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Abstract Quantum computational complexity estimates
the difficulty of constructing quantum states from elementary
operations, a problem of prime importance for quantum com-
putation. Surprisingly, this quantity can also serve to study
a completely different physical problem – that of informa-
tion processing inside black holes. Quantum computational
complexity was suggested as a new entry in the holographic
dictionary, which extends the connection between geome-
try and information and resolves the puzzle of why black
hole interiors keep growing for a very long time. In this
pedagogical review, we present the geometric approach to
complexity advocated by Nielsen and show how it can be
used to define complexity for generic quantum systems; in
particular, we focus on Gaussian states in QFT, both pure
and mixed, and on certain classes of CFT states. We then
present the conjectured relation to gravitational quantities
within the holographic correspondence and discuss several
examples in which different versions of the conjectures have
been tested. We highlight the relation between complexity,
chaos and scrambling in chaotic systems. We conclude with
a discussion of open problems and future directions. This
article was written for the special issue of EPJ-C Frontiers in
Holographic Duality.
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1 Introduction

Surprising connections between geometry and information
have an honorary place in current research in theoretical
physics. These ideas date back to the Bekenstein-Hawking
formula [1,2] relating the entropy and area of a black hole.
The discovery of the AdS/CFT correspondence – the obser-
vation that certain gauge theories are equivalent (or “dual”)
to gravitational theories in one higher dimension (see e.g.,
[3,4]) – enabled putting the relation between gravity and
information on firm ground. Specifically, it permitted Ryu
and Takayanagi (RT) to formulate a proposal [5] (later proven
by [6]) that relates the entanglement entropy – a quantity
characterizing quantum correlations between two regions in
conformal field theory (CFT) – and areas of minimal surfaces
in asymptotically anti-de Sitter (AdS) spaces.

The RT proposal was the starting point for many inter-
esting developments. It was used to study entanglement in
strongly correlated systems and as a consequence improved
our understanding of critical points and topological phases,
chaos and thermalization, and RG flows (see [7] for a review).
Furthermore, it provides an interpretation of spacetime as
emergent from quantum entanglement. Specifically, it can
be used to understand the way in which the boundary infor-
mation is encoded in the bulk, and vice versa, in the AdS/CFT
correspondence.

However, black holes pose a barrier for our understanding
of spacetime in terms of entanglement. The reason is that
the space behind the horizon of black holes is only partially
accessible via the minimal surfaces in the RT proposal and
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therefore a lot of the geometry remains uninterpreted in terms
of quantum information. This is not a technicality but rather
it has been suggested that it is not possible to fully reconstruct
the geometry behind the horizon using the boundary data and
this topic is still being debated (see, e.g., [8]). Furthermore,
despite recent progress in reconstructing the Page curve of
black hole evaporation [9,10] we still lack a full understand-
ing of how black holes process and store information about
objects which are thrown into them.

One aspect of these problems is that the volume behind
the horizon of black holes keeps growing for a very long time
while the entanglement of a subsystem saturates at times of
the order of the subsystem size [11]. In fact, it is non-trivial
to identify dual field theory quantities which have a similar
long-term growth behavior.

To begin addressing this difficulty, Susskind et al. pro-
posed that the volume behind a black hole horizon should be
dual to a quantity from quantum information theory known as
quantum computational complexity [12–15]. Quantum com-
putational complexity tries to estimate how hard it is to con-
struct a given quantum “target state”, starting with a simple
(usually unentangled) “reference state” using a set of sim-
ple universal “gates” [16,17]. For example, if we start with
a quantum system consisting of a large number of spins ini-
tiated to be all aligned, we could ask, what is the minimal
number of one and two-spin unitary operations taken from a
given set required to get to a given target state.

As we will explain in this review, in chaotic systems the
complexity grows linearly as time evolves and reacts to per-
turbations in a distinctive way. All these behaviors have a
counterpart in the behavior of the volume behind the hori-
zon. The duality between complexity and certain geometric
quantities – specifically the volume and gravitational action
– was conjectured based on these similar features. We will
refer to these conjectures as the “holographic complexity
proposals”.

At first, the holographic complexity proposals suffered
from lack of rigor due to the absence of a proper definition of
complexity outside the traditional spin-chain formulation, in
particular for quantum field theory (QFT) states. However,
this difficulty was circumvented, first for Gaussian states in
free and weakly interacting field theories [18–22] and later
for strongly interacting conformal field theories using dif-
ferent approaches [23–28]. In fact, the study of complexity
in field theory is interesting in its own right, apart from the
relation to black holes. Quantum Computational Complexity
is expected to have purely condensed matter applications for
the detection of phase transitions [29,30] and in the study of
thermalization and chaos [31,32] as a natural extension of
entanglement entropy.

With the surge in literature on complexity in field the-
ory and holography, and with many people coming into this
field from different disciplines, we thought it would be good

to have an introductory text. This review was written to be
comprehensible but by no means comprehensive. We only
review those ingredients which are strictly necessary to enter
the field with the hope of getting the reader to a point where
it is easy to read relevant research articles in the field.

This article was written for the special issue of EPJ-
C Frontiers in Holographic Duality. Other aspects of the
relation between holography and quantum information are
reviewed in [33–35], submitted as a part of the same issue.

This review is organized as follows. In Sect. 2 we begin
with an overview of quantum computation. Then, in Sect. 3
we define Quantum Computational Complexity and discuss
its properties in spin chains with fast scrambling dynamics
and how it relates with scrambling and chaos. In Sect. 4 we
present a continuous definition of complexity due to Nielsen.
In Sect. 5 we discuss the complexity of systems of coupled
simple harmonic oscillators in preparation of our study of
complexity in free and weakly interacting QFTs. In Sect. 6
we review the complexity of Gaussian and coherent states in
free and weakly interacting QFTs, both pure and mixed, and
discuss complexity in strongly interacting CFTs. In Sects. 7–
8 we discuss the holographic complexity conjectures and the
relevant evidence. We conclude in Sect. 9 with a summary
and outline of open questions.

2 A quantum computation primer

Quantum computers can famously achieve exponential speed-
up of computation compared to classical ones, at least for
some problems. They can do this by taking advantage of the
possibility of putting a quantum system in a superposition of
states; performing operations on a superposition is, roughly
speaking, like performing the computation in parallel on all
the states in the superposition. Of course this is not precisely
true, since in order to read the result one has to perform
a measurement, which will cause the collapse of the state
of the system on an eigenstate of the measured observable.
One might then expect that each input requires a different
measurement and the advantage of having the superposition
is lost. But this is not the case: by a judicious choice of the
algorithm and the initial state one can extract the information
in an efficient way.

It is very instructive to see how these ideas work in prac-
tice on a simple example: the Deutsch’s algorithm (we follow
the presentation given in [36]). Suppose we have the task
of computing a function f (x) : {0, 1} → {0, 1}. One can
build a circuit that implements the 2-qubits unitary operator
U f : |x, y〉 → |x, y + f (x)〉 where the addition is under-
stood to be mod 2. We could read out the value of f (x) by
applying the operator on |x, 0〉 and reading the second qubit,
and we assume that this operation can be done with the same
efficiency as in the classical case. Now let us consider an
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initial state in a superposition. Let us define |±〉 = |0〉±|1〉√
2

.

First observe that U f |x,−〉 = (−) f (x)|x,−〉. Then one can
compute

U f |+,−〉 = 1

2
((−) f (0) + (−) f (1))|+,−〉

+ 1

2
((−) f (0) − (−) f (1))|−,−〉 . (1)

If we project the first qubit on the |±〉 basis, we can read off
whether f (0) = f (1) or f (0) �= f (1) (we could equiva-
lently say that we computed f (0) + f (1) mod 2). The point
of the example is that there is no way of doing this classi-
cally without computing separately f (0) and f (1), whereas
quantum mechanically we get the result with a single com-
putation. Not only the computations proceed in parallel, but
they can be recombined by using interference of different
states. This simple example is not very impressive, but it can
be generalized to an analogous problem involving a function
on n qubits; the Deutsch-Jozsa algorithm solves the prob-
lem with one computation instead of the 2n−1 + 1 required
classically (see [36]).

Another important point illustrated by the example is that
an efficient computation will typically require a particular
initial state. We started from |ψ0〉 = | + −〉, but supposing
that our computer starts in a canonical state |00〉, we will
need to apply some operations to prepare |ψ0〉. Analogously,
in the final step we need to measure the state in the |±〉 basis,
but if we can only measure in the computational basis (i.e.,
the |0〉, |1〉 basis), we have to use another operator to move
between the two bases.

We can then formalize a quantum computation as a series
of operations on a set of qubits, and the number of operations
required to go from the initial to the final state is a measure
of the difficulty of the task. This is the notion of quantum
computational complexity. In the next section we will give a
more precise definition.

We should point out that the notion of computational com-
plexity is related to the question of the resources needed to
solve a problem. We are typically interested in finding the
fastest algorithm for a given problem. Assuming that each
quantum operation (gate) requires a fixed amount of time, the
number of operations is a measure of the total time required
for the computation. The real physical time will of course
depend on the physical implementation of the gates, but there
are some unavoidable limits imposed by quantum mechan-
ics; the Margolus and Levitin [37] and the Aharonov et al.
[38–40] bounds give the minimum time required for evolv-
ing a given state into an orthogonal state1 tmin = π h̄

2E , where
E = 〈H − E0〉 is the expectation value of the energy above

1 Note however that it may not always be necessary to use orthogonal
states to distinguish the outcome, see [41].

the ground state or the variance of the energy in the state
(〈E2〉 − 〈E〉2)1/2, respectively.

Alternative notions of complexity exist, related to the opti-
mization of different resources. For example one could take
into account the number of qubits used in a quantum algo-
rithm similarly to storage in classical complexity. A different
notion is the Kolmogorov complexity. In the classical setup,
this is the length of the minimal program that can produce
a given string; so it is a measure of the amount of informa-
tion contained in the string, or how much it can be com-
pressed without losing information. Quantum versions of
Kolmogorov complexity have also been proposed [42]. One
can of course also combine the requirements of limitation on
time, storage space and algorithmic complexity all together.

In this review, we will focus only on one notion of quan-
tum computational complexity, related to the number of oper-
ations. The reason is that this notion has been found (or rather,
conjectured) to play an interesting role in the holographic
duality, in connection with the properties of black hole inte-
riors, and as a consequence it has been developed in the last
few years from a point of view slightly different from that of
quantum computing. We cannot rule out that other notions
will also become relevant as we understand more and more
of the relation between geometry and information (see for
example [43] for a discussion of the Kolmogorov complex-
ity in the context of holography).

3 Complexity in qubit systems

3.1 Quantum computational complexity

We have explained that a quantum computation can be for-
malized as the problem of producing a certain state, from an
initial state, through a series of unitary operations. In practice
we can only build a quantum circuit using a discrete set of
gates, each one implementing a simple operation, typically
acting only on one or two qubits at the time. Two questions
arise naturally: first, is it possible to construct an arbitrary
unitary operator using a finite predetermined set of gates?
Second, if a unitary can be constructed, how many gates are
needed?

For the first question, it is obvious that the set of all finite
circuits built out of a finite set of gates can only reproduce
a discrete subset of the unitary group. However if we allow
for a margin of error, i.e., if we only ask that for any operator
U we can find a circuit that gives an operator V such that
‖U − V ‖ < ε, in the operator norm,2 then the answer is
positive: there exist sets of universal gates, using which

2 The operator norm is defined as the maximal eigenvalue, i.e., ‖U‖ =
max|ψ〉 |〈ψ |U |ψ〉| where the maximization is over all normalized states
|ψ〉.
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any unitary can be constructed with arbitrary precision. The
full argument can be found in [36]. Here, we only give an
outline of the proof. Let us consider first operators acting on
a single qubit, i.e., elements of SU (2). A generic element
can be written as a rotation of an angle θ around the axis
n, Rn(θ) ≡ e−iθnσ/(2|n|), where σ is the vector of Pauli
matrices. We can use two gates: the Hadamard gate (denoted
by H ) and the T gate (sometimes referred to as the π/8 phase
gate)

H = 1√
2

(
1 1
1 −1

)
= 1√

2
(σx + σz),

T =
(
e−iπ/8 0

0 eiπ/8

)
. (2)

One can check that HT H = Rx̂ (π/4), and T HT H =
Rn(θ), where n = (cos π/8, sin π/8, cos π/8) and cos(θ/2)

= cos2(π/8). Note that the angle θ is an irrational mul-
tiple of 2π . This implies that we can approximate any
angle of rotation by taking powers of Rn(θ). Further-
more one can see that HRn(θ)H = Rm(θ) with m =
(cos π/8,− sin π/8, cos π/8). Since m and n are not par-
allel, one can find a parametrization of an arbitrary rotation
as

U = eiφRn(α)Rm(β)Rn(γ ) . (3)

These would be the Euler angles in the case where m ⊥ n.
This shows that the gates H, T are universal for a single
qubit.

For the case of more than one qubit, an arbitrary unitary
cannot be approximated using only the H and T gates since
those do not generate quantum correlations between multiple
qubits. However, it turns out that adding one kind of two-qubit
operation is enough to generate a universal gate set on any
number of qubits. An example of such a gate is the CNOT
gate:

CNOT = 1

2
(1 + σ (1)

z ) ⊗ 1(2) + 1

2
(1 − σ (1)

z ) ⊗ σ (2)
x . (4)

One can easily see that in the computational basis,3 this gate
flips the second qubit only if the first qubit is in the state
1. With the CNOT gate in hand the proof of universality
amounts to a linear algebra theorem and it proceeds as fol-
lows. First, we can show that any unitary operator can be
decomposed as a product of two-level operators, which act
non-trivially only on a subspace spanned by two computa-
tional basis vectors. Then, essentially one has to map any two-
dimensional subspace to a single qubit; this can be achieved
by acting with the CNOT gate.4 This proves that every uni-

3 The computational basis is the basis of states in which each qubit is
in an eigenstate of σz .
4 As a simple illustration, let us consider a two-dimensional subspace
spanned by the two vectors (0, 1, . . .), (1, 0, . . .) that differ in the first

CNOT gate

Fig. 1 Illustration of a circuit implementing the unitary transformation
exp

(
iα
∏

i σ
i
z

)

tary operation can be decomposed as a product of H and T
gates acting on the different qubits and CNOT gates acting
on all pairs of qubits.

An alternative proof can be given, which is perhaps more
suggestive and closer to a physicist’s mindset. We can write
a generic unitary operator as

U = exp
(
i
∑

yaha
)

(5)

where the sum is over all operators of the form ha = ∏
i σ

(i)
ki

.

This can be approximated asU = (
∏

a e
i y

a

n ha )n+O(4N/n),
where N is the number of qubits. Note that we assume that
n � 4N so that the correction is much smaller than the lead-
ing term. Using single-qubit operations, one can convert any
ha into h = ∏

i σ
(i)
z . The operator eiαh can be implemented

using a single-qubit operator and the CNOT gates as fol-
lows: we apply successively the CNOT to the j-th qubit and
an ancillary qubit. The effect is to encode the product of all
bits on the extra qubit, and then one can act on it with eiασz ,
and reverse the series of CNOTs. The circuit is represented
in Fig. 1. In this way, we have demonstrated that using only
one and two-qubit operations any unitary can be constructed
to arbitrary precision. The arbitrary precision is achieved by
tuning n to be as large as we wish.

Notice that this logic could be applied also at the level
of one qubit: any element of SU (2) can be written as
eaxσx+ayσy+azσz and can be approximated using the three
gates eiεσx , eiεσy , eiεσz . In fact, the third gate eiεσz can be
replaced by further combinations of the first two gates using
the group commutation relations. We have again a set of two
universal gates on one qubit. However, now the gates have
to be adjusted according to the required precision; moreover,
for ε very small, the gates are very close to the identity and
a circuit built with them would be very susceptible to noise,
although such considerations are outside our purview.

Footnote 4 continued
two qubits. Acting with the CNOT gate on these qubits turns the states
into (0, 1, . . .), (1, 1, . . .) and the states now differ only in the first qubit.
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Having established the possibility of approximating an
arbitrary unitary operator, we can address the second ques-
tion: how efficiently can we simulate a given operator? This
question leads us finally to the notion of complexity. Let us
start with a definition.

Quantum computational complexity C(U ) of an
operator U is the minimal number n such that
‖U − ∏n

i=1 Ui‖ < ε, where Ui belong to a set
of allowed gates.

The answer should depend on the allowed error ε (also
known as the tolerance), on the allowed set of gates, and on
the size of the system, that is on the number of qubits N . At
the single qubit level, the Solovay–Kitaev theorem [44] states
that any operator can be built with O

(
logc 1

ε

)
gates, where

c ≈ 2. For a system of N qubits, we can give an estimate by
computing how many balls of radius ε are needed to cover
the unitary group U (K ≡ 2N ). This group has dimension
K 2, and its volume (see e.g., [45] Corollary 3.5.2) is given
by5

Vol (U (K )) = (2π)(K
2+K )/2

2!3! . . . (K − 1)! . (6)

The volume of an ε-ball of the same dimension is6

Vol(Bε) = (
√

πε)K
2

(K 2/2)! (7)

and the ratio of the two volumes gives an estimate of the
required number of balls. For large N one finds, using the
Stirling’s formula,

log

(
Vol(U (2N ))

Vol(Bε)

)
∼ 22N

(
N

2
log 2 + log

1

ε

)
. (8)

The main thing to notice is that the dependence on the error
is only logarithmic, just as in the case of one qubit, but
the dependence on the size of the system is exponential.
Given a set of p gates, the number of circuits with m ele-
ments is bounded by pm . Therefore, the number of unitaries
with complexity less than or equal to m is bounded by pm .
Together with Eq. (8), this implies that most unitary trans-
formations are exponentially complex. In other words, sim-
ulating a unitary operator is generically exponentially hard.
Enlarging the set of gates cannot improve the situation: one

5 Here we work with the group of unitary transformations U (K ) but
since overall phases are not important in physical applications, a similar
estimate is often done for the special unitary group SU (K ), see e.g.,
[46].
6 Since we consider a small ball, we can use the result for the volume
in flat space. The exact result, and the large-K asymptotics, for the
volume of a ball of any radius in U (K ) can be found in [47]. Interest-
ingly, as discussed in this reference, the result is related to a number of
information-theoretical properties.

Fig. 2 Illustration of a circuit representing time evolution according
to a k-local (in this case 2-local) Hamiltonian

can show that if a circuit can be built with m gates, then it
can be build with O(m logc(m

ε
)) gates from a different uni-

versal set [48]. Combining the estimate in Eq. (8) with the
Solovay–Kitaev theorem, one can show that a unitary over N
qubits may be approximated with tolerance ε using at most
O(N 222N logc(N 222N/ε) gates [36].

In this section we have considered the operator complex-
ity; the question of the complexity of a state is related but
not identical, because many unitary operators can produce
the same state.

Quantum computational complexity of a state is
defined by theminimal operator complexity over
all operators which produce a given target state
|ψT 〉 starting with a simple reference state |ψR〉,
i.e.,

C(|ψT 〉) = min
U |ψR〉=|ψT 〉 C(U ). (9)

We will dwell more on the difference between the two
later on; for now we can just notice that a similar count-
ing argument shows that the state complexity has the same
qualitative behavior as the operator complexity in that the
discretized number of states in CP

K−1 is exponential in N
and logarithmic ε.

3.2 Complexity in fast scramblers

In the previous section we have considered the complexity
from the point of view of computation, i.e., we focused on
the complexity of a unitary operation designed to perform
a certain task. From a physics perspective, unitaries arise as
operators that describe the evolution in time of a system. It
is natural then to consider the question of how complexity
changes with time. Under some assumptions, the result will
follow from the volume counting of last section. We follow
here the presentation given in [13,46].

We model the evolution of a Hamiltonian system with a
discrete circuit of the form shown in Fig. 2.

We assume that the circuit contain only k-local gates, i.e.,
gates that act on k � N qubits at the time. The evolution

123



128 Page 6 of 40 Eur. Phys. J. C (2022) 82 :128

Fig. 3 Illustration of the time dependence of complexity during chaotic
Hamiltonian evolution. The complexity grows linearly until it reaches
its maximal value which is exponential in the number of degrees of
freedom, and is expected to decrease significantly around the quantum
recurrence time which is doubly exponential in the number of degrees
of freedom in the system, once the full unitary group has been explored

happens in discrete steps, at each step the qubits are divided
in groups of k and acted on by the gates; however the partition
changes at every step, so the qubits are all interacting with
each other. This is a feature of systems that have the property
of fast scrambling, namely, the information contained in a
part of the system is quickly distributed over the whole sys-
tem [49]. After n steps of evolution, the number of unitaries
that could be generated is(

N !
(N/k)! (k!)N/k

)n

∼ exp

(
n
k − 1

k
N log N

)
. (10)

This is much smaller than the total number of unitaries in (8),
unless n is exponentially large. We can often assume that all
these unitaries are different from each other, and that there is
no other circuit that generates them more efficiently; under
these assumptions, the complexity is

C = nN/k , (11)

so it grows linearly with the number of steps and with the
size of the system. The linear growth is expected to con-
tinue until most of the group has been explored, which hap-
pens for n = O(22N ), and then the complexity saturates
and oscillates close to its maximal value. Eventually quan-
tum recurrence will make it return to small values but on a
doubly-exponential time scale, see Fig. 3.

Another natural question that one can ask is: how does the
complexity grow when the system is subject to a perturba-
tion? We can consider an operator W that is simple, e.g., it
acts on a single qubit, and let it evolve, so we need to find
the complexity of the so-called precursor

W (t) = U (t)WU (−t) . (12)

A precursor is defined [50] as any non-local operator which
acts at one time, to simulate the effect of a local operator
acting at a different time (later or earlier). For the present
purposes, we can just think of the forward or backward time
evolution of a local operator. It is clear that this is a very
different question from finding the complexity ofU (t) itself;

Fig. 4 Illustration of the switchback effect. The perturbationW is acted
on byU (t) on the left andU†(t) on the right to create the precursor oper-
ator. Two qubit gates participating in the most efficient preparation of
U (t) are labeled gi and they appear as light-purple circles before apply-
ing them to W (and as light-red circles after being applied). Estimating
the complexity of the precursor operator at different times depend on
delicate cancellations which can be seen after applying the gates. For
example, the gate g2 commutes with the perturbation and the previously
applied gates and therefore does not contribute to the complexity

for instance, when W is the identity operator, W (t) is also the
identity operator for any t , so its complexity does not grow.
The circuit model explains why [51,52]: a discretized version
of the circuit that represents W (t) can be drawn like in Fig.
4, with a layer in the middle representing W , and series of
layers on the left and the right representing U (t),U (−t). In
fact, we have discretized time here into a series of discrete
time steps which we will label n. The gates on the right are
the inverse of the corresponding ones on the left. But this is
not the optimal circuit for W (t), because gates on the two
sides that act on qubits that are not affected by W will have
no effect and can be canceled out. At the second layer for
example, the cancellation is obstructed not only by the qubit
acted on by W but also by those qubits that have interacted
with W indirectly via gates which operated in the first layer.
We will refer to those qubits as infected qubits. This concept
generalizes to the following layers too. At every step we will
call infected qubits those qubits which have interacted with
the qubit W or with any qubit which has interacted (directly
or indirectly) with W by the operations of the previous layers.
This is illustrated in Fig. 4.

Let us define s(n) to be the number of qubits that have
been infected after the action of n layers of the circuit, and
p(n) = s(n)/N the fraction of infected qubits. When another
layer is applied, the probability that a qubit is infected is the
probability that it was already infected plus the probability
that it was not, multiplied by the probability that one of the
k − 1 qubits that it interacts with is infected.7 It is easier to
write it in terms of q(n) = 1 − p(n). The evolution of the
infection is described by

q(n + 1) = q(n)k . (13)

7 Recall, that at every step the qubits are divided randomly in groups
of k on which the gates act.
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This can be easily solved and we find the number of infected
qubits:

s(n) = N

(
1 −

(
1 − s0

N

)kn)
, (14)

where s0 is the initial number of infected qubits. When the
initial operator is small, we can approximate this expression
for small n with s(n) ∼ s0kn . The complexity is given by the
sum of the infected sites at different steps. We cannot perform
the sum analytically, however we can see that because of the
exponential behavior, (s(n+1)− s(n))/s(n) becomes small
after a few steps. We can then replace the difference equation
by a differential equation

ds

dn
= (N − s)

(
1 −

(
1 − s

N

)k−1
)

. (15)

The solution can be given explicitly for the inverse function
n(s):

n = 1

k − 1
log

(
1 − (1 − s

N )k−1

(1 − s
N )k−1

)∣∣∣∣∣
s

s0

. (16)

This expression can be inverted as follows

s

N
= 1 −

(
1 + c e(k−1)n

)− 1
k−1

,

c =
(

1 − s0

N

)−(k−1) − 1,

(17)

from which we can extract the early time behavior: s(n) ∼
s0e(k−1)n , and the late time behavior: s(n) ∼ N (1 −
c−

1
k−1 e−n), where for these limits we have assumed that

s0 � N and therefore c ∼ s0(k−1)
N . We can also see that

the time it takes for a small perturbation to spread to a
finite fraction of the system (the scrambling time) is of order

n∗ ∼ 1
k−1 log

(
N

s0(k−1)

)
.8

In the case of a 2-local circuit, k = 2, the solution (17)
takes the form

s(n) = Ns0en

N + s0(en − 1)
. (18)

We can then compute the complexity which is obtained by
summing over the number of infected qubits at different
times:

C(n) =
∫ n

0
s(n′)dn′ = N log

(
1 + e(n−n∗)

)
, (19)

where here again, we have assumed s0 � N and defined
n∗ = log N

s0
.

There are two notable features of this result. 1) It grows
linearly for times larger than the scrambling time; the delay
in the onset of the linear growth is called the switchback

8 Here we are using the term time for the number of steps in anticipation
of it becoming the physical time of some Hamiltonian evolution later
on.

Fig. 5 Illustration of the time dependence of complexity of the precur-
sor. An initial exponential regime is followed by linear growth starting
at the scrambling time n∗

effect [13]; just as for the unperturbed evolution, the linear
growth will eventually come to an end and the complexity
will saturate on exponentially long time scales. This linear
growth behavior is very important; it is one of the motivations
for the holographic conjectures that we will present later in
Sect. 7.1. We will comment further on this in the discussion
Sect. 2) The early-time behavior is exponentially growing,
but with a small prefactor that is suppressed as 1/N . It can be
argued that this behavior is related to the Lyapunov growth
of the out-of-time-order correlators [53] which is a signature
of quantum chaos. Under the assumption of maximal chaos,
this yields the identification (k − 1)n = 2πT t . The number
of qubits corresponds to the entropy of the system. Up to
prefactors, we find that the rate of growth is expected to be
proportional to T S. This expectation is borne out by the two
holographic complexity proposals CV and CA applied to
black holes which we will discuss later in Sect. 7. The time
dependence of the complexity of the precursor is illustrated
in Fig. 5.

4 Continuous complexity

4.1 Nielsen’s approach

We have estimated the number of gates needed to reproduce
a given unitary, but how can one go about finding the actual
optimal circuit that does the job? This appears to be a very
difficult problem.

An approach to this question, proposed by Nielsen [54–56]
turns the question into a geometric problem, and as such pro-
vides a universally applicable strategy. The idea is suggested
in the proof of universality given in the previous section: if
the universal gates are chosen to be eiεh , then a circuit will
explore the unitary group by small steps, and in the limit
ε → 0 will give a continuous path, which can be constructed
by means of a time-dependent Hamiltonian,
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U (t) = ←−P exp

(∫ t

0
H(s)ds

)
. (20)

The Hamiltonian can be expanded in a basis of operators

H(t) =
∑
I

Y I (t)OI . (21)

The complexity of a given target unitaryUT is defined by the
minimization of a suitable cost functional F[U (t), U̇ (t)] as

CF [Ut ] = min{U (t)}

∫
dt F[U (t), U̇ (t)] , (22)

with the constraint that the desired operator is reached at
some fixed time t f . In this way the problem is translated into
a Hamiltonian control problem.

A set of particularly relevant length functionals are those
satisfying the following conditions [18,54]

1. F is continuous for all unitaries U (t) and all non-
vanishing tangent vectors U̇ (t).

2. F is positive: F[U (t), U̇ (t)] ≥ 0 with equality iff U̇ (t) =
0.

3. F is positively homogeneous: F[U (t), λU̇ (t)] = λF
[U (t), U̇ (t)] for any λ ≥ 0.

4. F satisfies the triangular inequality F[U, U̇ + V̇ ] ≤
F[U, U̇ ] + F[U, V̇ ]

If in addition one assumes smoothness (continuity of all
derivatives) and requires that the Hessian of F(U, U̇ ) as a
function of U̇ is strictly positive for all U (a condition that is
stronger than the triangular inequality) then the length func-
tional is a Finsler metric and the manifold is a Finsler man-
ifold. The positive homogeneity property allows us to take
t f = 1 without loss of generality. The interest of these defini-
tions is that in a Finsler metric the problem of finding minimal
length curves translates into a geodesic equation which is a
second-order differential equation, just as for the more usual
Riemannian geometry.

As the reader might have already noticed, in this approach,
the complexity is not uniquely defined, as it depends on the
choice of the cost function. For instance, a quite general fam-
ily of cost functions, that we will use in the following, is given
by

Fk,{p}[Y I ] =
(∑

I

pI |Y I |k
) 1

k

, (23)

where the positive penalty factors pI > 0 account for the
relative difficulty of implementing different gates.9 In the
case k = 2 the cost function is the distance induced by a

9 For the notation, in the following the penalty factors should be under-
stood to be absent, i.e., all set to one, unless explicitly indicated; so Fk
will refer to the unpenalized cost, and Ck to the corresponding complex-
ity.

Riemannian metric on the space of unitaries. This metric is
always right-invariant, as it is defined in terms of H(t) =
∂tU (t)U−1(t), but in general it is not left-invariant.10 For
k �= 2, the cost functions satisfy the properties 1–4 and while
they are not Finsler metrics, they can still be approximated
arbitrarily well by Finsler metrics.

Notice that the complexity thus defined will depend on
the choice of the basis of operators used and in general it
is not invariant under a change of basis. One can obtain a
basis-independent notion using the Schatten norm:

Sk[H ] =
(

tr(H†H)
k
2

) 1
k
. (24)

If the operators of the basis are chosen so that 1
2 tr(OIO†

J ) =
δI J , then F2k[H ] = (1/

√
2)Sk[H ]. In this case F2 corre-

sponds to the left- and right-invariant metric, and is invariant
under an orthogonal change of basis.

One may wonder whether the “continuous” complexity
defined in this section can be related precisely to the discrete
notion defined by the number of gates. The argument given
in [55] shows that this is the case, and at the same time it
illustrates the role of the penalty factors. They consider a
Hamiltonian of the form

H =
∑
a

Y aσa +
∑
i

Ỹ iσi (25)

where σa are one- or two-qubit gates, and σi are three or
higher qubit gates, taken to be tensor products of Pauli-
matrices. Note that these generators are not normalized as
before but rather tr(σAσB) = 2N δAB . With this choice, the
relation between the cost functions (23) and (24) is rescaled
accordingly. We will keep this normalization until the end of
the section to match with the reviewed literature. The cost

function is chosen as F =
(∑

a(Y
a)2 + p

∑
i (Ỹ

i )2
)1/2

.

When the penalty factor p is taken to be very large, one
can expect that the optimal path will use only the “easy”
gates. This can be formalized using the projector Pσa =
σa, Pσi = 0. First, one can show that if U = exp

∫
H(t),

UP = exp
∫
PH(t) , then

‖U −UP‖ ≤ 2N

√
p
CF [U ] . (26)

This shows that, by penalizing enough the higher order gates,
the operator can be approximated with arbitrary precision
using only one and two-qubit gates. For instance, choosing√
p > 4N , we obtain ‖U −UP‖ ≤ CF [U ]/2N .
Then, replacing the functions Ya(t) with step-wise con-

stant functions, one can effectively discretize the integral,

10 The cost function could in principle depend both on the position
U (t) and the velocity Y (t) along the path. This would give rise to
inhomogeneous metrics on the group, but we will not consider such
cases.
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and exhibit a circuit built with one and two-qubit gates that
approximates U . The discrete complexity Cd(U, ε), defined
as the number of gates in the optimal circuit that builds U
with a tolerance ε, is then related to the continuous one as

Cd(U, ε) ≤ c
N 6CF [U ]3

ε2 (27)

for some constant c. Moreover, as proven in [54], the com-
plexity gives also a lower bound on the number of gates,
provided the cost function satisfies certain conditions: given
an exactly universal set of gates G = {ei Xi }, which allows
us to reach the target unitary exactly, and a cost function that
satisfies F[Xi ] < 1 ∀i ,11 then for any unitary it holds that
CF [U ] ≤ CG[U ], where the latter is the exact discrete com-
plexity of U with respect to the gate set. This shows that the
notions of discrete and continuous complexity are polynomi-
ally related to each other. It is not known what cost function
gives the tightest bound; notably, F2 is not optimal, since for
all operators F2(U ) ≤ π .

4.2 Complexity of one qubit

In order to get a better understanding of the complexity geom-
etry, it is useful to consider the simplest possible case: a sys-
tem of a single qubit. We follow mainly the presentation in
[57].

As explained in the previous section, the choice of a
cost function of the type F2 is equivalent to the choice of
a right-invariant metric on SU (2). As is well-known, there
is a unique (up to rescaling) right-and-left invariant metric;
when equipped with this metric, the group is isometric to
the round sphere S3. The general right-invariant metric can
be written using the right-invariant 1-forms ωa defined by
dg g−1 = ωaiσa :

ds2 = Iab ωaωb . (28)

The maximally symmetric round-sphere is obtained when
Iab = I δab. If we choose, for instance, a diagonal matrix12

but with different entries: Ixx = Iyy = 1, Izz = p, then the
geometry is that of a squashed 3-sphere. Let us consider the
following parametrization of SU (2):

g =
(

z1 z2

−z̄2 z̄1

)
, (29)

with (z1, z2) ∈ C
2 , |z1|2 + |z2|2 = 1. In these coordinates

the metric with the penalty factor p is the pullback on S3 of

11 By F[Xi ] here, we mean the F cost function defined with respect
to the Hamiltonian H = Xi and a choice of basis generators OI from
which the control functions Y I can be extracted.
12 For the basis-independent cost functions, we can always choose a
basis that diagonalises the matrix.

the following metric on C
2:

ds2 = dz1dz̄1 + dz2dz̄2

− p − 1

4
(z1dz̄1 − z̄1dz1 + z2dz̄2 − z̄2dz2)

2 .
(30)

The geodesics can be described explicitly as follows [58]:
the geodesic starting from the identity with tangent vector v

is given by

g(t) = RJ (t |J |) Rẑ(tγ J3) (31)

where we used the same notation for the rotations as in
Sect. 3.1, γ = 1

p −1 and J is the angular momentum, related

to the angular velocity as Ja = Iabvb. Clearly for γ = 0 we
recover the usual geodesics on the sphere.
In coordinates, the geodesic trajectories are

z1(t) = e−iγ J3t/2
(

cos
|J |t

2
− i Ĵ3 sin

|J |t
2

)
,

z2(t) = e−iγ J3t/2( Ĵ1 + i Ĵ2) sin
|J |t

2
, Ĵ = J/|J | .

(32)

It is instructive to consider the behavior of neighboring
geodesics gJ (t), gJ+δ J (t); their difference gives the Jacobi
vector field, whose length tells us whether geodesics con-
verge or diverge; more precisely one has [59]

||δwgv(t)||2 = t2 − 1

3
Kv,wt

4 + o(t4) (33)

where v = ġv(0), w is a unit vector orthogonal to v, and
Kv,w is the sectional curvature of the plane spanned by v,w.
The calculation gives

K1,3 = K2,3 ∝ p , K1,2 ∝ 4 − 3p . (34)

We see that for p = 1 all the sectional curvatures are equal,
as the metric is isotropic. For p > 4/3 the sectional curvature
becomes negative in the plane 1, 2 spanned by the easy gen-
erators. This is a general feature, which can be understood as
follows: since the commutator of two easy gates gives a hard
one, it may be more efficient, in order to go from σx to σy ,
to travel along the two axis rather than the hypotenuse. This
appearance of hyperbolic geometry is a striking feature of
complexity geometry, and can illustrate one important aspect,
namely the fact that the distance in complexity can be much
larger than the distance in the operator norm. In fact, there
always exists a small ball around each point, inside which
the direct geodesics are the shortest paths. Then for suffi-
ciently small C2(U ) = ε, one has ε ≤ C2,p(U ) ≤ √

p ε. For
p large the two distances can be very different, even though
they go to zero together, so the complexity is still a contin-
uous function of the distance. The difference becomes more
significant when we consider systems with more degrees of
freedom: in that case, as we have already seen, the complex-
ity can increase exponentially in the number of qubits while
the Hilbert space distance cannot.
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Fig. 6 Illustration of the evolution of the complexity of the precursor
as a geodesic deviation in negatively curved space

As pointed out in [51], a hyperbolic geometry similar
to what we saw above but for a larger number of qubits
accounts for the switchback effect discussed in Sect. 3.2. An
initially small operator can be represented as a short segment
in the space of unitaries. The precursor is obtained evolving
in time the two ends of the segment. Connecting the ends
with geodesics sweeps out a two-dimensional surface; if we
assume a constant negative curvature on this surface, then
one can show that the geodesic distance grows in time with
the same features described by the switchback, i.e., initially
exponential and later linear with a time offset. This behavior
is illustrated in Fig. 6.

Finally, we can analyze in detail in this example the differ-
ence between operator complexity and state complexity. For
the latter, we want to find the shortest path in operator space
requiring that we reach a certain target state, so we define

C(|ψT 〉, |ψR〉) = min
U

C(U ), s.t. U |ψR〉 = |ψT 〉 . (35)

The space of states of a qubit is CP
1 ≈ S2. It can be

identified with the coset SU (2)/H where H is the stabilizer
group of the action of SU (2) on the states. Explicitly we can
parametrize the group as

(z1, z2) =
(

x√
1 + x x̄

eiα,
1√

1 + x x̄
e−iα

)
(36)

and identify x with the local coordinate on CP
1. The min-

imization over the stabilizer in (35) means that locally we
have to choose a direction along the fiber that minimizes the
length. When we write the metric (30) in these coordinates,
we find that one can extract a term (dα + . . .)2. Setting this
term to zero minimizes the length, and one is left with a
metric which is best written in angle coordinates using the
stereographic projection x = cot( θ

2 )eiφ :

ds2 = 1

4

(
dθ2 + p sin2 θ

sin2 θ + p cos2 θ
dφ2

)
. (37)

It is clear from the definition (35) that the state complexity
is in general not left-invariant, since the operator complexity
is not: C(g|ψT 〉, g|ψR〉) �= C(|ψT 〉, |ψR〉), and indeed the

metric (37) is not homogeneous. For large p it has negative
curvature everywhere except in a small region around the
equator.

So far we have considered only the geometry correspond-
ing to the penalized F2 cost. We could ask what is the distance
for other costs, for instance F1. Unfortunately, it is quite com-
plicated to compute the geodesics, even in this simple setup
of a single qubit. Looking at the definition (23), it is clear that
there is a simple case in which C1 and C2 coincide: when there
is only one non-vanishing Y I . In this case the geodesic can
be written as the exponential of a single gate, and we should
assume that the gate is contained in the basis. However the
inspection of the geodesics (32) shows that they do not have
this simple form, except for the unpenalized case γ = 0, or
for the special geodesics with J3 = 0.

5 Complexity of harmonic oscillators

So far we have discussed the complexity of states over spin
chains. Those states live in a finite dimensional Hilbert space.
We can also study the complexity in infinite-dimensional
Hilbert spaces as long as we focus on a specific sub-manifold
of states generated by a closed algebra of operators. One
example is that of Gaussian states of bosonic or fermionic
systems. We will develop some technology to deal with this
example which will come in handy later when studying com-
plexity in free scalar quantum field theory.

5.1 Complexity of Gaussian states

Gaussian states can be fully characterized by their one- and
two-point functions. To make use of this fact we will define
the Gaussian states in terms of their covariance matrix and
displacement vector, see e.g., [60–62]

Tr(ρ̂ ξ̂a ξ̂b) = 1

2
(G(ab) + i�[ab]), Tr(ρ̂ ξ̂a) = wa, (38)

where ρ̂ is the density matrix representing the Gaussian
state and ξ̂a = (q̂1, . . . , q̂N , p̂1, . . . , p̂N ) are 2N degrees
of freedom on the quantum phase space consisting of posi-
tion and momentum operators which can be either fermionic
or bosonic. In the case of a pure state (38) simply becomes

〈ψ |ξ̂a ξ̂b|ψ〉 = 1

2
(G(ab) + i�[ab]), 〈ψ |ξ̂a |ψ〉 = wa . (39)

In Eqs. (38) and (39), G(ab) encodes the symmetric part of
the correlation function and �[ab] encodes its anti-symmetric
part. To begin with, we take the simplifying assumption that
the states have vanishing one-point functions wa = 0 in Eqs.
(38) and (39). The case of non-vanishing displacement will
be treated later in Sect. 5.3.
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We will focus mostly on the bosonic case below, but a
lot of this machinery has also been adapted for studying
fermionic states, see e.g., [63–65]. For a bosonic system�[ab]
is trivially fixed by the canonical commutation relations of
the phase space operators

� =
(

0 1n×n

−1n×n 0

)
, (40)

and the only non-trivial information is in G(ab). Hence, from
now on we will refer to G(ab) as the covariance matrix of the
state ρ̂.

For our complexity study we will focus on quantum cir-
cuits which move entirely within the space of Gaussian
states with vanishing displacement and will therefore be
parametrized using covariance matrices. Such circuits are
generated by exponentiating quadratic generators as follows

ρ̂(σ ) = Û (σ )ρ̂(0)Û †(σ ), Û (σ ) = e− i
2 ξ̂ak(ab)(σ )ξ̂b (41)

where Û (σ ) is a unitary transformation parametrized by a
symmetric matrix k(ab)(σ ) and ρ̂(σ ) is the instantaneous den-
sity metric along the circuit with σ ∈ [0, 1] a path-parameter
along the circuit.13 Then, with some algebra one can easily
demonstrate that (see e.g., [66,67])

Û †(σ ) ξ̂a Û (σ ) = S(σ )ab(σ )ξ̂b,

G(σ ) = S(σ ) · G(0) · ST (σ ),

Sab(σ ) =
(
eK (σ )

)a
b, Ka

b = (� · k(σ ))ab,

(42)

where G(σ ) is the covariance matrix of the state ρ̂(σ ) along
the circuit. Note that S(σ ) in the last equation belongs to the
symplectic group Sp(2N , R) by virtue of satisfying

S(σ ) · � · ST (σ ) = �. (43)

To make connection with the complexity functionals of
Eq. (23), we should decompose the symplectic transforma-
tion using a fixed basis of generators KI of the symplectic
group Sp(2N , R)

S(σ ) = ←−P exp
∫ σ

0
dσ ′ Y I (σ ′)KI (44)

and extract the control functions YI .
The complexity depends on this choice of basis. One

option is to fix the basis of generators KI in terms of our
choice ξ̂a of the operators on the quantum phase space. That
is, we select

(KI=(a′,b′))
a
b = (� · kI=(a′,b′))

a
b, a′, b′ ∈ 1, . . . , 2N ,

13 Here, σ plays the role of the time in the Hamiltonian control problem
of Sect. 4. We have changed the name here to distinguish it from the
physical time of our systems which we will also be using in some of
the calculations below.

k I(ab) = 1√
1 + δa′b′

(δa
′

a δb
′

b + δa
′

b δb
′

a ), (45)

which represent the generator exp

[
−i ξ̂a′ ξ̂b′+ξ̂b′ ξ̂a′

2
√

1+δa′b′

]
, see Eqs.

(41) and (42). The proportionality factor is fixed such that
the different generators are orthonormal, i.e., 1

2 Tr(KI K T
J ) =

δI J . With this choice of basis we can extract the control
functions

Y I = 1

2
Tr(∂σ SS

−1KT
I ) . (46)

The norm (23) with pI = 1 and k = 2, which we refer to as
the unpenalized F2 = √∑

I |Y I |2 norm, can be expressed
directly from the matrices S(σ ) along the circuit as follows

ds2 = 1

2
Tr
(
dS S−1 (dS S−1)T

)
. (47)

This expression is written covariantly and does not require a
particular choice of basis to be evaluated. However, note that
to prove its equivalence with the unpenalized F2 norm, we
had to assume that the generators of the circuit are chosen to
be orthonormal.

A natural generalization of the F2 norm in Eq. (23) is
defined in terms of a given covariance matrix Gmetric

ds2 = 1

2
Tr
(
dS S−1 Gmetric (dS S−1)T G−1

metric

)
. (48)

In effect, the choice of Gmetric introduces some penalty fac-
tors into the definition of the F2 norm. When the generators
of the symplectic group satisfy

1

2
Tr
(
KI Gmetric K

T
J G

−1
metric

)
= δI J , (49)

we recover the unpenalized F2 norm. More generally, we
have

1

2
Tr
(
KI Gmetric K

T
J G

−1
metric

)
= γI J (50)

and F2 = √
γI J Y I Y J where γI J function as penalty factors.

We would like to emphasize that the unpenalized F2 norm is
basis dependent. While remaining unmodified under orthog-
onal transformations which mix the positions among them-
selves (accompanied by the same orthogonal transformation
on momenta), the unpenalized F2 norm in fact changes under
more general symplectic transformations which modify the
orthogonality condition (49), even with Gmetric = 1.

The complexity problem, i.e., finding the optimal trajec-
tory (or circuit) between a reference state GR and a target
state GT within the complexity geometry (48), can now be
formulated explicitly as a geodesic problem, namely

C2 = min
S(σ )

∫ 1

0
dσ

(
ds

dσ

)
, such that

S(σ = 1)GRS
T (σ = 1) = GT .

(51)
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It was proven [20,66], that when the matrix Gmetric used
to define the geometry (48) coincides with the covariance
matrix GR of the reference state, the geodesics from the ref-
erence state to the target state take a particularly simple form
of “straight lines”, i.e.,

S(σ ) = exp
[σ

2
log �

]
, � ≡ GTG

−1
R , (52)

where � is the relative covariance matrix between the refer-
ence and the target state.

With the choice Gmetric = GR , and for generators sat-
isfying the condition (49), the unpenalized C2 complexity,
associated with the unpenalized F2 cost function reads

C2(GR,GT ) = 1

2
√

2

√
Tr[(log �)2] . (53)

While the trajectory (52) does not necessarily minimize
the unpenalized F1 norm given by Eq. (23) with k = 1 and
pI = 1, we could still evaluate its cost to obtain an upper
bound on the unpenalized C1 complexity

C1 ≤ CUB
1 =

∑
I

|Y I | = 1

4

∑
I

|Tr(log � · KT
I )| . (54)

5.2 Single harmonic oscillator

As a specific example, let us focus on the bosonic case of
a simple Harmonic oscillator described by the following
Hamiltonian14

H = 1

2M
P2 + 1

2
Mω2Q2 (55)

with M and ω the mass and frequency of the oscillator,
respectively, and Q and P are its position and momentum.
In what follows it will be more convenient to work in terms
of dimensionless position and space coordinates and hence
we rescale

p ≡ P/ωg, q ≡ ωgQ. (56)

(In the case of several positions and momentum operators we
rescale all of them). Later on, the scale ωg will participate in
defining a gate scale when discussing complexity. More pre-
cisely it will play a role in rendering the control functions Y I

dimensionless. With the rescaled variables, the Hamiltonian
takes the form

H = ω2
g

M

(
1

2
p2 + 1

2
λ2q2

)
, λ ≡ Mω

ω2
g

. (57)

A general Gaussian wavefunction takes the form

ψ(q) = 〈q|ψ〉 =
( a
π

)1/4
exp

[
−1

2
(a + ib)q2

]
(58)

14 In this section we will omit the hats from operators to simplify the
notation. It should be clear from the context if we are considering an
operator or an expectation value.

where a and b are real numbers and a has to be positive
in order for the wavefunction to be normalizable. For the
special case of the vacuum state of the Hamiltonian (57) we
have a = λ and b = 0.

Explicitly evaluating the covariance matrix for the wave-
function (58) we obtain

G =
(

1
a − b

a

− b
a

a2+b2

a

)
(59)

and in particular for the vacuum state

Gvac =
( 1

λ
0

0 λ

)
. (60)

As we will motivate later when discussing complexity in
QFT, the reference state is often taken to be the ground state
of another Hamiltonian with a different frequency ω = μ

and hence its covariance matrix is

GR =
( 1

λR
0

0 λR

)
, λR = Mμ

ω2
g

. (61)

The relative covariance matrix between the reference state
and the vacuum reads

� =
(

λR
λ

0
0 λ

λR

)
(62)

and so the unpenalized C2 complexity is simply

C2(GR,GT ) = 1

2

∣∣∣∣log

(
λ

λR

)∣∣∣∣ = 1

2

∣∣∣∣log

(
ω

μ

)∣∣∣∣ . (63)

Note that in this expression the gate scale ωg has canceled.
To obtain the bound (54) on the unpenalized C2 = CUB

1
complexity we should first select a basis. As described around
Eq. (45), we could consider circuits associated with the gen-
erators

K̂1 = 1

2
(pq + qp) , K̂2 = q2

√
2
, K̂3 = p2

√
2
. (64)

Using the relations (41) and (42) we may read the relevant
matrices k(ab)

k1
(ab) =

(
0 1
1 0

)
, k2

(ab) =
(√

2 0
0 0

)
, k3

(ab) =
(

0 0
0

√
2

)
, (65)

and the corresponding Sp(2, R) generators:

K1 =
(

1 0
0 −1

)
, K2 =

(
0 0

−√
2 0

)
, K3 =

(
0

√
2

0 0

)
. (66)

This leads to

CUB
1 = 1

2

∣∣∣∣log

(
λ

λR

)∣∣∣∣ = 1

2

∣∣∣∣log

(
ω

μ

)∣∣∣∣ . (67)

Note that in this very special case we have obtained the
same result for the two cost functions. Generally this will
not be the case. If we consider for example a system of many
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decoupled harmonic oscillators, each with Hamiltonian of the
form (55) but with different frequencies ωi , the complexities
will simply be given by

CUB
1 = 1

2

∑
i

∣∣∣∣log
ωi

μ

∣∣∣∣ ; C2 = 1

2

√√√√∑
i

(
log

ωi

μ

)2

. (68)

5.3 Complexity of coherent states

We can extend the discussion of Sect. 5.1 to the case of Gaus-
sian states with non-zero displacement (cf. (38) and (39)), i.e.,
coherent states. We follow mostly the treatment of [68], with
some modifications (see also [69] for a different approach).
For simplicity, we focus on wavefunctions of the form

ψ(qi ) = N exp

[
−1

2
Ai j (qi − ai )(q j − a j )

]
, (69)

with Ai j and ai for i ∈ {1, . . . , N } real parameters. As a con-
sequence, the displacement vector in (39) is non-vanishing
only in the coordinates directions and is zero in the momenta,
〈qi 〉 = ai , 〈pi 〉 = 0. Clearly this restricts the choice of sym-
plectic transformations, as we can only allow transformations
that do not mix coordinates and momenta.15 The transforma-
tions we consider take the form

qi → mi j (q j + b j ), (70)

where mi j is a general real matrix. These transforma-
tions keep us within the class of real wavefunctions (69),
in addition to keeping the vanishing expectation value of
the momentum. The transformations (70) form the group
GL(N , R) � R

N .
We could generalize the discussion of Sect. 5.1 by intro-

ducing new gates that move within the space of coherent
states. We will follow a different route which allows us to bor-
row the previous results directly. We observe that a coherent
state wavefunction can be interpreted as a Gaussian wave-
function in a space with one more coordinate. We rewrite
(69) as

ψ(qI ) = N exp

[
−1

2
ÃI J qI qJ

]
, (71)

with qI = (q0, qi ). At q0 = 1, this reduces to (69) if
Ãi j = Ai j , Ãi0 = −Ai j a j , whereas the value of Ã00 can
be reabsorbed in the normalization factor and so is irrele-
vant.

15 We could, of course, use general symplectic transformations along
the path and only impose the restriction on the final state, but for sim-
plicity, we will not consider this possibility. Instead, we will restrict the
gates along the entire circuit.

The transformations (70) can be embedded into the group
of linear transformations GL(N + 1, R) on the operators16

of the extended space as follows:

M =
(

1 0
mb m

)
, m ∈ GL(N , R) . (72)

The action on the wavefunction induced by q̂ → Mq̂ is given
by q → M−1q or equivalently Ã → M−1T Ã M−1. Notice
that the value of q0 does not change under the action of M .

In order to apply the formulas of Sect. 5.1 we need the
covariance matrix of the state and the symplectic transfor-
mations that act on it. They have a block-diagonal form:

G =
(
Ã−1 0

0 Ã

)
, S =

(
M 0
0 M−1T

)
. (73)

With these ingredients at hand, we can use the formula
(48) for the metric. Choosing as before Gmetric = GR =( 1

λR
1 0

0 λR1

)
, this gives

ds2 = tr
(
dM M−1(dM M−1)T

)

= tr
(
dm m−1(dm m−1)T

)
+ dbTmTmdb .

(74)

We find that the R
N factor has a flat metric, but it is non-

trivially fibered over the GL(N ) factor.
In order to give a more explicit description of the geometry

we restrict now to the case N = 2. We can use the following
parametrization of a GL(2) matrix:

m =
(

cos α − sin α

sin α cos α

)(
e−y1 0

0 e−y2

)(
cos β − sin β

sin β cos β

)
. (75)

In these coordinates the metric (74) reads

ds2 = dy2
1 + dy2

2 + 2dα2

+4 cosh(y1 − y2)dαdβ + 2 cosh(2y1 − 2y2)dβ
2

+e−2y1(cos β db1 − sin β db2)
2

+e−2y2(sin β db1 + cos β db2)
2 . (76)

The equations for the geodesics in this geometry cannot be
solved analytically. An interesting property of this geometry,
as was shown in [68], is that if we want to start from the
reference state AR = λR1, aR = 0 and arrive at the target

state A =
(

λ1 0
0 λ2

)
with λ1 �= λ2, and with a1, a2 both non-

vanishing, then the corresponding geodesic will pass through
states in which the two oscillators are entangled, even though
in both the initial and final states the two oscillators are unen-
tangled.

16 Here we mean the transformation of q̂ i as in Eq. (42). If the oper-
ator U is such that U†q̂U = Mq̂, the wavefunction will transform as
Uψ(q) = ψ(M−1q).
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If instead we turn on only one component of the dis-
placement vector, it is possible to find simple geodesics
analytically. One can show that the geodesics satisfying
α = β = nπ , b2 = 0 can be obtained from the induced
metric on this slice :

ds2 = dy2
1 + dy2

2 + e−2y1db2
1 . (77)

This geometry is H
2 ×R, and we see the hyperbolic space in

the coordinates y1, b1 arising from the fibration. The target
states corresponding to this submanifold have 〈q2〉 = 0 and
are unentangled in the given coordinates. It is easy to evaluate
the complexity of a target state with AT = diag(λ1, λ2),
a = (a1, 0) and obtain

C2 =
√√√√1

4
log2 λ2

λR
+ arccosh2

(
λR + λ1 + λ1a2

1

2
√

λRλ1

)
. (78)

The geometry (77) is simple enough that in this case we
can compute explicitly the complexity also for the F1 cost
function, rather than just giving an upper bound.17 Since the
y2 direction is decoupled, we can consider trajectories in the
y1, b1 direction; for simplicity we rename them as y, b. The
cost function is

F1 =
∫

ds
(|ẏ| + e−y |ḃ|) . (79)

This is a singular functional, so we cannot find solutions
from the equations of motion. Let us consider a trajectory
from (yi , bi ) to (y f , b f ) and assume for simplicity that
y f > yi , b f > bi . If we assume that ẏ(s) > 0, the first
term is independent of the trajectory, and the second term
is minimized by making y as large as possible. The min-
imal trajectory will move in a straight line first along the
y axis, and then along the b axis at y = y f . The cost of
this path is �y + e−y f �b. But it can be more convenient
to minimize the second term by moving along b at a larger
value of y, say ỹ, paying the price of backtracking in the y
direction. The minimum length is obtained for eỹ = �b/2,
and is 2 + 2 log �b

2 − yi − y f . This path has shorter length
when ỹ > y f , or e−y f �b > 2. In terms of the parame-
ters of the wavefunction, moving from the reference state to
the target state λ , a (with λ > λR) and using the relations

y f = 1
2 log λ

λR
, b f =

√
λ
λR

a and bi = yi = 0,18 we find a

17 Recall that the F1 cost function depends on a choice of basis. Here
we use the basis described in Eq. (45), i.e., we construct our gates with
respect to the coordinates of the two oscillators and the new fictitious
coordinate x̂0. This is explained in detail in [68].
18 To obtain these relations, use the target and reference state matrices
defined below Eq. (76) and relate them to Ã using the relations below
Eq. (71). The values of b and y at the end of the trajectory can then be
fixed in terms of the wavefunction transformation below Eq. (72) (see
also Eq. (75) for the parametrization of m).

cost

C1 = 1

2
log

λ

λR
+ |a| , |a| < 2 ,

C1 = 1

2
log

λ

λR
+ 2 + 2 log

|a|
2

, |a| > 2 .

(80)

Similar results can be obtained for λ < λR . Notice
that the contribution from the displacement is frequency-
independent. The dependence on a is linear for small a,
whereas it is quadratic for the C2 case. For large a the leading
behavior is log(a2) in both cases, but the subleading terms
are different and are frequency-dependent for C2. The path
that minimizes C1 is not the same that minimizes C2, so the
upper bound CUB

1 from the previous sections is not saturated.

5.4 Complexity of the thermofield double state

A particularly interesting example of a Gaussian state of van-
ishing displacement whose complexity can be studied using
the techniques of Sect. 5.1 is the thermofield double (TFD)
state of a single harmonic oscillator. The complexity of this
state was studied in [66] (see also [67]). The TFD state is
defined with respect to two identical copies of a given sys-
tem as follows

|T FD(t)〉 = NTFD

∑
n

e− βEn
2 −i Ent |En〉L |En〉R (81)

where the two copies have been labeled left and right (L/R),
En are the energy eigenstates, t is the time, β is the inverse
temperature and NTFD is a normalization constant. The TFD
state is a pure state which evolves non-trivially under time
evolution.19 It is also a particularly symmetric purification of
the thermal state, i.e., when considering the reduced density
matrix and tracing out the right subsystem we are left with a
mixed thermal state on the left subsystem – more on that in
the next section.

If we focus on the example of the single harmonic oscil-
lator from Sect. 5.1, we will have energy eigenstates defined
according to the Hamiltonian (55)

H |n〉 = ω

(
n + 1

2

)
|n〉. (82)

Of course, since we are working with two copies of the sys-
tem, we will have both left and right energy eigenstates |n〉L
and |n〉R . In terms of these eigenstates the TFD state reads

|T FD(t, ω)〉 = NTFD

∞∑
n=0

e−nβω/2−i(n+ 1
2 )ωt |n〉L |n〉R

= e−iωt/2NTFD exp
[
e−βω/2−iωt a†

La
†
R

]
|0〉L |0〉R . (83)

The second line shows that this state is Gaussian since it is
produced from the vacuum state using a quadratic operator.

19 Although it is invariant under the action of HL − HR .
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It will be convenient to combine the position and momentum
operators for the left and right copies as follows

Q± = 1√
2
(QL ± QR), P± = 1√

2
(PL ± PR), (84)

and define their dimensionless versions according to Eq. (56).
In these ± coordinates, the 4 × 4 covariance matrix is block
diagonal. The blocks have the form

G±
TFD(t) =[
(cosh(2α)±sinh(2α) cos(ωt))

λ
∓ sinh(2α) sin(ωt)

∓ sinh(2α) sin(ωt) λ(cosh(2α)∓ sinh(2α) cos(ωt))

]
,

(85)

where we have defined

α = 1

2
log

[
1 + e−βω/2

1 − e−βω/2

]
, (86)

and λ has been defined in Eq. (57). The reference state for
each of the blocks is taken as in Eq. (61) and selecting
Gmetric = GR as described above Eq. (52), we can eval-
uate the C2 complexity as before. At t = 0, we obtain

C2 =
√

1

2
log2 ω

μ
+ 2α2. (87)

Note that the gate scale ωg canceled from this expression.
Evaluating the length of the C2 optimal circuit with the F1

cost function yields at t = 0 in the basis defined with respect
to the Q± and P± coordinates

C(±),UB
1 =

∣∣∣∣12 log
ω

μ
+ α

∣∣∣∣+
∣∣∣∣12 log

ω

μ
− α

∣∣∣∣ . (88)

When considering a basis which acts naturally on the physical
L and R degrees of freedom rather than the ± modes, we
obtain the following complexity at t = 0

C(LR),UB
1 = | log(ω/μ) | + 2|α|. (89)

We will see later that the results of the measure C(LR)
1 match

best with holography.
It is interesting to compare the complexity of the TFD

state at t = 0 to that of two copies of the vacuum state, see
Eqs. (63) and (67). We refer to this difference in complexities
as the complexity of formation of the thermal state [70]

�C ≡ C(|T FD(t = 0)〉) − 2C(|0〉) . (90)

This yields for the various cost functions

�C2 =
√

1

2
log2 ω

μ
+ 2α2 − 1√

2

∣∣∣∣log
ω

μ

∣∣∣∣ ,

�C(±),UB
1 =

∣∣∣∣12 log
ω

μ
+ α

∣∣∣∣+
∣∣∣∣12 log

ω

μ
− α

∣∣∣∣−
∣∣∣∣log

ω

μ

∣∣∣∣ ,

�C(LR),UB
1 = 2|α| . (91)

Fig. 7 Illustration of the definition of complexity of purification. We
purify the reduced density matrix ρA in terms of ancilla degrees of
freedom on a system Ac and optimize the preparation of the state of the
combined system

We can also evaluate the complexity at a different time t �= 0,
but the expressions are slightly more cumbersome and we
will not write them here. We refer the reader to section 4.4
of [66]. In general at t �= 0 the gate scale ωg dependence
will not cancel out. However, simplified expressions can be
obtained when choosing it such that λR = 1. We will make
this choice from now on. Let us further remark that due to the
periodic time dependence in the covariance matrix (85), it is
clear that the complexity will oscillate in time with frequency
ω. The contribution of these oscillations to the complexity
can be shown to be exponentially suppressed at large βω (i.e.,
�C ∼ e−#βω).

5.5 Complexity of mixed states

So far we have focused on the complexity of pure states.
However, it is of interest to try and define complexity for
mixed states too. In this section we will focus on one such
definition – the complexity of purification, i.e., the lowest
value of the circuit complexity optimized over the possible
purifications of the mixed state we are interested in.

More precisely, imagine that we start with a mixed state
of a system A described by the density matrix ρ̂A. To
purify the mixed state we supplement the degrees of free-
dom in A with ancillary degrees of freedom in a comple-
mentary system Ac. We consider purifications of the state
ρ̂A, i.e., pure states on the combined system |ψAAc 〉 such
that ρ̂A = TrAc |ψAAc 〉〈ψAAc |. The complexity of purifi-
cation is simply defined as the minimal pure state complexity
among all such possible purifications and all possible ancil-
lary system sizes C(ρ̂A) = min C(|ψAAc 〉) starting with
a completely unentangled reference state on the combined
AAc system. Figure 7 illustrates this process.

Several alternative definitions for mixed state complex-
ity have been proposed. For example, we can consider an
approach based on the spectrum of eigenvalues pi of the
density matrix ρ̂ = ∑

i pi |φi 〉〈φi |, see, e.g., [71]. In this
approach, one breaks the process of constructing the state ρ̂

into two separate parts. First, we define the spectrum com-
plexity CS of the state ρ̂ as the minimal complexity of purifi-
cation among all states with the same spectrum as ρ̂. We will
denote the state for which this minimum is achieved by ρ̂spec.
Second, we turn the state ρ̂spec into our state of interest by
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Fig. 8 Illustration of spectrum and basis complexity for mixed states

using unitary operations with minimal complexity. This is
always possible since the two states have the same spectrum.
We call this part the basis complexity C̃B . In any case, the
complexity of purification CP is always smaller than CS+C̃B ,
because reaching the mixed state via ρ̂spec is one possible
circuit. The spectrum approach to mixed state complexity is
illustrated in Fig. 8.

Another approach to mixed state complexity is the ensem-
ble complexity, see, e.g., [71]. Here, as before, we decom-
pose the mixed state ρ̂ as an ensemble of pure states ρ =∑

i pi |ψi 〉〈ψi | and define the ensemble complexity as the
weighted average over the complexities of the pure states in
this ensemble, minimized over all possible ensembles, i.e.,
CE (ρ) = minensemble

∑
i piC(|ψi 〉).

Yet another approach to mixed state complexity is based
on using an information metric adapted to trajectories
between mixed states directly, without purifying them first.
For example, [72,73] considered the Bures metric or Fisher-
Rao information metric.

A more detailed discussion of mixed state circuits and
complexity can be found in, e.g., [71–76]. However, as we
said before, here we will focus on the complexity of purifi-
cation.

As before, when restricting to Gaussian states we are able
to make considerable progress in studying the complexity
[74] (see also [77]). Let us start again with the example of
a simple Harmonic oscillator and consider the most general
mixed state with real parameters20

ρ(x, x ′) ≡ 〈x |ρ̂|x ′〉 ∝ e− 1
2 (ax2+ax ′2−2bxx ′) (92)

where the density matrix is Hermitian ρ(x, x ′) = ρ∗(x ′, x)
as it should be, and a and b are real parameters satisfying
a > b and b ≥ 0, such that the density matrix is normaliz-
able and positive semidefinite. The normalization constant is

20 The choice of real parameters was made to keep the derivation as sim-
ple as possible. A discussion which incorporates complex wavefunction
parameters can be found in appendix C of [77].

fixed by requiring Tr(ρ) = ∫
ρ(x, x) = 1. The most general

purification with two degrees of freedom and real parameters
reads

ψ12(x, y) ≡ 〈x, y|ψ〉 ∝ e− 1
2 (ω1x2+ω2 y2+2ω3xy), (93)

where in order to indeed be a purification of the state (93)
should satisfy∫

dy ψ12(x, y)ψ
∗
12(x

′, y) = ρ(x, x ′). (94)

Explicitly this yields

ω1 = a + b, ω2 = ω2
3

2b
, (95)

where ω3 remains a free parameter. We can easily diagonalize
the wavefunction (93) and bring it to the form

ψ12(x+, x−) ∝ e− 1
2 (ω+x2++ω−x2−) (96)

where ω± are the eigenvalues of the matrix

(
a + b ω3

ω3
ω2

3
2b

)
. In

this form, the two oscillators decouple and we can use Eq.
(68) to evaluate the complexity. We focus on the C1 complex-
ity since it will be most closely related to holography as we
will see later on. We obtain the upper bound

Cdiag,UB
1 = min

ω3

1

2

∣∣∣∣log
ω+
μ

∣∣∣∣+ 1

2

∣∣∣∣log
ω−
μ

∣∣∣∣ (97)

where μ is the reference state scale and the final answer is
obtained by minimizing over the purification free parame-
ter ω3. The diag superscript indicates that we evaluate the
C1 complexity in the diagonal basis, whose generators are
defined with respect to the coordinates x± according to the
prescription described in Eq. (45). It is also possible to
explore the complexity in the physical basis which distin-
guishes naturally the physical and ancillary degrees of free-
dom [74] but we will not pursue this possibility here.21

In the above example, we purified a mixed state of a single
harmonic oscillator using one additional harmonic oscillator.
It is always the case that doubling the number of degrees of
freedom in the system is enough to purify it.22 However, one
might wonder if purifications with more degrees of freedom
are more efficient from the complexity point of view. Test-
ing the above with purifications of a single oscillator using
two ancillary oscillators, one concludes that at least for such
small systems optimal purifications are essential purifica-
tions – which use the smallest number of degrees of freedom
necessary for the purification.

21 This choice was merely done in order to allow us to present some of
the following expressions analytically, but the behaviors obtained when
studying the complexity of mixed states in the diagonal basis and in the
physical basis are qualitatively similar.
22 Similarly to the TFD state, we can purify a density matrix ρ̂ =∑

i pi |i〉〈i | with |�〉 = ∑
i
√
pi |i〉1|i〉2.
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We can use the above results to answer the question - is
the thermofield double state of two harmonic oscillators of
frequency ω at t = 0 (cf. Eq. (83))

|T FD〉12 = NT FD

∞∑
n=0

e−βωn/2|n〉1|n〉2 (98)

the optimal purification of the thermal state

ρ̂th = Nth

∞∑
n=0

e−βωn|n〉〈n|, (99)

where |n〉 are the energy eigenstates of our oscillator and
β is the inverse temperature. Using Mehler’s formula for
summation over Hermite polynomials we can show that the
thermal state is Gaussian of the form (92) with the following
parameters

a = ω coth(βω), b = ω

sinh(βω)
, (100)

while the thermofield double state is also Gaussian of the
form (93) with parameters

ω1 = ω2 = ω coth

(
βω

2

)
, ω3 = − ω

sinh
(

βω
2

) . (101)

Minimizing over all possible purifications of the thermal state
encloses a larger family of purifications than just the TFD
state. Performing the minimization yields the following com-
plexity of purification

CUB,diag
1 (ρ̂th) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 log μ

ω + 1
2 log

(
μ coth

(
βω
2

)
−ω

μ−ω coth
(

βω
2

)
)

βω coth
(

βω
4

)
≤ βμ

log coth βω
4

βω tanh
(

βω
4

)
≤

βμ≤βω coth
(

βω
4

)

1
2 log ω

μ + 1
2 log

(
ω coth

(
βω
2

)
−μ

ω−μ coth
(

βω
2

)
)

βμ ≤ βω tanh
(

βω
4

)
.

(102)

Comparing this to the complexity of the thermofield dou-
ble, i.e., without the additional minimization over purifica-
tions, we obtain

CUB,diag
1 (|T FD〉12) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log μ
ω

βω coth
(

βω
4

)
≤ βμ

log coth βω
4

βω tanh
(

βω
4

)
≤

βμ≤βω coth
(

βω
4

)

log ω
μ

βμ ≤ βω tanh
(

βω
4

)
.

(103)

From the comparison of the two above results we see that
the thermofield double state is the optimal purification of the
thermal state only in the middle regime (which may be quite
narrow), see Fig. 9.

0 2 4 6 8 10 12
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2
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8

10

12

Fig. 9 Plot illustrating the three regimes of the complexity of the ther-
mofield double state and the complexity of purification of the ther-
mal state. The gray dashed curve indicates our choice of the reference
state scale (in this case we have chosen βμ = 7) and depending on
whether it is higher or lower than the red and blue curves (the func-
tions βω tanh(βω/4) and βω coth(βω/4)) tells us which is the relevant
complexity regime in Eqs. (102) and (103). Only in the small range of
frequency indicated in purple will the thermofield double be the optimal
purification of the thermal state

6 Complexity in QFT

After having extensively studied the complexity of a small
number of harmonic oscillators, we are now ready to use
those results to study the complexity of states within Quan-
tum Field Theory (QFT) – the framework studying many
body physics with changing particle number. We will con-
sider the complexity of the vacuum state, the thermofield
double state and several interesting examples of mixed states
of free (or nearly free) bosonic field theories. Just like many
other quantities in QFT, we will see that also the complexity
diverges due to contributions from short distance correlations
in the system. We will explain how to regulate those diver-
gences. We will conclude this section with a discussion of
complexity in strongly interacting conformal field theories.

6.1 Free scalar QFT

Here we describe the pioneering works [18,19] which were
the first to study complexity in a simple QFT. These works
studied the complexity of the vacuum state of a free bosonic
QFT in d spacetime dimensions described by the following
Hamiltonian

H = 1

2

∫
dd−1x

[
π(x)2 + ∇φ(x)2 + m2φ(x)2

]
. (104)

Naively, we expect the vacuum state to be simple and
therefore to have low complexity. However, the complexity
is defined with respect to a reference state. While there is no
canonical choice of a state in a Hilbert space, we will argue
below that there is a natural choice of the reference state in
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Fig. 10 Illustration of a system of coupled harmonic oscillators
obtained by discretizing the scalar field theory on a lattice with spacing
δ. Red springs represent contributions from the massm of the scalar field
while blue springs introduce couplings between the different oscillators
originating from the derivative term in the Hamiltonian

the context of studying quantum computational complexity,
which is a completely unentangled state. With this choice,
it turns out that the complexity of the vacuum state in QFT
is highly divergent. This is because the vacuum state has
correlations down to arbitrarily short length scales which are
absent in the reference state. For readers familiar with the
notion of entanglement entropy this should not come as a
surprise since a similar divergence appears there. One way to
regularize the divergences is by placing the theory on a spatial
lattice. Alternatively, we could use a sharp momentum cutoff.
Both the entanglement entropy and complexity diverge when
the lattice spacing is sent to zero.

As in [18], we will regularize the divergences by placing
the theory on a d−1 dimensional periodic lattice with lattice
spacing δ and length L in all directions, see Fig. 10. In this
way, the theory becomes that of Nd−1 = (L/δ)d−1 coupled
harmonic oscillators and the complexity is a natural extension
of the results of Sect. 5.2. We will label the different lattice
sites in terms of a d − 1 dimensional vector a where each
component 0 ≤ ai ≤ N − 1 is an integer. The discretized
version of (104) reads

H =
∑
a

δπ̃2
a + m2δ−1φ̃2

a + δ−3
∑
j

(φ̃a+e j − φ̃a)
2 (105)

where we have defined φ̃a = δd/2 φ(δ ·a), π̃a = δd/2−1π(δ ·
a) and e j denotes the unit vector in the j-th direction. Period-
icity implies φ̃a+Ne j = φ̃a and π̃a+Ne j = π̃a for all a-s and
j-s. The above coordinate and momentum operators satisfy
the commutation relations [φ̃a, π̃b] = iδab. To decouple the
different oscillators in (105) we employ a discrete Fourier
transform

φn = N− d−1
2
∑
a

e− 2π ina
N φ̃a, πn = N− d−1

2
∑
a

e
2π ina
N π̃a,

(106)

where n is again a d − 1 dimensional vector of integers run-
ning between 0 and N − 1. The position and momentum
operators in momentum space also satisfy the commutation
relations [φn, πk] = iδnk. Using the above transformations,
we obtain the diagonalized Hamiltonian in momentum space

H = 1

2M

N−1∑
ki=0

[
|πk|2 + M2ω2

k |φk|2
]

(107)

with

ω2
k = m2 + 4

δ2

d−1∑
i=1

sin2
(

πki
N

)
, M = 1

δ
. (108)

In terms of the momentum space coordinates, the ground-
state wave-function reads

〈φk|0〉 = Nvac exp

[
−
∑
k

Mωk |φk|2
2

]
(109)

where the normalization constant is given by Nvac =∏
k

(
Mωk
π

)1/4
. This wave-function is Gaussian and so we

can use our techniques from Sect. 5 to evaluate its complex-
ity.

As mentioned earlier, the vacuum state is in fact very com-
plex – its complexity diverges with the lattice spacing. The
underlying reason for this divergence is the derivative term in
(104). This term is the one responsible for entangling the dif-
ferent lattice sites. Without this term, the Hamiltonian would
factorize in position space and the quantum state of the dif-
ferent lattice sites would not be correlated.

When we pick a reference state, we want it to satisfy quite
the opposite property. We would like the different oscillators
to be completely unentangled. Therefore, a natural choice
for the reference state is the ground state of an ultra-local
Hamiltonian

H = 1

2

∫
dd−1x

[
π(x)2 + μ2φ(x)2

]
, (110)

where comparing to Eq. (104) we notice that the derivative
term has been turned off. The discretized Hamiltonian in
momentum space takes the form (107) with ωk = μ and the
relevant wavefunction for the reference state reads

〈φk|μ〉 = Nμ exp

[
−
∑
k

Mμ |φk|2
2

]
, (111)

where again Nμ is a normalization constant. Notice that this
state is again Gaussian and has a fixed frequency for all
momenta.

As in the last section, we will focus on trajectories moving
entirely in the space of Gaussian states. The motion between
Gaussian states can be studied in terms of symplectic trans-
formations of the corresponding covariance matrices induced
by quadratic gates in position and momentum variables. The
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optimal trajectory takes the form (52) for each momentum
mode separately where the relative covariance metric (62) is
replaced with

�k =
(

μ
ωk

0
0 ωk

μ
.

)
(112)

for each momentum mode. The upper bound CUB
1 and the

complexity C2 are given by Eq. (68) summed over the differ-
ent momentum modes

CUB
1 = 1

2

∑
k

∣∣∣∣log
ωk

μ

∣∣∣∣ ; C2 = 1

2

√√√√∑
k

(
log

ωk

μ

)2

. (113)

To improve our intuitive understanding of the optimal cir-
cuit constructing the ground state, let us write it explicitly in
terms of the relevant unitary transformation in Eq. (41) (see
also Eqs. (42) and (52)):

|ψ(σ)〉 = exp

[
− i

4
σ
∑
k

log

(
μ

ωk

)
(φkπk + πkφk)

]
|μ〉,

(114)

with the path parameter σ ∈ [0, 1] as before. In this way, we
see that the optimal circuit consists of “squeezing” the wave-
function for each momentum mode separately. Of course,
since we have discretized our theory on the lattice, the state
obtained at σ = 1 is not exactly the ground state of the orig-
inal continuum Hamiltonian (104) but it approximates it on
distances larger than the lattice spacing.

Evaluating the result for the complexity (113) yields at the
leading order in the small lattice spacing

CUB
1 � Vol

2δd−1 | log μδ | + . . .

C2 � 1

2

(
Vol

δd−1

)1/2

| log μδ | + · · ·
(115)

where Vol = Ld−1 is the spatial volume of the system. As
we will see later, the behavior of CUB

1 matches much better
with the results obtained from holography which hints that
this cost function is better suited to be identified with the dual
of complexity in holography. Note that the free field theory
and the strongly coupled holographic theories are very dif-
ferent from each other. However, just as for the entanglement
entropy, the structure of divergences is expected to follow a
similar pattern. For the above reason, in what follows we will
mostly focus on the CUB

1 complexity.
Our results for the complexity are expressed in terms of

μ – the characteristic scale of the reference state. How are
we to think about this scale? We can obtain a hint from the
divergence structure in Eq. (115). Divergent QFT quantities
do not usually mix logarithmic and polynomial divergences.
The appearance of this divergence in the complexity can be

however remedied by choosing the scale of the reference state
to depend on the cutoff, i.e., μδ = e−μ̃, where μ̃ is an order
one constant. In this case

CUB
1 � Vol

2δd−1 | μ̃ | + . . . (116)

This choice is also natural from a physical point of view –
since we are introducing correlations at all scales down to
the lattice scale δ it is natural to start with a state whose
typical frequency is also of the order of the (inverse) lattice
spacing. The result (116) has a volume law divergence. This
can be contrasted with the typical area law divergence of the
entanglement entropy.23 We will later see that this behavior is
reproduced in holography. The complexity of the ground state
of fermionic systems has been treated using similar methods
and there as well one obtains a volume law [20,21]. The above
result is an upper bound on the complexity, however, a simple
counting argument shows that the complexity following from
exact optimization C1 will have the same scaling with the
cutoff and volume of the system.

Finally, let us make a comment about the scheme of reg-
ularization. Above, we have regularized the complexity by
placing our theory on a periodic lattice with lattice spacing
δ as in [18]. Let us now comment on a different scheme of
regularization used in [19]. In this case, we work with a con-
tinuous momentum variable

kc = 2πk
L

(117)

and replace all the above sums
∑

k by integrals Vol
∫ dd−1kc

(2π)d−1 .
The momentum integrals are regulated by a sharp momentum
cutoff, i.e., we cut our momentum integrals at a sharp value
|kc| = �. The results in this regularization scheme can be
obtained from the former lattice regularization by initially
placing the momentum cutoff significantly below the lattice
scale � � 2π

δ
and later sending the lattice spacing δ → 0

such that the result remains finite and regulated by the new
cutoff �. In that case, we may approximate the frequency in
Eq. (108) by ωkc = √

k2
c + m2. As before, the state |ψ(σ =

1)〉 constructed by the continuous version of the circuit (114)

|ψ(σ)〉 = exp

[
− i

4
σ

∫
|kc |<�

dd−1kc
(2π)d−1 log

(
μ

ωk

)
K (kc)

]
|μ〉,

K (kc) ≡ φ(k)π(kc) + π(kc)φ(kc), σ ∈ [0, 1] (118)

is not actually the ground state of the Hamiltonian (104) but
it approximates it for momenta below the cutoff momentum.

23 A different notion of area law often appears in the condensed mat-
ter literature studying entanglement entropy on the lattice in the large
volume limit with a fixed lattice spacing. Here instead, we consider the
fixed volume and small lattice spacing limit.
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With this regularization scheme, the complexity reads (113)

CUB
1 = 1

2
Vol

∫
dd−1kc
(2π)d−1

∣∣∣∣log
ωk

μ

∣∣∣∣ ,

C2 = 1

2

√
Vol

∫
dd−1kc
(2π)d−1

(
log

ωk

μ

)2

, (119)

and the leading divergences are as in (115) with the replace-
ment δ → 1/�.

6.2 Weakly interacting QFT

It is clearly of great interest to understand how the analysis of
the previous section can be extended to the case of interacting
field theories, and study the dependence of the complexity on
the couplings. Unfortunately this is a difficult task, and at the
time of writing this review only partial results are available.

The authors of [22] generalized the previous study by con-
sidering the complexity of nearly Gaussian states building
on the idea of quantum circuit perturbation theory [78–80].
They studied the complexity of the ground state of a λφ4

theory described by the following Hamiltonian

H = 1

2

∫
dd−1x

[
π(x)2+(∇φ(x))2 + m2φ2 + λ

12
φ(x)4

]

(120)

with the coefficient λ treated perturbatively. The authors used
perturbation theory in quantum mechanics to express the
ground state of this theory as an exponentiated polynomial
of order four (rather than two in the Gaussian case). They
were then able to enlarge the set of gates used to manipulate
Gaussian states up to order six in position and momentum
to manipulate these states. This led to a well defined notion
of Nielsen-type complexity. However, they found that within
this approach the reference state could not be taken to be
Gaussian but had to contain some non-quadratic terms. As a
consequence, the cost functional also had to be made depen-
dent on the coupling in order to have a smooth zero-coupling
limit. As an aside, the authors proposed an alternative mean
field theory approximation where one simply includes pertur-
bative corrections to the mass in the Gaussian wavefunction.
In this approximation the authors were able to show that at
the Wilson–Fisher fixed point around four dimensions the
interaction has slightly increased the complexity compared
to the Gaussian fixed point.

6.3 Complexity of the thermofield double state

Another interesting example of a Gaussian state in free
bosonic QFT is the thermofield double state [66]. For the
case of a single harmonic oscillator this state was studied in
Sect. 5.4. In the full bosonic QFT (107), the TFD is sim-

ply the product of the different TFD states for each of the
momentum modes, i.e.,

|T FD(t)〉 =
⊗
k

|T FD(t, ωk)〉, (121)

where we defined the TFD for each mode in (83). We will
take the assumption that the optimal trajectory does not mix
the different momentum modes. This assumption is natural
because if we introduce entanglement between the different
modes, this entanglement will have to be removed in the final
state and that will increase the length of the circuit. However,
recall that we have seen the case of coherent states which
behaved counterintuitively in this regard in Sect. 5.3.

Under the no-mode-mixing assumption, the complexity is
simply the sum of complexities for each of the momentum
modes. We will be particularly interested in the complexity
of formation – the difference in complexities between the
TFD state at t = 0 and two copies of the vacuum state – cf.
Eq. (91), which is given by

�C(|T FD(t = 0)〉) =
∑
k

�C(|T FD(t = 0, ωk)〉), (122)

where the expressions for the complexity of formation of
the individual modes can be found in Eq. (91). For reasons
that we explain below, here we will focus on the C(LR),UB

1
complexity

�C(LR),UB
1 = Vol

∫
k≤�

dd−1k

(2π)d−1 2|αk |,

αk = 1

2
log

[
1 + e−βωk/2

1 − e−βωk/2

]
, ωk =

√
k2 + ω2 . (123)

This integral is finite due to the exponential suppression com-
ing from the αk at large frequency. Therefore we may remove
the cutoff � and simply integrate all the way to infinity. The
result obtained by integrating this expression in the limit of
vanishing mass is simply proportional to the thermal entropy
of the system

Sth = Vol
∫

dd−1k

(2π)d−1

[
βωk

eβωk − 1
− log(1 − e−βωk )

]
(124)

with proportionality factor

�C(LR),UB
1

Sth

∣∣∣∣∣
βm=0

= 2d − 1

d
. (125)

The proportionality of the complexity of formation and the
thermal entropy is a property of complexity which is repro-
duced in holographic calculations [70]. For finite mass the
results are shown in Fig. 11. The complexity of formation
in the diagonal basis C(±),UB

1 and the C2 complexity vanish
for temperatures much lower than the cutoff scale T � �,
which is the physical regime. Therefore, we regard them as
less useful measures of complexity of the state.
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Fig. 11 Complexity of formation as a function of the mass in various
dimensions from d = 2 (bottom curve) to d = 6 (top curve). Figure
taken from [66]

While we did not write explicit expressions for the time
dependence of the complexity of the TFD state at t �= 0,
such expressions follow directly from its covariance matrix
in Eq. (85) and the time dependence can then be evaluated by
summing the complexity of the different momentum modes.
A plot of the time dependence of the complexity of the TFD
state can be found in Fig. 12. In this figure, taken from [66],
the complexity evolves in time (either increases or decreases)
and saturates after a time of the order of the inverse temper-
ature. This is natural since each mode oscillates and and the
oscillations are aligned at t = 0 but the different modes
become dephased at later times and so the contributions
from the different normal modes averages out. Because of
the exponential suppression of the oscillations mentioned at
the end of Sect. 5.4 with large βω, modes with frequency
higher than 1/β hardly contribute to the complexity and so
the saturation is dominated by modes with ω � 1/β and
happens at times t ∼ β.

We see, that in the free bosonic QFT, the complexity of the
TFD saturates rather fast and this is because of the free nature
of the system. In holography describing chaotic systems we
will see a very different behavior. This highlights a general
lesson to be learned about which properties are expected to
be similar in free QFT and holography and which are not. In
general, static quantities will have common properties while
dynamical quantities will differ.

6.4 Mixed state complexity in QFT

In Sect. 5.5 we discussed the complexity of mixed states via
the complexity of purification. These results can be used to
evaluate the complexity of various interesting mixed states
of free quantum field theory.

For example, let us start by considering the complexity of
thermal states. The thermal state in free QFT can be decom-

Fig. 12 Time dependence of the complexity of the thermofield double
state γ̃ ≡ (βμ)−1. Figure taken from [66]

posed as follows

ρ̂(β) = ⊗ρ̂th(β, ωk), ωk =
√
k2 + m2, (126)

where ρ̂th(β, ωk) is the thermal state of a single oscillator
defined in Eq. (99). Hence the complexity is simply24

CUB,diag
1,th (β) =

∑
k

CUB,diag
1,th (β, ωk), (127)

where the complexity for each momentum mode can be found
in Eq. (102). Note that the divergences in complexity come

from integrating the log
∣∣∣ μ
ωk

∣∣∣ contributions in Eqs. (102) and

(103). Hence, we see that the complexity of the thermofield
double state is twice as divergent as that of the thermal state.
This reflects a general property that the purification which
preserves the most symmetry between the ancillary degrees
of freedom and the physical ones is not always the most
efficient one. In the case of the thermofield double state for
example, we work very hard to establish short distance corre-
lations between the ancillary degrees of freedom themselves,
which would then be removed upon tracing out this part of
the system anyway and so that is useless work.

When a mixed state ρA is obtained from an original pure
state |ψAB〉, it is often the case that the original state is not the
optimal purification. This is because in |ψAB〉 we work too
hard to establish all the correlations between the B degrees
of freedom and mimic exactly those between A and B. To
estimate how different are the correlations in the optimal
purification from those in the original state we define the
mutual complexity25

�Cmutual = C(ρA) + C(ρB) − C(|ψAB〉) , (128)

see Fig. 13. For example, when considering the process of
forming the thermal state from tracing out half of the ther-

24 Here we focus on the C1 complexity in the diagonal basis from Eqs.
(102) and (103) since those had nice analytic expressions. However, all
the qualitative results which we describe below hold equally well in the
physical basis, see [74].
25 This quantity was originally defined in a holographic context in [81].
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Fig. 13 Illustration of mutual complexity. We start by a pure state on
a system AB which is then split into two mixed states on the systems
A and B. The sum of the complexities of purification of these mixed
states using ancillary systems Ac and Bc is not necessarily equal to the
complexity of the original pure state

mofield double state we obtain

�Cmutual = 2C(ρth) − C(|T FD〉) . (129)

In particular in quantum field theory of a free scalar field, this
quantity turns out to be finite (i.e., all the UV divergences
cancel) and is proportional to the thermal entropy for the
case of a massless scalar (the conformal limit). The mutual
complexity in the diagonal basis in the various QFT examples
studied in [74] was found to be subadditive, i.e., it satisfies
�Cdiag

mutual > 0.
Another interesting example of a mixed state of a free

bosonic QFT is that of subregions of the vacuum state. We
could as before, focus on the example of subregions of the
vacuum state on the lattice for a free bosonic QFT. The
authors of [74] have focused on a one dimensional spatial
lattice with N sites. The wavefunction of the vacuum state
reads

�0(φk) ∝
∏

k=0...N−1

e− 1
2 ωk |φk |2 (130)

where ωk and φk were defined in Eqs. (106) and (108) and we
substitute d = 2. Translating back this expression to position
basis using E. (106) we obtain

�0(φ̃a) ∝
∏

a,b=0...N−1

e− 1
2 Mabφ̃a φ̃b (131)

where

Mab = 1

N

∑
k=0...N−1

ωke
− 2π ik

N (a−b) . (132)

To obtain the subregions we divide our lattice in two subsets
A = {x0, . . . x j } and B = {x j+1, · · · xN−1} and trace out the
region B as follows

ρA(xA, x ′
A) =

∫
dxB�0(xA, xB)�∗

0 (x ′
A, xB). (133)

Similarly to what we did earlier with the single Harmonic
oscillator it is possible to minimize the complexity over the
essential purifications of this mixed state. In fact [74] used
a simplifying assumption. They considered mode-by-mode

purifications which are introduced after bringing the den-
sity matrix to a diagonal form and then purifying each mode
which is mixed separately. This is a subset of all possible
purifications which provides a good approximation to the
complexity of purification based on tests with small systems
(purifying two by four).

The authors performed this task numerically and found
that the original vacuum state is not always the optimal purifi-
cation. This is similar to what happened before with the TFD
and thermal states.

The results are presented in the plots. Figure 14 presents
the complexity as a function of the subregion size in the limit
of small mass. The following expressions provides a good fit

CUB,diag
1 = �

2δ
|log μδ| + 1

2
f1(μL) log

(
L

πδ
sin

π�

L

)

+ �

L
f2(μL) + f3(μL).

(134)

Here, μ is the scale of the reference state, L is the full sys-
tem size, � is the subregion size, δ is the cutoff and f1, f2, f3
are functions of the reference state scale. These functions
could not be determined very accurately because the numer-
ical study examined only very few values of μ. We see that the
leading divergence is an area law and depends on the cutoff
in a similar way to the leading divergences in the full vacuum
complexity (115). The subleading divergences are reminis-
cent of the entanglement entropy as we will see in a moment.
The mutual complexity �Cmutual = C(ρA)+C(ρB)−C(|ψ0〉)
can also be evaluated and its dependence on the subregion
size and cutoff can be fitted (see Fig. 15) and one obtains in
the limit of small mass

�CUB,diag
1,mutual ≈ f1(μL)

(
log

(
L

πδ
sin

π�

L

)
+ f4(μL)

)
.

(135)

Here, f4 is yet another function of μL . Some proposed fits for
f1 and f4 can be found in equation (7.10) of [74]. The above
formula is very similar to the entanglement entropy formula
by Calabrese and Cardy [82,83]. This hints at a deeper con-
nection between the subleading divergences in complexity
an the entanglement entropy in non-dynamical situations.

6.5 Complexity in CFT

The approach of studying QFT state complexity restricted to
Gaussian or nearly Gaussian states has its clear limitations.
Many interesting physical systems are strongly interacting. In
particular, when making connection via holography between
quantum information and black holes which is one of the
prime motivations for studying QFT complexity, the rele-
vant field theories are strongly interacting. These theories
are however special in that they preserve a large spacetime
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Fig. 14 Complexity of subregions of the vacuum state as a function of
the interval size. This figures makes it apparent that the leading contri-
bution to complexity grows linearly with the subsystem size which is
the aforementioned volume law. Figure taken from [74]. Here the mass
was fixed to be small mL = 0.01 in order to mimic the results of a
conformal field theory

Fig. 15 Mutual complexity of subregions of the vacuum as a function
of the subregion size. This typical log(sin(#)) behavior is reminiscent of
the Calabrese and Cardy formula for the entanglement entropy. Figure
taken from [74]. Here the mass was fixed to be small mL = 0.01 in
order to mimic the results of a conformal field theory

symmetry group – the conformal symmetry. The abundance
of symmetry is what helps make progress in this case. There-
fore in this section we will focus on the question – can one
utilize the conformal symmetry to define a complexity of
states within conformal field theory.

This exploration began with the work of [24] who consid-
ered the geometric approach to complexity within 2d CFTs.
In particular the authors focused on circuits in a unitary rep-
resentation of the Virasoro algebra26

[Lm, Ln] = (m − n)Lm+n + c

12
m(m2 − 1)δn+m,0. (136)

The CFT was taken to live on a circle with angular coordi-
nate θ ≡ θ + 2π and the corresponding stress tensor can be
expressed as

T (θ) =
∑
n∈Z

(
Ln − c

24
δn,0

)
e−inθ . (137)

26 Due to holomorphic factorization, each of the two copies of the
Virasoro algebra could be considered separately.

The circuits are constructed from the symmetry genera-
tors,

U (σ ) = ←−P exp
∫ σ

0
dσ ′ Q(σ ′),

Q(σ ) =
∫ 2π

0

dθ

2π
ε(σ, θ)T (θ) =

∑
n∈Z

εn(σ )
(
L−n − c

24
δn,0

)
,

(138)

where the Fourier modes

εn(σ ) =
∫ 2π

0

dθ

2π
ε(σ, θ)einθ (139)

serve as control functions along the circuit. They should sat-
isfy εn(σ )∗ = −ε−n(σ ) in order for the transformation to be
unitary. In addition, in order to start our circuit at the identity
we require εn(σ = 0) = 0.

The Virasoro symmetry without its central extension27 is
simply the group of diffeomorphisms of the circle f (θ) ∈
Diff(S1). In particular, the function ε(σ, θ) in the circuit
above fixes the infinitesimal diffeomorphisms whose com-
position gives the total diffeomorphism function f (σ, θ) at
each point σ along the circuit. Explicitly, ε(σ, f (σ, θ)) =
∂σ f (σ, θ).

The reference state serving as the starting point for the
circuit is taken to be the chiral primary |h〉 satisfying

L0|h〉 = h|h〉, Ln|h〉 = 0 for n > 0. (140)

The authors of [23] considered two different cost functions
along the circuit

F1(σ ) =|〈ψ(σ)|∂σ ψ(σ)〉| ,
F2(σ ) =√〈∂σ ψ(σ)|∂σ ψ(σ)〉 ,

(141)

which become equivalent in the large central charge limit
F2 � F1(1 + O(1/c)). We should point out that the above
F1 cost function is in fact different from the F1 cost function
in Eq. (23). The difference is reminiscent of exchanging the
order of the absolute value in the complexity definition and
the sum over circuit generators. The F1 cost function in Eq.
(141) generally has many null directions and therefore does
not satisfy the mathematical definition of a norm, making it
somewhat disadvantageous as a complexity measure. Never-
theless, it has a nice geometric interpretation in terms of the
coadjoint orbits of the Virasoro group and a connection to
the Liouville action featuring in the path-integral approach
to complexity, see Sect. 6.6. Another useful cost function is
the Fubini–Study (FS) metric

FFS(σ ) =
√

〈∂σ ψ(σ)|∂σ ψ(σ)〉 − |〈ψ(σ)|∂σ ψ(σ)〉|2.
(142)

27 The central extension was later treated in [28].
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This cost function has the advantage that it assigns zero con-
tributions to circuits which only modify our state by an over-
all phase.

Using some algebraic manipulations based on the sym-
metry algebra it is possible to show that the F1 cost function
is given by

F1(σ ) =
∣∣∣∣
∫ 2π

0

dθ

2π

∂σ f (σ, θ)

∂θ f (σ, θ)

( c

24
− h + c

12
{ f, θ}

)∣∣∣∣ (143)

where { f, θ} = f ′′′
f ′ − 3

2

(
f ′′
f ′
)2

is the Schwarzian derivative.

It turns out that the complexity functional (143) is related
to the Polyakov action of induced gravity in two dimensions
with a convenient choice of coordinates which means that
induced 2d gravity governs the complexity of Virasoro cir-
cuits. Since the Polyakov and Liouville actions are related,
this connects nicely to the path integral complexity proposal,
see next subsection.

A similar computation for the Fubini–Study metric was
carried in [26,27] which leads to

FFS(σ )2 =
∫ 2π

0

dθ1

2π

dθ2

2π

∂σ f (σ, θ1)

∂θ1 f (σ, θ1)

∂σ f (σ, θ2)

∂θ2 f (σ, θ2)
×

[
c

32 sin4[(θ1 − θ2)/2] − h

2 sin2[(θ1 − θ2)/2]
]

.

(144)

From the above expressions for the cost functions we note
that what was earlier a geodesic equation for the control func-
tions Y I (σ ), cf. Eqs. (20) and (21), now became an infinite
dimensional geodesic problem with the index I replaced by
the continuous variable θ . The geodesic equations for the
control function take the form of integro-differential equa-
tions for the function f (σ, θ). The equations of motion are
second order in σ which allows to find circuits connecting
two points in the Virasoro group. This makes the Fubini–
Study norm a better suited complexity measure compared
to the F1 cost function. The authors of [26,27] used those
equations of motion to find the complexity for going between
the identity f (σ = 0, θ) = θ and a perturbation containing
a single Fourier mode f (σ = 1, θ) = θ + ε

m sin(mθ) with
ε � 1 and m ∈ N. The sectional curvatures were found to
be negative in most directions for physically relevant values
of h and c.

A similar approach can be employed to study the com-
plexity of unitary circuits of the conformal algebra in higher
dimensions [25]. The conformal algebra consists of dilata-
tions, translations, special conformal transformations and
rotations – D, Pμ, Kμ, Lμν respectively, satisfying the com-

mutation relations28

[D, Pμ] = Pμ , [D, Kμ] = −Kμ ,

[Kμ, Pν] = 2
(
δμνD − Lμν

)
,

(145)

where the rotations have been omitted from the list (but they
satisfy the usual commutation relations). The generators sat-
isfy the following Hermiticity relations

D† = D , K †
μ = Pμ , L†

μν = −Lμν . (146)

As the reference state we consider a scalar primary state29

|ψR〉 = |�〉 of scaling dimension � which satisfies

D|�〉 = �|�〉, Kμ|�〉 = Lμν |�〉 = 0. (147)

A general unitary circuit will pass through states |α(σ)〉 =
U (σ )|�〉 where the unitary U (σ ) is constructed as follows

U (σ ) = eiα(σ)·PeiγD(σ )D

(∏
μ<ν

eiλμν(σ )Lμν

)
eiβ(σ)·K (148)

where the various control functions αμ(σ), γD(σ ), λμν(σ ),
β(σ) have to satisfy some constraints to make sure thatU (σ )
is unitary. For example, one of these constraints is Im(γD) =
− 1

2 log(1−2 α·α∗+α2α∗2). TheF1 complexity cost function
reads:

F1

�
=
∣∣∣∣ α̇ · α∗ − α̇∗ · α + α2 (α̇∗ · α∗) − α∗2(α̇ · α)

1 − 2 α · α∗ + α2α∗2 + iRe(γ̇D)

∣∣∣∣ ,
(149)

while the FS-metric is

ds2
FS

dσ 2 = 2�

[
α̇ · α̇∗ − 2|α̇ · α|2

1 − 2 α · α∗ + α2α∗2

+2

∣∣α̇ · α∗ − α∗2 α · α̇
∣∣2

(1 − 2 α · α∗ + α2α∗2)2

]
.

(150)

We see that the F1 complexity depends on the overall phase
γD of the state. In addition it is possible to show that the F1

cost function has many null-directions where the distance
vanishes along non-trivial circuits. Once again we see that
these properties make the F1 cost function a less favorable
measure of complexity. Upon restricting the two-dimensional
cost functions (142) and (143) to diffeomorphisms corre-
sponding to the global conformal group, one simply obtains
the d = 2 case of the higher dimensional cost functions (149)
and (150).

Minimizing the Fubini–Study cost, it can be demonstrated
that the complexity of a target state αT ≡ |α(t = 0)〉 is

28 There is a small subtlety here: we use the Euclidean conformal alge-
bra generators to construct unitary representations of the Lorentzian
conformal algebra. This is easy to understand in terms of the following
analogy: the Euclidean conformal generators play a similar role to J±
generators in the quantum mechanical treatment of angular momentum.
29 For a similar construction with a spinning primary reference state
see [84].
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simply

CFS =
√

�
[
(tanh−1 �S)2 + (tanh−1 �A)2

]
(151)

where we can extract �S and �A from the combinations
�S ± �A =

√
2αT · α∗

T ± 2|α2
T |. We note that this result

scales with
√

�.
In holography, the Fubini–Study line element has been

related to the average of minimal and maximal distances
between infinitesimally displaced timelike geodesics in the
bulk (each representing the state at some point along the cir-
cuit), see [25]. This connection was made by identifying the
bulk symplectic form and the one associated to the FS metric
in the phase space of the circuits. This suggests that a very
natural connection can be made to holography by studying
the relevant symplectic forms as was indeed suggested in
[85]. These ideas opens the path to an explicit holographic
verification of the holographic complexity proposals. Alter-
natively, a connection with holography for a different class
of states was proposed in [86,87] by comparing variations
in holographic complexity under small conformal transfor-
mations to equivalent variations in CFT complexity in two-
dimensions.

The above approach (both in 2d and in higher dimensions)
considers only unitary circuits constructed from symmetry
generators of the conformal groups and those circuits do not
allow to move between any two states in the CFT Hilbert
space but only between states in the same conformal family.
The extension to a larger class of circuits remains unknown.

6.6 Path-integral approach to complexity

A different approach to complexity is based on preparing
the state using the Euclidean path integral. The authors of
[23,88] have proposed that the optimization over possible
circuits preparing the state is equivalent to optimizing the
metric on the space where the path integral is performed.
Roughly speaking, we are to understand this metric as the
density of gates in a discretized version of the path integral
which in turn can be understood as a tensor network.30 The
idea is that if some gates are not needed for the optimal cir-
cuit, they can be deleted, and this will change the effective
geometry. The Euclidean time in the path integral is iden-
tified with the depth along the (non-unitary) circuit, and it
gives rise to an RG direction z = −(τ − δ) which captures
the gradual introduction of entanglement into the state at dif-
ferent length scales; the state prepared at the final time is
defined at a UV cutoff δ.

The simplest case is that of a two-dimensional CFT,
because every metric can be brought to the form ds2 =
e2φ(z,x)(dz2 + dx2). In the UV we should have one gate for

30 We discuss briefly tensor networks in Sect. 7.3.

each cutoff-size region, so we should set e2φ(z=δ,x) = 1
δ2 .

The ground state wavefunction in the curved metric is pro-
portional to the one with the flat metric due to conformal
symmetry:

�gab=e2φδab
= eSL [φ]−SL [0]�gab=δab (152)

with a proportionality factor given by the Liouville action

SL [φ] = c

24π

∫ ∞

−∞
dx

∫ ∞

δ

dz
[
(∂xφ)2 + (∂zφ)2 + μe2φ

]
.

(153)

The parameter μ can be rescaled by a shift of φ, so it can be
set to one. The circuit that prepares the state is thus effec-
tively computing the Liouville action, and the optimization
is equivalent to minimizing the prefactor eSL [φ] (see also [89]
who proposes another argument for the Liouville action in
the language of tensor networks). This leads to the following
proposal for the complexity

C� = min
φ

SL [φ(z, x)] . (154)

The conformal factor that minimizes the action, subject to
the boundary condition described above, corresponds to the
metric on the hyperbolic half-plane ds2 = (dz2 + dx2)/z2,
and it can be interpreted as the metric of a time slice of AdS3.
This leads to a complexity C� = cL

12πδ
for the vacuum state of

the CFT, which has the same structure of divergences which
we saw earlier in the free field theory case (cf. Eq. (116) for
d = 2).

Using appropriate boundary conditions on the strip and
on the cut plane, one can find the solutions corresponding
to the TFD and to the mixed state for a subregion of the
vacuum state, respectively. In all these cases, the evaluation
of the Liouville action (supplemented by boundary terms)
gives results that agree qualitatively with the free field the-
ory results and with the CV and CA holographic conjectures
which we describe below (i.e., they have the same depen-
dence on the cutoff, but different coefficients).

The generalization to higher dimensions is non-trivial,
since the metric has more degrees of freedom than just the
conformal factor. Restricting to the class of conformally flat
metrics, one can write a natural generalization of the Liou-
ville action:

Sd ∼
∫

dd−1x dz
[
edφ + e(d−2)φ((∂xφ)2 + (∂zφ)2)

]
.

(155)

The optimization of this action gives again a constant-time
slice of AdSd and a vacuum complexity that agrees with the
free field theory results and with the holographic CV/CA
results which we will describe in the next section. A dif-
ferent but also natural generalization of the Liouville action
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to higher dimensions would be an action that reproduces the
conformal anomaly of the theory [90,91]. Such action would
have higher-derivative terms and would not be positive-
definite, so its interpretation as complexity would be more
problematic.

This framework allows to study also the complexity of a
state created by the insertion of a primary operator. The Liou-
ville equation is modified by a source term, and the corre-
sponding geometry is the Poincaré disc with a conical defect.
This agrees with the dictionary of AdS3/CFT2 to first order
in �/c, but an exact match seems to require quantizing the
Liouville action; it is not clear how this could arise from the
optimization problem (see however [92]).

While for a CFT it is possible to perform the optimization
varying only the background metric, for a generic QFT that
has running couplings along the RG flow one expects to have
to allow for variations of some parameters of the network.
The case of a CFT perturbed by a relevant operator λO was
considered in [93]. The condition (152) that the wavefunc-
tion remains the same up to a prefactor is no longer a con-
sequence of the symmetry but has to be enforced by choos-
ing λ(z) appropriately. The Liouville action is replaced by a
functional N [φ, λ] which can be calculated order by order
in an expansion in λ. The optimal geometry agrees with the
backreaction of a scalar field on AdS3.

7 Complexity in holography

7.1 Complexity conjectures

In a series of papers starting in 2014 [12–15,94], Susskind
and collaborators have argued that the notion of quan-
tum complexity is crucial to understand the quantum and
information-theoretic properties of black holes. A connection
was in fact already suggested in [95] in relation to the prob-
lem of decoding the information contained in the Hawking
radiation. Susskind et al. made the connection much sharper
by conjecturing, in the context of the AdS/CFT correspon-
dence, a precise relation between the complexity of a state
in the dual theory and the corresponding bulk geometry. The
conjecture has two alternative forms: “Complexity=Volume”
(CV) and “Complexity=Action” (CA).31 In order to formu-
late them, let us denote by � a surface at constant time on
the AdS boundary, where the state is defined. CV postulates
that the complexity of the state is equal to the volume of a
maximal slice in the bulk N such that ∂N = �:

CV = Vol(N )

GN�CV
, (156)

31 An additional proposal which relates complexity to spacetime-
volume was made in [96], but we will not discuss it here. A different
version of CA was also proposed in [97].

where �CV is a length required to make the quantity dimen-
sionless, see Fig. 16.32 CA postulates instead that the com-
plexity is equal to the on-shell action of a Wheeler-DeWitt
(WDW) patch, which is the domain of dependence of a
Cauchy slice in the bulk anchored at the boundary on �:33

CA = SWDW

π h̄
, (157)

see Fig. 17.
Let us see how these prescriptions work in the case of a

two-sided eternal black hole in AdS, which is thought to be
the holographic dual of the TFD state. The geometry has two
asymptotic boundaries, where the two copies of the theory
live, that are separated by a horizon, so the L and R theories
are in an entangled state but do not interact with each other.

The metric of the Schwarzschild-AdSd+1 solution (with
conformal boundary R × Sd−1) is

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

d−1

= − f (r)e−4πTr∗

(2πT )2 dUdV + r2d�2
d−1 ,

f (r) = 1 + r2

�2
AdS

− μ

rd−2

(158)

where μ is proportional to the mass of the black hole:

M = (d − 1)ωd−1

16πGN
μ . (159)

We have denoted by ωd−1 the area of the sphere Sd−1. The
mass determines also the Hawking temperature via f (rh) =
0, f ′(rh) = 4πT , where rh is the horizon radius. The entropy
of the black hole is given by S = ωd−1r

d−1
h /(4GN ). In

the second line of (158), the metric is expressed in terms
of the Kruskal coordinates U and V that cover the maximal
analytical extension of the spacetime. The full spacetime can
be divided in four regions, depending on the signs ofU and V
(see Fig. 16). The relation with the tR, r coordinates defined
on the right quadrant is

U = −e−2πT (tR−r∗) , V = e2πT (tR+r∗) (160)

where r∗ is the tortoise coordinate defined by dr∗ = dr/ f (r).
We can see that the original coordinates only cover the
region U < 0, V > 0. The metric has an isometry U →
e−aU, V → eaV which is just time translation tR → tR +a,
but on the left boundary it translates time in the opposite
direction: tL → tL −a. We chose the time coordinates tL , tR
to run in the same direction on both sides of the Penrose dia-
gram. The isometry reflects the invariance of the TFD state

32 In the following we will take �CV to coincide with �AdS , as in most
of the literature.
33 In the following we will set h̄ = 1.
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Fig. 16 Penrose diagram of the two-sided black hole in AdS and the
maximal-volume surface connecting two constant time slices on the
opposite boundaries

under the evolution generated by HL − HR . In Kruskal coor-
dinates, the boundaries are located atUV = −1, the horizon
is the union of the lines U = 0 and V = 0, and the black
hole singularity is at a constant value of UV > 0.
CV conjecture: Let us now consider a bulk hypersurface con-
necting constant time slices at tL , tR . We can use the isometry
to set tL = tR ≡ t

2 .
Describing the surface by an embedding t (r), its volume

is calculated as34

Vol(N ) = ωd−1

∫
dr rd−1

√
− f (r)t ′(r)2 + 1

f (r)
. (161)

We can integrate the equation for extremizing (161) using
the existence of an integral of motion γ :35

t (r) =
∫ ∞

r0

dr

f
√

1 + γ −2 f r2d−2
, t (∞) = tR . (162)

The vanishing of the denominator gives the turning point r0

of the surface: γ 2 = | f (r0)|r2d−2
0 behind the horizon. So

γ ≤ γmax = max(
√| f |rd−1), and as γ → γmax the integral

diverges logarithmically, so tR → ∞. Using the integral of
motion, the volume can be rewritten as

Vol(N ) = 2 ωd−1

∫
r0

dr
r2d−2√

γ 2 + f (r)r2d−2
. (163)

Comparing the last two equations, we see that the integrals
for the time and the volume have the same logarithmic diver-
gence at the lower integration limit, i.e., the region when
r ≈ r0, so we can estimate

Vol(N ) ∼ ωd−1γmax t as t → ∞ . (164)

34 Here, we are being slightly cavalier in our treatment since of course
the time coordinate is singular when crossing the horizon. The proper
treatment would be to convert those expressions to coordinates that
interpolate smoothly across the horizon (for example V and r , see [98]).
35 Note that this integral blows up at the horizon. However, when writ-
ing it we mean that one should compute it using the principal value
prescription.

The maximal volume then grows linearly in time, and this can
be attributed to the growth of the region behind the horizon,
the ER bridge that connects the L and R theories. For a black
hole with a large mass one finds

γmax ∼ μ�AdS

2
,

dCV
dt

∼ 8π

d − 1
M ∼ 8π

d
T S . (165)

So the volume grows at a rate proportional to the total energy.
The volume has also a divergence from the upper integration
limit r → ∞. This is the typical UV divergence coming from
the AdS boundary, and as usual we regulate it with a radial
cutoff rmax = �2

AdS/δ. We find that the leading divergent
term is36

Vol(N )div ∼ 2

d − 1
ωd−1

� 2d−1
AdS

δd−1 . (166)

This leads to a complexity

CV,div ∼ c̃

d − 1

Vol

δd−1 , (167)

where c̃ = �d−1
AdS/GN is proportional to the central charge

of the theory [99] and Vol = 2ωd−1�
d−1
AdS is the total spatial

volume of the two boundary time slices. Notice that this term
is time-independent; this is easy to understand, since when
r is large we can neglect the γ 2 term in the denominator
of Eq. (163). Moreover it is also state-independent: different
states correspond to asymptotically-AdS geometries with the
same metric at leading order and corrections of relative order
1/rd . Therefore the difference of the volume in two different
states is finite, and can be regularized by a state-independent
subtraction. This state-independent subtraction can be done
by focusing on the complexity of formationwhich we defined
in Eq. (90) where we subtracted from the complexity of the
TFD state at t = 0 that of two copies of the vacuum state
(here empty AdS), this yields in the high temperature limit
in d > 2 [70]

�CV = 4
√

π
(d − 2)�

(
1 + 1

d

)
(d − 1)�

( 1
2 + 1

d

) S + . . . , (168)

where the dots indicate corrections away from high temper-
atures. Note that the complexity of formation is proportional
to the entropy, just like what we found in the free field theory
in Eq. (125), although with a different coefficient. In d = 2
the coefficient of the entropy in this expression vanishes and
we are left with a constant complexity of formation. In par-
ticular, if we compare the complexity of the BTZ black hole
to that of the Neveu–Schwarz vacuum in the boundary theory
we obtain �CV = 8πc/3 where c = 3�AdS/(2GN ) is the
central charge, whereas comparing to the Ramond vacuum

36 The factor of 2 in this equation comes from having two asymptotic
boundaries of the eternal black hole.
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instead yields �CV = 0. In all these examples the complex-
ity of formation is non-negative. This property was proven in
general in asymptotically AdS spaces in d = 3 and in some
symmetric spaces in other dimensions in [100].

When the boundary geometry is not flat, the subtraction
contains (167) as the leading term, but also additional sub-
leading divergences that we will not discuss here; their struc-
ture was analyzed in [101,102].
CA conjecture As stated before, we need to find the domain
of dependence of a Cauchy slice in the bulk, ending on the
boundary at tL = tR . This is the part of the bulk that can
be unambiguously reconstructed if one knows only the ini-
tial conditions on the slice. It is easy to see that the WDW
patch consists of points that are spacelike-separated from all
boundary points in �. The boundary of the WDW patch is
then obtained by considering the innermost null geodesics
starting from the boundary at the given time. In Kruskal
coordinates, denoting the coordinate of the boundary time
slices as (UL , VL), (UR, VR), with ULVL = URVR = −1,
UL/VL = VR/UR , these geodesics are the surfacesU = UL ,
U = UR , V = VL , V = VR .

If we are considering a solution to Einstein gravity with
a cosmological constant, then naively, the on-shell action
will be proportional to the spacetime volume of the WDW
patch. However the spacetime region we consider has bound-
aries, and it is well-known that in the presence of boundaries
the Einstein–Hilbert action has to be supplemented by addi-
tional boundary terms. For spacelike or timelike boundaries
these are the Gibbons–Hawking boundary terms. However,
these terms are not well-defined on null surfaces, due to the
fact that the induced metric is degenerate. Furthermore, the
boundaries of the WDW patch are not smooth. They consist
of multiple components that intersect along codimension-
two corners. The complete action appropriate in this situa-
tion was found in [103] (see also [101,104,105]) and can be
written as a sum of terms S = ∑

j S j associated to regions

of codimension j . The terms are37

16πGN S0 =
∫
M
dd+1x

√−g(R − 2�) ,

16πGN S1 = 2εK

∫
B±

dd x
√|h|K

+2
∫
B0

dd−1θdλ
√

γ (εκκ − � log(�ct |�|)) ,

16πGN S2 = 2εa

∫
J
dd−1θ

√
σa . (169)

Here B±, B0 are the spacelike (+), timelike (−) or null (0)

components of the boundary, K is the trace of the extrin-
sic curvature, (θa, λ) are coordinates on B0 such that λ is

37 Note that the sign of the null-boundary terms is flipped compared to
the appendix of [103]v1 and [101]v4 where there was a sign mistake,
see footnote 11 in [106].

a parameter on the null generators of the surface, increasing
towards the future; κ is defined by kμ∇μkν = κkν for the vec-
tor field normal to the surface kμ∂μ = ∂λ, � = ∂λ log

√
γ

is the trace of the second fundamental form, which gives
the expansion rate of the congruence of null generators. J
denotes the joints, or corners, arising from the intersection
of two boundary components. There can be different types of
joints: for J = B±∩B0, a = log |n ·k|, and for J = B0 ∩B ′

0,

a = log | k·k′
2 |. The normal vectors have to be taken pointing

outwards from the region M for timelike surfaces and be
future-oriented for spacelike and null surfaces. The factors
εK , εκ , εa are signs: εK = 1 for a timelike boundary while
for a spacelike boundary εK = 1(−1) if the region M lies in
the future (past) of the boundary component; εκ = 1(−1) if
the region M lies in the future (past) of the boundary compo-
nent; and εa = −1 if the volume of interest lies to the future
(past) of the null segment and the joint lies to the future (past)
of the segment, otherwise εa = 1, see appendix C of [103].38

The boundary term on the null boundaries is given in (169)
using a particular parametrization, but one can show that it
is reparametrization-invariant, thanks to the term involving
�.39 Notice that this term requires the introduction of a length
scale �ct on top of the AdS scale.

With all these ingredients at hand, we can compute the
action of the WDW patch. It is UV divergent, and there are
different ways to regulate it: we can compute the action of the
WDW patch restricted to the part of the bulk within the cutoff,
or alternatively we can compute the WDW patch in the cutoff
space, with null geodesics starting from the cutoff surface
UV = −1 + 4πT δ. The two regularization schemes lead to
the same result for the leading divergence [74,101,102]40

Sdiv ∼ 2

4πGN

�2d−2
AdS

δd−1 ωd−1 log

(
(d − 1)

�ct

�AdS

)
. (170)

This gives a divergence in the complexity

CA,div ∼ c̃

4π2

Vol

δd−1 log

(
(d − 1)

�ct

�AdS

)
, (171)

where, as before, c̃ = �d−1
AdS/GN is proportional to the central

charge of the theory and Vol is the total spatial volume of
the two boundary time slices. This has the same structure as
(167): it is extensive in the field theory volume and diverges
as δ1−d ; the prefactor is different, but in both cases it depends

38 Other types of joints not involving null surfaces can of course exist
but we will not need them, see [101] for a full discussion.
39 The use of this counterterm was first advocated in [104].
40 One must take care to include the additional counterterms at the
boundary of AdS that are used for holographic renormalization [107]
when the WDW patch has a boundary at the cutoff surface, see footnote
79 of [74].
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on an arbitrary length scale (recall that in CV the scale enters
in the prescription (156)).

As for the time dependence, one can see that thanks to the
time-translation isometry, the action of the part of the WDW
patch outside the horizon is time-independent. For late times,
the part behind the past horizon becomes vanishingly small,
so the only contribution comes from the part within the future
horizon.41 The patch extends to the singularity. However, the
relevant contribution to the action is finite due to the fact that
the sphere shrinks there and there is no need to regularize the
singularity. The computation done in [15] gives

dS

dt
= 2M . (172)

It is interesting to note that this result is independent of the
counterterm scale �ct .

As before, it is interesting to consider the complexity of
formation (90) where we subtracted from the complexity of
the TFD state at t = 0 that of two copies of empty AdS. This
yields at high temperatures in d > 2 [70]

�CA = (d − 2)

dπ
cot

(π

d

)
S + . . . , (173)

where the dots indicate corrections away from high temper-
atures. Once again we find the proportionality of the com-
plexity of formation to the entropy. In d = 2 the coefficient
of the entropy in this expression vanishes and we are left
with a constant complexity of formation. In particular, if we
compare the complexity of the BTZ black hole to that of the
Neveu-Schwarz vacuum in the boundary theory we obtain
�CA = −c/3 where c = 3�AdS/(2GN ) is the central charge
whereas comparing to the Ramond vacuum instead yields
�CA = 0.

7.2 Comparison between CV and CA

The first thing to notice is that both the CV and the CA results
contain some ambiguities. CV requires a length scale for
dimensional reasons; CA appears at first to be more canoni-
cally defined, but as we have seen, the presence of null bound-
ary terms naturally reintroduces an additional scale. More-
over, the action could be modified by additional boundary
terms. For example when dealing with charged black holes
it turns out that the complexity can depend strongly on the
boundary conditions one imposes on the associated Maxwell
field [108].

Comparing with the results of the previous sections, we
see that both the volume of maximal slices and the action of
the WDW patch show the same behavior as the complexity
in the free-field theory examples from Sect. 6. First, the UV
divergent part obeys a volume law, and depends on the cutoff

41 There may be subtleties in this statement, as discussed in [15,103].

as δ1−d , the same as the free-field theory result for CUB
1 in

Eq. (116). If we consider instead the free-field result for C2

in Eq. (115), we see that it has a different power law and
cannot be matched the holographic result. Comparing to our
holographic results in Eqs. (167) and (170) we are led to
identify

|μ̃| ∝ �AdS/�CV ∝ log(�ct (d − 1)/�AdS) (174)

where here we introduced back the length scale �CV involved
in the definition of the CV proposal. We see that in fact the
choice we could make in the field theory side for the scale
of the reference state is naturally identified with the freedom
which we have in the CV and CA proposals.

Second, the linear growth in time matches the expectation
from the circuit model (11). Recall that using the relation with
the Lyapunov exponent under the assumption of maximal
chaos, the circuit time n is related to the physical time as
n ∝ T t , and the number of qubits N is proportional to the
entropy of the system. With these identifications, the rate of
growth of the complexity for a black hole is expected to be
proportional to T S at late times. This expectation is borne out
both by CV and CA. It is worth noting that the linear growth
of complexity for a very long time is not reproduced in the
free field theory model in Sect. 6.3. Indeed, in such a simple
theory the dynamical properties of complexity are expected
to differ significantly from those of chaotic systems.

The result for CA in Eq. (172) may look more satisfactory,
giving a rate of linear growth exactly equal to the mass, while
for CV there is a proportionality factor that depends on the
dimension. However, given the uncertainty in the identifica-
tion of time, and the fact that the definition of complexity
itself does not fix the normalization, we should be skeptical
about the significance of the precise prefactor. Nevertheless,
the holographic prescription fixes a particular normalization,
and one may still be tempted to conjecture that (172) is a
universal result for holographic models. This turns out not to
be the case: for charged and rotating black holes the rate is
a non-trivial function of the charge and angular momentum,
and does not coincide with M . Initially [14,15] speculated
that M might give an absolute upper bound on the rate of
growth of complexity, based on an analogy with the Lloyd’s
bound on the rate of computation [109] (which in turn is
based on the orthogonality bounds discussed in Sect. 2). This
turns out to be false as well: it was shown in [98] that at late
times the limiting value of the rate of change in complexity
using CA is approached from above, thus violating the sup-
posed bound by an amount that can be made arbitrarily large.
Another counterexample was given in [110,111]: in the case
of Lifshitz and hyperscaling-violating solutions of Einstein–
Maxwell dilaton theory the growth was found to be enhanced
compared to the CFT case: dS/dt = 2E(1 + z−1

d−θ
) where

E is the energy (equal to M in the z = 1 case). This how-
ever would still be compatible with a putative bound given
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by 2T S. In fact a counterexample was given already in the
initial paper [14,15]: the bound is violated for large charged
black holes42 and this violation is most pronounced close to
extremality, but in general such black holes are unstable to
the emission of light charged particles. Recently a version
of the holographic Lloyd’s bound was proven for the case
of CV: it was shown [100] that under certain energy condi-
tions, in asymptotically-AdS spacetimes in d ≥ 3, the rate
of growth of CV is bounded by 8πM

d−1 f (M), where f (M) is a

function equal to 1 for M ≤ M̂ with M̂ a mass scale near the
Hawking–Page transition, and f (M) = 1+2(M/M̂)1/(d−2)

for M > M̂ . We will comment further on the bounds on the
rate of computation in the discussion section.

Finally, let us note that the complexity of formation in
holography using the CV (168) and CA (173) proposals was
found to be proportional to the entropy in d > 2. We observed
a similar behavior in free field theory where the mass was set
to zero (125). While the dependence of the proportionality
coefficient on the dimension was different in all these cases,
as we already mentioned earlier, this coefficient is somewhat
arbitrary in the prescriptions for evaluating complexity.

7.3 Tensor network model

A different perspective on the growth of the complexity can
be gained by considering a tensor network model. This gives
another argument for the linear growth of complexity with a
prefactor proportional to the temperature times the entropy
of the system [15]. Tensor networks have been used as a
computational tool to provide an efficient representation of
states (e.g., of a spin system) that are less entangled than a
typical state. Typically one is interested in the ground state
of a local Hamiltonian, which has area-law entanglement
entropy (with logarithmic corrections for a gapless system)
whereas the typical state has a volume law entanglement
entropy. We cannot give a full account of the topic in this
review, the reader can find more details, e.g., in the recent
review [112].

It has been proposed that Tensor networks can provide
a discretized picture of AdS/CFT, in particular using the
MERA (Multi-Entanglement Renormalization Ansatz) ten-
sor networks which are especially designed for constructing
ground states of critical systems [113]. In a MERA network,
the ground state state of a critical system is produced by
iterating two types of operations, as illustrated in Fig. 18.
One operation is the disentangler, which introduces entan-
glement between the pair of qubits that it acts on; the other is
the isometry, which makes a coarse-graining of the degrees
of freedom. The effect of the two operations is that entangle-

42 By this we mean, charged black holes whose horizon radius is much
larger than the AdS scale.

Fig. 17 The Wheeler–DeWitt patch used in the computation of CA

disentangler

isometry

Fig. 18 Illustration of a MERA circuit, implementing the RG flow
from the bottom (UV) to the top (IR)

ment is introduced in the state at increasingly larger length
scales.

Schematically, one starts from an unentangled state at a
UV scale �, for a system of length L . One layer of the circuit
acts on the state with an operator V and gives the wave func-
tion at the coarse-grained scale ψ(2L , �

2 ) = Vψ(L ,�).
The thermofield double state at temperature T has entan-

glement at length scales smaller than 1/T on each side while
points at larger distances are unentangled. Therefore the cir-
cuit that builds two copies of the ground state also builds
to a good approximation the finite-temperature TFD at short
length scales. At the scale of the temperature the state is given
by

|T FD(L , T )〉 = V k ⊗ (V ∗)k |T FD(L/2k,�)〉, (175)

where k = log2
�
T is the number of gates in layers in the

circuit. The operation of V in the circuit constructing the
TFD is depicted in red/green in Fig. 19.

Now, if we consider the evolution of the TFD state in
time, we should attach a unitary time evolution operator to
the UV part of the circuit. This evolution is described in blue
in Fig. 19. Naively then, we could expect that the complexity
grows as N� t , (with N = (L�)d−1 the number of UV
degrees of freedom) since the Hamiltonian acts on all the
UV degrees of freedom. However, it turns out that this is not
the most efficient way to prepare the TFD state at finite time.
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Fig. 19 Illustration of a tensor network constructing the TFD state and
its time evolution

In fact, by swapping the action of the V operators with the
time evolution operators we can convince ourselves that it
is more efficient in the complexity sense (it requires fewer
operations) to act with an effective Hamiltonian on the IR
degrees of freedom, see the right panel of Fig. 19. Since
we are describing a critical system, we can use the fact that
H(L)V k = V k2−k�H(L/2k), namely that the Hamiltonian
is a scaling operator, with dimension � = 1. Then we can
act on the IR state with a renormalized Hamiltonian; this is
much more efficient since the number of sites on which we
need to act is reduced by a factor of 2k after k steps. At the
scale T the number of sites is LT , and so the expected growth
rate of complexity is reduced to T (LT )d−1 ∼ T S(T ). In this
way we recover the same prefactor in the rate of growth of
complexity that arose from the epidemic model.

We hasten to add that the argument is very heuristic, and
the precise correspondence of tensor networks with hologra-
phy is far from being completely established.

8 Additional tests of the holographic conjectures

8.1 Shock waves

A particularly important support for the complexity conjec-
tures can be obtained by studying their behavior under a per-
turbation of the system, and comparing it to the predictions
from the circuit model in Sect. 3.2. In [13] the authors con-
sidered the evolution of the TFD state after the application
of a precursor:

UL(tL)UR(tR)WL(tw)|T FD〉 . (176)

Here W is a local CFT operator of energy E � M – more
precisely, E = O(1), while M = O(N 2). The operator
acts on the boundary at a time tw, and creates an excita-
tion which propagates in the bulk along a null line. As the
excitation moves towards the horizon its energy gets more
and more blue-shifted, so its backreaction cannot be ignored,
even though the initial energy of the excitation is small. The
backreaction is described by a shock wave [114]. For simplic-
ity, we consider the case of AdS3, and we take an excitation
created by an operator which is smeared uniformly along the
circle at the boundary, sent from the left at some very early

Fig. 20 Penrose diagram of the AdS3 black hole geometry perturbed
by a shock wave

time, see Fig. 20.43 In this case the perturbed metric can be
written in Kruskal coordinates as

ds2 = −A(r)(2dUdV − 2hδ(U )dU 2) + r2dφ2 (177)

where A(r) = f (r)e−4πTr∗/(8π2T 2) can be read by com-
paring to the unperturbed metric in Eq. (158). The perturba-
tion can be interpreted as a shift in the V coordinate across
the horizon: V → V −hθ(U ). The bulk stress energy tensor
is localized on the shock wave; we can write it as

TUU = E

16πGNM
e2πT |tw |δ(U ) , (178)

where E is the energy of the excitation inserted at tw = 0.
Solving Einstein’s equations gives

h ∝ e2πT (|tw |−t∗) , t∗ = 1

2πT
log

M

E
, (179)

where t∗ is the scrambling time. The solution is valid in the
limit where E → 0, |tw| → ∞, with h fixed. In this limit
the shock wave propagates along the horizon.

Due to the shift in V , the maximal slices are displaced
when they cross the horizon. The modification of the volume
can be computed analytically in the 3d case, and the cor-
responding complexity is given, up to an additive constant
which is UV divergent but time-independent, by the formula
[46,114]

CV ∼ S log
[
cosh (πT (tL + tR)) + c h eπT (tL−tR)

]
, (180)

where S is the entropy, c is some order one constant and h is
given in (179). Setting tL = tR = 0, the formula has the same
dependence on |tw| and the scrambling time t∗ as the result
of the epidemic model (19): it grows exponentially with |tw|
for |tw| � t∗, and linearly for |tw| � t∗. Also as a function
of tL , tR at fixed h we can see different regimes. Setting for
instance tL = −tR , we have exponential growth in tL for
tL � t∗ − |tw| followed by a linear growth at late times.

The formula (180) is actually a good approximation also
for the complexity in shockwave backgrounds in higher-

43 The case of localized shocks was analyzed in [115], see also [116];
the higher-dimensional generalization was considered in [13,106,117].

123



128 Page 32 of 40 Eur. Phys. J. C (2022) 82 :128

dimensional AdS black holes, because one can argue, with
a reasoning similar to the one that led to Eq. (164), that the
main contribution comes from a region where r is almost
constant, and therefore the volume of the angular directions
only contributes an overall factor but does not change the
shape of the maximal surface.

More explicitly, we can evaluate the leading late-time
result as follows [13]: one finds that the volume of a maximal
surface connecting the left boundary at tL to the horizon at
(U = 0, VR) is given by

Vol(tL , VR) ∼ ωd−1γmax

2πT
log(VRe

2πT tL ) . (181)

The remaining part of the surface goes from (U = 0, VR −
h) to the boundary at tR . Minimizing the sum of the two
contributions over VR gives VR = h/2, and

Vol = ωd−1γmax

2πT

(
log

(
h

2
e2πT tL

)
+ log

(
h

2
e−2πT tR

))

= ωd−1γmax (tL − tR + 2|tw| − 2t∗) + O(1) . (182)

In this derivation we assumed tL > tw, tR < −tw. The argu-
ment can be extended to more complicated insertions of the
formUL(tL)WL(t1) . . .WL(tn)UR(tR). We describe here the
results of [13], that constructed the geometries corresponding
to multiple shock waves created by the insertion of operators
on the left side at different times, building up on the work
of [118]. Since the times t1, . . . tn do not have to be ordered,
one has to distinguish the operator insertions that are time-
ordered from those that are not. The former give rise to shock
waves that propagate in the same direction, and only give
small perturbations to the geometry. The latter create shock
waves propagating in opposite directions and have a larger
effect. The geometry corresponding to multiple shock waves
can be constructed patching together portions of AdS along
the horizon with shifts (V,U ) → (V,U ) ± 2e−2πT (t∗±ti ),
where the coordinate being shifted, as well as the sign in
the exponent, depends on the direction of the shock wave.
One finds, in agreement with the expectation from the cir-
cuit model, that the complexity grows linearly with the time
difference between insertions, and with the offset from the
switchback coming from points where the time contour folds;
the generalization of Eq. (8.1) to multiple time insertions then
reads

Vol ∼ |tL − t1| + |t1 − t2| + · · · |tR + tn| − 2nst∗ . (183)

This result is valid only in the limit when all the time differ-
ences between the different shocks and between the shocks
and the boundary times are very large compared to t∗; the
exact formula, just as for a single shock, will also exhibit
different regimes where the volume grows exponentially. It
was shown in [15] that the same behavior is obtained also

using the CA prescription, although with more cumbersome
calculations, especially in the case of multiple shock waves.

In the limit E → 0 we have considered, the energy of the
shock is negligible and it does not change the mass of the
black hole. The case of a finite-energy shock was considered
in [117]. In that case, with a single shockwave, the complex-
ity grows linearly at late times at a rate proportional to the
final mass of the black hole (after it has absorbed the shock),
whereas at early times there is a linear growth with a slope
proportional to the energy of the shockwave, and a relatively
sharp transition between the two regions.44

As observed in [117], the AdS3 result (180) is in agreement
with the epidemic model of Sect. 3.2 and agrees also with the
holographic result for light shocks, but does not account for
the early-time growth of finite-energy shocks. The epidemic
model we used assumed that the perturbation is generated by
a simple operator. In fact, it is easy enough to account for the
insertion of a heavy operator. We simply have to modify the
initial conditions for the number of infected sites. The solu-
tion is given by s(n0 + n), with s(n) the number of infected
sites at the n-th step as in (17) and s(n0) = N0 is the size of
the operator serving as the initial perturbation. We want to
consider the case when the initial size is a finite fraction of
the total size, N0 = αN . From Eq. (16) we find

n0 = 1

k − 1
log

(
1 − (1 − α)k−1

(1 − α)k−1

)
+ n∗. (184)

The time needed for the infection to spread to the whole
system is now n∗ − n0, and we see that it is much shorter
than the scrambling time, since it does not scale with N .45

The early and late time behavior of the complexity can be
obtained from the corresponding limits of (17), taken without
the assumption s0 � N . One finds

C(n) ∼ N0n , n � 1 ,

∼ Nn , n � 1 .
(185)

We see that the behavior is the same as for a finite-energy
shock: there is an early-time linear regime with rate con-
trolled by the size of the perturbation, and a later-time linear
regime with rate given by the size of the system,46 as illus-

44 These results are valid for the CV proposal only in the limit of high
temperatures or for planar black holes and for the CA proposal at any
temperature and horizon geometry.
45 At first glance it is not obvious that n0 < n∗. To explain this, we
should be slightly more careful in defining the scrambling time. Since
the system is only fully infected asymptotically as n → ∞, it is natural
to define the scrambling time as the time at which the perturbation spread

throughout half of the system ñ∗ = 1
k−1 log

(
N

s0(k−1)

(
2k−1 − 1

))
. With

this definition, we can show that n0 < ñ∗ when α < 1/2.
46 Note however that in the case of a gravitational shock the perturbation
adds energy to the system, so the final size (i.e., energy) is the sum of the
initial size and the perturbation, but in the circuit model the perturbation
does not increase the size of the system.
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Fig. 21 Complexity growth calculated in the epidemic model with an
insertion of a heavy operator of size N0 = N/2

trated in Fig. 21. The timescale of the transition between the
two asymptotic regimes (called the delay time in [117]) is not
controlled by the scrambling time but is of order td ∼ 1/T .
In the case k = 2 we can give a formula for the full evolution
of the complexity:

C(n) = N log

(
N − 1 + en0+n

N − 1 + en0

)
. (186)

8.2 Subregions

We have considered in the previous sections the complexity
of pure states defined by a full holographic geometry. We can
also consider mixed states associated to a subregion of the
boundary. The information about the density matrixρA of this
mixed state is encoded holographically in the entanglement
wedge, i.e., the bulk domain of dependence of the part of the
constant time slice contained between the boundary region
and the corresponding RT surface [119–121]. We recall that
the RT surface computes holographically the entanglement
entropy of a region on the boundary, and is the minimal sur-
face in the bulk anchored on the boundary of the entangling
region, for a review see [7]. It is natural to extend the com-
plexity conjectures to the case of subregions. The extension
of CV was first suggested in [122] for the case of static
geometries; they proposed to take the volume of the max-
imal bulk slice bounded by A and by the RT surface. In the
case of time-dependent geometries the prescription proposed
in [101] makes use of the HRT surface [123] which is the
appropriate covariant generalization of the RT surface.

The extension of CA, also proposed in [101], is to take the
action of the region formed by the intersection of the entan-
glement wedge of A with the WDW patch of any boundary
constant-time slice that contains A (one can show that the
prescription is independent of the choice of the slice).

The case of a subregion given by a ball B of radius R in
the vacuum (i.e., pure AdS) was considered in [122]. Using

the CV proposal, one finds for the leading divergence

CV,div = c̃

(d − 1)

Vol(B)

δd−1 . (187)

This has a volume law, just like the complexity of the full
system. In the case of a BTZ black hole, for a segment of
length x , one has

CV = 2c

3

( x
δ

− π
)

, (188)

with c the central charge of the dual theory. This result was
generalized to multiple segments in [124], who found

CV = 2c

3

( xtot
δ

− π
(

2χ − m

2

))
, (189)

where χ is the Euler characteristic of the extremal surface,
and m the number of joints between the boundary segments
and the RT surface. Notice that the finite term is topological,
and surprisingly there is no dependence on the temperature
of the black hole. This is the case also in global AdS3, but
not for higher dimensions [122,125,126].

Using the CA prescription for the same situation of a seg-
ment in planar AdS3 gives [127]

CA = x

δ

c

6π2 log

(
�ct

�AdS

)
− c

3π2 log

(
2�ct

�AdS

)
log

( x
δ

)

+ c

24
, (190)

and for the planar BTZ black hole

CA = x

δ

c

6π2 log

(
�ct

�AdS

)
− log

(
2�ct

�AdS

)
SEE (x)

π2 + c

24
,

(191)

where

SEE (x) = c

3
log

(
1

πT δ
sinh(πT x)

)
(192)

is the entanglement entropy of the segment. In comparison
with (188), CA has a subleading logarithmic divergence that
persists also in the limit of zero temperature. Notice that the
entanglement entropy appears in this formula in the same
way as in the field theory result for the mutual complexity
(135), although in order to compare the two we should take
the limit L → ∞ in the latter. However, the relation between
complexity and entanglement becomes more intricate for the
case of multiple segments, see for example the case of two-
segments in holography [127] and in field theory [128] and it
certainly does not hold in dynamical situations since the time
dependence of the two quantities is drastically different, as
we have already seen.

It was observed in [71] that while CV subregion complex-
ity is additive in a pure state (i.e., �CV (ρA, ρAc ) = 0, where
Ac is the region complementary to A), and is in general super-
additive, �CV ≤ 0, for CA complexity one cannot make a
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general statement: it can be subadditive or superadditive, and
it may change behavior depending on the value of the coun-
terterm scale �ct . However if �ct is selected such that the
leading divergence in the complexity is positive, then the CA
complexity is found to be superadditive �CA < 0 [71,74].
This contrasts with the field theory results of Sect. 5.5 where
the complexity was found to be subadditive �Cdiag > 0 in
the diagonal basis. In the physical basis on the other hand,
the complexity was found to be superadditive in several cases
[74].

8.3 Defects and boundaries

Another interesting situation to consider is the presence of
boundaries or defects in the field theory. Defects in a CFT that
preserve part of the conformal symmetry have been investi-
gated extensively, including their holographic realizations.
The simplest model to consider is the thin-brane model,
where the defect extends in the AdS bulk as a brane [129]
(different models were considered in [130–133]). The action
is the Einstein-Hilbert action coupled to the action of the
brane:

S = 1

16πGN

∫
d3x

√−g

(
R + 2

�2
AdS

)

− T

8πGN

∫
d2x

√−h . (193)

The gravity solution is obtained by gluing two patches of
vacuum AdS3 along the brane, in the way specified by the
Israel-Stewart matching conditions [134]. In this model there
are three parameters: the central charges of the theories joined
by the defect, cL ,R , and the tension of the brane T . The
dependence of the complexity of the vacuum on the tension
was studied in [135] for the case of a 2d CFT, with cL = cR =
c. When the theory is put on a circle of length L , with two
defects at the diametrically opposed points x = 0, x = L/2,
one finds

CV = 4c

3

(
πL

δ
+ 2 log

(
2L

δ

)
sinh(2y∗)

)
,

CA = c

3π

(
L

δ
log

(
e�ct
�AdS

)
+ π

2

)
,

(194)

where y∗ is related to the tension via T �AdS = 2 tanh y∗.
Remarkably there is no dependence on y∗ in the CA result,
which is completely unaffected by the presence of the defect.
One may be tempted to take this surprising result as evidence
against the CA conjecture. However it turns out that this
is consistent with the result obtained in a simple model of
a conformal defect for a free scalar in 2d. This defect is
also characterized by a single parameter that determines the

matching condition:(
∂xφ−
∂tφ−

)
=
(

λ 0
0 λ−1

)(
∂xφ+
∂tφ+

)
(195)

where φ± is the value of the field at the two sides of the defect.
When one defect is placed at x = 0 and the opposite defect
(which has λ replaced with λ−1) at x = L/2, the spectrum
of the theory is not affected by the defect and therefore the
vacuum complexity is unaffected as well, see Eq. (113).

This calculation was also extended to the case of a subre-
gion symmetrical across the defect. Just as in the case with-
out defect, the CA subregion has a logarithmic divergence
depending on �ct , but still independent of the defect’s param-
eter.

Instead of a defect, one can consider the case where the
CFT has a boundary. The holographic description of a BCFT
with the thin-brane model was proposed in [136], and using
this proposal the complexity was considered for a CFT of
dimension d, with the boundary on a hyperplane, in [137].
They found that in d > 2 CV and CA have qualitatively
similar behavior. In d = 2, similarly to (194), CV has a
logarithmic divergence which is absent in CA, but CA has
also a finite contribution which is tension-dependent. One
should notice however that there is an ambiguity coming from
the joints at the boundary: the null normals to the boundary
and the WDW patch are orthogonal, so the prescription (169)
is not well-defined in this case.

The same result in d = 2 was found also in [138]), who in
addition also computed the vacuum complexity of a finite har-
monic chain with Dirichlet boundary conditions. The compu-
tation is similar to the one in 3.1, but now the boundary con-
dition breaks the translational invariance, so the zero mode
is lifted and one can take the massless limit; this can be more
directly compared to the holographic result, and once again it
was found that the C1 complexity is in qualitative agreement
with the CV proposal.

It is interesting to observe that in the case of a subre-
gion in a BCFT, the holographic complexity exhibits a phase
transition “inherited” from the entanglement entropy [138].
Depending on the ratio of the subregion length and the dis-
tance from the boundary, the transition is determined by the
minimum area of two possible configurations of the RT sur-
face: one where the surface is the same as it would be without
boundary, and the other where the surface ends on the brane
in the bulk. At the transition point, the two surfaces have the
same area, so the entanglement entropy is continuous, but
the complexity changes discontinuously, see Fig. 22. This
type of transitions in the entanglement entropy were used
extensively for studying the formation of islands in the con-
text of the Page curve of black hole evaporation [9,10,139–
147]. The study of complexity and its discontinuity at the
phase transition gives additional insights into this problem,
see [148–152]. A similar discontinuity appears also without
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Fig. 22 Illustration of the entanglement and complexity phase transi-
tion in a system with two boundaries, as a function of the size of the
boundary region A. The region inside the RT surface is colored in yel-
low. Note that in the right figure this region extends to the IR cutoff
and an IR regulator is needed to give a finite result. This effect is due to
working within the Poincaré patch and is not present when considering
global AdS

defect or boundary, in the case of a subregion consisting of
two disconnected segments [127].

9 Summary and outlook

In this introductory, review we started by presenting the most
basic ideas related to quantum complexity in relation to quan-
tum computing, as one measure of the difficulty of solving
a problem with a quantum algorithm. We have established
some generic properties that can be deduced with simple
counting arguments on the space of operators. We have intro-
duced the geometric approach of Nielsen, which replaces
gate complexity with a notion of continuous complexity. This
has many advantages, not least that it is in many cases more
amenable to explicit computations. We have illustrated the
method on examples of increasing system size (i.e., dimen-
sion of the Hilbert space): first a single qubit, then a harmonic
oscillator, and finally a free QFT. In the last two cases, the
complexity is computable for the class of Gaussian states (or
equivalently, operators that are generated by gates quadratic
in the oscillators). We presented a partial further extension to
the case of a CFT, in which case the states that can be consid-
ered are those that belong to a single conformal family, i.e.,
are descendants of a single primary state. We also presented
the additional problems that arise when considering mixed
states, mostly using one particular definition of complexity,
namely the complexity of purification.

We then moved to the holographic complexity conjec-
tures. We showed, working with the example of the eternal
two-sided black hole dual to the TFD state, that both CV and
CA reproduce qualitatively the features expected for com-
plexity: the divergence structure matches the free-field theory
result, and the behavior in time matches the growth expected
for a chaotic, fast-scrambling system. We showed that a cru-
cial property of complexity, the switchback effect, is present
in simple holographic models where the perturbation of the
system is represented by a shock wave. Finally we presented
the extension of the conjectures to the case of subregions

of the boundary theory, and an application to the thin-brane
holographic models of CFTs with defects and boundaries.

While CV and CA give qualitatively similar answers in
most cases, we showed that for subregions and defects/
boundaries there were significant differences. This raises an
important question: which one, if any, of the two conjectures
is the correct one? In fact, complexity is not a single observ-
able, but a family of them. The holographic definitions have
some ambiguities, but much fewer than the QFT definition
which depends on the choice of a cost function, a basis of
gates, penalty factors etc.47 It could be that the two holo-
graphic conjectures correspond each to a specific choice of
these parameters, and all the other choices do not have a nat-
ural bulk interpretation, or at least we have not found it yet.
If it is true, it would be extremely interesting to understand
which complexity is naturally singled out by holography and
why. We definitely do not have a “smoking gun” signature
comparable to other precision tests of the AdS/CFT corre-
spondence, which require supersymmetry or integrability in
order to interpolate between weak and strong coupling. It has
not been explored whether supersymmetry and/or integrabil-
ity play a role in the complexity story.

The tensor network description of holography could shed
some light on this question, but it needs to be understood
better, particularly for what concerns the dynamical aspects.
Another approach is to attack the problem from the other
end, as it were, namely to develop further the techniques for
studying complexity in QFT. Since holographic theories are
strongly coupled, it is essential to develop tools to go beyond
Gaussian states and free theories. For the moment, only a few
attempts have been made using perturbation theory. As we
explained, the computations are manageable only when one
can exploit a symmetry of the system; for this reason it seems
promising to consider CFTs, but for the moment it is not
known how to compute the relative complexity of two states
that do not belong to the same conformal family. As we have
seen, in free theories the complexity can be found in terms
of the spectrum of the theory. Presumably in a CFT there
will be some dependence on the OPE coefficients as well. It
would be interesting to understand this dependence, and to
determine whether some part of complexity has universality
properties.

Penalty factors are a crucial ingredient of the complexity
geometry. As we have seen in the single qubit case, but as is
true more generally, they can make the sectional curvatures
negative, see [154], which in turn is associated to diverging
geodesics and chaotic behavior (notice however that in the

47 The authors of [153] have argued, based on the analysis of multi-
boundary solutions in AdS, that the holographic complexity is not com-
patible with local gates; see also the recent work [52] on the effect of
scaling the number of legs in the gates with the number of degrees of
freedom.
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case of coherent states we found a section with the geometry
of hyperbolic space even without any penalty factors). It is
therefore important to try and understand how the complexity
in QFT is affected by penalty factors (see [155] for some
work in this direction). This would also help in understanding
better the relation between complexity and chaos [32].

An important open question is whether there are universal
bounds on the growth rate of complexity. As we have seen
in Sect. 7.2, in many cases CA saturates a bound inspired by
the Lloyd’s bound, which yields a maximum computation
rate proportional to the energy of the system. However, on
one hand, one can find holographic counterexamples where
the bound is violated, and on the other hand, the Lloyd’s
bound, seen as a bound on computational speed, requires
some assumptions on how the computation is performed; in
particular, it assumes that the operations performed by the
gates map a state into an orthogonal state. This assumption
is not satisfied by the “simple” gates, namely gates that are
close to the identity, which are the type of gates used in the
definition of continuous complexity. It was argued in [156]
that the holographic results imply that a black hole is mod-
eled by simple gates, if one assumes a serial circuit. They
introduce two time scales: the time τcomp required to per-
form an operation, and the time τcoh which characterizes
the spread of the wavefunction, and can be related to the
density of states for a system with many degrees of free-
dom using a saddle-point approximation . For holographic
systems τcoh � τcomp, implying that the gates are simple.
However, it seems more reasonable that a circuit modeling a
black hole will be parallel, namely many gates can act simul-
taneously on different qubits (generically we expect as many
as S/2). The analysis in this case becomes more subtle. This
is a question that certainly warrants further investigation.

Apart from the question of the bounds, the fact that the
complexity grows linearly in time is in itself highly signif-
icant, and it has important implications for quantum com-
putability. As discussed in [157], if we assume that black
holes behave as universal quantum circuits, then their linear
growth of complexity for an exponentially long time implies
that there exist problems that can be solved by a classical
computer with polynomial space and arbitrary time (i.e.,
they are in the complexity class PSPACE) but which can-
not be solved by a quantum computer in polynomial time.
Of course, in order to reach this conclusion it is not enough
to argue that the growth is generically linear, but one has
to prove it. This has been done recently in [158], (see also
[159]) for the case of random circuits built from two-qubit
gates, where each gate is drawn randomly according to the
Haar measure on SU (4). The proof is basically a refinement
of the counting argument, and it shows that the complexity is
bounded below by a linear function of time, with probability
1. It is believed that this kind of circuit should be a good
model for chaotic quantum dynamics generated by a time-

independent Hamiltonian. The result was proven for the exact
gate complexity, while it is not yet proven for approximate
or continuous complexity.

We have mentioned in the introduction that one of the
most important questions concerning the quantum informa-
tion properties of gravity is the difficulty of decoding the
Hawking radiation emitted by a black hole. The holographic
conjectures we have presented addresses a different, albeit
not unrelated, problem, namely the difficulty of distinguish-
ing different states of a black hole. The fact that the holo-
graphic duality relates a quantity of the boundary theory that
is difficult to compute (in the colloquial sense of the word)
with one in the bulk that is easy to compute does not come as a
surprise to people who are familiar with the correspondence.
However, in the quantum information-theoretic setting we
attribute a precise meaning to the difficulty, and we can won-
der, as [160] did, whether this property of the correspondence
violates the extended Church–Turing thesis, which postulates
that any physical process can be efficiently simulated on a
quantum computer. Even though the volume, or the action,
of the wormhole is not exactly a physical observable, never-
theless one can argue that it is a quantity that can be easily
extracted from a coarse knowledge of the metric. Therefore
a quantity of high complexity can be efficiently determined
by evolving in the bulk; this suggests that the conversion of
bulk quantities into boundary quantities, namely the holo-
graphic dictionary, must be extremely complex. As pointed
out by [161], this Gedanken experiment requires that the bulk
observer has access to the black hole interior, so the horizon
will play a role in keeping the Church–Turing thesis valid,
under the condition that one only considers the space acces-
sible to outside observers.

Considering the problem of decoding Hawking radiation,
one encounters a different puzzle, observed in [162] where a
possible solution was also proposed. Suppose a black hole is
let to radiate for a not too long time.48 According to the ER =
EPR conjecture [163], there is a wormhole that connects the
interior to the radiation, but the volume grows linearly with
time and according to CV the complexity of the state is only
polynomial in the entropy at this time, in contrast with the
result that the distillation of the information from the radia-
tion is exponentially hard. The solution proposed in [162] is
that the difficulty of the distillation task is in fact measured
by a different quantity, since one is not allowed to use all
possible gates but only those that act on the radiation with-
out acting on the interior. A different holographic conjecture
was proposed for this restricted complexity, which involves

48 To be more precise, the time should be much shorter than the expo-
nential time t ∼ eS at which the complexity saturates, but sufficiently
long that there is substantial entanglement between the interior modes
and the radiation; for instance, one can take a time of the order of the
Page time.
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the area of the maximum cross-section of the wormhole and
of the minimal surface in the throat that connects it to the
asymptotic region. This shows that there are probably differ-
ent notions of complexity that can be useful for answering
different questions about the quantum information-theoretic
aspects of gravity, and there is still much to be understood.

Another important question concerns the implications of
complexity for many-body systems. In order to character-
ize properties such as scrambling, chaos, and thermaliza-
tion, extensive use has been made mostly of two type of
observables: low-point correlation functions (especially out-
of-time-order correlators), and entanglement entropy. Quan-
tum computational complexity captures properties of the
quantum state of a system that are more refined than those
visible through these observables. This is why it is sensitive to
the evolution of the microstates in the ensemble correspond-
ing to a black hole. It is likely that it can also be used to give
new insights into the mechanisms underlying the approach
to equilibrium and thermalization, and possibly detect new
types of phase transitions (see e.g., [29,30,164]).

We should finally point out again that we did not aim at
writing a comprehensive review of the subject, therefore we
left out many topics that we felt were too advanced for an
introduction, such as the thermodynamics and resource the-
ory aspects of complexity [43,46,165,166], the relation with
bulk dynamics (in the sense of reconstructing the Einstein
equations in the bulk from the complexity of the bound-
ary) [89], alternative conjectures, most notably the one in
[96] (sometimes called CV 2.0), complexity in de Sitter
space [52,167–169], the evolution of complexity after a
quench [77,170], the relation between complexity and chaos
[32,171], other notions of complexity such as the opera-
tor complexity [172,173]. We hope that our readers will be
encouraged to delve further into this fascinating subject and
contribute to its development.
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