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Quantum Computers Can Search Rapidly by Using Almost Any Transformation
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A quantum computer has a clear advantage over a classical computer for exhaustive search. The
guantum mechanical algorithm for exhaustive search was originally derived by using subtle properties
of a particular quantum mechanical operation called the Walsh-Hadamard (W-H) transform. This paper
shows that this algorithm can be implemented by replacing the W-H transform by almost any quantum
mechanical operation. This leads to several new applications where it improves the number of steps by
a square root. It also broadens the scope for implementation since it demonstrates quantum mechanical
algorithms that can adapt to available technology. [S0031-9007(98)06052-9]

PACS numbers: 03.67.Lx, 89.70.+c

Quantum mechanical systems can be in a superpositiocuantum computer consisting of a number of qubits is pre-
of computational states and hence simultaneously carrgared in some simple initial state, and caused to evolve uni-
out multiple computations in the same computer. In thearily for some time, and is then measured. The algorithm
last few years there has been extensive research on hag/the design of the step-by-step unitary evolution of the
to use this quantum parallelism to carry out meaningfulystem. Operations that can be carried out in a controlled
computations. In any guantum mechanical computationvay are unitary operations that act on a small number of
the system is initialized to a state that is easy to prepare arglbits in each step. Two elementary unitary operations
caused to evolve unitarily, the answer to the computationgbresented in this section are the W-H transformation and
problem is deduced by a final measurement that projectthe selective inversion of the amplitudes of certain states.
the system onto a unique state. The amplitude (and hence A basic operation in quantum computing is the operation
probability) of reaching a specified final state depends o performed on a single qubit—this is represented by the
the interference of all paths that take it from the initial following matrix:
to the final state—the system is thus very sensitive to
any magnitude of phase disturbances that affect any of M 1 [1 1 }
the paths leading to the desired final state. As a result, V2Ll —1l

quantum mechanical algorithms are very delicate, and '_\vhere the state 0 is transformed into a superposition:

is generally believed that an actual implementation Would(l/ﬁ 1/v2). Similarly, state 1 is transformed into the

need elaborate procedures for correcting errors [1]. o - . :
This paper shows that the quantum search algorithrﬁur)erpos'tlom/ﬁ’ 1/¥2). In a system in which the

is surprisingly robust to certain kinds of perturbations.s'tates are described byqubits (it hasv = 2" possible

- ) ; states) we can perform the transformatidh on each
It was originally derived by using the Walsh-Hadamard™ " -~ ) ;
(W-H) transform and appeared to be a consequence (()qublt independently in sequence thus changing the state
X . ppe R N of the system. The state transition matrix representing
the special properties of this transform; this paper shows . : . . e, 0 i
A . L is operation will be of dimensio” X 2". Consider
that similar results are obtained by substituting almos . . )
. C a case when the starting state is one of febasis
any unitary transformation in place of the W-H transform. . . ;
. . X . states, i.e., a state described by a general string of
Since all quantum mechanical operations are unitary, this. e
: inary digits composed of some 0Os and some 1s. The
means that almostny quantum mechanical system can be

used—all that is needed is a valid quantum mechanica{lESUIt of performing the transformatiod on each qubit

. . : . ¥vi|l be a superposition of states consisting of all possible
operation and a way of selectively inverting the phase o bit bi : ith litude of h boi
states. Meaningful computation can hence be carried oJ_'L It binary strings with amplitude of each state being
on the.basis of universal properties of quantum mechanic Tzin/z' This transformation is referred to as the W-H

AR properties ot quant fransformation [3] and denoted By. Forn = 2, N = 4:
operations; this is somewhat similar in spirit to [2], where
circuit behavior of a certain class of neural networks was

1 1 1
independent of the precise nature of the nonlinearity in 11 1 -1 =1
each neuron. W= Al -1 o1 -

1. Quantum operations=In a quantum computer, the 1 -1 -1 1

logic circuitry and time steps are essentially classical, only

the memonitsthat hold the variables are in quantum su-Make note of the following three points: (i) Each of the
perpositions—these are callegibits There is a set of terms of the first row and first column até+/N, (i) each
distinguished computational states in which all the bits ar@f the other terms isc1/+/N, and (iii) the various columns
definite Os or 1s. In a quantum mechanical algorithm, there orthonormal.
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The other transformation that we will need is the se-steps. This leads to a sizable improvement in the number
lective inversion of the phase of the amplitudes in certairof steps if|U,, | < 1.
states. Unlike the W-H transformation and other state tran- Denote the unitary operation that inverts the amplitude
sition matrices [4], the probability in each state stays then a single basis stater) by I,. In matrix notation this
same since the square of the absolute value of the ampis the diagonal matrix with all diagonal terms equal to 1,
tude in each state stays the same. Its realization is particexcept thexx term which is —1—a quantum mechani-
larly straightforward; based on [5], the following paragraphcal implementation of this was presented at the end of
gives a realization. section 1.

Assume that there is a binary functigii) that is either Consider the following unitary operator:Q =
0 or 1. Given a superposition over statest is possible —7, U~ 'I,U—note that sinceU is unitary, U~! is
to design a quantum circuit that will selectively invert the equal to theadjoint (the complex conjugate of the trans-
amplitudes in all states whey&x) = 1. This is achieved pose) of U. We first show thatQ preserves the two-
by appending an ancilla bit and considering the quantum dimensional vector space spanned [y and U~ !|7)
circuit that transforms a statk, ») into |x, f(x)XORb)  (note that in the situation of interest, whi., | is small,
(such a circuit exists since, as proved in [6], it is possiblehese two vectors are almost orthogonal).
to design a quantum mechanical circuit to evaluate any First considerQ|y). By the definition of Q, this is
function f(x) that can be evaluated classically). Ifthebit —7,U"'I.U|y). Note that|x)(x|, where|x) is a basis
is initially placed in a superposition/~+/2 (|0) — [1)), this  state, is anV X N square matrix all of whose terms are
circuit will selectively invert the amplitudes in the stateszero, except thexx term which is 1. Thereford, =

for which f(x) = 1 [5]. [ — 2|7){(r|andl, =1 — 2|y)(y|, it follows:
2. Amplitude amplificatior—A function f(x), x = X
1,2,...,N, is given which is known to be nonzero ata  Qly) = — (I = 2ly){yDU (I — 2|7){z)Uly)

single (unknown) value of, say atx = r—the goal is — (] _ -1
to find 7. If there is no other information abou{x) and U= 2N DU Uly)

one is using a classical computer, it is easy to see that on +2(1 = 2ly)yDU 7)) (7|Uly). (1)
the average it will take&v /2 function evaluations to solve ] .

this problem successfully. However, quantum mechanica¢sing the factst ~'U = I and(y|y) = 1, it follows that
systems can explore multiple states simultaneously, and _ _ -1

there is no clear lower bound on how fast this can be Cly) =ly) + 20 = 2l DU (rhUly) . ()
done. Reference [7] showed by using subtle argumentSimplifying the second term of (2) by the following iden-
about unitary transforms that it cannot be done in fewetities: (r|U|y) = U,, and (y|U !|r) = U;, (as men-
than O(/N) steps—subsequently an algorithm wastioned previouslyl is unitary and sd/ ! is equal to the

discovered that took precisely(~/N ) steps [8]. complex conjugate of its transpose);
The basic idea of [8] is to consider ahstate quantum 5 0
mechanical system and map each value of the domain Oly) = Iv) (A1 = 4|Ur D) + 20U, (U 7). (3)

to a basis state of the system. Th_e system is.initialized SO Next consider the action of the operatgr on the

that thefe is an Qqual ampl!tude in each 'baS|s. state, th€Rctor U~'|7). Using the definition ofQ (i.e., Q =

by a series of unitary operations, the amplitude in the state ;

corresponding tor = 7 is increased (the corresponding

basis state is denoted Hy)). A measurement is then QU M) = -, U 'LUWU 7))

made due to which the system collapses to a basis state; _ 1 . -1

the observed basis state then gives the solution to the = LU LD =5LU"7). (4)

problem. This algorithm is based on subtle properties ofiriting 7, as 1, =1 — 2|y){(y| and as in (3),

the W-H transform. The analysis in this section showsy|U™!|7) = U} :

that very similar results are obtained by replacing the W- 1 1 1

H transform by any arbitrary unitary operation. Some QU™ m) =U"" 1) + Iy (U I)

consequences of this are presented in the next section.. =U ') - 205 y). (5)
Assume that we have at our disposal a unitary operation

U and we start with the system in a basis state that is easy The operatorQ hence transforms any superposition of

to prepare, sajy). If we applyU to |y), the amplitude of the vectors|y) and U~'|7) into another superposition

reaching statér) is U, if we were to observe the system Of the same two vectors. (3) and (5) may be written as

at this point, ;he probaplhty of getting the right state ly) (- 4U.,P) 20, ly)

would be|U,,|*—according to the notationy) denotes Q[ U1|r>} [ —oU* 1 i||:U1|7_> }

the initial basis state anfl) the target basis state. It e 5

will therefore take at leasd(1/|U, |?) repetitions of this (6)

experiment before a single success. This section showsfollows from (6) thatQ preserves the two-dimensional

how it is possible to reach state) in only O(1/|U,,|)  vector space spanned by) andU~!|r). Q rotates any
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vector in this space by approximateU,., | radians as  O(1/|U,,|), i.e., OVN) steps. This algorithm would
shown in Fig. 1. carry out repeated operations ¢f; with U~ ! = U =

In the situation of interesty) andU ~!|r) are almostor- W, Q becomesQ = —IgWI.W; the operation sequence
thogonal (or els¢r) may be trivially obtained by applying is hence..(—IGWI, W) (—WI,W)(—LWI,W).... By
U to |y) and repeating the experiment a few times). Therefearranging parentheses and shifting minus signs, this may
fore the angle between the two vectdys andU " !'|r) is  be seen to consist of alternating repetitions-ofvIoW
approximatelysr /2. and/,.

The number of applications @ required to transform The operation sequence-WIgW is simply the
ly) into U~ !|7) is obtained by dividing the angle between inversion-about-average operation [8]. To see this, write
the two vectors (which isr/2) by the rotation achieved I3 as I — 2|0){0|]. For any superpositiorx), it fol-
in each application o2 [which is (2|U,,|)]; therefore lows: —WIWlx) = =W — 2[0)ODW|x) = —|x) +
in 7 /4|U., | applications,Q transforms|y) into U~ !|7).  2W|[0){0|W|x). It is easily seen thaW|0)(0|W|x) is
From this, with a single application @f, we can getr).  another vector each of whose components is the same
Therefore inO(1/|U,,|) steps, we can start witty) and  and equal toA where A = /N Zf’:l x; (the average
reach the target state) with certainty. value of all components). Therefore thie component of

The above derivation easily extends to the case when the WIgW|x) is simply (—x; + 2A). This may be written
amplitudes in stately) and|7), instead of being inverted asA + (A — x;), i.e., each component is as much above
by 1, andI,, are rotated by arbitrary phases. However, the(below) the average as it was initially below (above) the
number of operations required to redeh will be greater. average—this is precisely the definition of the inversion-
Given a choice, it will be clearly better to use the inversionabout-average [8].
rather than a different phase rotation. Also the analysis can (ii) Search when an item near the desired state is
be extended to include the case whéyes replaced by known.—Problem: Assume that am bit word is speci-
V-1V, V is an arbitrary unitary matrix. The analysis is fied—the desired word differs from this in exac#ybits.
the same as before except that the operatide replaced Solution: The proximity to the specified word is a con-
by VU. straint whose effect is to reduce the size of the solution

3. Examples of qguantum mechanical algorithmdhe  space. One way of making use of this constraint, would
interesting feature of this paper is that can beany be to map to another problem which exhaustively searches
unitary transformation. Clearly, it can be used to desigrthe reduced space using (i). However, such a mapping
algorithms whereU is a transformation on the qubits would involve additional overhead. This section presents
in a quantum computer—this paper gives a few searcha different approach which also carries over to more com-
related applications; further search-related applications anglicated search-related situations as discussed in [9].
discussed in [9]. This technique also extends to problems Instead of choosing/ as the W-H transform, in this al-
not immediately connected with search [10]. TNe=  gorithm U is tailored to the problem under consideration.
2" states to be searched are representedsbyubits.  The starting statg¢y) is chosen to be the specified word.
According to the framework of section 2, a search of thes@ he operatiorl/ consists of the transformation
N states can be carried out quantum mechanically by using e —
a unitary operatior/ which has a finite amplitud®,, to [ I~ a _\/\I/ET:|
go from the starting stafe ) to the target stater). Such a Va @
search will takeD(1/|U, |) steps. The following analyses applied to each of the qubits @ is a varlable parameter
calculateU, and thus the number of steps required for theyet to be determined)—note thatdf is 2, we obtain the
search. W-H transform of section 1. Calculating,, it follows

(i) Exhaustive search starting from thi®) state—  that|U,,| = (1 — a)" ®/2a*/2, this is maximized when
In case the starting statey) is the |0) state and the o« is chosen to bek/n; then In|U.,| = n/2In[(n —
unitary transformation/ is chosen to be¥ (the W-H  k)/n] — k/2In[(n — k)/k]. The procedure of section 2
transformation as discussed in section 1), thepforany can now be used—as in (i), this consists of repeat-
target state is 1/+/N. The algorithm of section 2 requires ing the sequence of operationd, U~ '1,U, O(1/|U,|)

times.
-1 The size of the space being searched in this problem is
U v (1), which is equal ton!/(n — k!'k!). Using Stirling’'s

approximation: Im! = ninn — n, from this it fol-
lows that In}) = nin[n/(n — k)] — kIn[k/(n — k)],
comparing this to the number of steps required by the

- "I algorithm, we find that the number of steps in this algo-
> rithm, as in (i), varies approximately as the square root of
FIG. 1. The operator = —1,U~'I,U preserves the two- € Size of the solution space being searched.
dimensional vector space spanned|py andU~'|7); it rotates 4. Sensitivity—In order to achieve isolation, quantum
each vector in the space by approximat2ly,, | radians. computational devices generally have to be designed to
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be microscopic—however, it is extremely difficult to ex-  Another limitation is that the framework of section 2
ert precise control over microscopic individual entities.demands that/ andU ! stay the same at all time steps.
As a result, a serious problem in implementing quantunWhat happens if there are small perturbations in these?
mechanical computers is their extreme sensitivity to perit seems plausible that these will not create much of an
turbations. This paper synthesizes algorithms in terms afmpact if they are small and average out to zero; however,
unitary matrices—as shown in section 3 this frameworkthat is something still to be proved.
can always be specialized to a quantum computer basedIn conclusion, designing a useful quantum computer
on qubits; however, it can also be applied directly to morehas been a daunting task for two reasons. First, because
physical situations, hopefully reducing the need for erroithe physics to implement this is different from what most
correction [1]. known devices use and so it is not clear what its structure
For example, consider a hypothetical implementatiorshould be like. The second reason is that once such a com-
of the quantum search algorithm where the qubits ar@uter is built, few applications for this are known where it
the spin states of electrons and the W-H transform isvill have a clear advantage over existing computers. This
achieved by a pulsed external magnetic field. The resultgaper has given a general framework for the synthesis of a
of sections 2 and 3 tell us that it does not significantlycategory of algorithms where the quantum computer would
alter the working of the algorithm if the axes of the have an advantage. See Refs. [9,10] for further applica-
magnets, or the periods of the pulse, are slightly perturbetions developed using this framework. It is expected that
from what is required for the W-H transform. Any unitary this formalism will also be useful in the physical design
transform U which is closeto the W-H transform, will of quantum computers, since it demonstrates that quantum
work provided bothU and U~! are consistently applied algorithms can be implemented through general properties
as specified. of unitary transformations and can thus adapt to available
5. Limitation—As discussed in [5], it is possible to technology.
express several important computer science problems in We thank Norm Margolus and Charles Bennett for
such a way so that a quantum computer can solve thespending the time and effort to comment on several
efficiently by an exhaustive search. Even in physics, sewersions of this paper.
eral important problems can be looked upon as searches
of domains. Many spectroscopic analyses are essentially
searches—a rather dramatic example of a recent search
was that for the top quark [11]. The framework of this pa-

per could equally well be used there.. AII that is needed IS™ 0n Foundations of Computer Scien¢£EE Computer

a means to re_:-peatedly ap_ply a _SpeC'f'ed Hamlltonlan ,that Society Press, Los Alamitos, California, 1996), pp. 56—
produces various phase inversions and state transitions. gg

For example, it took abou'? repetitions of a certain ex- 2] J. Hopfield, in Proceedings of the National Academy of
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