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Quantum Computers Can Search Rapidly by Using Almost Any Transformation

Lov K. Grover*
3C-404A Bell Labs, 600 Mountain Avenue, Murray Hill, New Jersey 07974

(Received 4 December 1997)

A quantum computer has a clear advantage over a classical computer for exhaustive search.
quantum mechanical algorithm for exhaustive search was originally derived by using subtle propert
of a particular quantum mechanical operation called the Walsh-Hadamard (W-H) transform. This pa
shows that this algorithm can be implemented by replacing the W-H transform by almost any quant
mechanical operation. This leads to several new applications where it improves the number of steps
a square root. It also broadens the scope for implementation since it demonstrates quantum mecha
algorithms that can adapt to available technology. [S0031-9007(98)06052-9]

PACS numbers: 03.67.Lx, 89.70.+c
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Quantum mechanical systems can be in a superpos
of computational states and hence simultaneously c
out multiple computations in the same computer. In
last few years there has been extensive research on
to use this quantum parallelism to carry out meaning
computations. In any quantum mechanical computa
the system is initialized to a state that is easy to prepare
caused to evolve unitarily, the answer to the computatio
problem is deduced by a final measurement that proj
the system onto a unique state. The amplitude (and he
probability) of reaching a specified final state depends
the interference of all paths that take it from the init
to the final state—the system is thus very sensitive
any magnitude of phase disturbances that affect any
the paths leading to the desired final state. As a res
quantum mechanical algorithms are very delicate, an
is generally believed that an actual implementation wo
need elaborate procedures for correcting errors [1].

This paper shows that the quantum search algori
is surprisingly robust to certain kinds of perturbation
It was originally derived by using the Walsh-Hadama
(W-H) transform and appeared to be a consequenc
the special properties of this transform; this paper sho
that similar results are obtained by substituting alm
anyunitary transformation in place of the W-H transform
Since all quantum mechanical operations are unitary,
means that almostanyquantum mechanical system can
used—all that is needed is a valid quantum mechan
operation and a way of selectively inverting the phase
states. Meaningful computation can hence be carried
on the basis of universal properties of quantum mechan
operations; this is somewhat similar in spirit to [2], whe
circuit behavior of a certain class of neural networks w
independent of the precise nature of the nonlinearity
each neuron.

1. Quantum operations.—In a quantum computer, th
logic circuitry and time steps are essentially classical, o
the memorybits that hold the variables are in quantum s
perpositions—these are calledqubits. There is a set of
distinguished computational states in which all the bits
definite 0s or 1s. In a quantum mechanical algorithm,
0031-9007y98y80(19)y4329(4)$15.00
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quantum computer consisting of a number of qubits is p
pared in some simple initial state, and caused to evolve u
tarily for some time, and is then measured. The algorith
is the design of the step-by-step unitary evolution of t
system. Operations that can be carried out in a contro
way are unitary operations that act on a small number
qubits in each step. Two elementary unitary operatio
presented in this section are the W-H transformation a
the selective inversion of the amplitudes of certain state

A basic operation in quantum computing is the operati
M performed on a single qubit—this is represented by
following matrix:

M ;
1

p
2

∑
1 1
1 21

∏
,

—where the state 0 is transformed into a superpositi
s1y

p
2 , 1y

p
2 d. Similarly, state 1 is transformed into th

superpositions1y
p

2 , 21y
p

2 d. In a system in which the
states are described byn qubits (it hasN ­ 2n possible
states) we can perform the transformationM on each
qubit independently in sequence thus changing the s
of the system. The state transition matrix represent
this operation will be of dimension2n 3 2n. Consider
a case when the starting state is one of the2n basis
states, i.e., a state described by a general string on
binary digits composed of some 0s and some 1s. T
result of performing the transformationM on each qubit
will be a superposition of states consisting of all possib
n bit binary strings with amplitude of each state bein
622ny2. This transformation is referred to as the W-
transformation [3] and denoted byW . Forn ­ 2, N ­ 4:

W ­
1

p
4

2664
1 1 1 1
1 1 21 21
1 21 1 21
1 21 21 1

3775 .

Make note of the following three points: (i) Each of th
terms of the first row and first column are1y

p
N , (ii) each

of the other terms is61y
p

N , and (iii) the various columns
are orthonormal.
© 1998 The American Physical Society 4329
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The other transformation that we will need is the s
lective inversion of the phase of the amplitudes in cert
states. Unlike the W-H transformation and other state tr
sition matrices [4], the probability in each state stays
same since the square of the absolute value of the am
tude in each state stays the same. Its realization is par
larly straightforward; based on [5], the following paragra
gives a realization.

Assume that there is a binary functionfsxd that is either
0 or 1. Given a superposition over statesx, it is possible
to design a quantum circuit that will selectively invert th
amplitudes in all states wherefsxd ­ 1. This is achieved
by appending an ancilla bitb and considering the quantum
circuit that transforms a statejx, bl into jx, fsxdXORbl
(such a circuit exists since, as proved in [6], it is possib
to design a quantum mechanical circuit to evaluate a
functionfsxd that can be evaluated classically). If the bitb
is initially placed in a superposition1y

p
2 sj0l 2 j1ld, this

circuit will selectively invert the amplitudes in the state
for which fsxd ­ 1 [5].

2. Amplitude amplification.—A function fsxd, x ­
1, 2, . . . , N, is given which is known to be nonzero at
single (unknown) value ofx, say atx ­ t —the goal is
to find t. If there is no other information aboutfsxd and
one is using a classical computer, it is easy to see tha
the average it will takeNy2 function evaluations to solve
this problem successfully. However, quantum mechan
systems can explore multiple states simultaneously,
there is no clear lower bound on how fast this can
done. Reference [7] showed by using subtle argume
about unitary transforms that it cannot be done in few
than Os

p
N d steps—subsequently an algorithm w

discovered that took preciselyOs
p

N d steps [8].
The basic idea of [8] is to consider anN state quantum

mechanical system and map each value ofx in the domain
to a basis state of the system. The system is initialized
that there is an equal amplitude in each basis state,
by a series of unitary operations, the amplitude in the s
corresponding tox ­ t is increased (the correspondin
basis state is denoted byjtl). A measurement is then
made due to which the system collapses to a basis s
the observed basis state then gives the solution to
problem. This algorithm is based on subtle properties
the W-H transform. The analysis in this section sho
that very similar results are obtained by replacing the
H transform by any arbitrary unitary operation. Som
consequences of this are presented in the next section

Assume that we have at our disposal a unitary opera
U and we start with the system in a basis state that is e
to prepare, sayjgl. If we applyU to jgl, the amplitude of
reaching statejtl is Utg, if we were to observe the system
at this point, the probability of getting the right sta
would bejUtgj2 —according to the notation,jgl denotes
the initial basis state andjtl the target basis state. I
will therefore take at leastOs1yjUtg j2d repetitions of this
experiment before a single success. This section sh
how it is possible to reach statejtl in only Os1yjUtg jd
4330
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steps. This leads to a sizable improvement in the num
of steps ifjUtgj ø 1.

Denote the unitary operation that inverts the amplitu
in a single basis statejxl by Ix. In matrix notation this
is the diagonal matrix with all diagonal terms equal to
except thexx term which is21—a quantum mechani-
cal implementation of this was presented at the end
section 1.

Consider the following unitary operator:Q ;
2IgU21ItU —note that sinceU is unitary, U21 is
equal to theadjoint (the complex conjugate of the trans
pose) of U. We first show thatQ preserves the two-
dimensional vector space spanned byjgl and U21jtl
(note that in the situation of interest, whenjUtgj is small,
these two vectors are almost orthogonal).

First considerQjgl. By the definition ofQ, this is
2IgU21ItUjgl. Note thatjxl kxj, where jxl is a basis
state, is anN 3 N square matrix all of whose terms ar
zero, except thexx term which is 1. ThereforeIt ;
I 2 2jtl ktj andIg ; I 2 2jgl kgj, it follows:

Qjgl ­ 2 sI 2 2jgl kgjdU21sI 2 2jtl ktjdUjgl

­ 2 sI 2 2jgl kgjdU21Ujgl

1 2sI 2 2jgl kgjdU21jtl ktjUjgl . (1)

Using the facts:U21U ; I andkgjgl ; 1, it follows that

Qjgl ­ jgl 1 2sI 2 2jgl kgjdU21sjtl ktjdUjgl . (2)

Simplifying the second term of (2) by the following iden
tities: ktjUjgl ; Utg and kgjU21jtl ; Up

tg (as men-
tioned previously,U is unitary and soU21 is equal to the
complex conjugate of its transpose);

Qjgl ­ jgl s1 2 4jUtgj2d 1 2UtgsU21jtld . (3)

Next consider the action of the operatorQ on the
vector U21jtl. Using the definition ofQ (i.e., Q ;
2IgU21ItU), and carrying out the algebra as in (3):

QsU21jtld ; 2IgU21ItUsU21jtld

­ 2IgU21Itjtl ­ IgU21jtl . (4)

Writing Ig as Ig ; I 2 2jgl kgj and as in (3),
kgjU21jtl ; Up

tg :

QsU21jtld ­ U21jtl 1 jgl kgj sU21jtld

­ U21jtl 2 2Up
tgjgl . (5)

The operatorQ hence transforms any superposition
the vectorsjgl and U21jtl into another superposition
of the same two vectors. (3) and (5) may be written as

Q

∑
jgl

U21jtl

∏
­

∑
s1 2 4jUtg j2d 2Utg

22Up
tg 1

∏ ∑
jgl

U21jtl

∏
.

(6)

It follows from (6) thatQ preserves the two-dimensiona
vector space spanned byjgl andU21jtl. Q rotates any
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vector in this space by approximately2jUtgj radians as
shown in Fig. 1.

In the situation of interest,jgl andU21jtl are almost or-
thogonal (or elsejtl may be trivially obtained by applying
U to jgl and repeating the experiment a few times). The
fore the angle between the two vectorsjgl andU21jtl is
approximatelypy2.

The number of applications ofQ required to transform
jgl into U21jtl is obtained by dividing the angle betwee
the two vectors (which ispy2) by the rotation achieved
in each application ofQ [which is s2jUtg jd]; therefore
in py4jUtgj applications,Q transformsjgl into U21jtl.
From this, with a single application ofU, we can getjtl.
Therefore inOs1yjUtg jd steps, we can start withjgl and
reach the target statejtl with certainty.

The above derivation easily extends to the case when
amplitudes in statesjgl andjtl, instead of being inverted
by Ig andIt , are rotated by arbitrary phases. However,
number of operations required to reachjtl will be greater.
Given a choice, it will be clearly better to use the inversi
rather than a different phase rotation. Also the analysis
be extended to include the case whereIt is replaced by
V 21ItV , V is an arbitrary unitary matrix. The analysis
the same as before except that the operationU is replaced
by VU.

3. Examples of quantum mechanical algorithms.—The
interesting feature of this paper is thatU can beany
unitary transformation. Clearly, it can be used to des
algorithms whereU is a transformation on the qubit
in a quantum computer—this paper gives a few sear
related applications; further search-related applications
discussed in [9]. This technique also extends to proble
not immediately connected with search [10]. TheN ­
2n states to be searched are represented byn qubits.
According to the framework of section 2, a search of th
N states can be carried out quantum mechanically by u
a unitary operationU which has a finite amplitudeUtg to
go from the starting statejgl to the target statejtl. Such a
search will takeOs1yjUtg jd steps. The following analyse
calculateUtg and thus the number of steps required for t
search.

(i) Exhaustive search starting from thej0̄l state.—
In case the starting statejgl is the j0̄l state and the
unitary transformationU is chosen to beW (the W-H
transformation as discussed in section 1), thenUtg for any
target statet is 1y

p
N. The algorithm of section 2 require

FIG. 1. The operatorQ ; 2IgU21ItU preserves the two-
dimensional vector space spanned byjgl andU21jtl; it rotates
each vector in the space by approximately2jUtgj radians.
e-

n

the

e

n
an

s

n

h-
are
ms

se
ing

e

Os1yjUtgjd, i.e., Os
p

N d steps. This algorithm would
carry out repeated operations ofQ; with U21 ­ U ­
W , Q becomesQ ; 2I0̄WItW ; the operation sequence
is hence. . . s2I0̄WItW d s2I0̄WItW d s2I0̄WItW d . . . . By
rearranging parentheses and shifting minus signs, this m
be seen to consist of alternating repetitions of2WI0̄W
andIt .

The operation sequence2WI0̄W is simply the
inversion-about-average operation [8]. To see this, wr
I0̄ as I 2 2j0̄l k0̄j. For any superpositionjxl, it fol-
lows: 2WI0̄W jxl ­ 2WsI 2 2j0̄l k0̄jdW jxl ­ 2jxl 1

2W j0̄l k0̄jW jxl. It is easily seen thatW j0̄l k0̄jW jxl is
another vector each of whose components is the sa
and equal toA where A ; 1yN

PN
i­1 xi (the average

value of all components). Therefore theith component of
2WI0̄W jxl is simply s2xi 1 2Ad. This may be written
asA 1 sA 2 xid, i.e., each component is as much abo
(below) the average as it was initially below (above) t
average—this is precisely the definition of the inversio
about-average [8].

(ii) Search when an item near the desired state
known.—Problem:Assume that ann bit word is speci-
fied—the desired word differs from this in exactlyk bits.
Solution: The proximity to the specified word is a con
straint whose effect is to reduce the size of the solut
space. One way of making use of this constraint, wou
be to map to another problem which exhaustively searc
the reduced space using (i). However, such a mapp
would involve additional overhead. This section prese
a different approach which also carries over to more co
plicated search-related situations as discussed in [9].

Instead of choosingU as the W-H transform, in this al-
gorithm U is tailored to the problem under consideratio
The starting statejgl is chosen to be the specified word
The operationU consists of the transformation" p

1 2 a
p

a
p

a 2
p

1 2 a

#
,

applied to each of then qubits (a is a variable parameter
yet to be determined)—note that ifa is 1

2 , we obtain the
W-H transform of section 1. CalculatingUtg it follows
that jUtgj ­ s1 2 adsn2kdy2aky2, this is maximized when
a is chosen to bekyn; then lnjUtgj ­ ny2 lnfsn 2

kdyng 2 ky2 lnfsn 2 kdykg. The procedure of section 2
can now be used—as in (i), this consists of repe
ing the sequence of operations2IgU21ItU, Os1yjUtg jd
times.

The size of the space being searched in this problem
s n

k d, which is equal ton!ysn 2 k! k!d. Using Stirling’s
approximation: lnn! ø n ln n 2 n, from this it fol-
lows that lns n

k d ø n lnfnysn 2 kdg 2 k lnfkysn 2 kdg,
comparing this to the number of steps required by t
algorithm, we find that the number of steps in this alg
rithm, as in (i), varies approximately as the square root
the size of the solution space being searched.

4. Sensitivity.—In order to achieve isolation, quantum
computational devices generally have to be designed
4331
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be microscopic—however, it is extremely difficult to ex
ert precise control over microscopic individual entitie
As a result, a serious problem in implementing quantu
mechanical computers is their extreme sensitivity to p
turbations. This paper synthesizes algorithms in terms
unitary matrices—as shown in section 3 this framewo
can always be specialized to a quantum computer ba
on qubits; however, it can also be applied directly to mo
physical situations, hopefully reducing the need for err
correction [1].

For example, consider a hypothetical implementati
of the quantum search algorithm where the qubits a
the spin states of electrons and the W-H transform
achieved by a pulsed external magnetic field. The resu
of sections 2 and 3 tell us that it does not significant
alter the working of the algorithm if the axes of th
magnets, or the periods of the pulse, are slightly perturb
from what is required for the W-H transform. Any unitar
transformU which is close to the W-H transform, will
work provided bothU and U21 are consistently applied
as specified.

5. Limitation.—As discussed in [5], it is possible to
express several important computer science problems
such a way so that a quantum computer can solve th
efficiently by an exhaustive search. Even in physics, se
eral important problems can be looked upon as searc
of domains. Many spectroscopic analyses are essenti
searches—a rather dramatic example of a recent sea
was that for the top quark [11]. The framework of this pa
per could equally well be used there. All that is needed
a means to repeatedly apply a specified Hamiltonian t
produces various phase inversions and state transitio
For example, it took about1012 repetitions of a certain ex-
periment, consisting of interacting a proton and antiprot
at high energies, to obtain 12 observations of the top qu
[11]. Denoting the desired state with the top quark byjtl
and the initial proton-antiproton state byjgl, it implies
that jUtgj2 is approximately12 3 10212. Therefore if it
was possible to apply the operation2IgU21ItU repeti-
tively m times, it would boost the success probability b
approximatelym2 (assumingm to be a small number),
and it would takem2 fewer experiments; in case it were
possible to apply the operations2IgU21ItU, about106

times,one could achieve success in a single experimen
In principle it is possible to synthesizeU21 for any

unitary operationU, since the adjoint of a unitary op-
erator is unitary and can hence be synthesized quan
mechanically. For controlled operations on a few qubi
synthesizing the adjoint is no harder than synthesizing
original operation. However, the adjoint of the time evo
lution operation is the reversed evolution operation—th
may not be easy to synthesize when the states are no
generate and there is significant time evolution. This
especially true if the time evolution is due to the intern
dynamics of the system. That is the main reason this p
cedure, at least in its present form, could not be used
isolate the top quark.
4332
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Another limitation is that the framework of section 2
demands thatU andU21 stay the same at all time steps
What happens if there are small perturbations in thes
It seems plausible that these will not create much of
impact if they are small and average out to zero; howev
that is something still to be proved.

In conclusion, designing a useful quantum comput
has been a daunting task for two reasons. First, beca
the physics to implement this is different from what mo
known devices use and so it is not clear what its structu
should be like. The second reason is that once such a c
puter is built, few applications for this are known where
will have a clear advantage over existing computers. Th
paper has given a general framework for the synthesis o
category of algorithms where the quantum computer wou
have an advantage. See Refs. [9,10] for further applic
tions developed using this framework. It is expected th
this formalism will also be useful in the physical desig
of quantum computers, since it demonstrates that quant
algorithms can be implemented through general propert
of unitary transformations and can thus adapt to availab
technology.

We thank Norm Margolus and Charles Bennett fo
spending the time and effort to comment on sever
versions of this paper.
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