calculate the probabil-
ity amplitude of high-dimensional GBS is using tensor-
network contractions. This has been the strategy of
choice for classical adversaries to superconducting cir-
cuits performing random circuit sampling [48, 57]. For
an overview of tensor network algorithms to simulate
quantum circuits, see Ref. [63].

In this section, we find that tensor network algorithms
can simulate two-dimensional lossy GBS experiments on
200 modes in a reasonable amount of time. This moti-
vates going to a higher dimension, D = 3. We find that
after making several allowances to the classical algorithm
and accounting for tremendous improvements in classi-
cal hardware, one of the fastest supercomputers in the
world, Fugaku, would take ∼ 1020 seconds to simulate a
3-D experiment on 216 modes running for 200 seconds.

Any given quantum circuit can be written as a network
of tensors such that each input quantum state is a rank-1
tensor, each gate acting on ` components is a rank-2`
tensor, and each measurement operator is a rank-1 ten-
sor [18]. The probability amplitude for the quantum cir-
cuit can then be calculated by contracting the tensor net-
work, i.e., by summing over all the indices of the tensor
network. However, there are multiple different orderings
(paths) in which the different indices of a tensor network
can be contracted, which influence the contraction run-
time. In fact, for general instances, the problem of find-
ing optimal contraction paths for minimizing the time
required to compute amplitudes has been shown to be
NP-hard [64], while actually performing the contraction
is #P-hard [18, 65]. For some of the first classical bench-
marking proposals of random circuits, the contraction
paths were hand-picked by the researchers [66]. More
recently, excellent randomized algorithms have been in-
troduced to find contraction paths that have been shown

Number of Expected Time Size of the
lattice points (a) in Fugaku (seconds) largest tensor
4 1.65× 10−1 4.39× 1012

5 4.56× 105 4.61× 1018

6 2.11× 1014 7.92× 1028

TABLE I: Benchmarks for a D = 3 high-dimensional GBS
instance with minimal Fock space cut-off c = 4. The first
column gives the number of lattice points, from which the
number of modes follows M = a3. The second column is the
expected run time in Fugaku. This time is obtained by
estimating the number of floating point operations required to
contract the tensor using cotengra [18] and converting this
into a time by using the Rmax floating point operation per
second score for Fugaku. Note that cotengra implements
randomized algorithms, thus for each problem size we run it
200 times and confirm that after the first 100 runs there is no
significant variation in the best score found. The last column
gives the number of elements of the largest tensor ever needed
to be stored in memory during the contraction. Note that this
places restrictions on the RAM available in each of the nodes of
a supercomputer. In particular the nodes in Fugaku have up to
32 Gb of RAM allowing to store on the order of 4× 109 64 bit
floating point numbers, thus an a = 6 instance will far exceed
the required capacity of a single node requiring distributed
storage and thus subsequent hit in efficiency due to
communication complexity.

to improve on previous results [18].
A second important practical consideration for tensor-

network contraction is that there is a trade-off between
space and time complexity. That is, one can speed up
significantly the contraction of a tensor network at the
expense of assuming access to large amounts of memory.
A systematic way to reduce the memory footprint of a
tensor network contraction (at the expense of decreas-
ing the speed of the computation) is to use a technique
known as slicing, also known as variable projection or
bond cutting [66].

Unlike for Hafnian methods where one does not need
to specify much of the structure of the circuit, this infor-
mation is vital in understanding the performance and
limitations of tensor network simulations. As before,
we fix the squeezing parameter r = 0.8 and assume net
end-to-end transmission of η = 0.5. With these param-
eters and first assuming D = 2, we need at least a = 14
lattices sites per dimension to get to a mean photon num-
ber at the detectors (i.e. after loss) of E(n) ∼ 80. For a
single cycle C = 1 we use a tensor-network contraction
algorithm called cotengra [18] together with Fugaku’s
LINPACK benchmark to find that this supercomputer
would require less than 100 microseconds to contract the
tensor network. Thus, for 2-dimensional instances up to
this size it is necessary to consider more than one cycle,
implying the construction of either D extra delay lines or
adding a circulator, both of which will adversely affect
the net transmission.

This motivates considering the next dimension, D = 3.
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For this case, and fixing the number of cycles to C = 1,
we find that we need at least a = 6 to have a mean photon
number on the order of 80 at the detectors, which would
provide a non-trivial support on photon numbers that
are beyond the reach of the Hafnian algorithms described
above. In Table 1 we show the time it would take Fugaku
to contract different three-dimensional GBS circuits for
different lattice sizes.

Note that even allowing for a hypothetical scenario in
which the RAM of each of its nodes has been expanded
by about 19 orders of magnitude, it would take Fugaku
on the order 2.11× 1014 seconds to calculate a contrac-
tion with a minimal (and highly inaccurate) cut-off of
4. In reality, it is infeasible to fit the computation in the
memory or even the hard disks of individual nodes, so
slicing would be required, which can lead to astronomi-
cal overheads over this idealized estimate. Even without
this overhead and assuming that generating a sample is
as expensive as calculating a probability, simulating a 200
second 10kHz experiment would require over 4× 1020

seconds. Of course, we remind the reader once more that
a direct calculation of output probabilities is not what

the experiment does but only what one model of the ex-
periment, and there may be more efficient methods for
simulating a verifiable experiment.

Based on the evidence presented above, a high-
dimensional GBS instance with squeezing parameter
r = 0.8, in D = 3 dimensions, with a = 6 modes per
dimension or a total of 216 modes and a single cycle
C = 1 is well beyond the capabilities of current simu-
lation methods based either on Hafnian calculations or
tensor network contractions, even when losses of around
3 dB (η ∼ 0.5) are present. This significant computational
gap is present even after the fact that we allow the clas-
sical computer to ignore significant overheads in terms
of cut-off, number of modes and samples-to-amplitudes
conversion. These experimental parameters we propose
are within the reach of current photonics technology and
their implementation using time-domain multiplexing
can be achieved with a significantly reduced number of
components.

Note.— After this submission, we became aware of a
recent work [67] on an upgraded version of the experi-
ment done in Ref. [2].
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EVIDENCE FOR HIDING IN GBS

In this section, we characterize the distribution of the symmetric product of N × K sub-matrices of M×M Haar-
random unitaries. As described earlier, the Hafnian of such symmetric products determines the output distribution
of GBS. Here, we give evidence that this distribution tends to the distribution of the symmetric product XXT for X
being an N × K Gaussian matrix. In GBS, this ensures the hiding property since a small N × N symmetric Gaussian
matrix XXT can be hidden in a large symmetric unitary matrix UIKUT for any K ≥ N. Since any particular sub-matrix
cannot be distinguished from any other such sub-matrix of the same size, this enforces the constant error budget of an
adversarial sampler to be roughly equally distributed across all outcomes.

In particular, we consider three regimes—with respect to the relations between the total number of photons at
the output (N), the number of input squeezers (K), and the number of modes (M)—in order to provide evidence for
Conjecture 1. This conjecture relates the following ensembles of random matrices.

1. HM
N,K: The ensemble of N × K sub-matrices of Haar-random unitaries U ∈ U(M).

2. GN,K(µ, σ2): The ensemble of N × K matrices with independent and identically distributed (i.i.d.) complex
normal entries with mean µ and variance σ2.

3. COEM
N,K: The ensemble of matrices VVT where V ∼ HM

N,K.

4. Gsym
N,K (µ, σ2): The ensemble of matrices XXT where X ∼ GN,K(µ, σ2).

As the conjecture might be interesting for random matrix theory in itself, we will abstract away the meaning of the
parameters K, N, M.
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FIG. S1: Numerical evidence that the ensembles COEM
N,K and Gsym

N,K (0, 1/M) converge in total-variation distance for any K ≥ N
so long as N ∈ o(

√
M). a) The singular-value spectra of COEM

N,K and Gsym
N,K (0, 1/M) for M = 200, K = 200, and N = 10. b) Total

variation distance between singular-value spectra of COEM
N,K and Gsym

N,K (0, 1/M) for different M = K as a function of N. c) Total
variation distance between singular-value spectra of COEM

N,K and Gsym
N,K (0, 1/M) for M = 200 and different N as a function of K.

Conjecture 6 (Hiding in GBS). For any K such that N ≤ K ≤ M the following statements are true:

1. For M ∈ O(N2+ε) and ε ∈ (0, 1], COEM
N,K asymptotically approaches Gsym

N,K(0, 1/M) in probability in terms of the
entrywise max-norm.

2. There exists a polynomial p such that for any δ > 0 and M ≥ p(N)/δ, the total-variation distance ‖·‖TV between
COEM

N,K and Gsym
N,K(0, 1/M)satisfies

‖COEM
N,K − G

sym
N,K(0, 1/M)‖

TV
∈ O(δ). (S1)

Here, we give analytical evidence that the characterization of Conjecture 6 holds true in the extreme cases of K = N
and K = M for M growing fast enough with N and numerically show that it is true for any K such that N ≤ K ≤ M.

In the first regime we consider K is such that M ∈ Ω(K5 log2 K) and N = K. This regime closely resembles the
one in the original boson sampling proposal (thus we refer to it as the “AA regime”) for which we will see that both
parts 1. and 2. are provably true. In this regime, Aaronson and Arkhipov [7] have proven that all N × K sub-matrices
of Haar-random linear-optical unitaries U, are approximately Gaussian distributed. In particular they show that
HM

N,K asymptotically approaches GN,K(0, 1/M) as well as bounding the rate of convergence by showing that the
total-variation distance satisfies

‖HM
N,K − GN,K(0, 1/M)‖TV ∈ O(δ) (S2)

for M ≥ (N5/δ) log2(N/δ) [7]. Using this we can directly see that Conjecture 6 is also true in the “AA regime”.
On the other end of the spectrum, we consider the regime in which K = M where part 1. of the conjecture is

provably true. For this case, Jiang [22] has shown that the distribution of N× N sub-matrices of M×M COE matrices
for M ∈ o(

√
N/ log N) asymptotically approaches the distribution of matrices XXT , where X ∼ GN,M(0, 1/M).

Finally, there is the intermediate regime in which M1/5 . K < M. This regime interpolates between the two
extreme regimes of very small, square sub-matrices of U and very short, fat sub-matrices of U. A priori, there is no
reason to believe why the behaviour should differ from the extreme regimes. Indeed, for this regime we can provide
numerical evidence for both parts of Conjecture 6.

We do so by comparing the singular-value spectra of matrices drawn according to COEM
N,K and Gsym

N,K (0, 1/M),
respectively. Since both distributions COEM

N,K and Gsym
N,K (0, 1/M) over complex, symmetric N × N matrices are

invariant under conjugation with V · VT for any N × N unitary matrix V, the probability of drawing a particular
matrix C from these distributions depends only on the singular values of the matrix C. Consequently, the distribution
of singular values captures the essence of both distributions alike. Let P(r) denote this distribution, that is, the
distribution over singular values r of a matrix C drawn either from COEM

N,K and Gsym
N,K (0, 1/M).

In Fig. S1(a), we show the finite approximation to the distribution P(r) for both ensembles under consideration
for fixed values of M, K, N. While the distributions differ (as expected for any finite matrix size), they are already
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very close to each other for reasonably small matrices. In Figs. S1(b) and (c), we then further investigate the scaling of
the total-variation distance between finite-bin approximations of P(r) for COEM

N,K and Gsym
N,K (0, 1/M) in the size of

the sub-matrices. In Fig. S1(b), we consider the scaling of the total-variation distance in the short side N of N ×M
sub-matrices, i.e., for the second regime where K = M. As expected, the total-variation distance increases with N
but decreases as the relative size of N to M decreases, too. This provides evidence that the rigorous result about
the asymptotic convergence of COEN,K and Gsym

N,K (0, 1/M) for K = M due to Jiang [22] can be strengthened to an
inverse polynomial total-variation distance bound (Conjecture 6.2). Finally, in Fig. S1(c), we show that the size of the
long side K of the sub-matrices does not significantly affect the total-variation distance in the regime of N � M (the
collision-free regime. This constitute evidence that the value of K ≥ N does not make a significant difference to the
closeness of the distributions COEN,K and Gsym

N,K (0, 1/M) of symmetric matrix products.
To summarize this section, we have formulated an interesting conjecture regarding the distribution of symmetric

products of sub-matrices of Haar-random unitaries. In the main text, we argued that this conjecture captures the
hiding property for Gaussian boson sampling. Here, we have provided analytical evidence for the conjecture in the
two extremal regimes of K = N (where we know both parts to be true) and K = M (where we know part 1. to be true).
We then provided numerical evidence for an inverse polynomial total-variation distance bound for any value of K
such that N ≤ K ≤ M.

Let us note that – as in the case of standard boson sampling – our conjecture does not apply to the case in which
N ∈ Ω(

√
M). Indeed, for the case of N = K ∈ Ω(

√
M) Ref. [22] shows that HM

N,N and GN,N(0, 1/M) are far from
each other in total-variation distance. This indicates that the statement of our conjecture does not hold in this case
since there is no ‘short side’ of Un,1K .

AVERAGE-CASE HARDNESS OF COMPUTING GBS OUTPUT PROBABILITIES

In this section, we show average-case hardness of computing GBS output probabilities. As explained in the main
text, this amounts to showing that the following problem is #P-hard.

(δ, ε)-SQUARED-HAFNIANS-OF-GAUSSIANS

Input A matrix XXT with X ∼ GN,K(0, 1/M).
Output |Haf(XXT)|2 to additive error ε, with probability ≥ δ over the distribution GN,K(0, 1/M).

The proof will proceed in two steps: First, we will show that an oracle for the (δ, ε)-SQUARED-HAFNIANS-OF-
GAUSSIANS problem allows one to approximate

∣∣Haf(YYT)
∣∣2 for arbitrary Y ∈ C2N×2K. This first part of the proof

constitutes the worst-to-average-case reduction. Second, we will show that approximating
∣∣Haf(YYT)

∣∣2 for arbitrary
Y ∈ C2N×2K is actually #P-hard in the worst-case. We show this by reducing the task of approximating the permanent
of an arbitrary complex N × N matrix to the task of approximating

∣∣Haf(YYT)
∣∣2.

Worst-case hardness

Consider the following problem:

ε-SQUARED-HAFNIANS

Input A matrix YYT with Y ∈ CN×K for K ∈ N, N ∈ 2N such that the entries of Y are of the form (x + iy)/
√

M
for |x|, |y| some O(1)-bounded integers and additive-error tolerance ε > 0.

Output An estimate h s.t.
∣∣∣h− ∣∣Haf(YYT)

∣∣2∣∣∣ ≤ ε.
We prove the following Lemma.

Lemma 7. The problem ε-SQUARED-HAFNIANS is worst-case #P-hard for any additive error ε ≤ 1/(2MN).

Proof. Without loss of generality, we restrict to N ≤ K. We begin the proof by noting that the permanent of any square
matrix G can be expressed as the Hafnian of a corresponding block matrix twice the size of G [11],

Per(G) = Haf
[(

0 G
GT 0

)]
.
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Hence, computing the squared permanent of any complex N/2× N/2 matrix G ∈ CN/2×N/2 reduces to computing
the squared Hafnian of a corresponding block matrix

B(G) =

(
0 G

GT 0

)
. (S3)

Computing the squared permanent exactly is known to be worst-case #P-hard even over 0/1-matrices [7, 21].
Next we note that any matrix B(G) for G ∈ CN/2×N/2 can be decomposed as XXT in terms of some complex matrix

X ∈ CN×K. Indeed the block matrix B(G) is a complex, symmetric matrix, so we can decompose it using the Takagi
decomposition as WDWT , where W ∈ U(N) is a unitary matrix and D ∈ RN×N is a nonnegative diagonal matrix.
We now define X′ = (WD1/2) and X by appending (K− N) all-0-columns to X′. This gives rise to a decomposition
of B(G) = XXT with X ∈ CN×K. Hence it is #P-hard to exactly compute the Hafnian of matrices of the form XXT in
the worst case. Additionally, since the Hafnian is a continuous function, we can compute Haf(XXT) to an arbitrary
level of precision by considering Haf(YYT) with the entries of Y being of the form x + iy, with x and y integers (by
suitably rescaling the entries of the matrix). Finally, we note that by normalization we can assume that the entries of
the matrix Y are of the form (x + iy)/

√
M with x and y O(1) bounded integers. Then the squared Hafnian of YYT is

an integer multiple of 1/MN . Therefore, computing the Hafnian of YYT up to additive error of 1/(2MN) serves to
compute the squared Hafnian of B(G) exactly, which is #P-hard. This concludes the proof.

The proof holds equally for N ∈ poly(K): in this case we embed a square matrix in CK×K and append 0 rows instead
of columns.

Worst-to-average equivalence

We now prove the average-case hardness of computing GBS output probabilities. That is, we prove the following
Lemma:

Theorem 8 (Theorem 3 restated). The (δ, ε)-SQUARED-HAFNIANS-OF-GAUSSIANS problem is #P-hard under PH reduc-
tions for any ε ≤ O (exp[−6N log N −Ω(N)]) and any constant δ > 3/4.

We first sketch the proof idea and elaborate on the technique used. The overall idea is to give a worst-to-average-case
reduction from the problem ε-SQUARED-HAFNIANS to the problem (δ, ε)-SQUARED-HAFNIANS-OF-GAUSSIANS. The
worst-case #P-hardness of problem ε-SQUARED-HAFNIANS has already been established.

We use the same technique as Refs. [7, 15] to establish this reduction. Assume that we are given an oracle O that
solves (δ, ε)-SQUARED-HAFNIANS-OF-GAUSSIANS, meaning that with probability at least δ over the input X, it
outputs a squared Hafnian of XXT to additive error ε. The rest of the time, it may output an incorrect value, with no
guarantees whatsoever on how close the output is to the desired output. In the following, we will show how to use
the oracle O to obtain the squared Hafnian of an arbitrary worst-case matrix YYT with high probability (this latter
probability is over the choice of the random variables instantiated in the algorithm).

The key idea is that for X ∈ CN×K, the quantity |Haf(XXT)|2 is a degree 2N polynomial over the entries of the
matrix X. This allows for the use of polynomial interpolation to recover the squared Hafnian of an arbitrary worst-case
matrix YYT . An important technique we use in this proof is the robust Berlekamp-Welch algorithm due to Ref. [15],
which is important for polynomial interpolation over R as opposed to a finite field. Polynomial interpolation over the
reals is a technique often used for the problem of average-case hardness of computing output probabilities of random
quantum circuits [14, 26]. The Berlekamp-Welch algorithm cannot be used as is for the reals, and therefore, recent
works [14, 26] use techniques like Lagrange interpolation. The new robust Berlekamp-Welch algorithm of Ref. [15]
allows for improved robustness of the worst-to-average-case reduction.

As an example, in the context of random quantum circuits over n qubits and m gates, Lagrange interpolation can
only give average-case #P-hardness of computing output probabilities to error 2−O(m3) rather than the O(2−n) that
suffices for proving the hardness of approximate sampling (see [7, 26]). The modified Berlekamp-Welch algorithm of
Ref. [15], which is boosted with an NP oracle, can sidestep the need for Lagrange interpolation and obtain average-case
#P-hardness with 2−O(m log m) error (see also, the recent work of Kondo et al. [25] which also obtains this robustness
error).

Theorem 9 (Robust Berlekamp-Welch algorithm [15]). Let p be a univariate polynomial of degree d over the reals. Suppose
that we have k ≥ 100d2 points (xi, yi), with {xi} uniformly spaced in the interval [0, κ] and obeying the promise

Pr[|yi − p(xi)| ≥ ∆] ≤ η <
1
4

.
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Then there is a PNP algorithm that can estimate p(1) to additive error ∆ exp
[
d log κ−1 + O(d)

]
with probability at least 2/3.

Proof of Theorem 3. The polynomial interpolation procedure is as follows. Let X(t) be the matrix obtained by drawing
a random X ∼ GN,K(0, 1/M) and setting

X(t) := (1− t)X + tY,

where Y is the matrix corresponding to the worst-case instance. Now, the quantity

p(t) := |Haf(X(t)XT(t))|2

is a polynomial of degree 2N over the entries of X(t), and consequently, over t itself. For t close to 0, X(t) is close to
Gaussian distributed, while when t is close to 1, the distribution is close to being deterministic. We select k points in
the range [0, κ] and query the oracle O for the value of p(t) for these points. By the promise, the oracle outputs the
correct value of p(t) for most values of t with high probability. Conditioned on this event, the robust Berlekamp-Welch
algorithm stated in Theorem 9 allows one to reconstruct the polynomial in the second level of the polynomial hierarchy.
The polynomial can then be evaluated at the point t = 1 to obtain an estimate of the squared Hafnian of the worst-case
matrix YYT .

We now check that the conditions of Theorem 9 are met. We say that a call to the oracle O is successful if it outputs
the squared Hafnian of a matrix to additive error ε. By assumption, for X drawn at random from GN,K(0, 1/M), the
oracle is successful with probability at least δ. Note however that the matrix X(t) = (1− t)X + tY is not exactly
distributed according to GN,K(0, 1/M). Instead, for small t, due to the rescaling by (1− t) and the shift by tY, X(t) is
distributed according to a slightly different distribution G ′. If we query the oracle for the value of p(t) with matrices
drawn from this different distribution G ′, the probability of success can, in the worst case, decrease. By definition, the
success probability can decrease at most by the variation distance between the two distributions GN,K(0, 1/M) and G ′,
which is O(t max(N, K)2). Therefore, for K ≥ N, the probability of success is at least δ−O(κK2). We choose κ to be
O(c/K2) with some small enough c so that the success probability is at least δ−O(c) > 3/4. This ensures that the
conditions of the theorem are met.

We finally conclude by examining the additive error to which we can compute, using the BPPNP reduction, the
squared Hafnian of the worst-case matrix YYT . If the additive error for successful queries to the oracle is at most ε,
Theorem 9 implies that the error in computing p(1) is ε exp

[
d log κ−1 + O(d)

]
. Plugging in d = 2N and κ = c/N2, we

get the total additive error in estimating p(1) to be ε exp[4N log N + O(N)]. Finally, we note that the squared Hafnian
is shown to be worst-case hard for additive error O(1/MN). Therefore, we make the choice

ε exp[4N log N + O(N)] = O
(

1
MN

)
, (S4)

or

ε = O (exp[−4N log N −Ω(N)− 2N log N]) = O (exp[−6N log N −Ω(N)]) ,

where we have assumed M = Θ(N2). This choice ensures that we can, with probability at least 2/3, compute the
squared Hafnian of an arbitrary matrix with bounded entries of the form YYT to additive error O(1/MN). As shown
in Lemma 7, this task is #P-hard. This completes our proof.

AVERAGE-CASE HARDNESS OF COMPUTING NOISY GBS OUTPUT PROBABILITIES

We argue here that computing the output probabilities for a noisy random GBS experiment is #P-hard on average.
That is, we show the following lemma.

Lemma 10. There exists a polynomial p(N) and a loss threshold η∗ such that (ε, η)-NOISYGBS-PROBABILITY with η ≤ η∗,
δ > 3/4, and ε ≤ 2−p(N) is #P-hard under PH reductions.

Proof. For worst-case hardness despite the presence of noise, we follow the proof technique in Refs. [15, 27]. At
a high level, the worst-case hardness follows from the error-detection property of the system. In particular, the
error-detection property implies that as long as the noise η is smaller than a certain threshold η∗, there is a fixed
outcome on a subset of the modes, say m, such that conditioned on this outcome, the probability distribution on the
rest of the modes is exponentially close to the target noiseless distribution. In other words, we have∣∣∣∣ Pr

noisy
[n|m]− Pr

ideal
[n]
∣∣∣∣ ≤ 2−poly(N)
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for any desired polynomial on the right hand side. Since Prideal[n] is #P-hard to approximate in the worst case by
virtue of Lemma 7, so is computing the conditional probability

Pr
noisy

[n|m] =
Prnoisy[n, m]

Prnoisy[m]
.

The denominator here is the probability of seeing the outcome m, which flags the no-error event. The probability of
this can be exponentially small, and satisfies [15, 27]∣∣∣∣ Pr

noisy
[m]− (1− η)O(Md)

∣∣∣∣ ≤ Pr
noisy

[m]2−poly(N),

where η is the maximum noise parameter as defined earlier in the main text. In other words, for an error-detected
circuit, the probability that the outcome on the subset of heralding modes is in the state m is exponentially close to the
probability that no error occurred, which is given by (1− η)O(Md).

Therefore, approximating Prnoisy[n, m] is also #P-hard:∣∣∣∣ Pr
noisy

[n, m]− Pr
noisy

[n|m](1− η)O(Md)
∣∣∣∣ ≤ Pr

noisy
[n, m]2−poly(N) (S5)

⇒
∣∣∣∣ Pr
noisy

[n, m]− Pr
ideal

[n](1− η)O(Md)
∣∣∣∣ ≤ Pr

noisy
[n, m]2−poly(N) + 2−poly(N).

Since computing Prideal[n] to additive error ±O(2−poly(N)) is #P-hard, so is computing Prnoisy[n, m] to additive error
O(2−poly(N)(1− η)O(Md). A similar analysis in Ref. [15] shows that it is coC=P-hard to compute a noisy probability in
the worst case to additive error 2−O(m log m) in the context of RCS. This proves the worst-case hardness.

For the worst-to-average-case reduction, we again use the technique of polynomial interpolation in conjunction
with a robust Berlekamp-Welch algorithm. We observe that any noisy output probability for a local noise model can
still be written as a polynomial in the gate entries of the circuit, using the Feynman sum-over-paths idea. As before,
we perform interpolation from a random instance from the ensemble to the worst-case-hard instance. This is achieved
now using the Cayley path interpolation technique of Ref. [26] instead of the direct interpolation between two matrices.
This is because the noisy output probability is no longer a simple function of only the linear-optical unitary (like the
Hafnian), but is also a function of the circuit implementation. The full interpolation involves interpolating every gate
of a circuit implementation from the average-case instance Ai to the worst-case instance Wi along the Cayley path

Ci(t) =
(

t1+ (2− t)AiW−1
i

) (
(2− t)1+ tAiW−1

i

)−1
·Wi,

which satisfies Ci(0) = Ai and Ci(1) = Wi. Using this interpolation and the fact that any local noise can be “purified”
gate-wise by introducing ancillary systems of finite dimension, we can again write the noisy probability Prnoisy[n, m][t]
as a polynomial in t. The rest of the proof follows from before.

AVERAGE-CASE HARDNESS OF COMPUTING NOISY PROBABILITIES IN HIGH-DIMENSIONAL GBS

For the worst-case hardness of computing noisy probabilities of the high-dimensional GBS architecture, we mainly
use the previous results on error-detection of noise. The additional ingredient used is the fact that a constant-depth
linear-optical architecture in two dimensions (and higher) has been shown by Brod [47] to be hard to exactly sample
from.

The proof of Ref. [47] uses post-selection to argue for exact sampling hardness. Note that the post-selection result
does not, by itself, imply the #P-hardness of computing output probabilities: it implies the PP-hardness of strong
simulation, which involves computing both the output probabilities and the marginals. However, we note that the
post-selection proof can often be “opened up” in order to directly argue about the hardness of computing output
probabilities. This is done by giving an amplitude-preserving reduction from a BQP circuit to the circuit family
in question (here, high-dimensional GBS). Since computing output amplitudes of BQP circuits is #P-hard, so is
computing that of the circuit family in question. Using the results from earlier, so is computing the noisy output
probability in the worst case for an error-detected circuit as long as the noise level is smaller than some (constant)
threshold η∗.

The average case hardness again essentially follows by observing that there is a polynomial structure in the output
probability, to prove Theorem 5. We again use the Cayley technique of Ref. [26] to set up the polynomial interpolation
in this case, and use results from Ref. [15] to strengthen it, such as using a variable rescaling and applying a robust
version of the Berlekamp-Welch algorithm (Theorem 9).
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TOTAL PHOTON NUMBER DISTRIBUTION

For pure state GBS, the total photon number distribution can be obtained efficiently by simply convolving the
photon number distributions of the individual modes going into the interferometer [62]. In the case where M identical
squeezed states (with squeezing parameter r) are sent into an interferometer and undergo uniform loss by transmission
parameter η, the probability of obtaining n photons is given by

Pr(n) =


ηn(

M
2 + n

2−1
n
2

)sechMr tanhn(r)2F1

(
n
2 + 1

2 , M
2 + n

2 ; 1
2 ; (1− η)2 tanh2 r

)
if n is even,

(1− η)(n + 1)ηn((M+n−1)/2
(n+1)/2 )sechMr×

tanhn+1(r)2F1

(
n+2

2 , 1
2 (M + n + 1); 3

2 ; (1− η)2 tanh2 r
)

if odd.

where 2F1(a, b, c; z) is a hypergeometric function. This equation reduces to the well-known lossless limit [10] when
η → 1, since in that case 2F1

(
n
2 + 1

2 , M
2 + n

2 ; 1
2 ; 0
)
= 1 and the probabilities for all odd photon numbers become zero

since they are proportional to 1− η. This distribution has the following moments

E(n) = ηM sinh2 r, Var(n) = ηM sinh2 r[1 + η(1 + 2 sinh2 r)].

Note that even if the losses are not uniform, one can still calculate in polynomial time the moments of the random
variable n [55, 62].
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